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Thousands of papers involved in heart rate variability (HRV). However, little was known about one important measure of HRV, the
root mean square of successive heartbeat interval differences (RMSSDs). Another fundamental measure SDNN indicates standard
deviation of normal to normal R-R intervals, where R is the peak of a QRS complex (heartbeat). Compared with SDNN, RMSSD is
a short-term variation of heart rate. Through a time-frequency transformation, the ratio of low- and high-frequency power LF/HF
represents the sympatho-vagal balance of the autonomic nervous system (ANS). Some research claimed that SDNN/RMSSD was a
good surrogate for LF/HF. However, only two special cases supported this hypothesis in the literature survey. The first happened in
resting supine state and the other was a group of prefrontal cortex patients. Both of their Pearson correlation coefficients reached
0.90, a reasonable criterion. In our study, a 6-week experiment was performed with 32 healthy young Asian males. The Pearson
correlation coefficients had a normal distribution with average values smaller than 0.6 for 3 and 5-minute epochs, respectively.
Our findings suggest this surrogate aspect could remain as a hypothesis.

1. Introduction

RMSSD, the root mean square differences of successive R-R
(heartbeat) intervals, is a significant indicator for both atrial
fibrillation (AF) and sudden unexplained death in epilepsy
(SUDEP) [1, 2]. Beyond RMSSD, some other essential vari-
ables of heart rate variability (HRV) measures are SDNN, LF
and HF. SDNN is the standard deviation of normal to normal
R-R intervals. LF and HF represent power in low- and
high-frequency ranges [3]. Previous research suggested that
SDNN/RMSSD was a good surrogate of LF/HF for healthy
subjects [4, 5]. Whether this statement is affirmative would
be revised by analysis of cardiac measurements in this paper.

Measurements of HRV include time domain, frequency
domain methods, and so on. They are noninvasive, as the
tools to recognize the relationship between the autonomic
nervous system (ANS) and cardiovascular mortality [3].
Figure 1 shows a standard routine of electrocardiogram
(ECG) signal processing [6]. Detection of heartbeats (QRS
complexes) is the first step, where R is the peak of the com-
plex. The time domain analysis (SDNN, RMSSD) reports the
activity of the cardiac system. The frequency domain analysis
(LF, HF) reflects sympathovagal balance of the ANS. These

HRV variables can be calculated easily through a superlative
software package [7]. As time went by, HRV yielded rich
fruits in various applications [8].

Some research investigated the relationship between
RMSSD and other important variables [4, 5, 9–12]. SDNN
correlated with LF power and RMSSD correlated with HF
power during sleep in men [9]. However, whether RMSSD
correlates with HF power does not achieve a consensus. The
time domain measure RMSSD and the quantitative geomet-
rical analysis of short-term RRI variability (SD1) from the
Poincare plots were not significantly affected by changes of
respiration [10], but respiration was associated with HF [11].
Another work confirmed the argument that RMSSD cannot
model HF power, the mapping of vagal control onto heart
rate [12]. Although there was some disagreement with [9],
SDNN/RMSSD and LF/HF seemed to exhibit balance
between long-term and short-term variability [4]. Further-
more, the other work had the result that SDNN/RMSSD was
a good surrogate for LF/HF in both patients and normal
healthy controls [5].

The rest of this paper is organized as follows. In Section 2,
the experimental design, HRV analysis, and correlation
coefficient analysis are introduced in detail. In Section 3,
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some statistical charts demonstrating the correlation coef-
ficients of SDNN/RMSSD and LF/HF in 6 successive weeks
are presented. In Section 4, the effect of epoch selection
(5-minute versus 3-minute) and reliability between weeks
are discussed. In Section 5, we summarize the contributions
made in this study and suggest directions for further
research.

2. Method

This section contains four parts. First is the experiment of
ECG data collection. Second is the introduction of HRV
parameters. Third is the introduction of correlation coeffi-
cient analysis. Finally, the whole data process is described.

