1	
2	Seasonal and Annual Fluxes of Nutrients and Organic Matter
3	from Large Rivers to the Arctic Ocean and Surrounding Seas
4	
5	Robert M. Holmes ^{1*} , James W. McClelland ² , Bruce J. Peterson ³ , Suzanne E. Tank ³ ,
6	Ekaterina Bulygina ¹ , Timothy I. Eglinton ⁴ , Viacheslav V. Gordeev ⁵ , Tatiana Y.
7	Gurtovaya ⁶ , Peter A. Raymond ⁷ , Daniel J. Repeta ⁴ , Robin Staples ⁸ , Robert G. Striegl ⁹ ,
8	Alexander V. Zhulidov ⁶ , Sergey A. Zimov ¹⁰
9	
10	¹ The Woods Hole Research Center, Falmouth, Massachusetts USA
11	² The University of Texas at Austin, Port Aransas, Texas USA
12	³ Marine Biological Laboratory, Woods Hole, Massachusetts USA
13	⁴ Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
14	⁵ P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
15	⁶ South Russia Centre for Preparation and Implementation of International Projects,
16	Rostov-on-DON, Russia
17	⁷ Yale School of Forestry and Environmental Studies, Yale University, Connecticut, USA
18	⁸ Department of Indian and Northern Affairs, Yellowknife, Canada
19	⁹ USGS, Boulder, Colorado USA
20	¹⁰ Northeast Science Station, Cherskiy, Russia
21	
22	*Corresponding Author: Robert M. Holmes
23	<u>rmholmes@whrc.org</u> , phone 508-444-1548, fax 508-444-1848
24	

25 Abstract

26 River inputs of nutrients and organic matter impact the biogeochemistry of arctic 27 estuaries and the Arctic Ocean as a whole, yet there is considerable uncertainty about the 28 magnitude of fluvial fluxes at the pan-arctic scale. Samples from the six largest arctic rivers, with a combined watershed area of $11.3 \times 10^6 \text{ km}^2$, have revealed strong seasonal 29 30 variations in constituent concentrations and fluxes within rivers as well as large 31 differences among the rivers. Specifically, we investigate fluxes of dissolved organic 32 carbon, dissolved organic nitrogen, total dissolved phosphorus, dissolved inorganic 33 nitrogen, nitrate, and silica. This is the first time that seasonal and annual constituent 34 fluxes have been determined using consistent sampling and analytical methods at the pan-35 arctic scale, and consequently provide the best available estimates for constituent flux 36 from land to the Arctic Ocean and surrounding seas. Given the large inputs of river water 37 to the relatively small Arctic Ocean, and the dramatic impacts that climate change is 38 having in the Arctic, it is particularly urgent that we establish the contemporary river 39 fluxes so that we will be able to detect future changes and evaluate the impact of the 40 changes on the biogeochemistry of the receiving coastal and ocean systems.

41

43 Introduction

44	Massive inputs of river water make terrestrial influences particularly strong in the
45	Arctic Ocean. Containing only ~1% of global ocean volume, the Arctic Ocean receives
46	more than 10% of global river discharge. The three largest arctic rivers, the Yenisey,
47	Lena, and Ob', are each comparable in watershed area and annual discharge to the
48	Mississippi River, North America's largest river. The large river inputs to the Arctic
49	Ocean strongly influence its salinity structure and impart estuarine characteristics
50	throughout the basin (Aagaard and Carmack 1989; Serreze et al. 2003; Serreze et al.
51	2006; McClelland et al. in press).
52	Much of the current research in the Arctic investigates ongoing changes related to
53	warming. Though most regions of Earth have warmed over recent decades, the observed
54	warming in the Arctic is much greater than the global average, and consequently
55	observed changes are also more extreme (ACIA 2004; IPCC 2007). Changes in the
56	hydrologic cycle have been the focus of much of the research (Serreze et al. 2003; White
57	et al. 2007; Rawlins et al. 2010). The disproportionate influence of rivers on the Arctic
58	Ocean means that changes in the discharge or chemistry of arctic rivers have potentially
59	large implications for ocean physics, chemistry, and biology. Moreover, because river
60	discharge and chemistry integrate processes occurring throughout their watersheds, they
61	may be particularly sensitive indicators of terrestrial change (Holmes et al. 2000a; Bring
62	and Destouni 2009). For example, Walvoord and Striegl (2007) quantify increases in
63	groundwater contribution to river flows in the Yukon River basin in response to
64	permafrost thaw and consider its effect on lateral export of inorganic and organic carbon
65	and nitrogen to the Bering Sea. Similarly, Frey and McClelland (2009) consider how

water chemistry is expected to change as permafrost thaws, and speculate that increases
in major ion concentrations associated with greater weathering of mineral soils as water
flow paths deepen may be a particularly robust indicator.

69 Observational records extending back to the 1930's demonstrate that river 70 discharge to the Arctic Ocean from the major rivers in Russia has increased almost 10% 71 since the records began (Peterson et al. 2002). Patterns are less clear for rivers in the 72 North American Arctic, in part due to much shorter discharge records. However, a recent 73 analysis of rivers in northern Canada did detect a large increase over the 1989-2007 74 period (Déry et al. 2009), reversing the apparently declining discharge observed from 75 1964-2003 (Déry and Wood 2005). At the pan-arctic scale, total river discharge to the 76 Arctic Ocean and surrounding seas is estimated to have increased about 5.6 km³/y/y 77 during the 1964-2000 timeframe, with the rate of increase accelerating recently 78 (McClelland et al. 2006). These river discharge increases are part of a suite of changes in 79 the freshwater cycle of the Arctic that are impacting salinity in both the Arctic and North 80 Atlantic oceans, with potential implications for ocean circulation and climate (Peterson et 81 al. 2006). Changes in the seasonality of discharge have also been observed, which may 82 impact coastal biogeochemistry and physics (McClelland et al. 2004; Adam et al. 2007). 83 In contrast to the rapidly evolving understanding of arctic river discharge, 84 considerably less work has investigated the chemistry of arctic rivers. Although detailed 85 studies have been undertaken on specific aspects of individual rivers including the Yukon 86 (Striegl et al. 2005; Dornblaser and Striegl 2007; Spencer et al. 2008; Spencer et al. 87 2009), Kolyma (Welp et al. 2005; Finlay et al. 2006; Neff et al. 2006), and Mackenzie 88 (Emmerton et al. 2008a), relatively few studies have examined river fluxes to the Arctic

89	Ocean at the continental or pan-arctic scale (Gordeev et al. 1996; Holmes et al. 2000a;
90	Lobbes et al. 2000; Holmes et al. 2002; Dittmar and Kattner 2003). Those that have
91	attempted large-scale syntheses have been hampered by a number of factors including
92	inconsistent sampling and analytical methods across sites, lack of sufficient seasonal
93	coverage, and data quality issues (Bring and Destouni 2009). For example, an analysis of
94	historical nutrient data sets for 16 rivers across the Russian Arctic concluded that unusual
95	patterns in the data (such as very high estimates of ammonium concentrations) were of
96	sufficient concern that independent verification would be required (Holmes et al. 2000a).
97	When these independent analyses were done as part of an expedition to the Ob' and
98	Yenisey rivers during summer 2000, it became clear that at least some of the historical
99	data for river chemistry in the Russian Arctic were grossly in error (Holmes et al. 2001).
100	While much of the historical data for Russian arctic rivers may in fact be good,
101	systematic quality control concerns have made it extremely difficult to separate the good
102	from the bad (Zhulidov et al. 2000; Zhulidov et al. 2001).
103	As a response to these challenges and to facilitate understanding of fluvial
104	constituent fluxes to the Arctic Ocean at the pan-arctic scale, we began the PARTNERS
105	project (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended
106	Sediments) in 2002, an effort to obtain a coherent data set using identical sampling and
107	analytical methods for the six largest arctic rivers in Russia, Canada, and Alaska (Figure
108	1) (McClelland et al. 2008). A related effort, the Student Partners Project, began in 2005.
109	Recent papers have used data generated from these projects to investigate dissolved
110	organic carbon (DOC), barium, alkalinity, and $H_2^{18}O$ concentrations and fluxes over the
111	2-4 year period of data collection (Cooper et al. 2005; Raymond et al. 2007; Cooper et al.

