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Semi-Stochastic Gradient Descent Methods

Jakub Konečný ∗ Peter Richtárik †

School of Mathematics

University of Edinburgh

United Kingdom

December 4, 2013

Abstract

In this paper we study the problem of minimizing the average of a large number (n) of
smooth convex loss functions. We propose a new method, S2GD (Semi-Stochastic Gradient
Descent), which runs for one or several epochs in each of which a single full gradient and a
random number of stochastic gradients is computed, following a geometric law. The total work
needed for the method to output an ε-accurate solution in expectation, measured in the number
of passes over data, or equivalently, in units equivalent to the computation of a single gradient of
the loss, is O((κ/n) log(1/ε)), where κ is the condition number. This is achieved by running the
method for O(log(1/ε)) epochs, with a single gradient evaluation and O(κ) stochastic gradient
evaluations in each. The SVRG method of Johnson and Zhang [3] arises as a special case. If
our method is limited to a single epoch only, it needs to evaluate at most O((κ/ε) log(1/ε))
stochastic gradients. In contrast, SVRG requires O(κ/ε2) stochastic gradients. To illustrate
our theoretical results, S2GD only needs the workload equivalent to about 2.1 full gradient
evaluations to find an 10−6-accurate solution for a problem with n = 109 and κ = 103.

1 Introduction

Many problems in data science (e.g., machine learning, optimization and statistics) can be cast as
loss minimization problems of the form

min
x∈Rd

f(x), (1)

where

f(x)
def
=

1

n

n
∑

i=1

fi(x). (2)
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Here d typically denotes the number of features / coordinates, n the number of examples, and
fi(x) is the loss incurred on example i. That is, we are seeking to find a predictor x ∈ R

d minimizing
the average loss f(x). In big data applications, n is typically very large; in particular, n≫ d.

1.1 Motivation

Let us now briefly review two basic approaches to solving problem (1).

1. Gradient Descent. Given xk ∈ R
d, the gradient descent (GD) method sets

xk+1 = xk − hf ′(xk),

where h is a stepsize parameter and f ′(xk) is the gradient of f at xk. We will refer to f ′(x)
by the name full gradient. In order to compute f ′(xk), we need to compute the gradients of
n functions. Since n is big, it is prohibitive to do this at every iteration.

2. Stochastic Gradient Descent (SGD). Unlike gradient descent, stochastic gradient descent [7,
17] instead picks a random i (uniformly) and updates

xk+1 = xk − hf ′
i(xk).

Note that this strategy drastically reduces the amount of work that needs to be done in each
iteration (by the factor of n). Since

E(f ′
i(xk)) = f ′(xk),

we have an unbiased estimator of the full gradient. Hence, the gradients of the component
functions f1, . . . , fn will be referred to as stochastic gradients. A practical issue with SGD
is that consecutive stochastic gradients may vary a lot or even point in opposite directions.
This slows down the performance of SGD. On balance, however, SGD is preferable to GD in
applications where low accuracy solutions are sufficient. In such cases usually only a small
number of passes through the data (i.e., work equivalent to a small number of full gradient
evaluations) are needed to find an acceptable x. For this reason, SGD is extremely popular
in fields such as machine learning.

In order to improve upon GD, one needs to reduce the cost of computing a gradient. In order
to improve upon SGD, one has to reduce the variance of the stochastic gradients. In this paper we
propose and analyze a Semi-Stochastic Gradient Descent (S2GD) method. Our method combines
GD and SGD steps and reaps the benefits of both algorithms: it inherits the stability and speed of
GD and at the same time retains the work-efficiency of SGD.

1.2 Brief literature review

Several recent papers, e.g., Richtárik & Takáč [9], Le Roux, Schmidt & Bach [12, 13], Shalev-
Shwartz & Zhang [14] and Johnson & Zhang [3] proposed methods which achieve such a variance-
reduction effect, directly or indirectly. These methods enjoy linear convergence rates when applied
to minimizing smooth strongly convex loss functions.

The method in [9] is known as Random Coordinate Descent for Composite functions (RCDC),
and can be either applied directly to (1)—in which case a single iteration requires O(n) work for
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a dense problem, and O(d log(1/ε)) iterations in total—or to a dual version of (1), which requires
O(d) work per iteration and O((n + κ) log(1/ε)) iterations in total. Application of a coordinate
descent method to a dual formulation of (1) is generally referred to as Stochastic Dual Coordinate
Ascent (SDCA) [2]. The algorithm in [14] exhibits this duality, and the method in [15] extends
the primal-dual framework to the parallel / mini-batch setting. Parallel and distributed stochastic
coordinate descent methods were studied in [10, 1, 11].

Stochastic Average Gradient (SAG) [12] is one of the first SGD-type methods, other than
coordinate descent methods, which were shown to exhibit linear convergence. The method of
Johnson and Zhang [3], called Stochastic Variance Reduced Gradient (SVRG), arises as a special
case in our setting for a suboptimal choice of a single parameter of our method. The Epoch Mixed
Gradient Descent (EMGD) method [16] is similar in spirit to SVRG, but achieves a quadratic
dependence on the condition number instead of a linear dependence, as is the case with SAG,
SVRG and with our method.