2.1. Experimental Design. Thirty-two healthy young male
adults, whose ages ranged from 21 to 25 years (mean = 23
years), served as the subjects for this investigation. All of
them were undergraduate and graduate students in National
Chiao Tung University. The authors had obtained the
informed consent of all subjects before the first experiment.
The experimental apparatus consisted of a three-lead elec-
trocardiograph (MSI E3-80, FDA 510(k) K071085) worked
at 500 Hz sampling rate. The experiment was executed in the
afternoon. Each subject sat in the chair first in a quiet room.
They were all eyes closed during data recording. After the
wires were fixed on the body, ECG signals were continuously
recorded for the subsequent 20 minutes.

Each participant had to been recorded 6 times in 6
successive weeks. Due to some absences, only 17 subjects
(53%) completed the 6-week experiment in time. There were
12 subjects (38%) in 7 weeks and 3 subjects (9%) in 8 weeks
to complete the experiment. However, the data got from the
32 subjects was analyzed.

2.2. Introduction of HRV Analysis. Many healthcare issues
arose out of population aging [13]. Experts hope to monitor
people’s health through various physiological sensors [14]
and ECG is one of the physiological signals [15]. Since the
milestone paper proposed in 1996, the study of ECG is still
an ongoing hot research topic [16–18].

Figure 1 shows a standard routine of ECG signal process-
ing [19–23]. The detection of heartbeats (QRS complexes) is
the first step, where R is the peak of the complex. HRV is the
standard deviation of time sequence (RR-intervals). The time
domain analysis reports the activity of circulation system and
the frequency domain analysis reflects the sympathovagal
balance of ANS.

2.2.1. Time Domain Measures. The task force specified many
different HRV metrics for both short-term records (5-
minute) and long-term records (24-hour). Taking the reli-
ability and accuracy of heart rate variability measurements
into account [3], THB (total heart beats), MRR (mean of RR
intervals), SDNN (standard deviation of normal to normal
RR intervals), and RMSSD (root mean square of successive
NN interval differences) as the time domain measurements
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Figure 1: A standard routine of ECG signal processing.

were chosen in this study. The detailed formulas are shown
by the following equations (1):
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2.2.2. Interpolation. To conduct the Fast Fourier Transform
(FFT), an interpolation should be carried on first, since the
RR interval time series is an irregularly time-sampled signal.
This is not an issue in time domain analysis, but in the
frequency domain analysis it has to be taken into account.
If the spectrum estimate is calculated from this irregularly
time-sampled signal, implicitly assuming it to be evenly
sampled, additional harmonic components are generated in
the spectrum. Therefore, the RR interval signal is usually
interpolated before the spectral analysis to recover an evenly
sampled signal from the irregularly sampled event series. The
4 Hz cubic spline interpolation was used in this study [21].

2.2.3. Frequency Domain Measures. While the time domain
measures help in assessing the magnitude of the temporal
variations in the autonomically modulated cardiac rhythm,
the frequency domain analysis provides the spectral compo-
sition of these variations. All frequency domain HRV metrics
are based on the estimated power spectral density (PSD) of
the NN (normal to normal RR) intervals. Although the task
force [3] gave specific definitions of these metrics, it did not
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specify how to estimate the PSD. There are many methods
of estimating PSD and each generates different HRV metric
values. In this subsection, we give a complete description of
our PSD estimator, as required by the task force. PSD analysis
provides the basic information of how power (i.e., variance)
distributes as a function of frequency. Methods for the
calculation of PSD may be generally classified as nonpara-
metric and parametric [24].

Due to the simplicity of the algorithm (Fast-Fourier
Transform) and high processing speed, non-parametric
method, Welch method, was chosen to estimate the PSD
[23]. The detailed procedure of power spectral analysis in this
study is explained as follows.

(1) The signal was split up into overlapped segments:
the original data segment was split up into K data
segments of length L (zero padding), overlapped by
L/2 points (L= 1024 in this study).

(2) The overlapping segments were then windowed by
the Hamming window.

