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SCIENTIFIC CHALLENGES OF 
CONVECTIVE-SCALE NUMERICAL 

WEATHER PREDICTION
JUN-ICHI YANO, MICHAŁ Z. ZIEMIAŃSKI, MIKE CULLEN, PIET TERMONIA, JEANETTE ONVLEE, LISA BENGTSSON, 
ALBERTO CARRASSI, RICHARD DAVY, ANNA DELUCA, SUZANNE L. GRAY, VÍCTOR HOMAR, MARTIN KÖHLER, 

SIMON KRICHAK, SILAS MICHAELIDES, VAUGHAN T. J. PHILLIPS, PEDRO M. M. SOARES,  
AND ANDRZEJ A. WYSZOGRODZKI

T
 he improvements in numerical weather prediction  

 (NWP) over the last half century may overall be  

 considered as an outcome of a straightforward 

extrapolation of technologies: increase of model 

resolution; relaxations of the dynamical approxima-

tions, from the quasigeostrophic to the primitive 

equation system, and with the removal of the hydro-

static balance approximation; introduction of more 

complex physics as well as parameterizations;1 and a 

more careful procedure for preparation of the forecast 

initial conditions. These model upgrades have been 

rather dramatic, thanks to an exponential growth in 

computer capabilities. In turn, these upgrades have 

contributed to the steady improvements of NWP 

forecast performance to date (cf. Bauer et al. 2015).

The effort to straightforwardly extrapolate techno-

logical capability has reached such a level that opera-

tional regional forecast models are now running with 

horizontal mesh sizes of 1–5 km worldwide. For ex-

ample, in Europe, the French AROME (Applications de 

la Recherche à l’Opérationnel à Méso-Echelle) forecasts 

over France are run operationally with a grid spacing 

of 1.3 km, the Met Office in the United Kingdom 

uses a grid spacing of 1.5 km, and MeteoSwiss runs 

the Consortium for Small-Scale Modeling (COSMO) 

model with a grid spacing of 1.1 km.

NWP capacity has reached a critical threshold: 

NWP models now begin to resolve individual convec-

tive elements within multicell, mesoscale, and synop-

tic-scale storms (i.e., they are “convection permitting” 

models). This tendency to higher resolution will 

continue: it is planned that the COSMO model will 

be run with a horizontal grid spacing of 500 m by 

2020, and thus convection will be more resolved. A 

goal of convective-scale NWP is to accurately fore-

cast high-impact storms, including their locations 

and intensities, which has the potential to bring a 

wide range of benefits to society. Forecast guidance 

from convective-scale NWP is already operationally 

available today. At the same time, this threshold also 

1 Note that, unlike the common custom in atmospheric 

modeling, the present essay strictly distinguishes between 

physics and parameterizations: physics always refers to 

explicit physical processes, whereas parameterization always 

refers to subgrid-scale processes.

Numerical weather prediction models are increasing in resolution and becoming capable 

of explicitly representing individual convective storms, but we do not yet know if it is the 

improved resolution that is leading to better forecasts.
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marks an end of straightforward extrapolation of 

technologies for NWP, even in the crudest sense: the 

convective-scale regime is very different from the 

well-studied synoptic weather regime, calling for a 

qualitatively different approach. The transition to 

forecasting at the convective scale is hardly a matter 

of straightforward extrapolation. There are several 

important gaps in our understanding: our basic and 

overall theoretical understanding of this regime is 

much weaker than for the synoptic-scale regime. The 

convective-scale regime is far more complex, even 

more so than as suggested by existing theoretical 

studies on convective dynamics (e.g., Moncrieff and 

Green 1972; Thorpe et al. 1982; Rotunno et al. 1988; 

Yano and Plant 2012).

Though specific issues for convective-scale NWP 

may be found discussed in the literature, the big-

picture view is missing: we can properly tackle the 

convective-scale NWP problems only by taking into 

account the full breadth of all the issues. Some of 

these challenges are particularly problematic: the 

convection-permitting regime is sometimes called the 

“gray zone,” referring to a transition from a regime in 

which convection is fully parameterized to a regime 

in which convection is fully resolved, especially in 

the convection community. However, we should not 

reduce the problems of this regime just to that of con-

vection parameterization. The extent of the challenge 

at the convective scale becomes apparent only when 

seeing all of the challenges together.