For classical work on semi-stochastic gradient descent methods we refer1 the reader to the papers
of Murti and Fuchs [5, 6].

1.3 Outline

We start in Section 2 by describing two algorithms: S2GD, which we analyze, and S2GD+, which we
do not analyze, but which exhibits superior performance in practice. We then move to summarizing
some of the main contributions of this paper in Section 3. Section 4 is devoted to establishing
expectation and high probability complexity results for S2GD in the case of a strongly convex
loss. The results are generic in that the parameters of the method are set arbitrarily. Hence, in
Section 5 we study the problem of choosing the parameters optimally, with the goal of minimizing
the total workload (# of processed examples) sufficient to produce a result of sufficient accuracy.
In Section 6 we establish high probability complexity bounds for S2GD applied to a non-strongly
convex loss function. Finally, in Section 7 we perform very encouraging numerical experiments on
real and artificial problem instances. A brief conclusion can be found in Section 8.

2 Semi-Stochastic Gradient Descent

In this section we describe two novel algorithms: S2GD and S2GD+. We analyze the former only.
The latter, however, has superior convergence properties in our experiments.

We assume throughout the paper that the functions fi are convex and L-smooth.

Assumption 1. The functions f1, . . . , fn have Lipschitz continuous gradients with constant L > 0
(in other words, they are L-smooth). That is, for all x, z ∈ R

d and all i = 1, 2, . . . , n,

fi(z) ≤ fi(x) + 〈f ′
i(x), z − x〉+ L

2
‖z − x‖2.

(This implies that the gradient of f is Lipschitz with constant L, and hence f satisfies the same
inequality.)

In one part of the paper (Section 4) we also make the following additional assumption:

1We thank Zaid Harchaoui who pointed us to these papers a few days before we posted our work to arXiv.
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Assumption 2. The average loss f is µ-strongly convex, µ > 0. That is, for all x, z ∈ R
d,

f(z) ≥ f(x) + 〈f ′(x), z − x〉+ µ

2
‖z − x‖2. (3)

(Note that, necessarily, µ ≤ L.)

2.1 S2GD

Algorithm 1 (S2GD) depends on three parameters: stepsize h, constant m limiting the number of
stochastic gradients computed in a single epoch, and a ν ∈ [0, µ], where µ is the strong convexity
constant of f .

Algorithm 1 Semi-Stochastic Gradient Descent (S2GD)

parameters: m = max # of stochastic steps per epoch, h = stepsize, ν = lower bound on µ
for j = 0, 1, 2, . . . do

gj ← 1
n

∑n
i=1 f

′
i(xj)

yj,0 ← xj
Let tj ← t with probability (1− νh)m−t/β for t = 1, 2, . . . ,m
for t = 0 to tj − 1 do

Pick i ∈ {1, 2, . . . , n}, uniformly at random
yj,t+1 ← yj,t − h (gj + f ′

i(yj,t)− f ′
i(xj))

end for

xj+1 ← yj,tj
end for

The method has an outer loop, indexed by epoch counter j, and an inner loop, indexed by t.
In each epoch j, the method first computes gj—the full gradient of f at xj . Subsequently, the
method produces a random number tj ∈ [1,m] of steps, following a geometric law, where

β
def
=

m
∑

t=1

(1− νh)m−t, (4)

with only two stochastic gradients computed in each step2. For each t = 0, . . . , tj−1, the stochastic
gradient f ′

i(xj) is subtracted from gj , and f ′
i(yj,t−1) is added to gj , which ensures that, one has

E(gj + f ′
i(yj,t)− f ′

i(xj)) = f ′(yj,t),

where the expectation is with respect to the random variable i.
Hence, the algorithm is stochastic gradient descent – albeit executed in a nonstandard way

(compared to the traditional implementation described in the introduction).
Note that for all j, the expected number of iterations of the inner loop, E(tj), is equal to

ξ = ξ(m,h)
def
=

m
∑

t=1

t
(1− νh)m−t

β
. (5)

Also note that ξ ∈ [m+1
2 ,m), with the lower bound attained for ν = 0, and the upper bound for

νh→ 1.
2It is possible to get away with computinge only a single stochastic gradient per inner iteration, namely f ′

i(yj,t),
at the cost of having to store in memory f ′

i(xj) for i = 1, 2, . . . , n. This, however, will be impractical for big n.
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2.2 S2GD+

We also implement Algorithm 2, which we call S2GD+. In our experiments, the performance of
this method is superior to all methods we tested, including S2GD. However, we do not analyze the
complexity of this method and leave this as an open problem.

Algorithm 2 S2GD+

parameters: α ≥ 1 (e.g., α = 1)
1. Run SGD for a single pass over the data (i.e., n iterations); output x
2. Starting from x0 = x, run a version of S2GD in which tj = αn for all j

In brief, S2GD+ starts by running SGD for 1 epoch (1 pass over the data) and then switches
to a variant of S2GD in which the number of the inner iterations, tj , is not random, but fixed to
be n or a small multiple of n.