(3) After doing the above instructions, the period gram
was calculated by computing the FFT, and then com-
puting the squared magnitude of the result. The indi-
vidual period-grams were then time averaged, which
reduced the variance of the individual power mea-
surements. The end result was an array of power
measurements versus frequency bin.

Through the use of computationally efficient algorithms
such as FFT, the HRV signal was decomposed into its
individual spectral components and their intensities, using
PSD analysis. These spectral components were then grouped
into three distinct bands: very low frequency (VLF), low
frequency (LF), and high frequency (HF). The cumulative
spectral power in the LF and HF bands and the ratio of these
spectral powers (LF/HF) had demonstrable physiological rel-
evance in healthy and disease states [25, 26]. Changes in the
LF band spectral power (0.04–0.15 Hz frequency range)
reflect a combination of sympathetic and parasympathetic
ANS outflow variations, while changes in the HF band spec-
tral power (0.15–0.40 Hz range) reflect vagal modulation of
cardiac activity.

The physiological explanation of the VLF component
(0.0033–0.04 Hz) is much less defined and the existence of
a specific physiological process attributable to these heart
period changes might even be questioned. The LF/HF power
ratio is used as an index for assessing sympathovagal balance.

2.3. Introduction of Correlation Coefficient. Given two jointly
distributed random variables X and Y , the correlation can
be estimated by the sample correlation coefficient referring
to (2), or rewritten in (3) [27–29]. SXY is the covariance of X
and Y and SXX is the variance of X . The correlation measures
the strength of linear association between X and Y . The
coefficient r takes a value between −1 and 1. The square
of the correlation coefficient r is equal to R2, the coefficient
of determination of the regression model. For R2, it means
coefficient of determination, the proportion of the total vari-
ability accounted for by the regression line. Determination

coefficient takes a value between 0 and 1. Larger values of R2

indicate the data points are closer to the regression line [27]:
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Since the slope b1 of the regression line is the covariance
of X and Y over variance of X , referring to (4), the correla-
tion coefficient r is also a scaled version of the slope b1,
referring to (5):

b1 =
SXY
SXX

, (4)

r = b1

√

SXX
SYY

. (5)

Figure 2 shows the regression model of the pairs SDNN/
RMSSD and LF/HF for a certain epoch. The correlation coef-
ficient r is determined by the slope b1 and the determination
coefficient R2.

2.4. Experimental Data Analysis. To avoid the instability of
subjects in the beginning of the measurement, the head and
tail of 20-minute ECG data were obsolete. For the 5-minute
case, data from 2.5 min to 17.5 min was used. For the 3-
minute case, data from 1 min to 19 min was used.

First, the values of 6 variables (SDNN, RMSSD, SDNN/
RMSSD, LF, HF, and LF/HF) for both epoch cases were
calculated by the in-house software. Each correlation coef-
ficient was generated by 32 records of SDNN/RMSSD and
32 records of LF/HF. There were 36 coefficients for 3-minute
epochs and 18 coefficients for 5-minute epochs, respectively.
Hence, there were 3456 records of raw data totally, a huge
number. However, to help the reader understand the results,
a table (Table 1) was included in this article. It contained the
complete data of a single subject in the 6 successive weeks.
For the data of a single week, eight features were calculated
for each 3-minute epoch. These features included mean heart
rate (MH) per minute, mean RR interval (MR) in millisec-
ond, SDNN (SD), RMSSD (RM), S/R, LF in millisecond
square, HF in millisecond square, and LF/HF (L/H). The
epoch index was color in red: “01–04” means 1 minute to
4 minute within the time sequence.

Second, the main outcomes, correlation coefficients of
SDNN/RMSSD and LF/HF were calculated, as shown in
Figure 2. Pearson correlation coefficient was used to identify
statistical differences between data generated with 5-minute
and 3-minute epochs.

3. Result

The results of this work included 5 figures, from Figure 3–7.
Figures 3 and 4 were correlation coefficient charts for
5-minute epochs and 3-minute epochs, respectively. Figure 5
was the distribution of these coefficients. Figures 6 and 7 were
average correlation coefficient trends in 6 successive weeks.
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Table 1: HRV measurements of one subject.