112	2008). Here we focus on seasonal and annual fluxes of total dissolved nitrogen (TDN),
113	dissolved organic nitrogen (DON), dissolved inorganic nitrogen (DIN), nitrate (NO ₃),
114	total dissolved phosphorus (TDP), silica (Si), and DOC and extend the flux estimates to
115	cover a 10-year period (1999-2008) using a statistical modeling approach. For
116	constituents other than DOC, the estimates provided here represent the first time that
117	seasonal and annual fluxes have been determined using consistent sampling and
118	analytical methods at the pan-arctic scale and as such provide the best available estimates
119	for constituent flux from land to the Arctic Ocean and surrounding seas.
120	Methods

121 Field Sampling

122 In order to facilitate calculation of fluxes to the ocean, PARTNERS sampling 123 sites were located as close to the mouths of the rivers as feasible (Table 1). The sites 124 were Salekhard (Ob'), Dudinka (Yenisey), Zhigansk (Lena), Cherskiy (Kolyma), Pilot 125 Station (Yukon), and Tsiigehtchic (Mackenzie). The sampling sites were the same for 126 the Student Partners Project, except that some of the Mackenzie samples were collected 127 further downstream, near Inuvik in the Mackenzie Delta. Calculation of constituent 128 fluxes requires chemical concentration data as well as river discharge. Salekhard, Pilot 129 Station, and Tsiigehthchic are also the downstream-most discharge monitoring stations 130 on the Ob', Yukon, and Mackenzie rivers, respectively, which facilitated flux 131 calculations (Table 1). For the Yenisey, Lena, and Kolyma rivers, we obtained discharge 132 data from the closest monitoring stations (Igarka, Kyusyur, and Kolymskoye, respectively). As described in the modeling section, adjustments were made to account 133

for the transit time of water between the discharge and chemistry stations when theydiffered.

Sampling for the PARTNERS Project began in 2003 and continued through 2006,
with each of the six rivers being sampled a total of 17 times (Figure 2). This effort was
explicitly designed to capture low flow in late winter (through the ice), high flow in the
spring, and intermediate flow during mid to late summer. Sampling frequency for the
Student Partners Project varied greatly among rivers (Figure 2).

141 PARTNERS field protocols were based on USGS sampling protocols. During 142 open water periods, 60-kg D-96 samplers equipped with Teflon nozzles and Teflon 143 sample collection bags were used to obtain depth-integrated and flow-weighted samples. 144 These samples were collected at five roughly equal increments across the river channel 145 and combined in a 14-L Teflon churn, resulting in a single composite sample intended to 146 account for vertical or horizontal heterogeneity in constituent concentrations or 147 properties. This is particularly important for particulate constituents where there is a 148 strong vertical gradient; we found no evidence of vertical gradients for dissolved 149 constituents (Raymond et al. 2007). Student Partners samples were collected from near 150 the surface, either from a boat, through the ice, or from shore.

PARTNERS samples for all analyses except DOC were collected in Nalgene
high-density polyethylene bottles after having been filtered through Pall Aquaprep 600
capsule filters (0.45 µm pore size). PARTNERS DOC samples were collected in acidleached Nalgene polycarbonate bottles after filtration through precombusted Whatman
QMA quartz filters (1 µm nominal pore size). Student Partners samples were collected in
Nalgene high-density polyethylene bottles after filtration through Millipore Sterivex-HF

157 capsule filters (0.45 μm pore size) or Whatman GFF filters (0.7 μm nominal pore size).

158 All PARTNERS and Student Partners samples were frozen until analyzed.

159 Sample Analysis

160 All field samples from Russia, Canada, and Alaska were first shipped frozen to 161 Woods Hole, Massachusetts, USA, but some were then distributed elsewhere for 162 analysis. PARTNERS TDN samples were analyzed at the University of Texas using a 163 Shimadzu high-temperature TOC/TN instrument. PARTNERS DIN (nitrate and 164 ammonium) and Si samples were analyzed at the Woods Hole Research Center using a 165 Lachat Quickchem FIA+ 8000 instrument. TDP samples were analyzed manually at the 166 Woods Hole Research Center using the ascorbic acid method following persulfate 167 oxidation (Clesceri et al. 1998). PARTNERS DOC samples were first UV-oxidized and 168 cryogenically purified at Yale University, then analyzed for carbon content (and isotopic 169 composition) at the National Ocean Sciences Atomic Mass Spectrometry (AMS) facility 170 at the Woods Hole Oceanographic Institution or the University of Arizona's AMS 171 facility. All Student Partners samples were analyzed at the Woods Hole Research Center 172 using the methods described above, except that DOC was analyzed on a Shimadzu high-173 temperature TOC instrument. 174 PARTNERS and Student Partners constituent concentration data and modeled 175 constituent fluxes are available without restriction at <u>www.arcticgreatrivers.org</u> and at the 176 Arctic Observing Network's Cooperative Arctic Data and Information Center (AON-177 CADIS) as part of the Arctic Great Rivers Observatory (Arctic-GRO) data portal 178 (McClelland et al. 2008). No systematic differences in constituent concentrations,

attributable to either difference in sampling or analytical protocols, are apparent betweenthe PARTNERS and Student Partners data sets.

181 Modeling

201

182 Constituent fluxes from each of the six rivers were estimated using the 183 LoadRunner software package (Booth et al. 2007) to automate runs of the USGS 184 LoadEstimator program (LOADEST; Runkel et al. 2004). LOADEST uses a time series 185 of paired streamflow and constituent concentration data to construct a calibration 186 regression, which is then applied to a continuous daily discharge record to obtain daily constituent loads (mass day⁻¹). The LOADEST calibration equation is chosen from a 187 188 suite of predetermined multiple regression models using Akaike's Information Criterion. 189 The LOADEST models we considered included discharge and seasonality as independent 190 variables, with discharge and time centered to avoid multicollinearity. We excluded all 191 models containing long-term time functions because our short data series did not lend 192 itself to detecting such trends. We used the Adjusted Maximum Likelihood Estimator 193 (AMLE) to fit the calibration equation, which is used when the residuals are normally 194 distributed. To facilitate comparisons among rivers, PARTNERS data (which have 195 consistent coverage among rivers) were used to calibrate the model, but Student Partners 196 data (which vary greatly in abundance among rivers) were not (Figure 2). 197 On the Lena River, PARTNERS constituent measurements were taken 198 approximately 520 km upstream of the discharge gauging station, while on the Yenisey 199 and Kolyma rivers constituent measurements were taken approximately 250 and 160 km 200 downstream of discharge, respectively. To correct for this offset, we applied our sample

9

concentrations to the downstream locations by determining the lag time between the two

sampling stations. We assumed river velocities of 1.5 m s⁻¹, which are at the high end of
the range modeled and observed for these rivers (Ngo-Duc et al. 2007; Smith and
Pavelsky 2008). This ensured that our adjustments were accurate during the high
discharge period, and that we were not over-correcting our data.