The practical issues faced by European weather 

services may be understood by the fact that, for 

example, a typical public user requirement in 

Switzerland would be a prediction of precipitation 

in a specific valley. A more specific example is a 

thunderstorm event at the Belgian music festival 

Pukkelpop in August 2011 (de Meutter et al. 2015). 

During the music festival, at which about 60,000 

people were present, a short-lived downburst 

occurred. Five people were killed and at least 140 

were injured. An operational failure to predict this 

downburst event was something to be criticized 

from a public perspective, although the downburst 

had a width of only 100 m and so was far too small 

to be resolved by current operational NWP models.2 

Weather services naturally need to follow those 

public expectations. In responding to such expec-

tations from the public, we also need to shift the 

focus to the finer scales and more fully exploit the 

information from convective-scale NWPs.

The present essay has emerged from a sense 

of an urgent need for action within Europe-

an NWP consortia—Aire Limitée Adaptation 

Dynamique Développement International (ALA-

DIN), COSMO, and High Resolution Limited Area 

Model (HIRLAM)—in responding to these chal-

lenges. This essay complements previous BAMS 

articles, including Mass et al. (2002), Fritsch and 

Carbone (2004), Mass (2006), Stensrud et al. (2009), 

and Sun et al. (2014). As discussed therein, we clearly 

acknowledge that currently there are extensive 

research efforts at the operational level to improve 

convective-scale NWP by exploiting various exist-

ing observations as well as modeling techniques. 

The main emphasis put forward in the present 

essay is an urgent need to properly address more 

fundamental theoretical issues. With our lack of 

basic understanding of this regime, current efforts 

will sooner or later otherwise become deadlocked. 

A good awareness of these more fundamental issues 

and of the limits of the current operational efforts 

is crucial just for good continuation of the current 

progress, even though those fundamental problems 

may not be immediately solvable.

To keep a reasonable focus, so that we can dis-

cuss the issues in depth, this essay addresses only 

the most basic theoretical issues. We recognize that 

other issues could be equally important, such as 

observation-related issues, but here we limit ourselves 

to only discussing these in the theoretical context. We 

2 See further discussion on the parameterization problems in 

the “Parameterization” section.
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clearly acknowledge the current operational efforts 

are of crucial importance, but for the sake of keeping 

focus, they are not covered herein.

In the next section, these fundamental issues are 

examined one by one. Discussions begin with the 

most basic issues of partial differential equations 

(PDEs), then turn to the issues of f luid mechanics, 

and then gradually move to more operational issues. 

Though the argument as a whole evolves over the 

section, since the issues to be discussed are so 

extensive each subsection on an issue is written in 

an almost stand-alone manner for ease of reading. 

In this manner, this essay provides a full breadth of 

the most fundamental problems of the convective-

scale NWP.

SCIENTIFIC CHALLENGES. Partial differential 

equation problem. The synoptic weather system of the 

103-km scale can be described by the primitive equa-

tion system under hydrostatic balance. The basic 

mathematical structure of this system is relatively 

well understood (Petcu et al. 2009). This is in stark 

contrast to the nonhydrostatic anelastic system, a 

standard formulation adopted for convective-scale 

modeling.3 This system is far more difficult to 

analyze mathematically, and hence it is much less 

well known.

The synoptic-scale weather system can, further-

more, be approximated by quasigeostrophy or, alter-

natively and better, by semigeostrophy, based on the 

fact that the system exhibits a close balance between 

the Coriolis and the pressure-gradient forces. This 

basic feature enables us to understand, to a large extent, 

synoptic-scale weather in terms of balanced dynamics 

(cf. Leith 1980).

Unfortunately, under the convective-scale regime, 

we lose these basic balances of the system, making 

it much harder to understand the fundamental 

characteristics of the system. Even a basic proof of 

nonsingularity associated with latent heating has 

only recently been established for the simplest case 

(Temam and Tribbia 2014). Understanding of these 

flows may partially be accomplished by identifying 

a wide variety of subsystems defined as asymptotic 

limits. However, such an understanding requires 

a much broader knowledge of f luid dynamics and 

thermodynamics, even without considering full 

microphysics, than for the traditional synoptic-scale 

system. However, these subsystems under various 

asymptotic limits occupy only a small fraction of the 

vast parameter space in the convective-scale regime. 

No asymptotic representation is likely to be identified 

in a bulk part of this regime.

Though all these aspects may sound purely math-

ematical, our lack of understanding at this most basic 

level hinders crucial progress at more practical levels 

(see “Numerics” section).

