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Abstract: Cyanobacteria are found globally due to their adaptation to various environments.
The occurrence of cyanobacterial blooms is not a new phenomenon. The bloom-forming and
toxin-producing species have been a persistent nuisance all over the world over the last decades.
Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect
anthropogenic influences. To control cyanobacterial blooms, various strategies, including physical,
chemical, and biological methods have been proposed. Nevertheless, the use of those strategies
is usually not effective. The isolation of natural compounds from many aquatic and terrestrial
plants and seaweeds has become an alternative approach for controlling harmful algae in aquatic
systems. Seaweeds have received attention from scientists because of their bioactive compounds
with antibacterial, antifungal, anti-microalgae, and antioxidant properties. The undesirable effects of
cyanobacteria proliferations and potential control methods are here reviewed, focusing on the use of
potent bioactive compounds, isolated from seaweeds, against microalgae and cyanobacteria growth.
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1. Introduction

Over the last two decades, there has been a growing concern about the impact of microalgae and
cyanobacteria blooms due to increasing pollution and eutrophication. Harmful effects, including
the development of high biomass and scums, which decrease the water quality and adversely
affect the aquatic ecosystems, the aquaculture industry as well as the environmental and human
health, have been reported [1]. Therefore, the control of cyanobacterial blooms is important and
urgently required. Various strategies, including physical, chemical, and biological methods have been
proposed for controlling or mitigating Harmful Algal Blooms (HABs). Chemical agents such us copper
sulfate [2], potassium chloride [3], and endothall [4] have been used. Mechanical control involves
the use of filters, pumps, and barriers [5]. Biological agents include herbivorous fishes [6], algae [7],
and microorganisms [6]. However, the application of these strategies in the aquatic environment
is not usually effective due to their nonselective toxicity to many aquatic organisms [8], high cost,
energy expenditure, and low efficiency [9].

Recently, the isolation of natural compounds from many aquatic and terrestrial plants and
seaweeds has been regarded as an environmentally friendly alternative approach for controlling
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harmful algae and cyanobacteria in aquatic systems [10]. These compounds include a variety
of bioactive molecules such us ethyl 2-methylacetoacetate isolated from an emergent macrophyte
Phragmites communis [11]; α-linolenic acid, oleic acid, and palmitic acid purified from Botryococcus

braunii [12]; cyclic sulfur [13], and rutacridone epoxide [14].
Seaweeds are the most primitive group of vegetation and they have gained great importance

as a promising source of bioactive compounds that can be used for drug development. Seaweeds
can produce a variety of bioactive compounds, with a wide range of biological activity, including
antibacterial, antifungal, antimicroalgae, antioxidant, and others [15–18]. Several live marine
macroalgae (Corallina pilulifera, Enteromorpha clathrata, Undaria pinnatifida, Laminaria japonica, Porphyra

tenera, Ulva pertusa, Sargassum thunbergii) have been found to inhibit bloom-forming microalgae such as
Cochlodinium polykrikoides, Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum micans [8,19,20].

2. Cyanobacteria

2.1. General Characteristics

Cyanobacteria, for a long time considered as blue-green algae on account of their ability to conduct
photosynthesis, are Gram-negative bacteria. They are from a monophyletic group composed of almost
2000 species divided into 150 genera [21]. Cyanobacteria are among the oldest organisms to have
appeared on our planet and are one of the most abundant and largely distributed [22]. They are
present in a broad range of ecosystems such as aquatic environments (from fresh waters to hyper-saline
water) and deserts [23]. They also may grow in symbiosis with algae (marine and freshwater diatoms),
fungi to form lichens, with animals like protozoa, sponges or sea squirts, or with plants such as aquatic
ferns, gymnosperms, and angiosperms [24]. The majority of the cyanobacteria species are aerobic
photoautotrophs but some species, like Synechocystis sp. PCC6803 are optional heterotrophs [25].
They are responsible for about half of the earth’s oxygen atmosphere [26].

Cyanobacteria have a considerable morphological diversity. They can be solitary (unicellular),
or colonial, or organized in trichomes (without sheath) or filaments (with sheath) with very varied
forms (e.g., ovoid, spherical). In addition to their vegetative cells, specialized cells give them great
advantages; gas vacuoles which regulate floating, the akinets which allows their conservation and
dissemination, and the heterocysts which have the ability to convert dinitrogen directly (N2) in an
available form (ammonium NH4

+) through the nitrogenase. These latter types of cells are found in
many kinds of cyanobacteria such as: Microcoleus, Gloeothece, Nostoc, Anabaena, Aphanizomenon [27,28].
Cyanobacteria can produce a variety of bioactive components, which have broad biological activity,
including antibacterial, antifungal, antioxidant, and anticancer compounds [29–31]. According to
several researchers, 40% of species of cyanobacteria are supposed to be toxigenic [32]. The toxins are
classified into four large categories: neurotoxins, hepatotoxins, cytotoxins, and irritant toxins such
as lipopolysaccharides [33]. Moreover, cyanobacteria also have the ability to synthesize allelopathic
substances which tend to target the other competitive species directly and can induce reactions of
avoidance, deteriorate their aspect, or cause their mortality [34,35].

2.2. Blooms of Cyanobacteria

Eutrophication is caused by an excessive load of nutritive elements which leads to changes in the
aquatic environment, materialized by the proliferation of cyanobacteria blooms [36]. This situation is
influenced by many factors such as temperature, pH, luminosity, and high concentrations of inorganic
nutrients (nitrogen and/or phosphorus) which are often limiting elements in water bodies [36,37],
as well as the stability of the water column [38].