01–04 04–07 07–10 10–13 13–16 16–19

Week 1

MH 78 75 74 74 78 79

MR 772 802 814 807 768 761

SD 99 79 92 107 108 105

RM 46 37 46 47 47 48

S/R 2.2 2.1 2.0 2.3 2.3 2.2

LF 1731.2 1383.5 2087.4 1991.2 2335.9 3131.6

HF 229.1 193.3 317.0 436.9 409.7 511.8

L/H 7.6 7.2 6.6 4.6 5.7 6.1

Week 2

MH 95 95 98 97 99 96

MR 631 629 613 618 604 628

SD 54 50 49 47 56 70

RM 34 28 24 25 23 32

S/R 1.6 1.8 2.0 1.9 2.4 2.2

LF 937.9 1149.5 704.6 548.6 752.6 787.4

HF 131.3 155.6 192.5 202.9 101.4 161.9

L/H 7.1 7.4 3.7 2.7 7.4 4.9

Week 3

MH 102 102 99 99 95 100

MR 588 590 605 609 630 598

SD 46 51 48 49 53 54

RM 17 20 19 21 25 20

S/R 2.7 2.6 2.5 2.3 2.1 2.7

LF 472.8 630.6 342.2 499.0 709.0 623.7

HF 58.3 121.0 110.1 198.3 141.3 106.9

L/H 8.1 5.2 3.1 2.5 5.0 5.8

Week 4

MH 83 88 88 85 78 77

MR 719 680 685 705 766 775

SD 93 65 85 83 107 90

RM 43 31 40 37 45 44

S/R 2.2 2.1 2.1 2.2 2.4 2.0

LF 2022.5 587.9 1601.3 1650.0 2215.5 1268.7

HF 296.2 219.7 247.1 374.5 381.6 325.9

L/H 6.8 2.7 6.5 4.4 5.8 3.9

Week 5

MH 77 75 78 76 74 72

MR 777 806 766 786 813 830

SD 97 90 85 105 95 102

RM 47 52 48 61 50 64

S/R 2.1 1.7 1.8 1.7 1.9 1.6

LF 1924.5 1300.2 936.2 2771.7 1988.1 2188.6

HF 339.7 333.7 353.1 889.7 356.7 940.5

L/H 5.7 3.9 2.7 3.1 5.6 2.3

Week 6

MH 93 90 86 90 85 82

MR 643 671 700 668 705 731

SD 54 66 101 76 93 97

RM 28 37 50 38 48 55

S/R 1.9 1.8 2.0 2.0 1.9 1.8

Table 1: Continued.

01–04 04–07 07–10 10–13 13–16 16–19

LF 833.0 1392.1 2269.1 1842.2 1356.6 1736.3

HF 193.3 300.5 372.3 217.3 579.0 601.2

L/H 4.3 4.6 6.1 8.5 2.3 2.9

MH: mean heart rate (/m), MR: mean RR intervals (ms), SD: standard
deviation of normal to normal RR intervals, RM: root mean square of
normal to normal RR intervals, S/R: ratio of SDNN and RMSSD, LF: low-
frequency power (ms2), HF: high-frequency power (ms2), L/H = ratio of LF
and HF, 01–04 = epoch from 1 minute to 4 minute within the time sequence.
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Figure 2: Calculation of the Pearson correlation coefficient of
SDNN/RMSSD and LF/HF. The period of sampled epoch is 5 mi-
nutes and the number of subjects is 32. The correlation coefficient r
is determined by the slope of the regression line and the determina-
tion coefficient R-Sq.

In Figure 3, the values were decreased steady with time
from week 2 to week 5. However, this phenomenon was not
true for week 1 and week 6. In Figure 4, the epoch interval
was changed from 5 minutes to 3 minutes. The decreased
phenomenon did not remain and the larger vibration was
observed along the time.