206 On all rivers except the Ob' and Yukon, there were not enough NH₄-N 207 measurements above the detection limit to meet the minimum LOADEST requirement 208 for uncensored data points. Thus, we modeled fluxes of NO₃-N and DIN (NO₃ + NH₄), 209 but not NH₄-N alone. DIN concentrations in the Eurasian rivers drop to near zero in the 210 summer months, as a result of dilution during high flows coupled with biological uptake. 211 We found that LOADEST had difficulty producing models that incorporated these near-212 zero values. To correct this, we ran LOADEST for the Eurasian rivers using DIN and 213 NO₃-N concentrations that had been increased by a fixed amount, and then corrected the 214 modeled output concentrations by subtracting this fixed value. We did this using an 215 increasingly large concentration adjustment until the flux estimate in the corrected model 216 output stabilized. Model fit was considerably improved using this approach. Across all 217 constituents, standard errors of prediction (SEP) ranged from 2.0 to 14.2 % (average 218 5.4%) of modeled constituent export. Because of our method of calculating export for 219 Eurasian NO₃-N and DIN, SEP was not calculated for these export estimates. 220 We obtained daily discharge for 1999-2008 from the ArcticRIMS Project 221 (http://rims.unh.edu) for the Eurasian rivers, the Water Survey of Canada for the 222 Mackenzie River, and the USGS for the Yukon River (Figure 2). Calibration regressions 223 were constructed with PARTNERS constituent data collected between 2003 and 2006, 224 and used to extrapolate fluxes over the entire 10-year period for the Ob', Yenisey, Lena,

225	Kolyma, and Mackenzie rivers. Any data gaps in the discharge record were filled by
226	interpolation; there were no gaps during the peak flow period on any river. For the
227	Yukon River, discharge data were not available for 1999 or 2000, or the first three
228	months of 2001. Long-term averaged discharge was used to fill the gap at the beginning
229	of 2001 for the Yukon River, but 1999 and 2000 were excluded from the analysis (Figure
230	2).
231 232	Results and Discussion
233	The watersheds of the six rivers that are part of the PARTNERS and Student
234	Partners project together cover 11.3 x 10^6 km ² , 55% of the pan-arctic watershed (Figure
235	1, Table 1) or 67% of the Arctic Ocean's drainage basin. Thus, accurately assessing
236	biogeochemical fluxes in these six rivers makes a major contribution to the goal of
237	determining total fluvial fluxes to the Arctic Ocean and surrounding seas. The combined
238	discharge of the six rivers also accounts for well over half of the river water inputs to the
239	Arctic Ocean.
240	Below we first address the seasonality of discharge and constituent fluxes, then
241	consider our estimates of annual constituent fluxes, and finally compare our estimates to
242	a selection of previously published estimates.

243 Seasonality of Fluxes

PARTNERS samples were collected throughout the year (Figure 2), both in the open water season and through the ice, enabling us to investigate how constituent fluxes vary seasonally. Though this has rarely been done in previous studies, it is important for three reasons. First and most obviously, we can only confidently estimate annual fluxes if we can also accurately quantify seasonal fluxes. Second, shifts in the seasonality of

constituent fluxes from large rivers over time may be a sensitive indicator of widespread
terrestrial change (Holmes et al. 2000a; Striegl et al. 2005; Walvoord and Striegl 2007;
McClelland et al. 2008). And third, the significance of fluvial fluxes to the
biogeochemistry of recipient estuarine and coastal ecosystems depends greatly on the
timing of the fluxes (McClelland et al. in press).

254 The strong relationships observed among discharge, season, and constituent 255 concentrations illustrate the necessity of adequate seasonal coverage in sampling for 256 accurately determining seasonal and annual constituent fluxes (Figure 3). In many cases, 257 such as for nitrate and silica, concentrations tend to be highest during winter baseflow but 258 then decrease in spring and summer due to the combined effects of dilution and 259 biological uptake. In other cases, such as for DOC, concentrations are at their highest during the spring freshet. The extreme seasonal variability in both discharge and 260 261 constituent concentrations means that annual constituent flux estimates based on a small 262 number of samples collected during a single season are tenuous. This also means that 263 assessment of fluvial fluxes derived from sampling during oceanographic cruises are 264 uncertain because ice conditions during the high discharge period generally preclude 265 access to the river plumes from the ocean. When access from the ocean is feasible (late 266 summer and early autumn), river discharge and constituent concentrations are generally 267 not representative of annual fluxes.

We have binned results into seasons that correspond to distinct hydrologic phases of northern rivers (the Spring freshet during May and June, the more biologically active Summer period from July through October, and Winter low-flow conditions from November through April). These same seasons have been used in studies of nutrient and

organic matter fluxes in the Yukon River (Dornblaser and Striegl 2007; Striegl et al.

273 2007). When comparing constituent fluxes among these seasons, it is important to note
274 that as defined, "spring" lasts two months, "summer" lasts 4 months, and "winter" lasts
275 six months (Table 2).

276 In spite of the fact that the spring season lasts just two months, it is the dominant 277 period for the fluxes of several constituents, particularly those related to organic matter 278 (Table 2). For example, DON flux from the six PARTNERS rivers during the two-month spring period (208 x 10^9 g) exceeds the flux during the entire six-month winter period by 279 more than 400% (47 x 10^9 g). Similarly, spring DOC flux (8809 x 10^9 g) exceeds winter 280 DOC flux by more than 400% (2151 x 10^9 g). The high organic matter fluxes during 281 282 spring are the combined result of high discharge and high organic matter concentrations 283 during that period (Figure 2, 3). In contrast, fluxes of inorganic nutrients such as silica 284 and nitrate are much more similar among seasons. For example, the six-river flux of silica in spring $(1972 \times 10^9 \text{ g})$ only slightly exceeds the winter flux $(1641 \times 10^9 \text{ g})$, while 285 the spring nitrate flux $(58 \times 10^9 \text{ g})$ is less than the winter nitrate flux $(78 \times 10^9 \text{ g})$. It is 286 287 important to remember that, as defined, winter is three times longer than spring. In the 288 case of the seasonality of the fluxes of these inorganic nutrients, the patterns of discharge 289 and concentrations work in opposing directions: high spring discharge (Figure 2) is 290 countered by lower concentrations during spring (Figure 3).

The focus above on the combined fluxes from the six PARTNERS rivers masks differences in seasonality among the rivers. With respect to discharge, at one extreme only 6% of annual discharge in the Kolyma River occurs during the six-month winter period, whereas winter discharge in the Yenisey and Mackenzie rivers reaches ~25% of

annual values (Figure 4). There are also marked differences in the proportional
contribution of spring discharge. In the Yenisey and Kolyma rivers, sharp ascending and
descending limbs of the hydrograph during the freshet lead to almost half of annual
discharge occurring during the spring season (Figure 2 and Figure 4). Far broader peaks
in the Ob' and Mackenzie rivers decrease the contribution of the spring freshwater
discharge to ~30% of annual values.