In temperate climates, during the summer and at the beginning of the autumn, cyanobacteria
blooms can form in a few days and last for one to several weeks [22], often inducing scums and
leading to intense discoloration of the water bodies. The development of cyanobacteria in eutrophic
mediums is supported by their reduced capacity to capture carbon dioxide (CO2) [39,40], the skill to
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use bicarbonates (HCO3
−) even with raised pH, the faculty to fix and use dinitrogen (N2), combined

with their capacity to position themselves vertically in the water column [37].
Cyanobacteria have the advantage of not being easily digested by zooplankton unlike other

members of phytoplankton [41]. They secrete siderophores (hydroxamates) enabling them to capture
the surrounding Fe3+ ions limiting the growth of potential competitors [42]. Cyanobacterial populations
end up dominating the phytoplankton in eutrophic lakes. Even if blooms constitute a natural
phenomenon, their frequency and their severity are increased by eutrophication, often related to
anthropic activities (domestic or industrial wastewater discharge, intensive agriculture, both rich in
nitrogen and phosphates). Moreover, global warming seems to act as a catalyst for cyanobacterial
proliferations [43–45].

2.3. Undesirable Effects of Cyanobacteria Blooms

The harmful blooms of cyanobacteria have multiple consequences on ecosystems including
the lethality of some species. Cyanobacteria massive growth can lead to two types of problems,
one associated with a strong production of biomass and the other associated with the production of
toxins that can result from a very low density of producing organisms [46].

The low consumption of cyanobacteria by zooplankton could disturb these trophic networks by
limiting the transfers of matter and energy towards higher levels. Blooms also increase pH and water
turbidity, reducing transparency and therefore light penetration. Light is then no longer available for
photosynthetic activity below the surface level. In depth zones, anoxia develops and subsequently
limits the growth of primary benthic producers such as macrophytes, epiphytes, and metaphyton [47].
The death of primary producers increases organic matter that causes the proliferation of decomposers
(bacteria, fungi). These microorganisms mineralize organic material and use for their metabolism,
dissolved oxygen which limits its access to many other organisms such as zooplankton and fish,
causing significant mortalities [48], and dramatic changes in the species composition of aquatic
communities [22]. Cyanobacterial blooms typically involve a considerable loss of biodiversity in the
phytoplankton community [48].

The harmful blooms of cyanobacteria also generate nuisances compromising the use of water for
various activities. Moreover, some cyanobacteria such as Anabaena, Aphanizomenon, Lyngbya, Microcystis,
Oscillatoria, Phormidium, Schizothrix and Symploca [49], produce non-toxic volatile organic secondary
metabolites, geosmin (E1, 10-dimethyl-E-9-decalol) and MIB (2-methyl isoborneol), which cause
bad tastes and foul-smelling odors with significant economic consequences in fish farming [50–52].
Furthermore, more than 100 species belonging to 40 genera of cyanobacteria are able to synthesize
toxins that can have harmful impacts on aquatic fauna and flora as well as the health of land animals
and humans [1]. Among these genera, Microcystis is the most prevalent in the formation of toxic
blooms, namely in Moroccan lakes [53–55]. Toxins are classified into four categories according to
the effects they cause in mammals and vertebrates: hepatotoxins such as hepatotoxic microcystins
(targeting the liver), neurotoxins (targeting the nervous system), cytotoxins and irritating toxins such as
lipopolysaccharides (dermatotoxins) [33,56]. Furthermore, toxic cyanobacteria blooms in lakes may not
only pose a significant threat to the drinking water supply, but may also result in significant economic
losses associated with mitigation of the blooms and lake restoration [57,58]. It is estimated in the
United States that the annual economic costs of eutrophication in freshwaters is over $2.2 billion [57].
In addition, the use of contaminated water by cyanotoxins in irrigation could have negative effects on
the development and metabolism of seeds and plants, influencing agricultural production [59,60].

2.4. Methods Applied in Cyanobacterial Bloom Control

Mechanical, physical, chemical, and biological methods are used to prevent and control the
blooms of cyanobacteria, the chemical ones being the most used. Copper sulfate (CuSO4·5H2O) used
to be the most popular algicide. Although the treatment was usually effective by killing cyanobacteria,
side effects occurred: copper is toxic to many other aquatic organisms including fish [2] and the
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increase in dead algal biomass led to oxygen depletion and an increase in the release of phosphorus
from the sediments, resulting in the reoccurrence of the blooms.

Research showed that cyanobacteria can develop resistance to copper [61,62]. There are
many other inorganic chemicals highly toxic to cyanobacteria such as potassium chloride (K+) [3],
endothall (7-oxabicyclo(2.2.1)eptane-2,3-dicarboxylic acid) [4], and diuron (3-[3,4-dichlorophenyl]-1,1-
dimethylurea) [63]. Moreover, their application to the aquatic environment is not advisable due to
the nonselective toxicity to many aquatic organisms; in addition, affected populations may build up
resistance to these compounds [64].

Mechanical control involves the use of filters, pumps, and barriers (curtains, floating booms) to
remove or exclude algal blooms, dead fish, or other bloom-related materials from impacted waters [5].
Cyanobacterial booms can also be limited by the dilution of lake water, by lake flushing or ultrasonic
radiation [65]. The object of these methods is both the augmentation of the water exchange rate
and the decrease of nutrient concentration [66]. The mechanical and physical treatment of algae
removal is energy intensive and tends to be of low efficiency [9]. It is applied mainly to surface scums
and only a small part of the cyanobacterial population in the lake can be removed by mechanical
techniques [67]. Other work however, showed that it could be effective even on a whole lake [68].
In addition, lesions caused to non-target organisms by these techniques, also limit the application in
the field of such approaches in large scale.