The motivation for this method is the following. It is common knowledge that SGD is able to
progress much more in one pass over the data than GD (where this would correspond to a single
gradient step). However, the very first step of S2GD is the computation of the full gradient of f .
Hence, by starting with a single pass over data using SGD and then switching to S2GD, we obtain
a superior method in practice.3

3 Summary of Results

In this section we summarize some of the main results and contributions of this work.

1. Complexity for strongly convex f . If f is strongly convex, S2GD needs

W = O((n+ κ) log(1/ε)) (6)

work (measured as the total number of evaluations of the stochastic gradient, accounting for
the full gradient evaluations as well) to output an ε-approximate solution (in expectation or
in high probability), where κ = L/µ is the condition number. This is achieved by running
S2GD with stepsize h = O(1/L), j = O(log(1/ε)) epochs (this is also equal to the number
of full gradient evaluations) and m = O(κ) (this is also roughly equal to the number of
stochastic gradient evaluations in a single epoch). The complexity results are stated in detail
in Sections 4 and 5 (see Theorems 4, 5 and 6; see also (27) and (26)).

2. Comparison with existing results. This complexity result (6) matches the best-known
results obtained for strongly convex losses in recent work such as [12], [3] and [16]. Our
treatment is most closely related to [3], and contains their method (SVRG) as a special
case. However, our complexity results have better constants, which has a discernable effect
in practice. In Table 1 we compare our results in the strongly convex case with other existing
results for different algorithms.

We should note that the rate of convergence of Nesterov’s algorithm [8] is a deterministic
result. EMGD and S2GD results hold with high probability. The remaining results hold in

3Using a single pass of SGD as an initialization strategy was already considered in [12]. However, the authors
claim that their implementation of vanilla SAG did not benefit from it. S2GD does benefit from such an initialization
due to it starting, in theory, with a (heavy) full gradient computation.
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Algorithm Complexity/Work

Nesterov’s algorithm O (
√
κn log(1/ε))

EMGD O
(

(n+ κ2) log(1/ε)
)

SAG (n ≥ 8κ) O (n log(1/ε))
SDCA O ((n+ κ) log(1/ε))
SVRG O ((n+ κ) log(1/ε))

S2GD O ((n+ κ) log(1/ε))

Table 1: Comparison of performance of selected methods suitable for solving (1). The complex-
ity/work is measured in the number of stochastic gradient evaluations needed to find an ε-solution.

expectation. Complexity results for stochastic coordinate descent methods are also typically
analyzed in the high probability regime [9].

3. Complexity for convex f . If f is not strongly convex, then we propose that S2GD be
applied to a perturbed version of the problem, with strong convexity constant µ = O(L/ε).
An ε-accurate solution of the original problem is recovered with arbitrarily high probability
(see Theorem 8 in Section 6). The total work in this case is

W = O ((n+ L/ε)) log (1/ε)) .

We believe this is the first time a reduced-variance version of SGD, other than a coordinate
decent method, was analyzed for non-strongly convex loss functions with complexity better
than O(1/ε2). Rates of the O(1/ε) variety have already been proved for algorithms such as
SAG [13] and MixedGrad [4].

4. Optimal parameters. We derive formulas for optimal parameters of the method which
(approximately) minimize the total workload, measured in the number of stochastic gradi-
ents computed (counting a single full gradient evaluation as n evaluations of the stochastic
gradient). In particular, we show that the method should be run for O(log(1/ε)) epochs, with
stepsize h = O(1/L) and m = O(κ). No such results were derived for SVRG in [3].

5. One epoch. In the case when S2GD is run for 1 epoch only, effectively limiting the number
of full gradient evaluations to 1, we show that S2GD with ν = µ needs

O(n+ (κ/ε) log(1/ε))

work only (see Table 2). This compares favorably with the optimal complexity in the ν = µ
case (which reduces to SVRG), where the work needed is

O(n+ κ/ε2).

6. Special cases. GD and SVRG arise as special cases of S2GD, for m = 1 and ν = 0,
respectively.4

4While S2GD reduces to GD for m = 1, our analysis does not say anything meaningful in the m = 1 case - it is
too coarse to cover this case. This is also the reason behind the empty space in the “Complexity” box column for
GD in Table 2.
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Parameters Method Complexity

ν = µ, j = O(log(1ε ))
& m = O(κ)

Optimal S2GD O((n+ κ) log(1ε ))

m = 1 GD —
ν = 0 SVRG [3] O((n+ κ) log(1ε ))

ν = 0, j = 1, m = O( κ
ε2
) Optimal SVRG with 1 epoch O(n+ κ

ε2
)

ν = µ, j = 1, m = O(κε log(
1
ε )) Optimal S2GD with 1 epoch O(n+ κ

ε log(
1
ε ))

Table 2: Summary of complexity results and special cases. Condition number: κ = L/µ if f is
µ-strongly convex and κ = 2L/ε if f is not strongly convex and ǫ ≤ L.

7. Low memory requirements. Note that SDCA and SAG, unlike SVRG and S2GD, need
to store all gradients f ′

i (or dual variables) throughout the iterative process. While this may
not be a problem for a modest sized optimization task, this requirement makes such methods
less suitable for problems with very large n.