The contrasts in seasonality among rivers are even greater for constituent fluxes than they are for water discharge. For example, the Yenisey River transports 66% of its annual nitrate flux during winter when the ocean is largely ice-covered and primary productivity is low, compared to just 10% for the Kolyma River (Figure 4, Table 2). For DON, spring fluxes account for more than half of the annual loads in the Yenisey and Kolyma rivers but only about 30% in the Ob' and Mackenzie rivers.

307 The impact of fluvial fluxes on the biogeochemistry of the receiving estuaries and 308 coastal zones in the Arctic depends on their timing and magnitudes as well as on the 309 relative abundances of the different constituents. In all rivers, on an annual basis as well 310 as in all seasons except winter, DON fluxes exceed DIN fluxes (Figure 5, upper panel). 311 This highlights the potential significance of nutrients regenerated in the spring and 312 summer by the decomposition of dissolved organic matter that enters the coastal system 313 during the spring freshet (Holmes et al. 2008; McClelland et al. in press; Tank et al. in 314 press). On the other hand, molar TDN to TDP ratios are generally well in excess of 315 Redfield Ratios (16N:1P; Figure 5, middle panel), suggesting a relative scarcity of 316 phosphorus in the river water delivered to the coastal zone (assuming that all N and P in 317 organic forms becomes available, and at similar rates). High silica to inorganic nitrogen

318	ratios (the Redfield ratio for Si to N is 1) suggest that ample silica is available to support
319	diatom production, which is a major component of the Arctic Ocean's primary
320	production (Sakshaug 2004).
321	Annual Fluxes and Yields
322	Our estimates of average annual constituent fluxes and yields (normalized to
323	watershed area) for the six largest arctic rivers during the 1999-2008 time-period are
324	presented in the lower section of Table 2 (fluxes) and in Table 3 (yields). Here we
325	highlight a few interesting patterns that emerge, recognizing that many more comparisons
326	are possible.
327	On an annual basis, the six PARTNERS rivers combined transport about twice as
328	much DON as DIN (Table 2 and Figure 5). The rivers with the lowest permafrost
329	coverage in their watersheds (Ob' and Mackenzie) each transport roughly equal amounts
330	of DON and DIN on an annual basis, compared to the Lena which transports 4x more
331	DON than DIN. These results further highlight the previously identified problems with
332	some of the historical chemical data for Russian rivers, which suggested very high DIN
333	yields for the Ob' and Yenisey rivers (Holmes et al. 2000a; Holmes et al. 2001).
334	The Mackenzie River stands out as having relatively low yields (mass of
335	constituent per watershed area per time) for all constituents we examined (Table 3). This
336	may be in part related to the presence of a large lake (Great Slave Lake) in the middle of
337	the watershed, which could allow for efficient processing and retention of constituents
338	transported to the lake from the upper part of the watershed. However, the high
339	suspended sediment fluxes observed in the downstream reaches of the Mackenzie River

340 (Holmes et al. 2002) indicate that tributaries entering the river below Great Slave Lake341 have the potential to greatly modify its constituent load.

342 Raymond et al. (2007) noted a relationship between annual water yield (or runoff) 343 and annual DOC yield for the six PARTNERS rivers: as water yield increased, so did 344 DOC yield. We find a similar relationship for DON and Si: the rivers with the highest 345 water yields (Yenisey, Yukon, and Lena; Table 1) also have the highest DON and Si 346 yields (Table 3). In contrast, when comparing all six rivers there is no clear relationship 347 between water yield and annual yields of TDP, DIN, or NO₃. However, the Ob' River is 348 notable in that it has the lowest water yield but high DIN and TDP yields (Table 3), 349 perhaps reflecting the greater population density and development in the Ob' watershed 350 as compared to the other basins (Table 1).

351 *Comparison with Previous Estimates*

352 How do the flux estimates presented here compare with previous studies? Few 353 comparisons are possible for seasonal fluxes because most previous studies only 354 presented annual flux estimates. One exception is with work on seasonal N and P fluxes 355 in the Yukon River during the 2001-2005 period (Dornblaser and Striegl 2007). The 356 seasonal and annual flux estimates for NO₃, DIN, TDN, and TDP are generally within 357 10-20% of those presented here, but the comparisons are confounded because the 358 estimates are not really independent since they each use some of the same data (the 359 USGS and the PARTNERS project collaborated for sampling on the Yukon River at Pilot 360 Station).

In contrast to the situation for seasonal flux estimates, more comparisons are
 possible for annual flux estimates. Coverage is best for DOC, which has received the

363	most attention in previous studies: still, we know of no other studies that report annual
364	flux estimates for each of the six rivers considered here. Several studies, however,
365	provide composite estimates that we can compare to our six rivers and pan-arctic
366	estimates (18.1 Tg yr ⁻¹ and 34.0 Tg yr ⁻¹ , respectively) (Table 2). Dittmar and Kattner
367	(2003) estimate that the total amount of DOC discharged by rivers into the Arctic Ocean
368	is 18-26 Tg yr ⁻¹ . For rivers draining directly into the Arctic Ocean, Raymond et al.
369	(2007) estimate a flux of ~25 Tg yr ⁻¹ , increasing to 36 Tg yr ⁻¹ if the entire pan-arctic
370	watershed is considered. A very similar pan-arctic estimate (37.7 Tg yr ⁻¹) is obtained by
371	Manizza et al. (2009). Thus, several recent studies (including ours) point to an annual
372	fluvial DOC flux estimate from the pan-arctic watershed of 34-38 Tg, with ~25 Tg yr ⁻¹
373	being discharged directly into the Arctic Ocean, although again it should be noted that
374	these estimates are not all truly independent as both the Raymond et al. (2007) and
375	Manizza et al. (2009) estimates rely at least in part on PARTNERS data.
376	Fewer comparisons are possible for the other constituents we consider (TDN,
377	DON, DIN, NO ₃ , TDP, and Si). Moreover, in most cases the raw concentration and
378	discharge data used to generate the flux estimates are not published or widely available,
379	making critical evaluation of the flux estimates difficult or impossible. That being said,
380	we find cases where the estimates we provide are very close to previously published
381	estimates, whereas in other cases there are large differences. For example, our annual
382	nitrate flux estimates for the Yenisey, Lena, and Kolyma rivers are within 10% of the
383	values given by Gordeev et al. (1996), one of the most widely used references regarding
384	biogeochemical fluxes from large arctic rivers. On the other hand, our annual DON flux
385	estimates for the Lena and Kolyma rivers are 2-3 times lower than those reported in that

386	same paper. Furthermore, our TDP estimates are generally only one-half to one-third of
387	those reported by Gordeev et al. (1996), whereas our silica flux estimates, though
388	variable, differ on average by only $\sim 3\%$. Rigorous explanations for differences or
389	similarities are elusive except in cases when discharge and concentration data are readily
390	available for comparison, along with detailed descriptions of the methods used to
391	calculate annual fluxes from periodic measurements of constituent concentrations. Prior
392	to the PARTNERS project, this sort of information has not been readily available for
393	large-scale studies of biogeochemical fluxes in arctic rivers.
394	Conclusions
395	The PARTNERS project was an unprecedented effort to capture the seasonal

dynamics of constituent fluxes from the major arctic rivers in Russia, Canada, and Alaska 396 397 over a multi-year period using standardized sampling and analytical protocols. The 17 398 major sampling campaigns on each of the rivers spanned most of the range of annual 399 discharge extremes in each river and covered all seasons (Figure 2). Increased temporal 400 resolution was achieved on several of the rivers as part of the Student Partners Project. 401 The resulting data sets, available without restriction at www.arcticgreatrivers.org and at 402 the Arctic Observing Network's Cooperative Arctic Data and Information Center (AON-403 CADIS) as part of the Arctic Great Rivers Observatory (Arctic-GRO) data portal, allow 404 for improved understanding of seasonal and annual constituent fluxes and set the baseline 405 against which to judge future changes.