Dynamical system. Synoptic-scale f lows may be 

understood as a type of dynamical system because 

mathematically they reside on a slow stable manifold 

(Leith 1980), which is only weakly coupled to the 

much more complex dynamics of smaller-scale 

convection. Thus, dynamics on these scales can be 

described with a relatively limited number of effec-

tive degrees of freedom, that is, low-dimensional 

dynamics like Lorenz’s (1963) strange attractor. 

Furthermore, such an effective low dimensionality 

of the system guarantees relatively stable, reliable, 

long-term model forecasts, even though the evolution 

may be somehow chaotic.

In the convective-scale regime, on the other 

hand, although a wide variety of asymptotic regimes 

emerge, nothing equivalent to geostrophic balance is 

found: the effective dimension of the system is sud-

denly increased. As a result, the dynamical system 

approach mostly developed for low-dimensional 

systems no longer works effectively. Furthermore, 

this transition severely restricts predictability (see 

“Probability” section).

Turbulence. Atmospheric flows are turbulent at almost 

all the scales of practical interest according to a 

standard definition of turbulence in fluid mechanics 

based on the Reynolds number, which measures the 

importance of nonlinearity relative to viscous dissipa-

tion (e.g., Fritsch 1995). Unfortunately, this feature is 

often neglected due to a custom of calling planetary 

boundary layer (PBL) turbulence “atmospheric tur-

bulence,” leaving an impression that turbulence is 

only found in the PBL of the atmosphere. It is also 

typical that a distinction is made between turbulence 

and convection, which further adds to the impression 

that atmospheric convection is not turbulent. While 

the nature of turbulence within convective cells is 

non-Kolmogorov, and so has different properties to 

that typically found in the PBL, it is fundamentally 

a turbulent process.

3 Strictly speaking, many operational models do not follow the anelastic formulation, but adopt the fully compressible 

formulation. However, these models are still designed not to fully resolve the sound waves by adopting semi-implicit methods 

for the time integration.
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At the synoptic scale, the turbulent nature of 

the f low is limited by the stratification and rota-

tion of the atmosphere and so tends to be quasi 

two-dimensional. An important feature of two-

dimensional turbulence is that the energy is overall 

transferred from smaller scales to larger scales (an 

inverse cascade). As a result, atmospheric flows tend 

to be organized at larger scales, which maintains a 

relative smoothness of the f low (cf. Tennekes 1978). 

This property of two-dimensional turbulence allows 

us to treat synoptic-scale flows as a low-dimensional 

dynamical system.

On the other hand, once the horizontal scale of 

the system reaches below O(10) km, the aspect ratio 

of the f low becomes unity,4 hydrostatic balance is 

no longer satisfied, there is no longer constraint 

from rotation, and the f low becomes fully three-

dimensional: this is the essence of the convective 

scale. These f lows are far more complex than 

two-dimensional turbulence, more transient and 

intermittent (i.e., they lack balance), and they are 

associated with a much larger degree of freedom. 

Thus, three-dimensional turbulent f lows are much 

harder to predict than the chaotic system found in 

low-dimensional dynamical systems: in the fully 

turbulent regime, the number of active modes keeps 

increasing with increasing resolution and predic-

tion becomes increasingly harder with no sign of 

convergence.

To understand fully three-dimensional convec-

tive atmospheric turbulence, the basic nature of 

the energy interactions between these many active 

modes in the system should first be properly un-

derstood. In fully three-dimensional turbulence, 

energy is predicted to be transferred overall to the 

smaller scales, but some of the energy at smaller 

scales is also transferred to the larger scales, leading 

to a tendency for organized convection. Although 

the basic mechanism of organized atmospheric 

convection is classically attributed to vertical wind 

shear (cf. Moncrieff and Green 1972; Thorpe et al. 

1982; Rotunno et al. 1988), its full mechanism from 

a point of view of full turbulence dynamics is still 

to be established (cf. Yano et al. 2012). Here, we also 

need to move beyond a conventional framework of 

interactions between convection and the large scale 

toward a true multiscale framework.

Our current understanding of turbulent flows is 

essentially based on a straightforward extrapolation 

of Kolmogorov’s theory for homogeneous, three-

dimensional turbulence (cf. Zilitinkevich et al. 2013). 

Existence of the stratification and an active role of 

buoyancy are likely to qualitatively change the basic 

nature of the f low. Such an investigation into the 

fundamental nature of self-organized turbulence has 

not yet been accomplished.