Biological control such as biomanipulation tends to be environmentally friendly and a promising
method for controlling algal blooms, being highly specific to the target organism, with no destruction
of other organisms and with no direct chemical pollution. Biomanipulation involves the introduction of
new grazers and competitors of cyanobacteria to control the phytoplankton development in eutrophic
lakes [69]. Many organisms are used such as macrophytes and periphyton [70,71], herbivorous fishes
(silver and bighead carp) [6], algae [7], and microorganisms (viruses, bacteria, fungi, and protozoa) [6].
However, the introduction of new species in an environment can have negative consequences on other
species, with an imbalance of the trophic chain [72,73].

Over the last two decades, as an alternative to synthetic algicidal agents, natural compounds
have been tested for controlling harmful algae in aquatic systems [10]. Research has shown that
extracts and essential oils of many aquatic and terrestrial plants and seaweeds inhibit the growth
of cyanobacteria. Aquatic plants, such as Phragmites communis [74], Myriophyllum spicatum [75],
Typha latifolia and Arundo donax [76], Ceratophyllum demersum [77], Potamogeton cristatus, Potamogeton

maackianus, Potamogeton lucens, Vallisneria spinulosa, Ceratophyllum demersum, Hydrilla verticillata [78]
and Sagittaria trifolia [79], inhibit the growth of cyanobacteria. The extracts and essential oils of many
terrestrial plants also show inhibitory effects against cyanobacteria, such as Ailanthus altissima [80],
Rosmarinus officinalis [81], Callicarpa americana [82]. Moreover, several studies have demonstrated
the effects of seaweeds extracts in microalgae. Sun et al. and Sun et al. [83,84], indicated that
Ulva intestinalis, Gracilaria lemaneiformis, and Ulva prolifera inhibit the growth of various microalgae
species such as Prorocentrum micans, Prorocentrum donghaiense and Heterosigma akashiwo.

3. Macroalgae

3.1. General Characteristics

Macroalgae, also known as seaweeds, are conspicuous and dominant features in marine
ecosystems. They differ from other plants, in that algae lack roots, leafy shoots, flowers, and vascular
tissues. According to differences in pigmentation, macroalgae include three different phyla:
Chlorophyta, or green seaweeds are a diverse group with more than 7000 species widespread in
various habitats (marine, freshwater and terrestrial ecosystems) [85]. Green algae are characterized
by the dominance of two photosynthetic pigments chlorophyll a and b, chloroplasts with no outer
endoplasmic reticulum, thylakoids typically in stacks of two to six, and cellulosic walls or scales.
Phaeophyta, or brown seaweeds, the principal pigments in which are xanthophyll and fucoxanthin
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that mask chlorophyll a and c, which give them a dark shade [86]. Brown algae are distinguished by
chloroplasts that have four surrounding membranes, thylakoids in stacks of three and with a richness
of polysaccharides that possess importance biological activities [87]. They are exclusive to the marine
habitat, under 1% of the species occur in truly freshwater habitats. Rhodophyta, or red seaweeds,
the presence of two principal pigments phycoerythrin and phycocyanin, chloroplasts without external
endoplasmic reticulum, unstacked thylakoids, and absence of flagella, are the principle characters of
these phyla. They are prevalently marine in distribution; just roughly 3% of more than 5000 species are
from fresh water [88].

Morocco due to its specific geographical position: the Mediterranean Sea to the north, the Atlantic
Ocean to the west, accommodates a large bio-ecological diversity. However, the investigation of benthic
kelp exhibited a particular wealth of 489 species [89] distributed between 303 species of Rhodophyceae
(red algae), 99 species of Phaeophyceae (brown algae), and 87 species of Chlorophyceae (green algae).
Their geographical distribution reveals the presence of 381 species (75%) on the Mediterranean coast
and 323 species (64%) on the Atlantic coast, none of these algal species is endemic and only the Gelidium

sesquipedale is currently exploited in Morocco [90].

3.2. Potential Use of Macroalgal Compounds

In recent years, macroalgae have gained significant importance as a new promising source of
novel bioactive compounds that can be used for drug development. Seaweeds may produce a variety
of bioactive compounds, which have a wide range of biological activities, including antibacterial,
antifungal, antioxidant, and anti-microalgal compounds [15–18].

3.2.1. Production of Antimicrobial Substances

The urgent need to find new therapeutic drugs from natural products has increased during the
last decade owing to the increase of emerging multidrug-resistant microorganisms. The discovery of
new bioactive substances with potent effects against resistant pathogenic and toxic microorganisms
is an important aspect of the bioactive substance research today. The diversity of natural products
makes it one of the most important sources of novel structures, which have been found to possess
useful biological activities [91].

Generally, the antimicrobial activity of macroalgae has been extensively studied. However,
the exploitation of seaweeds as a source for the discovery of new bioactive substance is still at an early
stage, despite the fact that numerous novel antimicrobial compounds have been isolated over the last
few years (Table 1).

Table 1. Novel antimicrobial compounds isolated from seaweeds.

Compound Source Reference

Peyssonoic acid A and B Peyssonnelia sp. [92]

Tiomanene Acetylmajapolene (A and B) Laurencia sp. [93]

3-Dibromobenzaldehyde-4,5-disulfate potassium salt
5-Bromo-3,4-dihydroxybenzaldehyde

Polysiphonia lanora [94]

Zonarol and isozonarol sesquiterpenes Dictyopteris zonarioides [95]

Diterpene sargafuran Sargassum macrocarpum [96]

10-Hydroxy kahukuene B Laurencia mariannensis [97]

Kamei et al. [96] found a novel antibacterial terpenoid compound, the diterpene sargafuran,
from the methanolic extract of the marine brown algae Sargassum macrocarpum. The results of
antibacterial activity show that sargafuran was bactericidal and killed Propionibacterium acnes by
lysing bacterial cells. Also, zonarol and isozonarol sesquiterpenes (Figure 1) isolated from Dictyopteris
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zonarioides have been shown to exhibit a strong inhibitory effect against plant pathogenic fungi [95].
A few sesquiterpenoid hydroquinones occasionally incorporating halogens such as tiomanene and
acetylmajapolene A and B isolated from Malaysian Laurencia sp. have been found to exert potent
antimicrobial efficacy [93].