The focus of this paper is on mean fluxes, annual and seasonal, over the 1999 to 2008 period. However, just as discharge varies from year to year within each river (Figure 2), so to do constituent fluxes. For example, from 1999-2008, our model results

409 suggest that annual fluxes in the Lena River varied from 4.1 to 7.4 Tg for DOC and from 410 1.1 to 1.6 Tg Si. It is important to recognize that the impact of fluvial inputs on the 411 receiving coastal waters at any particular time is a function of the actual fluxes over a 412 relatively short time frame, more so than the long-term mean fluxes. As estimates of 413 long-term mean constituent fluxes become better constrained, increased attention should 414 be directed toward consideration of the implications of interannual variability in 415 constituent fluxes.

416 The watersheds of the rivers that are the focus of the PARTNERS project and its 417 successor (the Arctic Great Rivers Observatory; Arctic-GRO) together cover more than 418 50% of the pan-arctic watershed. To estimate total fluxes to the Arctic Ocean and 419 surrounding seas, we assumed that constituent yields were the same in the unmonitored 420 portion of the watershed and scaled-up accordingly (Table 2). However, the unmonitored 421 rivers tend to have smaller, more northerly watersheds that ring the Arctic Ocean, so it is 422 likely that at least for some constituents yields may be considerably different than for the 423 larger rivers whose watersheds extend much further south. Moreover, trajectories of 424 change with future warming may differ among these classes of rivers. Although 425 biogeochemical fluxes from some smaller arctic watersheds have received considerable 426 attention, particularly on the North Slope of Alaska (Kling et al. 1991; Peterson et al. 427 1992; McClelland et al. 2007; Bowden et al. 2008), at the pan-arctic scale they represent 428 a significant gap in our ability to confidently assess land-ocean fluxes. 429 Finally, we recognize that what we often consider to be fluxes to the ocean may in 430 fact be better characterized as fluxes to estuaries or the coastal zone. As is widely 431 understood in temperature or tropical estuarine systems, this distinction is important

432 because extensive processing in estuaries and coastal zones often substantially modifies 433 fluvial constituent fluxes before they reach the open ocean (Nixon et al. 1996; Kemp et 434 al. 1997; Holmes et al. 2000b; Tobias et al. 2003). The same is true in arctic estuaries 435 and near-shore zones (Emmerton et al. 2008b), although our understanding of estuarine 436 processes in the Arctic is far less developed than in other regions, particularly with 437 respect to seasonality (McClelland et al. in press and references therein). Improved 438 understanding of the impact of fluvial inputs on the biogeochemistry of the Arctic Ocean 439 as a whole, as well as on the coastal zone of the Arctic, will require increased attention on 440 estuarine and coastal processes despite the daunting logistical challenges facing near-441 shore research in the Arctic.

443 Acknowledgments

444 This work was supported by the National Science Foundation through grants 445 OPP-0229302, OPP-0519840, OPP-0732522, and OPP-0732944. Additional support was 446 provided by the U.S. Geological Survey (Yukon River) and the Department of Indian 447 and Northern Affairs (Mackenzie River). We thank Suzanne Thomas and Kate Morkeski 448 for assistance using Loadest to model constituent fluxes, and Rainer Amon, Tim Brabets, 449 Ludmila Boeva, Ludmila Kosmenko, Charlie Couvillon, Elena Dunaeva, Martin Kelly, 450 Dave Milburn, Yana Adreeva, Anna Suslova, and Mikhail Suslov for assistance with 451 sample collection or project coordination. Greg Fiske assisted with GIS analysis and 452 figures and Alexander Shiklomanov provided additional discharge data for the Kolyma River. 453

- 454 References
- Aagaard, K. and E. C. Carmack. 1989. The role of sea ice and other fresh water in the
 arctic circulation. Journal of Geophysical Research 94:14485-14498.
- 457 ACIA. 2004. Impacts of a Warming Climate Arctic Climate Impact Assessment.
- 458 Cambridge University Press.
- 459 Adam, J. C., I. Haddeland, F. Su, and D. P. Lettenmaier. 2007. Simulation of reservoir
- 460 influences on annual and seasonal streamflow changes for the Lena, Yenisei, and
- 461 Ob' rivers. Journal of Geophysical Research-Atmospheres 112:D24114,
- 462 doi:24110.21029/22007JD008525.
- Booth, G., P. Raymond, and N.-H. Oh. 2007. *LoadRunner*. Software and website, Yale
 University, New Haven, CT <<u>http://research.yale.edu/environment/loadrunner/></u>.
- 465 Bowden, W. B., M. N. Gooseff, A. Balser, A. Green, B. J. Peterson, and J. Bradford.
- 466 2008. Sediment and nutrient delivery from thermokarst features in the foothills of
- 467 the North Slope, Alaska: Potential impacts on headwater stream ecosystems.
- 468 Journal of Geophysical Research-Biogeosciences 113:G02026,
- 469 doi:02010.01029/02007JG000470.
- Bring, A. and G. Destouni. 2009. Hydrological and hydrochemical observation status in
 the pan-Arctic drainage basin. Polar Research 28:327-338.
- 472 Brown, J., O. J. Ferrians, Jr., J. A. Heginbottom, and E. S. Melnikov. 1998, revised
- 473 February 2001. *Circum-arctic map of permafrost and ground ice conditions.*
- 474 Boulder, CO: National Snow and Ice Data Center/World Data Center for
- 475 Glaciology. Digital media.