8. S2GD+. We propose a “boosted” version of S2GD, called S2GD+, which we do not analyze.
In our experiments, however, it performs vastly superior to all other methods we tested,
including GD, SGD, SAG and S2GD. S2GD alone is better than both GD and SGD if a highly
accurate solution is required. The performance of S2GD and SAG is roughly comparable,
even though in our experiments S2GD turned to have an edge.

4 Complexity Analysis: Strongly Convex Loss

For the purpose of the analysis, let

Fj,t
def
= σ(x1, x2, . . . , xj ; yj,1, yj,2, . . . , yj,t) (7)

be the σ-algebra generated by the relevant history of S2GD. We first isolate an auxiliary result.

Lemma 3. Consider the S2GD algorithm. For any fixed epoch number j, the following identity
holds:

E(f(xj+1)) =
1

β

m
∑

t=1

(1− νh)m−tE (f(yj,t−1)) . (8)

Proof. By the tower property of expectations and the definition of xj+1 in the algorithm, we obtain

E(f(xj+1)) = E (E(f(xj+1) | Fj,m)) = E

(

m
∑

t=1

(1− νh)m−t

β
f(yj,t−1)

)

=
1

β

m
∑

t=1

(1− νh)m−tE (f(yj,t−1)) .
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We now state and prove the main result of this section.

Theorem 4. Let Assumptions 1 and 2 be satisfied. Consider the S2GD algorithm applied to solving
problem (1). Choose 0 ≤ ν ≤ µ, 0 < h < 1

2L , and let m be sufficiently large so that

c
def
=

(1− νh)m

βµh(1− 2Lh)
+

2(L− µ)h

1− 2Lh
< 1. (9)

Then we have the following convergence in expectation:

E (f(xj)− f(x∗)) ≤ cj(f(x0)− f(x∗)). (10)

Before we proceed to proving the theorem, note that in the special case with ν = 0, we recover
the result of Johnson and Zhang [3] (with a minor improvement in the second term of c where L is
replaced by L− µ), namely

c =
1

µh(1− 2Lh)m
+

2(L− µ)h

1− 2Lh
. (11)

If we set ν = µ, then c can be written in the form

c =
(1− µh)m

(1− (1− µh)m)(1− 2Lh)
+

2(L− µ)h

1− 2Lh
. (12)

Clearly, the latter c is a major improvement on the former one. We shall elaborate on this
further later.

Proof. It is well-known [8, Theorem 2.1.5] that since the functions fi are L-smooth, they necessarily
satisfy the following inequality:

‖f ′
i(x)− f ′

i(x∗)‖2 ≤ 2L
[

fi(x)− fi(x∗)− 〈f ′
i(x∗), x− x∗〉

]

.

By summing these inequalities for i = 1, . . . , n, and using f ′(x∗) = 0, we get

1

n

n
∑

i=1

‖f ′
i(x)− f ′

i(x∗)‖2 ≤ 2L
[

f(x)− f(x∗)− 〈f ′(x∗), x− x∗〉
]

= 2L(f(x)− f(x∗)). (13)

Let Gj,t
def
= gj+f ′

i(yj,t−1)−f ′
i(xj) be the direction of update at jth iteration in the outer loop and

tth iteration in the inner loop. Taking expectation with respect to i, conditioned on the σ-algebra
Fj,t−1 (7), we obtain5

E
(

‖Gj,t‖2
)

= E
(

‖f ′
i(yj,t−1)− f ′

i(x∗)− f ′
i(xj) + f ′

i(x∗) + gj‖2
)

≤ 2E
(

‖f ′
i(yj,t−1)− f ′

i(x∗)‖2
)

+ 2E
(

‖
[

f ′
i(xj)− f ′

i(x∗)
]

− f ′(xj)‖2
)

= 2E
(

‖f ′
i(yj,t−1)− f ′

i(x∗)‖2
)

+2E
(

‖f ′
i(xj)− f ′

i(x∗)‖2
)

− 4E
(〈

f ′(xj), f
′
i(xj)− f ′

i(x∗)
〉)

+ 2‖f ′(xj)‖2

= 4L [f(yj,t−1)− f(x∗) + f(xj)− f(x∗)]− 2‖f ′(xj)‖2 − 4〈f ′(xj), f
′(x∗)〉

(3)+(13)

≤ 4L [f(yj,t−1)− f(x∗)] + 4(L− µ) [f(xj)− f(x∗)] . (14)

5For simplicity, we supress the E(· | Fj,t−1) notation here.
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Above we have used the bound ‖x′ + x′′‖2 ≤ 2‖x′‖2 + 2‖x′′‖2 and the fact that

E(Gj,t | Fj,t−1) = f ′(yj,t−1). (15)

We now study the expected distance to the optimal solution (a standard approach in the analysis
of gradient methods):

E(‖yj,t − x∗‖2 | Fj,t−1) = ‖yj,t−1 − x∗‖2 − 2h〈E(Gj,t | Fj,t−1), yj,t−1 − x∗〉
+h2E(‖Gj,t‖2 | Fj,t−1)

(14)+(15)