Predictability. The predictability of atmospheric flows 

is fundamentally limited because the errors in predic-

tion exceed the typical amplitude of a signal of a given 

scale at a certain point in time. Once the error exceeds 

this amplitude, the prediction loses any practical 

value, although it is always possible to run an NWP 

model beyond this limit.

The fully turbulent nature of the convective-scale 

regime limits the predictability more severely than for 

low-dimensional chaotic flows (cf. Palmer et al. 2014). 

In a chaotic system, an error of the initial condition 

limits the predictability. In principle, the predictabil-

ity can always be extended by defining the initial con-

dition more accurately. However, in a fully turbulent 

regime, the accuracy of the initial condition no longer 

ultimately limits the predictability (Sun and Zhang 

2016), although a denser observational network may 

extend the predictability to some extent. Rather, the 

intrinsic nature of the flow itself (notably its intermit-

tency) becomes the ultimate limiting factor. More 

observations by, for example, a denser network, do 

not overcome this intrinsic predictability limit.

On the other hand, one may wish that the pre-

dictability of synoptic scale would be improved by 

explicitly resolved convection rather than an unreli-

able parameterized convection. However, even this is 

not obvious considering the complex multiple-scale 

interactions of the turbulent f lows associated with 

convection (see “Turbulence” section).

Probability. The predictability of convective systems is 

about a few hours (e.g., Hoheneger and Schär 2007), 

but this is not a fixed number. In some situations, 

the convective system is strongly controlled by a 

synoptic-scale process, giving a longer predictability. 

It is also spatially dependent. Detailed surface data 

(vegetation, soil types, topography) may further help 

4 Observation (cf. Nastrom and Gage 1985) shows that the slope of the kinetic energy spectrum as a function of the wavenumber 

k turns from k−3, as expected for the two-dimensional turbulence, to k−5/3 at about the few-hundred-kilometer scale (roughly 

corresponding to the radius of the deformation) in a virtual contradiction to this aspect ratio argument. This regime with 

a k−5/3 spectrum above the 10-km scale (often called “stratified turbulence”) is still quasi two-dimensional, arising from a 

strong influence of the stratification on this scale range (cf. Lindborg 2006).

702 APRIL 2018|



to extend the predictability. Identifying situations 

with enhanced predictability is an important forecast 

issue in convective-scale NWP.

However, regardless of its precise value, there 

always exists a limit beyond which a forecast becomes 

so uncertain that it loses any deterministic usefulness. 

As a result, when an NWP model is run for a few 

days, as is the basic strategy of the NWP community 

(e.g., ALADIN, COSMO, HIRLAM, Met Office), the 

resulting forecast can only be interpreted in terms of 

probabilities: we cannot say precisely when and where 

an afternoon shower should be expected on the next 

day, but only give a probability distribution in time 

and space. In this manner, convective-scale NWP 

must be inherently based on probability.

Unfortunately, probability is not an easy concept 

to understand.5 It is true that there are already many 

methodologies for predicting the probability of 

weather events (e.g., Schwartz et al. 2010). A typi-

cally adopted approach is to estimate a probability 

by creating a large sample or ensemble. However, the 

frequency of an event within a certain sample is not 

equivalent to a probability of a single unique event of 

particular interest. Such frequency-based thinking 

may be helpful for analyzing a homogeneous sequence 

of tries (or events), such as the tossing of a coin or dice. 

In contrast, a sequence of rainfall events is hardly 

“homogeneous”: each event happens under unique 

circumstances. In this case, a different probability 

must be assigned for each rainfall event, without 

creating a sample.

The current standard methodology for estimating 

weather probabilities, the ensemble prediction system 

(EPS), is also based on this sample space-based 

thinking (cf. Leith 1974). Although the EPS is indeed 

a useful approach, it does not predict by itself a prob-

ability in any obvious manner: 3 rain forecasts out of 

10 ensemble members does not automatically mean 

a 30% chance of rain, unless the sample is defined in 

a homogeneous manner. Generating such a homoge-

neous sample with a reasonable, finite ensemble size 

is not a simple matter, and it becomes more difficult 

for a system with an increasing number of unstable 

modes (cf. Uboldi and Trevisan 2015).

Frequency and probability must carefully be dis-

tinguished from each other, as Bayesian probability 

teaches us (cf. Jaynes 2003). Furthermore, any proba-

bilistic prediction system should be derived, ideally, 

from the basic physical principle for predicting 

probability, that is, the Liouville equation (Yano and 

Ouchtar 2017), although its practical use may appear 

difficult (see “Data assimilation” section).