476	Clesceri, L. S., A. E. Greenberg, and A. E. Eaton, editors. 1998. Standard Methods for
477	the Examination of Water and Wastewater. 20th edition. American Pubic Health
478	Association, Washington DC.
479	Cooper, L. W., R. Benner, J. W. McClelland, B. J. Peterson, R. M. Holmes, P. A.
480	Raymond, D. A. Hansell, J. M. Grebmeier, and L. A. Codispoti. 2005. Linkages
481	among runoff, dissolved organic carbon, and the stable oxygen isotope
482	composition of seawater and other water mass indicators in the Arctic Ocean.
483	Journal of Geophysical Research-Biogeosciences 110:G02013,
484	doi:02010.01029/02005JG000031.
485	Cooper, L. W., J. W. McClelland, R. M. Holmes, P. A. Raymond, J. J. Gibson, C. K.
486	Guay, and B. J. Peterson. 2008. Flow-weighted values of runoff tracers (delta
487	180, DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophysical
488	Research Letters 35:L18606, doi:18610.11029/12008GL035007.
489	Déry, S. J., M. A. Hernandez-Henriquez, J. E. Burford, and E. F. Wood. 2009.
490	Observational evidence of an intensifying hydrological cycle in northern Canada.
491	Geophysical Research Letters 36:L13402, doi:13410.11029/12009GL038852.
492	Déry, S. J. and E. F. Wood. 2005. Decreasing river discharge in northern Canada.
493	Geophysical Research Letters 32:L10401, doi:10410.11029/12005GL022845.
494	Dittmar, T. and G. Kattner. 2003. The biogeochemistry of the river and shelf ecosystem
495	of the Arctic Ocean: a review. Marine Chemistry 83:103-120.
496	Dornblaser, M. M. and R. G. Striegl. 2007. Nutrient (N, P) loads and yields at multiple
497	scales and subbasin types in the Yukon River basin, Alaska. Journal of
498	Geophysical Research-Biogeosciences 112:G04S57, doi:10.1029/2006JG000366.

499	Emmerton, C. A., L. F. W. Lesack, and W. F. Vincent. 2008a. Mackenzie River nutrient
500	delivery to the Arctic Ocean and effects of the Mackenzie Delta during open
501	water conditions. Global Biogeochemical Cycles 22:GB1024,
502	doi:1010.1029/2006GB002856.
503	Emmerton, C. A., L. F. W. Lesack, and W. F. Vincent. 2008b. Nutrient and organic
504	matter patterns across the Mackenzie River, estuary and shelf during the seasonal
505	recession of sea-ice. Journal of Marine Systems 74:741-755.
506	Finlay, J., J. Neff, S. Zimov, A. Davydova, and S. Davydov. 2006. Snowmelt dominance
507	of dissolved organic carbon in high-latitude watersheds: Implications for
508	characterization and flux of river DOC. Geophysical Research Letters 33:L10401,
509	doi:10410.11029/12006GL025754.
510	Gordeev, V. V., J. M. Martin, I. S. Sidorov, and M. V. Sidorova. 1996. A reassessment of
511	the Eurasian river input of water, sediment, major elements, and nutrients to the
512	Arctic Ocean. American Journal of Science 296:664-691.
513	Holmes, R. M., B. J. Peterson, V. V. Gordeev, A. V. Zhulidov, M. Meybeck, R. B.
514	Lammers, and C. J. Vorosmarty. 2000a. Flux of nutrients from Russian rivers to
515	the Arctic Ocean: Can we establish a baseline against which to judge future
516	changes? Water Resources Research 36:2309-2320.
517	Holmes, R. M., B. J. Peterson, L. Deegan, J. Hughes, and B. Fry. 2000b. Nitrogen
518	biogeochemistry in the oligohaline zone of a New England estuary. Ecology
519	81:416-432.
520	Holmes, R. M., B. J. Peterson, A. V. Zhulidov, V. V. Gordeev, P. N. Makkaveev, P. A.
521	Stunzhas, L. S. Kosmenko, G. H. Kohler, and A. I. Shiklomanov. 2001. Nutrient

522	chemistry of the Ob' and Yenisey Rivers, Siberia: results from June 2000
523	expedition and evaluation of long-term data sets (vol 75, pg 219, 2001). Marine
524	Chemistry 76:135-135.
525	Holmes, R. M., J. W. McClelland, B. J. Peterson, I. A. Shiklomanov, A. I. Shiklomanov,
526	A. V. Zhulidov, V. V. Gordeev, and N. N. Bobrovitskaya. 2002. A circumpolar
527	perspective on fluvial sediment flux to the Arctic Ocean. Global Biogeochemical
528	Cycles 16:1098, doi:1010.1029/2001GB001849.
529	Holmes, R. M., J. W. McClelland, P. A. Raymond, B. B. Frazer, B. J. Peterson, and M.
530	Stieglitz. 2008. Lability of DOC transported by Alaskan rivers to the arctic ocean.
531	Geophysical Research Letters 35:L03402, doi:03410.01029/02007gl032837.
532	IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working
533	Group I to the Fourth Assessment Report of the Intergovernmental Panel on
534	Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B.
535	Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press,
536	Cambridge, United Kingdom and New York, NY, USA.
537	Kemp, W. M., E. M. Smith, M. MarvinDiPasquale, and W. R. Boynton. 1997. Organic
538	carbon balance and net ecosystem metabolism in Chesapeake Bay. Marine
539	Ecology-Progress Series 150:229-248.
540	Kling, G. W., G. W. Kipphut, and M. C. Miller. 1991. Arctic lakes and streams as gas
541	conduits to the atmosphere: implications for tundra carbon budgets. Science
542	251:298-301.

543	Lobbes, J. M., H. P. Fitznar, and G. Kattner. 2000. Biogeochemical characteristics of
544	dissolved and particulate organic matter in Russian rivers entering the Arctic
545	Ocean. Geochimica Et Cosmochimica Acta 64:2973-2983.
546	McClelland, J. W., S. J. Dery, B. J. Peterson, R. M. Holmes, and E. F. Wood. 2006. A
547	pan-arctic evaluation of changes in river discharge during the latter half of the
548	20th century. Geophysical Research Letters 33:L06715,
549	doi:06710.01029/02006GL025753.
550	McClelland, J. W., R. M. Holmes, B. J. Peterson, R. Amon, T. Brabets, L. Cooper, J.
551	Gibson, V. V. Gordeev, C. Guay, D. Milburn, T. Staples, P. A. Raymond, I.
552	Shiklomanov, R. Striegl, A. Zhulidov, T. Gurtovaya, and S. Zimov. 2008.
553	Development of a pan-arctic database for river chemistry. EOS 89:217-218.
554	McClelland, J. W., R. M. Holmes, B. J. Peterson, and M. Stieglitz. 2004. Increasing river
555	discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and
556	fires as potential agents of change. Journal of Geophysical Research-Atmospheres
557	109:D18102, doi:18110.11029/12004JD004583.
558	McClelland, J. W., M. Stieglitz, F. Pan, R. M. Holmes, and B. J. Peterson. 2007. Recent
559	changes in nitrate and dissolved organic carbon export from the upper Kuparuk
560	River, North Slope, Alaska. Journal of Geophysical Research 112:G04S60,
561	doi:10.1029/2006JG000371.
562	McClelland, J. W., R. M. Holmes, K. H. Dunton, and R. Macdonald. in press. The Arctic
563	Ocean estuary. Estuaries and Coasts, 10.1007/s12237-010-9357-3.
564	Neff, J. C., J. C. Finlay, S. A. Zimov, S. P. Davydov, J. J. Carrasco, E. A. G. Schuur, and
565	A. I. Davydova. 2006. Seasonal changes in the age and structure of dissolved