H3C CH3

H

HO

H3C CH3

H

O

O

CH3
CH3

OH

Zanarol Izozanarol

Figure 1. Structures of terpenoid compounds from Dictyopteris zonarioides.

Furthermore, two new sesquiterpene hydroquinones, peyssonoic acids A and B (Figure 2) have
been isolated from the crustose red alga Peyssonnelia sp. at ecologically realistic concentrations, and both
compounds inhibited the growth of bacterial and fungal pathogens, Pseudoalteromonas bacteriolytica

and Lindra thalassiae, from marine algae origin [92].

OH

O

Br

OHHO

H

OH

O

OHHO

H

Peyssonoic Acid A Peyssonoic Acid B  

Figure 2. Structures of the two new sesquiterpene hydroquinones.

The antimicrobial activity may be influenced by some factors such as the habitat and the season
of algal collection, different growth stages of macroalgae, experimental methods etc. Moreover the
variation in antimicrobial activity may be due to the method of extraction including the solvent used
in the extraction [98,99].

The potential of seaweeds as a source of active compounds against pathogenic microorganisms has
been confirmed in different studies (Table 2). Taskin et al. [100] indicated that the methanolic extracts
of five marine algae, Cystoseira barbata, Dictyota dichotoma, Halopteris filicina, Cladostephus spongiosus f.
verticillatus, and Ulva rigida collected from the North Aegean Sea (Turkey) showed inhibition against
Staphylococcus aureus, the most effective being Ulva rigida extract. Moreover, the highest inhibition
activity was shown in Enterobacter aerogenes (34.00 ± 1.00 mm) by Corralina officinalis and it was
followed by Escherichia coli and Enterococcus faecalis. Cortés et al. [101] found that the dichloromethane
extract of Ceramium rubrum was active on Yersinia ruckeri (Gram-negative). The identification of
extract composition showed that it contains fatty acids, fatty acid esters, one hydrocarbon, and phytol.
In addition, they found that the antibacterial activity of the extract has a synergistic effect of its
constituents because the pure compounds only showed a weak effect, which suggests a strong
synergistic effect among the components. Moreover, Salvador et al. [102] screened 82 marine algae
as fresh and lyophilized forms against bacterial and fungal pathogens. Of the algae 67% were active
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against at least one of the microorganisms tested. Among the species tested Pseudomonas aeruginosa

was the most resistant and Bacillus cereus was the most sensitive. In this study, they reported that the
members of the red algal order, Bonnemaisoniales were the most active. Additionally, they showed
that Phaeophyceae and Rhodophyceae autumn samples exhibited the most important antimicrobial
activity, while the maximum activity of chlorophyceae extracts was observed for summer samples.

According to their solubility and polarity, solvents show different antimicrobial activity. Therefore,
it is necessary to select the best extraction solvents for each species of macroalgae in order to optimize
extraction of the maximum chemical compounds. Methanol extracts have higher antimicrobial activity
than extracts obtained with other solvents [103–107]. Shanmughapriya et al. [108] used fresh and dried
materials of fourteen seaweeds for the extraction. They found that dried samples have less or no effects
on microorganism tests in comparison to the fresh seaweed extracts. In addition, the antimicrobial
principle from marine algae was found to be lipophilic. They also demonstrated that methanol extracts
had higher antibacterial activity whereas ethanolic extracts had no antibacterial activity. This result
was consistent with those reported by ref. [109] which showed that the methanol extraction yields
had higher antimicrobial activity than ethyl acetate and hexane. They found that all seaweeds were
active against at least one of the bacteria tested, on the other hand only five algal extracts showed
antifungal activity. Contrary wise, Baleta et al. [110] indicated that the extraction of antimicrobials from
Sargassum oligocystum and Sargassum crassifolium was solvent dependent, ethanol being the best solvent
for isolation of antimicrobial compounds. Also, they revealed the presence of flavonoids, tannins,
phenolics, sterols, and terpenoids which could be responsible for the observed antimicrobial property.

Radhika et al. [111] studied the antifungal activities of Acanthophora spicifera, Padina tetrastomatica,

and Caulerpascal pelliformis against five fungal strains, namely Aspergillus terrus, Aspergillus fumigatus,
Gibberline sp., Alternaria sp., and Ganoderma sp. The ethanol extracts showed the best antifungal
activity followed by acetone and then methanol extracts. Aspergillus fumigatus was the most susceptible
fungal species while Ganoderma sp. was the most resistant. However, Tüney et al. [112] investigated
the antimicrobial activities of the extracts from 11 seaweed species prepared by methanol, acetone,
diethyl ether, and ethanol against Candida sp., Enterococcus faecalis, Staphylococcus aureus, Streptococcus

epidermidis, Pseudomonas aeruginosa, and Escherichia coli. The highest activities were obtained by
the diethyl ether prepared extracts. They reported that the most active algal species was Cystoseira

mediterranea, Enteromorpha linza, Ulva rigida, Gracilaria gracilis, and Ectocarpus siliculosus against all
test organisms. Furthermore, Moorthi et al. [113] found that acetone and chloroform extracts of
the Sargassum muticum exhibited higher antibacterial activity compared to other solvent extracts.
Cox et al. [114] revealed that methanol was the better solvent for extraction of antimicrobials from
Phaeophyceae; whereas acetone was good for chlorophyceae. A variety of metabolites and natural
bioactive compounds groups from seaweeds, such as polysaccharides, tannins, flavonoids, phenolic
acids, bromophenols, and carotenoids have been reported to be bacterial inhibitors [115,116].