Stochasticity. Prediction of individual convective 

events is so difficult that it is tempting to deal with 

them as random events arising from stochasticities. 

Such a formulation also more naturally leads to a 

probabilistic description. However, we have to be 

cautious in proceeding in this manner.

Some of the physical processes may be intrinsically 

stochastic: Brownian motion is a classic example. 

Many complex microphysical processes that do not 

provide simple closed analytical expressions, for ex-

ample, generation rate of the secondary ice crystals 

by a collision of two ice particles (Yano and Phillips 

2016), may also be best considered to be stochastic. 

Following this line of reasoning, one may wish to 

consider any noisiness in a system as a consequence 

of stochasticity. However, such reasoning is not nec-

essarily justified. For example, although turbulent 

flows are extremely noisy, their physics is completely 

deterministic and presented in a closed form by 

the Navier–Stokes equations: a relatively simple 

nonlinearity can easily produce a noisy time series. 

The choice between using a stochastic or nonlinear 

representation of a given process must therefore be 

made carefully.

We should also realize that noisiness at short time 

scales and small spatial scales does not necessarily 

lead to a stochastic inf luence at larger scales: the 

two levels of the processes must be carefully distin-

guished from each other. The method of homog-

enization developed under multiscale asymptotic 

expansions (Pavliotis and Stuart 2007) provides a 

rigorous procedure for assessing whether the large-

scale inf luences of those noise-like features are 

actually stochastic.

Generally speaking, we should not assume that 

all the difficulties in predicting the convective-

scale regime arise from randomness: adding more 

stochasticity is not necessarily a solution. We should 

also carefully distinguish between the intrinsic 

5 Note that the probability is even not a measurable quantity. For example, if a 30% probability of rain is verified by actual rain 30% 

of the time, this probability forecast is statistically consistent with the observation. However, this is not a sufficient condition 

to verify it. The true verification must be performed on the probability forecast for each event (or nonevent) individually. Of 

course, this is not possible, because the actual realization is rain or no rain without an intermediate state. In other words, we 

can never measure a probability observationally for an individual event, but only in a statistical sense. However, the latter is 

not sufficient for the verification.
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stochasticity in physics and the stochasticity intro-

duced as an artificial device in parameterizations. 

The latter must be addressed with more mathematical 

rigor (cf. Berner et al. 2017).

Data assimilation. As the horizontal resolution of NWP 

models increases, a denser observational network is 

also required. However, simply increasing the number 

of observations is not enough. NWP models require 

more information than is being measured: observa-

tions generally do not cover the entire model domain, 

and more importantly, observed quantities are often 

only indirectly related to model variables. Methodolo-

gies for estimating the model state from observations 

come from nonlinear filtering and optimal control 

theory (Jazwinski 1970; Crisan and Rozovskii 2011), 

also referred to as data assimilation (DA; cf. Kalnay 

2002) in geosciences.

The full problem of DA consists of estimating 

the so-called posterior probability: that is, the 

probability of the model system state based on the 

observations as well as on our general knowledge of 

the system (prior information). This problem can be 

formally solved by invoking the Bayesian theorem 

(cf. Jaynes 2003). The Liouville equation (or its gen-

eralization including stochastic forcing) predicts 

the time evolution of the probability. However, such 

a formal approach has so far been seen as unsuit-

able for NWP applications: the vast dimension of 

the systems involved renders impractical even just 

estimating the probabilities, let alone computing 

their time evolution.

To simplify the problem, Gaussian approximation 

has often been introduced so that only the mean and 

covariance of the uncertainty probability must be 

computed. The two most widely adopted DA methods 

for operational NWP, four-dimensional variational 

data assimilation (4DVar: Talagrand and Courtier 

1987) and the ensemble Kalman filter (EnKF; Evensen 

2009), adopt this simplification. To be even more 

practical, operational DA is further simplified by 

tuning the DA to just a single dominant scale, usually 

the synoptic scale.

On the other hand, as model resolution increases, 

new phenomena are resolved on a broader range of 

scales, including convection, and so DA must also 

be designed to simultaneously keep control on all 

resolved scales. Studies suggest that this problem 

may, in principle, be solved by 4DVar (Lorenc and 

Payne 2007) and EnKF (Snyder and Zhang 2003). 