After calculating the mean and the standard deviation,
the correlation coefficients can be observed in normal
distribution, referring to (6) [28]. In Figure 5, the two
distribution curves for 5-minute and 3-minute were similar.
For 5-minute case, the mean value is larger but the difference
between both cases was little:

n
(

x;µ, σ
)

=
1

√
2πσ

e−(1/2σ2)(x−µ)2

. (6)

The value of first week in Figure 6 was the average of the
three items of first week in Figure 3. The mean and standard
deviations were both shown. Figure 7 was the 3-minute case
of Figure 6. Similar increased trends can be observed in both
figures.
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Figure 3: Pearson correlation coefficients of 6 weeks for 5-minute
epochs.

Week 1 0.57 0.56 0.38 0.54 0.59 0.29
Week 2 0.58 0.61 0.6 0.57 0.56 0.53
Week 3 0.41 0.65 0.42 0.42 0.47 0.48
Week 4 0.45 0.49 0.6 0.66 0.58 0.33
Week 5 0.54 0.7 0.65 0.46 0.61 0.48
Week 6 0.51 0.53 0.61 0.67 0.74 0.69
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Figure 4: Pearson correlation coefficients of 6 weeks for 3-minute
epochs.

4. Discussion

There are three aspects in this section. The first aspect is the
epoch effect of various lengths. The second aspect is the
reliability of HRV variables. The final aspect is whether
SDNN/RMSSD is a proper surrogate for LF/HF.

4.1. The Epoch Aspect. Recent literature on HRV pointed up
the relationship between variables and epoch lengths. Among
these variables, RMSSD and HF were more reliable than
other metrics for various epochs [30–34]. Fifty records of
normal subjects were chosen from Physionet 2001 Computer
in Cardiology (CinC) Challenge database. Seven epochs (10,
20, 30, 60, 120, 300, and 600 seconds) were selected and three
metrics were employed. The result indicated that RMSSD
(10) s were consistent estimates of RMSSD (300) s, but
SDNN (10) s were not accurate for SDNN (300) s. However,
the other measure HF remained more studies [30]. Another
research had the similar result. The normal sinus rhythm
RR interval database posted on PhysioNet was used. One
thousand records were randomly selected from 54 ECG
recordings (1280 hours total) of normal subjects. The
segment durations varied from 10 seconds to 10 minutes and
9 metrics were employed. HF and RMSSD were reliable than
other 7 metrics [31]. In an updated analysis of [31], mean
heart rate (MHR) performed best among 11 metrics. Metrics
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Figure 6: The trend of Pearson correlation coefficients with 5-
minute epochs during 6 weeks.

that were sensitive to HF components of HRV which had
better repeatability could be estimated accurately from short
segments (<10 minutes) [32]. The correlations of the HRV
between 24 hours and 5 minutes were calculated in a 153-
subject experiment. HF (r = 0.817) performed better than
other metrics [33]. In short, the 5-minute epoch was sug-
gested for the short-time HRV measurements [34].

Above findings revealed the stability of RMSSD and HF
in various epochs, but SDNN and LF remained to be
discussed. For the epoch effect, we are interested in SDNN/
RMSSD and LF/HF. The correlation coefficients of SDNN/
RMSSD and LF/HF were calculated in our work. In Figure 5,
the difference between 5-minute and 3-minute cases is not
very much. However, the selection of various epoch lengths
may still impact the result. In the case of the 4th week, the
values of epoch 3 to 5 (r = 0.603; 0.656; 0.584, 7∼16 minute)
were higher than epoch 2 (r = 0.483, 7.5∼12.5 minute), as
shown in Figures 3 and 4, respectively.

4.2. The Reliability Aspect. Reliability is a synonym of repro-
ducibility and stability in the following research [35–39].
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Figure 7: The trend of Pearson correlation coefficients with 3-
minute epochs during 6 weeks.