Depending on their constitution and concentration, phenol compounds, chemical components
of algal cells, could have an activating or inhibiting effect on microbial development [117,118].
Furthermore, seaweeds have been reported to act as inhibitors of the oxidative phosphorylation
and factor cell lysis due to their ability to bind with bacterial proteins such as enzymes and those of
cell membranes [116]. Wei et al. [119] reported that low molecular weight phlorotannins extracted
from Sargassum thunbergii damaged the wall and the permeability membrane of Vibrio parahaemolyticus

cell. Nagayama et al. [120] identified bacterial activity of phlorotannins from the brown alga Ecklonia

kurome against 35 bacterial strains.
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Table 2. Antibacterial and antifungal activity of different solvent extracts from seaweeds.

Solvents Seaweed Target Organisms Reference

Acetone

Turbinaria conoides Fusarium oxysporum [121]

Ulva lactuca

Escherichia coli, Staphylococcus aureus,
Bacillus mycoides, Bacillus subtilis,
Klebsiella pneumoniae, Aspergillus

flavus, Aspergillus fumigatus,
penicillium purpurescens, Candida

albicans and Penicillium verrucosum

[122]

Acetone, Chloroform Sargassum muticum

Micrococcus sp., Staphylococcus
aureus (methicillinresistance),

Salmonella paratyphi B, Staphylococcus
epidermis, Enterobacter aerogenus,

Shigella fleschneri, Proteus vulgaris,
Staphylococcus aureus

Salmonella typhymurium

[113]

Acetone, Ethyl,
acetate, Hexane

Sargassum wightii,
Chaetomorpha linum and

Padina gymnospora

Erwinia amylovora, Enterobacter
aerogenes, Proteus vulgaris, Escherichia

coli, Staphylococcus aureus, Bacillus
subtilis Enterococcus faecalis

[98]

Acetone, Ethyl acetate,
Hexane, Methanol

Chaetomorpha linum
Pseudomonas aeruginosa

Bacillus subtilis
[123]

Acetone, Methanol
Sargassum platycarpum,

Sargassum latifolium

Escherichia coli, Salmonella sp.,
Staphylococcus xylosus, Staphylococcus
aureus, Bacillus subtilis, Enterococcus

faecalis Candida albicans

[124]

Benzene, Diethyl ether,
Ethyl acetate, Hexane

Chlorococcum humicola

Escherichia coli, Pseudomonas
aeruginosa, Salmonella typhimurium,

Klebsiella pneumoniae, Vibreo cholerae,
Staphylococcus aureus, Bacillus

subtilis, Candida albicans, Aspergillus
niger and Aspergillus flavus

[125]

Chloroform, Ethanol

Ulva reticulata, Caulerpa
occidentalis, Cladophora

socialis, Dictyota ciliolata,
and Gracilaria dendroides

Escherichia coli, Pseudomonas
aeruginosa, Stapylococcus aureus

Enterococcus faecalis
[126]

Chloroform, Hexane,
Ethyl acetate, Methanol

Ulva lactuca, Sargassum
polyceratium, Caulerpa

racemosa

Bacillus subtilis, Micrococcus luteus,
Staphylococcus aureus, bacteria
Escherichia coli and Klebsiella

pneumoniae

[127]

Chloroform, Hexane,
Ethyl acetate, Methanol

Jania adhaerens, Padina
gymnospora

Bacillus subtilis and Micrococcus
luteus

[127]

Diethyl ether,
Methanol, Ethanol

Ceramium rubrum,
Sargassum vulgare,

Sargassum fusiforme and
Padina pavonia

Pseudomonas aeruginosa,
Shigellaflexneri, and

Klebsiella pneumoniae
[128]

Ethanol

Stypocaulon scoparium
and Halopitys Incurvus

Staphylococcus aureus, Bacillus
subtilis, Escherichia coli, pseudomonas
aeruginosa, Fusarium oxysporum f. sp.

Albedinis and Penicillium sp.

[129]

Asparagopsis taxiformis
Aspergillus fumigatus, Aspergillus

terreus and Aspergillus flavus
[130]

Ethyl acetate Eisenia bicyclis

Propionibacter iumacnes,
Staphylococcus aureus, Staphylococcus

epidermidis and
Pseudomonas aeruginosa

[131]
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Table 2. Cont.

Solvents Seaweed Target Organisms Reference

Methanol

Ulva lactuca, Sargassum
wightii and

Gracilaria edulis

Bacillus cereus, Streptococcus faecali,
Staphylococcus aureus, E-coli,

Pseudomonas aeruginosa, Salmonella
typhi and Vibreo cholerae

[132]

Ulva rigida and Ulva
intestinalis

Esherichia coli, Streptococcus pyogenes,
Staphylococcus epidermidis, Candida

albicans and Aspergillus niger
[133]

Ulva lactuca, Ulva fasciata
Enteromorpha compressa,

Pterocladia capillacea,
Hypnea musciformis and

Padinapavonica

Fusarium solani, Fusarium oxysporum,
Tricodermahamatum, Aspergillus

flavipes and Candida albicans
[134]

Ulva lactuca
Staphylococcus aureus and
Pseudomonas aeruginosa

[135]

Sargassum wightii
Staphylococcus aureus., Klebsiella

pneumonia, Proteus mirabilis,
Escherichia coli and Proteus valgaris

[136]

Ulva lactuca

Bacillus subtilis, Corynebacterium
diphtheria, Staphylococcus aureus,

Escherichia coli, Pseudomonas
aeruginosa, Salmonella paratyphi,

Aspergillus niger
Aspergillus fumigatus

[137]

Turbinaria ornata, Padina
tetrastromatica

Micrococcus luteus and
Bacillus subtilis

[138]

Methanol, Water Cytoseira crinite

Taphylococcus aureus, Bacillus subtilis,
Bacillus spp., Staphylococcus

epidermidis Escherichia coli and
Salmonella typhi, Klebsiella spp., and

Pseudomonas aeruginosa

[139]

Polysaccharides Corallina

Staphylococcus epidermidis,
Staphylococcus aureus, Enterococcus

feacalis Escherichia coli and
Pseudomonas aeruginosa

[140]

Toluene
Gracilaria crassa,

Gracilaria debilis, and
Gracilaria corticata

Escherichia coli, Shigella sp.,
Staphylococcus aureus, Vibriocholerae,

Proteus sp., Bacillus subtilis and
Pseudomonas fluroscens

[141]

Marine macroalgae have been found to produce diverse bioactive compounds with antialgal
activities [18,142,143] that can prevent the development of microalgae or even kill them (Table 3).