However, even more changes in DAs are required to 

efficiently deal with two main features inherent at 

the convective scale: i) a much faster and intermittent 

error growth rate (see “Predictability” section) and 

ii) the nonlinear and non-Gaussian characters of the 

underlying dynamics and error statistics.

The first issue is intimately related to the concept 

of observability (cf. Jazwinski 1970), which may be 

defined as the problem of identifying the minimum 

spatiotemporal observational density to efficiently 

counteract error growth (Quinn and Abarbanel 

2010). Observability is a necessary condition for the 

stability of a DA solution, which is in turn a necessary 

condition to reduce the state-estimation (and predic-

tion) error (Carrassi et al. 2008). Observability can be 

achieved through development of the observational 

network itself as well as of the DA procedure. The 

former includes, for example, the development of 

a C-band dual-polarization Doppler radar network 

under the European Operational Program for 

Exchange of Weather Radar Information (OPERA; 

Huuskonen et al. 2014). Surface measurement (e.g., 

soil moisture) networks with sufficient spatiotempo-

ral resolution also contribute, although they are still 

to be strengthened over Europe.

There are several approaches for dealing with 

the second issue, including the rank histogram 

filter applied to Kalman filter methods (Anderson 

2010). However, the most fundamental approach for 

dealing with this issue is to turn to a more basic prin-

ciple based on fully Bayesian Monte Carlo methods 

[particle filters (PFs); Doucet et al. 2000]. A problem 

with PFs is that the number of particles required for 

accurate performance grows exponentially as the 

system’s dimension increases (Bocquet et al. 2010). 

Choosing the importance proposal densities that 

give a larger overlap with the conditional density may 

delay the filter collapse, or even prevent it (Slivinski 

and Snyder 2016). Hybrid EnKF–PF methods are 

promising alternative approaches to this problem 

(Chustagulprom et al. 2016). The development of 

advanced PFs for DA in convection-permitting NWP 

models will be an important priority for the coming 

years (cf. Poterjoy et al. 2017).

Cloud microphysics. Increasing model resolution also 

demands more sophisticated physics. Unfortunately, 

the issues of physics are vast. Here, we deliberately 

limit our discussions to the cloud microphysics be-

cause of its unique status.

Our knowledge of microphysical processes coming 

both from laboratory and theoretical studies is quite 

extensive (cf. Pruppacher and Klett 1997), although 

our knowledge is hardly perfect and the existing bin 

microphysics parameterizations certainly do not 

make full use of this knowledge. At the same time, 
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even the current bin microphysical schemes are still 

too expensive to use for convective-scale NWPs. In 

short, we know the microphysics too well, and we 

have to somehow simplify it for it to be included 

in operational NWP models while maintaining a 

reasonable model run speed. The main problem 

with current microphysical modeling is that these 

simplifications are made in a rather arbitrary manner 

without performing any systematic “investment gain” 

analysis. For example, one can find many articles in 

the literature claiming an improvement of a model 

by upgrading, for example, from a single-moment 

to a double-moment scheme. However, a carefully 

balanced judgment is often missing on relative gain 

against a given investment. Here, Bayesian decision 

theory (Berger 1985) may be called for. A solid first 

step toward this direction is taken by, for example, 

van Lier-Walqui et al. (2014).

The benefits of implementing more realistic, and 

more complex, descriptions of cloud microphys-

ics may appear enormous: hail damage could be 

better estimated by fully considering the hail size 

and hardness (Phillips et al. 2014), and winter pre-

cipitation (due to ice, liquid, or a mixture of both) 

may be better predicted by using a more detailed 

description of the melting process (e.g., Phillips et al. 

2007). However, in the convective-scale regime, the 

expected improvements may not be attainable: with 

convective-scale turbulence intrinsically interacting 

with the enhanced cloud microphysics, an increase 

in the complexity of the microphysics may not 

automatically lead to a more reliable forecast, but 

may lead merely to higher forecast uncertainties as if 

adding white noise. A suitable level of sophistication 

in deterministic physics (not only microphysics, but 

surface processes, radiation, etc.) must be objectively 

and quantitatively assessed, with this aspect being 

fully taken into account.

Parameterization. The role of subgrid-scale param-

eterizations becomes more subtle as convection starts 

to become explicitly resolved. In traditional NWP 

models, individual convective storms are key elements 

to be parameterized. Under the convection-permitting 

regime, these parameterizations become almost 

unnecessary. In fact, most operational convection-

permitting NWP models turn off the deep-convection 

parameterization. However, the threshold resolution 

for turning it off is not well established.