- 566 organic carbon in Siberian rivers and streams. Geophysical Research Letters
- 567 33:L23401, doi:23410.21029/22006GL028222.
- Ngo-Duc, T., T. Oki, and S. Kanae. 2007. A variable streamflow velocity method for
 global river routing model: model description and preliminary results. Hydrology
 and Earth System Sciences Discussions 4:4389-4414.
- 571 Nixon, S. W., J. W. Ammerman, L. P. Atkinson, V. M. Berounsky, G. Billen, W. C.
- 572 Boicourt, W. R. Boynton, T. M. Church, D. M. Ditoro, R. Elmgren, J. H. Garber,
- 573 A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson, and S. P. Seitzinger.
- 574 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North
 575 Atlantic Ocean. Biogeochemistry 35:141-180.
- 576 Peterson, B. J., T. Corliss, K. Kriet, and J. E. Hobbie. 1992. Nitrogen and phosphorus
 577 concentrations and export for the upeer Kuparuk River on the North Slope of
 578 Alaska in 1980. Hydrobiologia 240:61-69.
- 579 Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I.
- 580 Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf. 2002. Increasing river
- discharge to the Arctic Ocean. Science 298:2171-2173.
- Peterson, B. J., J. McClelland, R. Curry, R. M. Holmes, J. E. Walsh, and K. Aagaard.
 2006. Trajectory shifts in the Arctic and subarctic freshwater cycle. Science
 313:1061-1066.
- 585 Rawlins, M. A., M. Steele, M. M. Holland, J. C. Adam, J. E. Cherry, J. A. Francis, P. Y.
- 586 Groisman, L. D. Hinzman, T. G. Huntington, D. L. Kane, J. S. Kimball, R. Kwok,
- 587 R. B. Lammers, C. M. Lee, D. P. Lettenmaier, K. C. McDonald, E. Podest, J. W.
- 588 Pundsack, B. Rudels, M. C. Serreze, A. Shiklomanov, O. Skagseth, T. J. Troy, C.

589	J. Vorosmarty, M. Wensnahan, E. F. Wood, R. Woodgate, D. Yang, K. Zhang,
590	and T. Zhang. Analysis of the arctic system for freshwater cycle intensification:
591	observations and expectations. Journal of Climate 23:5715-5737.
592	Raymond, P. A., J. W. McClelland, R. M. Holmes, A. V. Zhulidov, K. Mull, B. J.
593	Peterson, R. G. Striegl, G. R. Aiken, and T. Y. Gurtovaya. 2007. Flux and age of
594	dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of
595	the five largest arctic rivers. Global Biogeochemical Cycles 21:GB4011,
596	doi:4010.1029/2007GB002934.
597	Runkel, R. L., C. G. Crawford, and T. A. Cohn. 2004. Load Estimator (LOADEST): A
598	FORTRAN Program for Estimating Constituent Loads in Streams and Rivers.
599	Page 69 p. U.S. Geological Survey Techniques and Methods Book 4.
600	Sakshaug, E. 2004. Primary and secondary production in the arctic seas. Pages 57-81 in
601	R. Stein and R. W. Macdonald, editors. The organic carbon cycle in the Arctic
602	Ocean. Springer-Verlag, Berlin.
603	Serreze, M. C., A. P. Barrett, A. G. Slater, R. A. Woodgate, K. Aagaard, R. B. Lammers,
604	M. Steele, R. Moritz, M. Meredith, and C. M. Lee. 2006. The large-scale
605	freshwater cycle of the Arctic. Journal of Geophysical Research-Oceans
606	111:C11010, doi:11010.11029/12005JC003424.
607	Serreze, M. C., D. H. Bromwich, M. P. Clark, A. J. Etringer, T. Zhang, and R. Lammers.
608	2003. Large-scale hydro-climatology of terrestrial arctic drainage system. Journal
609	of Geophysical Research 108:D2, 8160, doi:8110.1029/2001JD000919.

610	Smith, L. C. and T. M. Pavelsky. 2008. Estimation of river discharge, propagation speed,
611	and hydraulic geometry from space: Lena River, Siberia. Water Resources
612	Research 44:W03427, 03410.01029/02007wr006133.
613	Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J.
614	Hernes. 2009. Utilizing chromophoric dissolved organic matter measurements to
615	derive export and reactivity of dissolved organic carbon exported to the Arctic
616	Ocean: A case study of the Yukon River, Alaska. Geophysical Research Letters
617	36:L06401, 06410.01029/02008g1036831.
618	Spencer, R. G. M., G. R. Aiken, K. P. Wickland, R. G. Striegl, and P. J. Hernes. 2008.
619	Seasonal and spatial variability in dissolved organic matter quantity and
620	composition from the Yukon River basin, Alaska. Global Biogeochemical Cycles
621	22:GB4002, doi:4010.1029/2008GB003231.
622	Striegl, R. G., G. R. Aiken, M. M. Dornblaser, P. A. Raymond, and K. P. Wickland.
623	2005. A decrease in discharge-normalized DOC export by the Yukon River
624	during summer through autumn. Geophysical Research Letters 32:L21413,
625	doi:21410.21029/22005gl024413.
626	Striegl, R. G., M. M. Dornblaser, G. R. Aiken, K. P. Wickland, and P. A. Raymond.
627	2007. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers,
628	Alaska, 2001-2005. Water Resources Research 43:W02411,
629	doi:02410.01029/02006WR005201.
630	Tank, S. E., M. Manizza, R. M. Holmes, J. W. McClelland, and B. J. Peterson. in press.
631	The input of nutrients and organic matter to the Arctic Ocean and their potential
632	impact on ocean processes. Estuaries and Coasts.

633	Tobias, C. R., M. Cieri, B. J. Peterson, L. A. Deegan, J. Vallino, and J. Hughes. 2003.
634	Processing watershed-derived nitrogen in a well-flushed New England estuary.
635	Limnology and Oceanography 48:1766-1778.
636	Walvoord, M. A. and R. G. Striegl. 2007. Increased groundwater to stream discharge
637	from permafrost thawing in the Yukon River basin: Potential impacts on lateral
638	export of carbon and nitrogen. Geophysical Research Letters 34.
639	Welp, L. R., J. T. Randerson, J. C. Finlay, S. P. Davydov, G. M. Zimova, A. I. Davydova,
640	and S. A. Zimov. 2005. A high-resolution time series of oxygen isotopes from the
641	Kolyma River: implications for the seasonal dynamics of discharge and basin-
642	scale water use. Geophysical Research Letters 32:L14404,
643	doi:14410.11029/12005GL022857.
644	White, D., L. Hinzman, L. Alessa, J. Cassano, M. Chambers, K. Falkner, J. Francis, W. J.
645	Gutowski, M. Holland, R. M. Holmes, H. Huntington, D. Kane, A. Kliskey, C.
646	Lee, J. McClelland, B. Peterson, T. S. Rupp, F. Straneo, M. Steele, R. Woodgate,
647	D. Yang, K. Yoshikawa, and T. Zhang. 2007. The arctic freshwater system:
648	Changes and impacts. Journal of Geophysical Research-Biogeosciences
649	112:G04S54, doi:10.1029/2006JG000353.
650	Zhulidov, A. V., V. V. Khlobystov, R. D. Robarts, and D. F. Pavlov. 2000. Critical
651	analysis of water quality monitoring in the Russian Federation and former Soviet
652	Union. Canadian Journal of Fisheries and Aquatic Sciences 57:1932-1939.
653	Zhulidov, A. V., R. D. Robarts, and V. V. Khlobystov. 2001. The need and requirements
654	for modernizing surface water quality monitoring in the Russian Federation.
655	Water International 26:536-546.