Manilal et al. [144] reported that a methanol extract of Stoechospermum marginatum showed
significant algicidal effect and produced 90% of cell lysis of Oscillatoria sp. at 600 mg/L by the seventh
day of treatment.

The GC-MS profile of this algal extract demonstrated the presence of diethyl phthalate as a major
constituent (84.45%). Chowdhury et al. [145] investigated the toxic effect of the brown alga Ecklonia

cava on Cochlodinium polykrikide and Heterosigma akashiwo with total growth inhibition, revealing that
the maximum algicidal activity was attained after 24 h of exposition. Ecklonia cava potent algicidal
activity against microalgae tests was maximized at a temperature of 25 ◦C or above. Nan et al. [146]
showed that the growth of eight phytoplankton species was significantly (p < 0.01) suppressed in
batch co-cultures with Ulva pertusa and the percentage of growth reduction varied between 42% and
100%. Moreover, Wang et al. [143] showed that the growth of Heterosigma akashiwo was strongly
inhibited by using fresh tissue, dry powder or dry tissue of Enteromorpha intestinalis, Ulva pertusa,
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Ulva linza. Aqueous and methanol extracts had strong inhibitory effects on the growth of H. akashiwo,
the effective concentration was 1.6 × 10−12 and 0.2 × 10−12 for the aqueous and the methanolic extract
respectively with no apparent inhibitory effect of the other three organic solvent extracts (acetone,
ether, and chloroform). Recently, Sun et al. [147] studied the effect of green alga Ulva prolifera on the
growing of red tide microalgae and feed microalgae. The effects of Ulva prolifera methanolic extract
partitions (FA, FB, FC, and FD) on several microalgae at the concentrations of 115.2 µg/mL FA and FB

showed significant antialgal activity against most of the red tide microalgae tests, especially Heterosigma

akashiwo and Prorocentrum donghaiense. They reported that the inhibitory activity of the fraction FA on
Karenia mikimito was lower than that on Skeletonema costatum; 50.3% and 100% in day 12 at 14.4 µg/m;
respectively, with no biological toxicity against feed microalgae. Furthermore, after screening 27 species
of seaweeds, the methanol extracts of the brown alga Ishige sinicola showed significant growth inhibition
of more than 30% against tissue, spores, zyogote and germling of Entermorpha prolifera. The water
extracts of two seaweeds Codium fragile and Monostroma nitidum showed significant growth inhibition
of more than 40% against tissue of Entermorpha prolifera, and only one seaweed Porphyra yezoensis

showed significant inhibition of more than 30% against zygote of Entermorpha prolifera [148].

Table 3. Anti-microalgal activity of different extracts from seaweeds.

Macroalgae
Fraction Used

or Solvent
Target Species Effects Reference

Enteromorpha
intestinalis

Ethanol extract
Fresh tissue

Prorocentrum micans

Fresh tissue and ethanol
extracts significantly

inhibited the growth of
P. micans.

[149]

Sargassum
thunbergii

Methanol extract
Heterosigma akashiwo
Skeletonema costatum
Prorocentrum micans

Stronger inhibitory effects
on the growths of red tide

microalgae tests.
[20]

Enteromorpha
clathrata,

Undaria pinnatifida
Laminaria japonica

Porphyra tenera
Ulva pertusa

Seawater extracts Skeletonema costatum

The macroalgal extracts of
P. tenera, E. clathrata, and
U. pertusa showed strong

growth inhibition on
S. costatum.

[19]

Gracilaria
lemaneiformis
Ulva pertusa

Fresh thalli
Water-soluble

extract
Dry powder

Heterosigma akashiwo
Algicidal effects of both

macroalgae on H. akashiwo,
cells were entirely killed.

[150]

Gracilaria
tenuistipitata

Dry powder Prorocentrum micans
Inhibitory effect on the

photosynthesis of
P. micans.

[151]

Ulva lactuca
Dry powder
Fresh thalli

Extracts

Aureococcus
anophagefferens

Cochlodinium polykrikoides
Pseudo-Nitzschiamultiseries

Prorocentrum minimum
Karlodinium veneficum

Chattonella marina
Karenia brevis

The fresh thalli and dry
powder strongly inhibited

the growth of all seven
HAB species with

advantage of dry powder.
The extracts of U. lactuca

exhibited dramatic
allelopathic effect on the

HAB species.

[152]

Sargassum
thunbergii

Corallina pilulifera
Ulva pertusa

Aqueous extracts
Fresh tissue
Dry powder

Heterosigma akashiwo
Alexandrium tamarense

The growth of the two
microalgae was

strongly inhibited
[153]

Asparagopsis
taxiformis

Methanol extract Trichodesmium sp.
Total inhibition of

Trichodesmium sp. growth
[154]

Hypnea musciformis Methanol extract
Isochrysis galbana

Chlorella salina

Enhancement growing of
both microalgae even at

low concentration
[155]
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Table 3. Cont.