≤ ‖yj,t−1 − x∗‖2 − 2h〈f ′(yj,t−1), yj,t−1 − x∗〉
+4Lh2 [f(yj,t−1)− f(x∗)] + 4(L− µ)h2 [f(xj)− f(x∗)]

(3)

≤ ‖yj,t−1 − x∗‖2 − 2h [f(yj,t−1)− f(x∗)]− νh‖yj,t−1 − x∗‖2

+4Lh2 [f(yj,t−1)− f(x∗)] + 4(L− µ)h2 [f(xj)− f(x∗)]

= (1− νh)‖yj,t−1 − x∗‖2 − 2h(1− 2Lh)[f(yj,t−1)− f(x∗)]

+4(L− µ)h2[f(xj)− f(x∗)]. (16)

By rearranging the terms in (16) and taking expectation over the σ-algebra Fj,t−1, we get the
following inequality:

E(‖yj,t − x∗‖2) + 2h(1− 2Lh)E(f(yj,t−1)− f(x∗))

≤ (1− νh)E(‖yj,t−1 − x∗‖2) + 4(L− µ)h2E(f(xj)− f(x∗)). (17)

Finally, we can analyze what happens after one iteration of the outer loop of S2GD, i.e., between
two computations of the full gradient. By summing up inequalities (17) for t = 1, . . . ,m, with
inequality t multiplied by (1− νh)m−t, we get the left-hand side

LHS = E(‖yj,m − x∗‖2) + 2h(1− 2Lh)

m
∑

t=1

(1− νh)m−tE(f(yj,t−1)− f(x∗))

(8)
= E(‖yj,m − x∗‖2) + 2βh(1− 2Lh)E(f(xj+1)− f(x∗)),

and the right-hand side

RHS = (1− νh)mE(‖xj − x∗‖2) + 4β(L− µ)h2E(f(xj)− f(x∗))

(3)

≤ 2(1− νh)m

µ
E(f(xj)− f(x∗)) + 4β(L− µ)h2E(f(xj)− f(x∗))

= 2

(

(1− νh)m

µ
+ 2β(L− µ)h2

)

E(f(xj)− f(x∗)).

Since LHS ≤ RHS, we finally conclude with

E(f(xj+1)− f(x∗)) ≤ cE(f(xj)− f(x∗))−
E(‖yj,m − x∗‖2)
2βh(1− 2Lh)

≤ cE(f(xj)− f(x∗)).

9



Since we have established linear convergence of expected values, a high probability result can
be obtained in a straightforward way using Markov inequality.

Theorem 5. Consider the setting of Theorem 4. Then, for any 0 < ρ < 1, 0 < ε < 1 and

s ≥
log
(

1
ερ

)

log
(

1
c

) , (18)

we have

P

(

f(xj)− f(x∗)

f(x0)− f(x∗)
≤ ε

)

≥ 1− ρ. (19)

Proof. This follows directly from Markov inequality and Theorem 4:

P(f(xj)− f(x∗) > ε(f(x0)− f(x∗))
(10)

≤ E(f(xj)− f(x∗))

ε(f(x0)− f(x∗))
≤ cs

ε

(18)

≤ ρ

This result will be also useful when treating the non-strongly convex case.

5 Optimal Choice of Parameters

The goal of this section is to provide insight into the choice of parameters of S2GD; that is, the
number of epochs (equivalently, full gradient evaluations) j, the maximal number of steps in each
epoch m, and the stepsize h. The remaining parameters (L, µ, n) are inherent in the problem and
we will hence treat them in this section as given.

In particular, ideally we wish to find parameters j, m and h solving the following optimization
problem:

min
j,m,h

W̃(j,m, h)
def
= j(n+ 2ξ(m,h)), (20)

subject to
E(f(xj)− f(x∗)) ≤ ε(f(x0)− f(x∗)). (21)

Note that W̃(j,m, h) is the expected work, measured by the number number of stochastic gradient
evaluations, performed by S2GD when running for j epochs. Indeed, the evaluation of gj is equiv-
alent to n stochastic gradient evaluations, and each epoch further computes on average 2ξ(m,h)
stochastic gradients (see (5)). Since m+1

2 ≤ ξ(m,h) < m, we can simplify and solve the problem
with ξ set to the conservative upper estimate ξ = m.

In view of (10), accuracy constraint (21) is satisfied if c (which depends on h and m) and j
satisfy

cj ≤ ε. (22)

We therefore instead consider the parameter fine-tuning problem

min
j,m,h

W(j,m, h)
def
= j(n+ 2m) subject to c ≤ ε1/j . (23)
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In the following we (approximately) solve this problem in two steps. First, we fix j and find
(nearly) optimal h = h(j) and m = m(j). The problem reduces to minimizing m subject to c ≤ ε1/j

by fine-tuning h. While in the ν = 0 case it is possible to obtain closed form solution, this is not
possible for ν > µ. However, it is still possible to obtain a formula for h(j) leading to m(j) which
depends on ε in the correct way. We then plug the formula for m(j) obtained this way back into
(23), and study the quantity W(j,m(j), h(j)) = j(n+ 2m(j)) as a function of j.