656 Figure Captions

657	Figure 1. Map showing the watersheds of the six rivers included in this study. Red dots
658	show sampling locations (Ob' at Salekhard, Yenisey at Dudinka, Lena at
659	Zhigansk, Kolyma at Cherskiy, Yukon at Pilot Station, Mackenzie at Tsiigehtchic
660	or Inuvik), generally located close to the mouths of the rivers to facilitate
661	estimation of constituent fluxes to the ocean. The bold red line shows the
662	boundary of the 20.5 x 10^6 km ² pan-arctic watershed. Together the six rivers
663	cover 53% of the pan-arctic watershed.
664	Figure 2. Daily discharge for each of the six rivers from 1999 through 2008 and dates
665	when PARTNERS and Student Partners samples were collected. The red
666	triangles show the dates where samples when samples were collected as part of
667	the PARTNERS Project (17 times per river). The blue circles indicate the dates
668	that samples were collected as part of the Student Partners Project.
669	Figure 3. Relationships between discharge and nitrate, silica, and DOC concentrations on
670	the Lena and Mackenzie rivers. Red indicates samples that were collected in
671	Spring (May and June), blue indicates samples that were collected in Summer
672	(July through October), and yellow indicates samples that were collected in
673	Winter (November through April). Triangles indicate samples that were collected
674	as part of the PARTNERS Project and circles indicate samples that were collected
675	as part of the Student Partners Project.
676	Figure 4. Percentage of annual water and constituent fluxes in the different seasons. As
677	described in the text, constituent fluxes were estimated for the 1999-2008 period

678 (2001-2008 for the Yukon River) using LOADEST. Red indicates samples that

- were collected in Spring (May and June), blue indicates samples that were
 collected in Summer (July through October), and yellow indicates samples that
 were collected in Winter (November through April).
- 682 Figure 5. Annual and seasonal molar flux ratios of DON:DIN (upper panel), TDN:TDP
- 683 (middle panel), and Si:DIN (lower panel). As described in the text, constituent
- fluxes were estimated for the 1999-2008 period (2001-2008 for the Yukon River)
- using LOADEST. The horizontal dashed line in the upper panel indicates a flux
- ratio of 1. The final set in each figure, labeled "Combined", indicates the ratios
- 687 when the fluxes from all six rivers are summed.
- 688
- 689

Fig. 2

Discharge (m³/s)

Fig. 4

Table 1. Discharge gauging stations, PARTNERS sampling locations, and watershed characteristics. Watershed areas are given for the region upstream of the discharge gauging station as well as for the entire watershed. Mean annual discharge (1999-2008, except 2001-2008 for the Yukon) is given at the gauging station and extrapolated to the entire watershed assuming that the unmonitored portion of the watershed has the same runoff as the monitored region of the watershed. Permafrost coverage is calculated using data from Brown et al., 1998, and human population density is calculated using data from the Center for International Earth Science Information Network (http://sedac.ciesin.columbia.edu/gpw).

River / Watershed	Ob'	Yenisey	Lena	Kolyma	Yukon	Mackenzie	Sum
Discharge Gauging Station	Salekhard	Igarka	Kyusyur	Kolymskoye	Pilot Station	Tsiigehtchic	-
Water Quality Station	Salekhard	Dudinka	Zhigansk	Cherskiy	Pilot Station	Tsiigehtchic	-
Watershed Area (10^6 km^2) – at gauging station	2.99	2.40	2.43	0.53	0.83	1.68	10.9
Watershed Area (10^6 km^2) – total	2.99	2.54	2.46	0.65	0.83	1.78	11.3
Discharge $(km^3 yr^{-1})$ – at gauging station	427	636	581	111	208	298	2261
Discharge $(km^3 yr^{-1}) - total$	427	673	588	136	208	316	2348
Runoff (mm yr ⁻¹)	143	259	240	166	248	177	-
% Continuous Permafrost	1	31	77	99	19	13	-
% Continuous + Discontinuous Permafrost	4	42	90	100	87	42	-
Human Population Density (people km ⁻²)	10	3	0.3	<0.1	0.1	0.2	-

Table 2. Average seasonal and annual constituent fluxes (1999 through 2008) for the six rivers that were part of the PARTNERS Project. All units are 10^9 g (as N, P, Si, or C), except for discharge (Q) which is given in km³. Missing discharge data restricted the Yukon estimates to 2001-2008. The pan-Arctic constituent flux estimates are derived by scaling the fluxes calculated for the six rivers to the unsampled portion of the pan-Arctic watershed assuming that areal yields in the unmonitored region were equivalent to those in the monitored region.

Constituent	Ob'	Yenisey	Lena	Kolyma	Yukon	Mackenzie	Sum	Pan-Arctic			
			Spring,	May – June	e (2 mont	hs)					
0	136	284	216	47	72	92	847				
TDN	57	81	80	13	28	20	280	526			
DON	31	65	69	9	24	10	208	391			
DIN	25	16	13	3	7	8	72	135			
NO3-N	20	13	8	2	6	8	58	109			
TDP	4.9	5.0	3.2	0.6	0.8	1.0	15	28			
Si	537	599	379	105	185	166	1972	3707			
DOC	1338	2924	2823	449	783	493	8809	16,559			
	Summer, July – October (4 months)										
Q	214	190	306	57	106	139	1011				
TDN	81	38	66	10	26	24	245	461			
DON	69	32	57	8	15	15	195	367			
DIN	14	6	9	3	11	10	53	100			
NO ₃ -N	15	3	7	2	10	9	46	86			
TDP	9.8	2.2	2.2	0.5	0.9	1.4	17	32			
Si	410	565	729	144	344	257	2449	4604			
DOC	2171	1183	2350	329	508	610	7150	13,441			
		W	/inter, No	ovember – A	April (6 m	onths)					
Q	78	162	59	7	30	66	403				
TDN	48	44	21	1.4	14	16	144	271			
DON	9	13	10	0.7	8	6	47	88			
DIN	47	29	11	0.6	8	8	104	196			
NO ₃ -N	22	32	10	0.5	7	7	78	147			
TDP	2.6	2.5	0.6	0.06	0.3	0.7	7	13			
Si	505	575	238	26	165	131	1641	3085			
DOC	609	537	508	40	182	275	2151	4043			
				Annual Flu	uxes						
Q	427	636	581	111	208	298	2261				
TDN	186	163	168	25	67	60	669	1258			
DON	110	111	135	17	47	31	450	846			
DIN	86	51	33	7	26	27	229	430			
NO ₃ -N	57	49	24	5	24	24	182	342			
TDP	17	10	6	1	2	3	39	73			
Si	1453	1740	1347	276	694	554	6062	11,395			
DOC	4119	4645	5681	818	1472	1377	18,109	34,042			

	Ob'	Yenisey	Lena	Kolyma	Yukon	Mackenzie
TDN	63	67	69	48	81	36
DON	37	45	56	32	57	18
DIN	29	21	14	13	31	16
NO ₃	19	20	10	10	29	14
TDP	6	4	2	2	2	2
Si	493	713	554	525	835	330
DOC	1396	1904	2338	1555	1771	820
Water Yield	1430	2590	2400	1660	2480	1770

Table 3. Average annual constituent yields (kg km⁻² yr⁻¹) and water yield (m³ km⁻² yr⁻¹).