Macroalgae
Fraction Used

or Solvent
Target Species Effects Reference

Gracilaria
lemaneiformis

Ethanol extract

Prorocentrum donghaiense
Skeletonem acostatum
Heterosigma akashiwo
Amphidinium carterae

Phaeocystis globa
Karenia mikimitoi

Inhibitory effect on the
growth of all microalgae

[84]

Ulva pertusa Methanol extract
Red tide microalgae

Feed microalgae

The methanolic extract
showed antialgal activity
against red tide, with no

growth inhibition for
feed microalgae.

[156]

Corallina pilulifera Methanol extract
Red tide microalgae

Feed microalgae

Stronger inhibitory effects
on the growths of red tide

microalgae, with no
growth inhibition for

feed microalgae.

[157]

Ulva intestinalis
Ethanol extract

Fresh tissue
Dry powder

Heterosigma akashiwo
Prorocentrum micans

The fresh tissue, dry
powder and extract, all

exhibited obvious algicidal
effects on red tide

microalgae.

[83]

37 species
Methanol extract

Water extract
Heterosigma akashiwo

The green alga Ulva fasciata
showed the strongest

algicidal activity among
the 37 seaweeds tested

[142]

Ulva lactuca
Ulvafasciata

Ethanol extract Chlorella vulgaris
Stimulation of growth and

progressive increase of
Chlorella vulgaris biomass

[158]

Ulva pertusa Ulva
prolifera

Extracts (acetone,
ether chloroform,

methanol)
Fresh tissue Dry

powder

Prorocentrum donghaiense

Stronger inhibitory
growing effects by fresh

tissue and dry powder of
both seaweeds. Methanol
extracts of the macroalgae

were found to strongly
inhibit the growth of

P. donghaiense.

[159]

Ecklonia kurome
Phlorotannins

extract

Cochlodinium
polykrikoides

Chattonella antiqua
Kareniam ikimotoi

Destruction of 99% cells of
ride tide microalgae, with

no mortality observed
among other organisms

such us: Pagrus major, tiger
puffer Fugu rubripes or

larval blue crab
Portunustrituberculatus.

[120]

Ulva pertusa Fresh tissue

Heterosigma akashiwo,
Skeletonema costatum,

Tetraselmis subcordiformis,
Nitzschia closterium,
Chaetoceros gracile,

Chroomonas placoidea,
Isochrysis galbana,

Alexandrium tamarense

Algicidal interaction
between green alga Ulva

pertusa and all
phytoplankton species

[146]

Researchers have described methods of controlling cyanobacteria harmful blooms by using
algicidal compounds extracted from seaweeds, such as octadeca-6Z,9Z,12Z,15Z-tetraenoic acid
(ODTA) isolated from the brown alga Cladosiphon okamuranus [160]; α-linolenic acid, oleic acid,
and palmitic acid isolated from green alga Botryococcus braunii [12]; hexadeca-4,7,10,13-tetraenoic
acid (HDTA), octadeca-6,9,12,15-tetraenoic acid (ODTA), and α linolenic acid isolated from the green
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alga Ulva fasciata [142]; (6E,9E,12E)-(2-acetoxy-β-D-glucose)-octadecatrienoic acid ester separated
from green alga Ulva intestinalis [83]; gossonorol, 7,10-epoxy-ar-bisabol-11-ol, glycerol monopalmitate,
stigmasterol, 15-hydroxymethyl-2,6,10,18,22,26,30-heptamethyl-14-methylene-17-hentriacontene,
4-hydroxyphenethyl alcohol, and margaric acid were obtained from the ethanolic extract of the red
alga Gracilaria lemaneiformis [84]; 5,8,11,14,17-eicosapentaenoic acid (EPA) and di-n-octylphthalate
(DnOP) (Figure 3) purified from the methanol extract of the red alga Corallina pilulifera [157].

α

α
β

CH3

OH

O

O

O

(CH2)7CH3

O

O

(CH2)7CGH3

EPA DnOP
 

β

μ

Figure 3. Algicidal substances isolated from Corallina pilulifera.

Recently, three algicidal compounds in the ethyl acetate (EtOAc) extracts were successfully
isolated from green algae Ulva intestinalis as 15-ethoxy-(6Z,9Z,12Z)-hexadecatrienoic acid (I),
(6E,9E,12E)-(2-acetoxy-β-D-glucose)-octadecatrienoic acid ester (II), and hexadecanoic acid (III).
Compound I and III showed moderate algicidal activity. Whereas compound II (Figure 4) displayed
the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for Heterosigma akashiwo and

Prorocentrum micans, respectively [83].

α

α
β

β

μ

O

CH2OH

HO

OH

O

O

O

O

 

Figure 4. Structure of compound II isolated from Ulva intestinalis.

Ten compounds were identified for the first time from green algae Ulva prolifera as three
glycoglycerolipids: 1-o-octadecanoic acid-3-o-β-D-galactopyranosyl glycerol (2), 1-o-palmitoyl-3-o-
β-D-galactopyranosyl glycerol (4), and 1-o-palmitoyl-2-Ooleoyl-3-o-β-D-galactopyranosyl glycerol (5);
two monoglycerides: glycerol monopalmitate (1), 9-hexadecenoic acid, 2,3-dihydroxypropyl ester (3);
two terpenoids: loliolide (6), and lsololiolide (7); one lipid-soluble pigments: zeaxanthin (8); one sterol:
cholest-5-en-3-ol (9); and one alkaloid: pyrrolopiperazine-2,5-dione (10). Their algicidal activity reveal
that compounds 3, 6, and 7 showed the stronger activity. The results also prove that compound 3

(9-hexadecenoic acid, 2,3-dihydroxypropyl ester) (Figure 5), was isolated for the first time from marine
macroalgae [147].
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β
β β

HO O

OH

O  

Figure 5. Structure of 9-hexadecenoic acid, 2,3-dihydroxypropyl ester isolated from Ulva prolifera.