Theorem 6 (Choice of parameters). Fix the number of epochs j ≥ 1, error tolerance 0 < ε < 1,
and let ∆ = ε1/j. If we run S2GD with the stepsize

h = h(j)
def
=

1
4
∆(L− µ) + 2L

(24)

and

m ≥ m(j)
def
=

{

(

4(κ−1)
∆ + 2κ

)

log
(

2
∆ + 2κ−1

κ−1

)

, if ν = µ,
8(κ−1)
∆2 + 8κ

∆ + 2κ2

κ−1 , if ν = 0,
(25)

then E(f(xj)− f(x∗)) ≤ ε(f(x0)− f(x∗)).
In particular, if we choose j∗ = ⌈log(1/ε)⌉, then 1

∆ ≤ exp(1), and hence m(j∗) = O(κ), leading
to the workload

W(j∗,m(j∗), h(j∗)) = ⌈log
(

1
ε

)

⌉(n+O(κ)) = O
(

(n+ κ) log
(

1
ε

))

. (26)

Proof. We only need to show that c ≤ ∆, where c is given by (12) for ν = µ and by (11) for ν = 0.
The stepsize h is chosen so that

c2
def
=

2(L− µ)h

1− 2Lh
=

∆

2
,

and hence it only remains to verify that c − c2 ≤ ∆
2 . In the ν = 0 case, m(j) is chosen so that

c − c2 = ∆
2 . In the ν = µ case, c − c2 = ∆

2 holds for m = log
(

2
∆ + 2κ−1

κ−1

)

/ log
(

1
1−H

)

, where

H =
(

4(κ−1)
∆ + 2κ

)−1
. We only need to observe that c decreases as m increases, and apply the

inequality log
(

1
1−H

)

≥ H.

We now comment on the above result:

1. Workload. Notice that for the choice of parameters j∗, h = h(j∗), m = m(j∗) and any
ν ∈ [0, µ], the method needs O(n log(1/ε)) computations of the full gradient (note this is
independent of κ), and O(κ log(1/ε)) computations of the stochastic gradient. This result,
and special cases thereof, are summarized in Table 2.

2. Simpler formulas for m. If κ ≥ 2, we can instead of (25) use the following (slightly worse
but) simpler expressions for m(j), obtained from (25) by using the bounds 1 ≤ κ−1, κ−1 ≤ κ
and ∆ < 1 in appropriate places (e.g., 8κ

∆ < 8κ
∆2 ,

κ
κ−1 ≤ 2 < 2

∆2 ):

m ≥ m̃(j)
def
=

{

6κ
∆ log

(

5
∆

)

, if ν = µ,
20κ
∆2 , if ν = 0.

(27)
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3. Optimal stepsize in the ν = 0 case. Theorem 6 does not claim to have solved problem
(23); the problem in general does not have a closed form solution. However, in the ν = 0 case
a closed-form formula can easily be obtained:

h(j) =
1

4
∆(L− µ) + 4L

, m ≥ m(j)
def
=

8(κ− 1)

∆2
+

8κ

∆
. (28)

Indeed, for fixed j, (23) is equivalent to finding h that minimizes m subject to the constraint
c ≤ ∆. In view of (11), this is equivalent to searching for h > 0 maximizing the quadratic
h→ h(∆− 2(∆L+ L− µ)h), which leads to (28).

Note that both the stepsize h(j) and the resulting m(j) are slightly larger in Theorem 6
than in (28). This is because in the theorem the stepsize was for simplicity chosen to satisfy
c2 = ∆

2 , and hence is (slightly) suboptimal. Nevertheless, the dependence of m(j) on ∆ is
of the correct (optimal) order in both cases. That is, m(j) = O

(

κ
∆ log( 1

∆)
)

for ν = µ and
m(j) = O

(

κ
∆2

)

for ν = 0.

4. Stepsize choice. In cases when one does not have a good estimate of the strong convexity
constant µ to determine the stepsize via (24), one may choose suboptimal stepsize that does
not depend on µ and derive similar results to those above. For instance, one may choose
h = ∆

6L .

In Table 3 we provide comparison of work needed for small values of j, and different values
of κ and ε. Note, for instance, that for any problem with n = 109 and κ = 103, S2GD outputs a
highly accurate solution (ε = 10−6) in the amount of work equivalent to 2.12 evaluations of the full
gradient of f !

6 Complexity Analysis: Convex Loss

If f is convex but not strongly convex, we define f̂i(x)
def
= fi(x)+

µ
2‖x−x0‖2, for small enough µ > 0

(we shall see below how the choice of µ affects the results), and consider the perturbed problem

min
x∈Rd

f̂(x), (29)

where

f̂(x)
def
=

1

n

n
∑

i=1

f̂i(x) = f(x) +
µ

2
‖x− x0‖2. (30)

Note that f̂ is µ-strongly convex and (L + µ)-smooth. In particular, the theory developed in the
previous section applies. We propose that S2GD be instead applied to the perturbed problem, and
show that an approximate solution of (29) is also an approximate solution of (1) (we will assume
that this problem has a minimizer).

Let x̂∗ be the (necessarily unique) solution of the perturbed problem (29). The following result
describes an important connection between the original problem and the perturbed problem.