It is more likely that the transition toward a situ-

ation where it is no longer necessary to parameterize 

deep convection should be more gradual, and cer-

tain intermediate procedures are required in this 

transition regime (e.g., Gerard et al. 2009). These 

procedures should be performed without traditional 

parameterization assumptions such as scale separa-

tion and quasi equilibrium. Some studies propose a 

stochastic formulation (e.g., Plant and Craig 2008), 

although a formal formulation analysis shows that 

the system remains deterministic even without these 

traditional assumptions (Yano 2014).

The focus is likely to shift to the PBL (Ching et al. 

2014). However, many new parameterization issues 

also arise there, including those for subcloud scales 

of deep convection: it is very likely that the turbu-

lent mixing between the clouds and the immediate 

environment must be described more carefully than 

traditional entrainment–detrainment descriptions 

(cf. de Rooy et al. 2013).

Overall, we face challenges for subgrid-scale 

parameterizations from two sides. On the one side, 

we need to further elaborate existing parameter-

izations (e.g., deep and shallow convection, PBL). 

On the other side, we also need to introduce new 

parameterizations, for example, for the subcloud-

scale processes. It naturally follows that the consis-

tencies between the existing and the new param-

eterizations must also be carefully established. The 

interactions between various subgrid-scale processes, 

for example, between the PBL and convection, also 

become more critically important.

To effectively tackle all these problems together, 

we face issues of consistency and unification. Here, 

we propose that the best solution would be to de-

velop a single consistent unit of subgrid-scale pa-

rameterizations by returning to the first principles 

of explicit physics (e.g., a large-eddy simulation PDE 

system), and to reconstruct everything from there. 

For specific procedures, see Yano et al. (2015) and 

Yano (2016). Rebuilding everything from scratch is 

often much faster, in the end, than trying to unify 

something already in place, but developed without 

much regard for mutual consistencies. These more 

robust parameterizations are, furthermore, expected 

to make the subgrid-scale information more prac-

tically useful in forecasts (cf. Kain et al. 2010; de 

Meutter et al. 2015).

Numerics. In the traditional synoptic-scale regime, 

which in essence resides on a low-dimensional 

dynamical system, increases in spatial resolution 

have, overall, contributed to a better convergence 

of the forecast quality. On the other hand, in the 

convective-scale regime, with so many modes ac-

tively involved in the dynamics, solutions of the 

governing equations are computable with much 
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smaller accuracy at any practical resolution, and 

the solutions do not converge with increasing reso-

lution. For example, the Met Office Unified Model 

finds no tendency toward forecast convergence when 

increasing horizontal grid spacing from 1.5 km to 

100 m (Stein et al. 2015), since the increase of hori-

zontal resolution gradually resolves more turbulent 

processes. As a conventional wisdom, grid spacings 

at least as fine as O(101–102) m are required for 

large-eddy simulations (LESs) to be meaningful. 

The typical convection-permitting grid spacing is 

only just comparable to the size of the largest eddies 

within the PBL.

Prominent flow features are often realized right 

at the limit of the model resolution in convection-

permitting scale simulations, making the simulations 

sensitive to details of subgrid-scale parameteriza-

tions as well as to the properties of the numerical 

algorithms. As a result, some artifacts in outputs 

may result. For example, investigating the flow over 

a heated plane, Piotrowski et al. (2009) find that 

anisotropic viscosity can artificially produce realistic-

looking regular structures that mimic naturally 

generated Rayleigh–Bernard cells. Clearly, verifica-

tion of these numerical results critically depends on 

the availability of theoretically and mathematically 

correct solutions of the PDEs, which can help provide 

a more rigorously defined testing and selection of 

the numerical algorithms suitable for convection-

resolving computations.

Among the numerical algorithms, advection is 

common to every physical variable and therefore of 

particular importance. A good advection scheme 

must conserve the sign and the shape of a variable 

to be advected, when the system is purely advective, 

by suppressing artificial oscillations and numerical 

diffusion. Some advection schemes suppress numeri-

cal diffusion by introducing an antidiffusion term 

(limiter). For example, the “flux corrected transport” 

method, as adopted by, for example, Smolarkiewicz 

(2006), constructs advective f luxes as weighted 

averages of a f lux computed by a monotonic, but 

diffusive, low-order scheme and a f lux computed 

by a high-order scheme so as to suppress unphysical 

behavior.