3.2.2. Antioxidant Activity

Among all the compounds contained in macroalgae, antioxidants are the most abundant. They can
be classified into two groups, exogenous (vitamin C, vitamin E, and polyphenols) and endogenous
antioxidants (enzymes and proteins) [161]. Seaweeds, like all photosynthesizing plants, are exposed
to free radical and strong oxidizing agents due to a combination of high light and high oxygen
concentration [162,163]. However, the absence of structural damage in the cells of macroalgae and
their stability to oxidation during storage, suggests that these cells have protective antioxidative
mechanisms and compounds [164,165].

Several studies have investigated the antioxidant activity of natural products in seaweeds.
Chang and Teo [161] studied the antioxidant activity of Eucheuma cottonii extract by
2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. The result showed that the total phenolic
content value for the seaweed extract was 3.40 ± 0.013 mg GAE/g, and the IC50 of E. cottonii crude
extract on DPPH was 38.82 ± 0.99 mg/mL. The antioxidant activity of extracts of 48 species of
seaweed collected from the coasts of Yucatan and Quintana Roo (Mexico) was evaluated by DPPH
scavenging method. All species exhibited a DPPH radical scavenging activity, and Avrainvillea

longicaulis demonstrated the largest antioxidant potential with a very low oxidation index EC50

(1.44 ± 0.01 mg/L) with high phenolic content (3.36 ± 0.05% dry wt.), while the lowest antioxidant
activity was observed in Enteromorpha intestinalis (43.23 ± 0.28) [166]. The in vitro antioxidant
activities of methanol extracts of five selected species (Codium tomentosum, Enteromorpha linza,
Gelidium sesquipedale, Cystoseira spicata, and Padina pavonica) of Libyan algae were evaluated by
Alghazeer et al. [139]. They found that the maximum antioxidant activity was exhibited significantly
by the methanol extract of Cystoseira spicata 199.38 ± 12.73 (199.38 mg of ascorbic acid/g of seaweed
dry weight) with a significant high amount of phenolics, flavonoids, and condensed tannins compared
with the other extracts whereas, the extract of the green algae Enteromorpha linza exhibited the lowest
antioxidant activity (144.05 mg of ascorbic acid/g of seaweed dry weight). Lee et al. [167] studied the
in vivo antioxidant activities of fucosterol isolated from the marine algae Pelvetia siliquosa. The results
showed that fucosterol produced a significant increase of free radical scavenging enzyme activities
such as hepatic cytosolic superoxide dismutase (SOD), catalase, and glutathione peroxide (GSH-px)
activities by 33.89%, 21.56%, and 39.24%, respectively.

Many researchers have indicated a relation between total phenolic and flavonoid content and
high antioxidant activity. Farasat et al., Chai et al. and Alghazeer et al. [168–170] reported a
positive correlation between antioxidation capacity and the total phenolic and flavonoid contents.
Pinteus et al. [171] attributed the strong antioxidant activity to the high phenolic content. They also
suggested that high antioxidant activity is not directly linked to a high cytoprotective potential.
Contrariwise, Lim et al. and Mamelona et al. [165,172] demonstrated that the antioxidant capacity
is not directly correlated with the total phenolic contents. Also, Cho et al. [173] suggested that the
antioxidant activity of the extracts from the green algae Enteromorpha prolifera was related to the
chlorophyll compound pheophorbide, and not to total phenolic contents. According to ref. [137] the
free radical scavenging activity on DPPH was found to be increased with the increase of concentration
of methanolic extract of Ulva lactuca. In this study, the IC50 value was lower (81.36 µg/mL) compared
to other reported values [161]. Recently, Raja et al. [174] suggested that the antioxidant potential of
Eisenia arborea was the most effective followed by Ulva lactuca and Codium fragile. The methanolic
extracts were found to contain high phenolic and flavonoid contents with higher antioxidant activities
compared to their aqueous extract. Nahas et al. [175] tested the radical scavenging activity (RSA) of
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thirteen algae from the Aegean Sea by using the DPPH test and chemi-luminescence (CL). The results
indicated that the extracts of the brown alga Taonia atomaria exhibited the best RSA in comparison to
the other algae extracts. Moreover, they suggested that two metabolites, taondiol and isoepitaondiol
(Figure 6), were responsible for the extract antioxidant activity.

μ

O

HO

OH

H H

O

HO

OH

H H

Taondiol Isoepirandiol  

Figure 6. Antioxidant metabolites of the brown alga Taonia atomaria.

4. Conclusions

Enhanced growth of aquatic vegetation or phytoplankton and algal blooms disrupts normal
functioning of aquatic ecosystems all over the world. When toxic microalgae and cyanobacteria are
involved in these eutrophication consequences, a variety of ecological, economical, and sanitary health
problems could arise. Most of the recent studies on the control of the HABs have focused on the use of
chemical, physical, and biological treatment agents but these processes show serious environmental
consequences. Among the biological agents, a variety of extracts from aquatic and terrestrial plants,
which contain many bioactive compounds, with a wide range of applications and biocides activities
have been experimented.

With respect to bioactive compounds extracted from seaweeds, most of them have been applied
for their biocidal (anti-fungi, anti-bacteria) and pharmaceutical activities. However, very few reports
have focused on their algicide and anti-cyanobacterial activities. In order to explore macroalgae as an
alternative and an available natural source of bioactive compounds, we recommend that works could
be oriented on the research of new natural products extracted from seaweeds. Seaweed extracts show
interesting potential against many harmful microalgae and cyanobacteria species but not much is yet
known, namely the structure and mechanisms of action of the effective substances. These substances
should be tested for their biocide activities against micro-algae growth in general and particularly
against cyanobacteria growth. Research on novel biomolecules is needed in order to better control the
phytoplankton excessive growth in a sustainable way, and to maintain the ecological equilibrium and
the stability of the aquatic ecosystems.
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