Lemma 7. If x̂ ∈ R
d satisfies f̂(x̂) ≤ f̂(x̂∗) + δ, where δ > 0, then

f(x̂) ≤ f(x∗) +
µ

2
‖x0 − x∗‖2 + δ.
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ε = 10−3, κ = 103

j Wµ(j) W0(j)

1 1.06n 17.0n
2 2.00n 2.03n

3 3.00n 3.00n
4 4.00n 4.00n
5 5.00n 5.00n

ε = 10−6, κ = 103

j Wµ(j) W0(j)

1 116n 107n
2 2.12n 34.0n
3 3.01n 3.48n

4 4.00n 4.06n
5 5.00n 5.02n

ε = 10−9, κ = 103

j Wµ(j) W0(j)

2 7.58n 104n
3 3.18n 51.0n
4 4.03n 6.03n
5 5.01n 5.32n

6 6.00n 6.09n

ε = 10−3, κ = 106

j Wµ(j) W0(j)

2 4.14n 35.0n
3 3.77n 8.29n
4 4.50n 6.39n

5 5.41n 6.60n
6 6.37n 7.28n

ε = 10−6, κ = 106

j Wµ(j) W0(j)

4 8.29n 70.0n
5 7.30n 26.3n
6 7.55n 16.5n
8 9.01n 12.7n

10 10.8n 13.2n

ε = 10−9, κ = 106

j Wµ(j) W0(j)

5 17.3n 328n
8 10.9n 32.5n
10 11.9n 21.4n
13 14.3n 19.1n

20 21.0n 23.5n

ε = 10−3, κ = 109

j Wµ(j) W0(j)

6 378n 1293n
8 358n 1063n
11 376n 1002n

15 426n 1058n
20 501n 1190n

ε = 10−6, κ = 109

j Wµ(j) W0(j)

13 737n 2409n
16 717n 2126n
19 727n 2025n
22 752n 2005n

30 852n 2116n

ε = 10−9, κ = 109

j Wµ(j) W0(j)

15 1251n 4834n
24 1076n 3189n
30 1102n 3018n
32 1119n 3008n

40 1210n 3078n

Table 3: Comparison of work sufficient to solve a problem with n = 109, and various values of κ
and ε. The work was computed using formula (23), with m(j) as in (27). The notation Wν(j)
indicates what parameter ν was used.

Proof. The statement is almost identical to Lemma 9 in [9]; its proof follows the same steps with
only minor adjustments.

We are now ready to establish a complexity result for non-strongly convex losses.

Theorem 8. Let Assumption 1 be satisfied. Choose µ > 0, 0 ≤ ν ≤ µ, stepsize 0 < h < 1
2(L+µ) ,

and let m be sufficiently large so that

ĉ
def
=

(1− νh)m

βµh(1− 2(L+ µ)h)
+

2Lh

1− 2(L+ µ)h
< 1. (31)

Pick x0 ∈ R
d and let x̂0 = x0, x̂1, . . . , x̂j be the sequence of iterates produced by S2GD as applied to

problem (29). Then, for any 0 < ρ < 1, 0 < ε < 1 and

j ≥ log (1/(ερ))

log(1/ĉ)
, (32)

13



we have
P
(

f(x̂j)− f(x∗) ≤ ε(f(x0)− f(x∗)) +
µ

2
‖x0 − x∗‖2

)

≥ 1− ρ. (33)

In particular, if we choose µ = ǫ < L and parameters j∗, h(j∗), m(j∗) as in Theorem 6, the amount
of work performed by S2GD to guarantee (33) is

W(j∗, h(j∗),m(j∗)) = O
(

(n+ L
ε ) log(

1
ε )
)

,

which consists of O(1ε ) full gradient evaluations and O(Lǫ log(
1
ε )) stochastic gradient evaluations.

Proof. We first note that

f̂(x̂0)− f̂(x̂∗)
(30)
= f(x̂0)− f̂(x̂∗) ≤ f(x̂0)− f(x̂∗) ≤ f(x0)− f(x∗), (34)

where the first inequality follows from f ≤ f̂ , and the second one from optimality of x∗. Hence, by
first applying Lemma 7 with x̂ = x̂j and δ = ε(f(x0) − f(x∗)), and then Theorem 5, with c ← ĉ,

f ← f̂ , x0 ← x̂0, x∗ ← x̂∗, we obtain

P
(

f(x̂j)− f(x∗) ≤ δ +
µ

2
‖x0 − x∗‖2

) (Lemma 7)

≥ P
(

f̂(x̂j)− f̂(x̂∗) ≤ δ
)

(34)

≥ P

(

f̂(x̂j)− f̂(x̂∗)

f̂(x̂0)− f̂(x̂∗)
≤ ε

)

(19)

≥ 1− ρ.

The second statement follows directly from the second part of Theorem 6 and the fact that the
condition number of the perturbed problem is κ = L+ǫ

ǫ ≤ 2L
ǫ .