Semi-Lagrangian schemes (Staniforth and Côté 

1991) are popular among NWP models because 

they permit a relatively large time step while still 

allowing the model to run smoothly. However, 

we must be cautious with their application to the 

turbulent convective-scale regime (cf. Lauritzen 

et al. 2011). Although some successful turbulent 

applications may be found in the literature, semi-

Lagrangian schemes work most efficiently for a 

relatively laminar f low.

In convective-scale turbulent calculations, the 

numerics must be robust.6 Particular attention 

is required for the dynamical core, including the 

treatment of advection. Though no explicit discus-

sion is provided herein, attention must also be equally 

paid to the numerical solver for the physics and the 

subgrid-scale parameterization (Dubal et al. 2006; 

Termonia and Hamdi 2007).

CONCLUSIONS. We have identified the following 

fundamental theoretical challenges in convective-

scale NWPs:

• PDE: A lack of proper understanding both of the 

dynamics and the partial differential equations 

describing this regime poses serious difficulty, 

especially for the verification of numerical model 

results.

• Turbulence: A theory of turbulence must be de-

veloped going beyond the traditional approaches 

based on relatively straightforward extrapolation 

of Kolmogorov’s theory for homogeneous turbu-

lence, to the buoyancy-driven stratified case.

• Probability: Probability becomes a key variable 

to be predicted, because NWP models are run 

for much longer time scales (a few days) than the 

predictability limit (a few hours). The intrinsic 

pro bability, as defined by the Bayesian probabil-

ity theory, should be evaluated rather than the 

oft-used estimation of probability by frequency 

counting. The Liouville equation, as a basic physi-

cal principle of probability prediction, should be 

further exploited to accomplish this.

• Data assimilation: New assimilation approaches 

such as the particle filters must be pursued because 

the traditional assumptions of quasi linearity and 

Gaussian distributions are no longer valid.

• Observational network: Although the develop-

ment of a denser observational network may 

be crucial, it is meaningful only under the con-

straints of observability. Moreover, the intrinsic 

limit of predictability (a few hours) due to the 

fully turbulent nature of the convective-scale 

regime ultimately prevents us from extending 

6 In certain situations, “robust” only narrowly refers to 

whether a given scheme is conditionally stable. On the other 

hand, here we use this notion in the more general sense 

that given numerics are not only stable, and insensitive to 

a change of the resolution, etc., but also preserve the basic 

numerical properties predicted by theory.
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predictability through the inclusion of more 

observations.

• Stochasticity: Stochasticity must be introduced 

into forecast models in a more robust and solid 

manner, for example, based on the method of 

homogenization under multiscale asymptotic 

expansions. It is important to keep in mind that 

more than a mere existence of fluctuations is re-

quired to justify the introduction of stochasticity 

into physics.

• Physics: The degree of sophistication of the model 

physics, notably of the cloud microphysics, must be 

decided by investment-gain analysis, for example, 

based on Bayesian decision theory. Some of the 

physical processes may be better represented 

simply as a stochasticity.

• Parameterizations: Subgrid-scale parameteriza-

tions should be redeveloped from scratch in a 

unified manner, starting from a basic set of equa-

tions for the physics and dynamics, as given by, 

for example, LES models, so that universality and 

consistency are ensured.

• Numerics: The fully turbulent nature of the 

convective-scale regime demands that the 

numerical algorithms be much more robust than 

in traditional NWP models, especially to avoid 

generation of artificially organized structures at 

the scale of the model resolution.

Each research direct ion requires its own 

substantial investments, augmenting current efforts 

and being subject to development of more detailed 

research strategies. We do not even pretend that 

these investigations are easy. For example, at this 

stage, it would be impossible to make any progress 

with the convective-scale regime as a PDE problem 

if the traditional, rigorous methodologies are to be 

applied; a completely different approach would be 

required here. On the other hand, the assimilation 

problem can be addressed more easily as a continu-

ation of the current efforts. Intensive investments 

into the currently existing top-end methodologies 

are likely to lead to breakthroughs in the relatively 

short term.

It is also crucial to extensively exploit existing 

knowledge from non–atmospheric science litera-

ture, for example, from turbulence research. These 

fundamental scientific issues require our rethink-

ing and restructuring, but also redirecting of some 

non–atmospheric science research to more fundamen-

tal problems. For example, non-Kolmogorov turbu-

lence is not solely an atmospheric problem, but it has 

much wider applications. A well-organized research 

network, as well as supporting funding, would be re-

quired so that highly multidisciplinary research may 

be formed to address these problems in full.
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