If the experimental subjects and conditions kept the same,
and the values obtained at different times were closely with
each other, then the measurement was denoted to be reliable
[35]. There were two main points in a review article. First,
the experiment was more reliable if the subjects were at rest
than exposed to stimulus. Second, data from healthy subjects
was more reliable than clinical ones [36].

The following four experiments were conducted in dif-
ferent days. The days between first and last experiment were
2 days [35], 4 months [37], 7 months [38], and 24 months
[39], respectively. In the first experiment, totally 39 healthy
subjects were employed. There was no clear change observed
in two successive days. However, the paced breathing
improved reliability [35]. In the second experiment, 89
patients with stable coronary artery disease were included.
The total power and the mean of the RR intervals had the
highest stability, where SDNN had the least stability [37].
In the third experiment, there were 18 healthy subjects. The
experiment included three conditions: rest, control respira-
tion, and after a passive headup tilt test. For reproducibility,
LF was good at all three conditions. Total power (TP) was
good at rest. HF was good for paced breathing. But SDNN
was bad for all three conditions [38]. In the fourth experi-
ment, there were 26 healthy subjects. LF, HF, and TP were
reproducible during the 24 months observations. Another
finding was that only the LF/HF ratio was dependent on body
position [39].

Following above findings, LF and HF were suggested to
be reliable, but LF/HF was not [39]. SDNN was reported
to be unreliable consistently [37, 38]. To study the relation
between LF/HF and RMSSD/SDNN, the mean correlation
coefficients varied in 6 successive weeks, as Figure 6 shown.
Besides, an increased trend was observed. The 3-minute
epoch case had similar results, as Figure 7 shown.

4.3. The Surrogate Aspect. The main point of this paper is to
study the relationship between SDNN/RMSSD and LF/HF.
There were two publications involved in this topic [4, 5]. The
first work had a correlation coefficient (r = 0.90) in resting
supine position [4]. The second work had some correlation
coefficients (r = 0.90–0.94) on prefrontal cortex patients [5].

In the first work, there were 14 healthy young subjects.
The physiological parameters were measures for 10 minutes

of supine state and 10 minutes after 70◦ upright tilt test
(HUT). After the experiment, the HRV characteristics were
calculated and the correlation coefficients of SDNN/RMSSD
and LF/HF were 0.90 and 0.63, respectively, [4].

In second work, there were 29 participants (7 healthy
controls and 22 brain injury patients). Eight of patients were
prefrontal cortex patients. The experimental procedures
included sitting, standing, preparation stage 1, preparation
stage 2, mental task 1, and mental task 2. For all 29 subjects,
the correlation coefficients were 0.57, 0.63, 0.57, 0.78, 0.42,
and 0.64. For 22 brain injury patients, the correlation
coefficients were 0.62, 0.68, 0.57, 0.80, 0.49, and 0.70. For
8 prefrontal cortex patients, the correlation coefficients were
0.76, 0.78, 0.90, 0.93, 0.94, and 0.93, respectively, [5].

In our work, there were 32 young male subjects included.
All the subjects sat quietly with eye closed in the whole
experiment. The 6 trials had proceeded in 6 successive weeks.
The results were observed by 3-minute epoch and 5-minute
epoch, respectively, as listed in Figures 3 and 4, with normal
distribution which the mean is smaller than 0.6. Compared
with the above two previous findings [4, 5], the robustness
of the surrogate aspect needs more confirmation. However,
two special cases are worthy of discussion. They are resting
supine state (r = 0.90) [4] and prefrontal cortex patients (r =
0.90–0.94) [5].

5. Conclusion

Whether SDNN/RMSSD is a proper surrogate for LF/HF,
a criterion (r = 0.90) was suggested for the correlation
coefficient, since it had strong correlations with P-value
smaller than 0.001 [4]. Combining two previous works [4, 5]
and our finding, we conclude that this claim needs more in-
depth study for general cases. However, it may be a good
surrogate in two special cases. The resting supine state is the
first candidate with a correlation coefficient 0.90 [4]. The
other exists in some special groups such as prefrontal cortex
patients, with correlation coefficients from 0.90 to 0.94 [5].
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