7 Numerical Experiments

In this section we conduct computational experiments to illustrate some aspects of the performance
of our algorithm. In Section 7.1 we consider L2-regularized logistic regression with the MNIST6

dataset, consisting of hand-written digits. It is sufficient for our purposes to perform classification
on the “5 vs 8” case only. In Section 7.2 we consider L2-regularized least squares with artificial
data. All experiments were performed in MATLAB.

7.1 L2-regularized logistic loss

Consider labeled training data (ai, yi) ∈ R
d × {0, 1}, for i = 1, 2, . . . , n, where ai are examples and

yi labels. The L2-regularized logistic loss for the ith training example is defined as

fi(x) = −
[

yi log

(

1

1 + exp(−xTai)

)

+ (1− yi) log

(

1− 1

1 + exp(−xTai)

)]

+
λ

2
‖x‖2,

where λ > 0 is a regularization parameter.
The MNIST dataset consists of n = 11, 272 training examples, each being a d = 785 dimensional

vector. We set λ = 0.05 and, using this as an estimate of µ, results in a well conditioned problem
with κ ≈ 320.

6http://yann.lecun.com/exdb/mnist/
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Figure 1: Logistic regression on MNIST dataset. Comparison of theoretical result and practical
performance for cases ν = µ (full line) and ν = 0 (dashed line). Each marker represents state after
a whole epoch.

In Figure 1 we present a comparison of our theory and the practical performance of S2GD for
two choices of the parameter ν: ν = µ and ν = 0. Recall that the latter choice is essentially the
SVRG method of Johnson and Zhang [3].

The figure demonstrates linear convergence of S2GD in practice, with the convergence rate
being significantly better than the already strong theoretical result. We can observe surprising
convergence to machine precision in work equivalent to evaluating full gradient only 25 times. This
is property standard SGD does not possess (as we show later) and for problems of certain size
is impossible with gradient descent, since we cannot compute enough gradients to reach such a
precision. Our method is also an improvement over [3], both in theory and practice.

Note that we have implemented the methods following the theory, without any engineering
tricks. Hence, further improvement is possible.

We chose the parameters h and m of the method numerically in order to minimize total workW.
The values are m = 11, 686 and h = 1/14.1L for ν = λ, resulting in c = 0.2548, and m = 17, 062,
h = 1/13.9L in the case ν = 0, resulting in c = 0.4716. Note that the theoretical decrease factor c
is much better for ν = µ than in the SVRG case (ν = 0). Indeed, the predicted drop in the residual
is doubled, while at the same time only about two thirds of the stochastic gradient computations
required by SVRG are needed.

Note that the theoretical decrease factor c is much better for ν = µ than in the SVRG case
(ν = 0). Indeed, the predicted drop in the residual is doubled, while at the same time only about
two thirds of the stochastic gradient computations required by SVRG are needed.

We include these in the same plot since we obtained the values as average of several hundreds
of runs, and the average number of stochastic updates is almost the same in both cases. Note that
due to this fact, the practical performance is essentially the same, perhaps with bigger variance
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with ν = 0. However, the important difference is in the theoretical bound, matching the theoretical
insight from Table 3, saying that for κ≪ n, the number of full gradient evaluations needed in case
ν = 0 is about twice as big as in case ν = µ.

7.2 L2-regularized least squares

Figure 2 presents a comparison of the theoretical rate and practical performance on a larger problem
with artificial data, with a condition number we can control (and choose it to be poor). In particular,
we consider the L2-regularized least squares with

fi(x) = (aTi x− bi)
2 +

λ

2
‖x‖2,

for some ai ∈ R
d, bi ∈ R and λ > 0 is the regularization parameter.
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Figure 2: Least squares with n = 105, κ = 104. Comparison of theoretical result and practical
performance for cases ν = µ (full red line) and ν = 0 (dashed blue line).

We consider an instance with n = 100, 000, d = 1, 000 and κ = 10, 000. We run the algorithm
with both parameters ν = 0 and ν = λ — our best estimate of µ. Again, we chose parameters m
and h as a (numerical) solution of the work-minimization problem (20), obtaining m = 261, 063 and
h = 1/11.4L for ν = λ and m = 426, 660 and h = 1/12.7L for ν = 0. The practical performance
is obtained after single run of the S2GD algorithm. The experiments demonstrate a relationship
between theory and practice similar to that in the previous section: Figure 2 confirms consistency
of the results obtained in Figure 1.

7.3 SGD, S2GD, S2GD+ and SAG

Here we compare the practical performance of SGD, S2GD, S2GD+ and SAG on a larger, sparse
(90% zeros) problem with n = 106, κ = 105 and d = 200; see Figure 3. The size limitations are
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due to us running the experiments in MATLAB on a notebook. As before, we set the parameters
m and h numerically in an optimal way.
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Figure 3: Least squares with n = 106, κ = 105. Comparison of S2GD, SGD (with different step
sizes), SAG and S2GD+ (Algorithm 2). Note that SAG and S2GD have similar performance, with
S2GD slightly outperforming SAG. However, S2GD+ is vastly superior to all.

We can see, that S2GD and SAG, run with parameters as analyzed in theory, exhibit essentially
the same performance. Both methods can benefit from engineering and implementation tricks,
which we do not explore in this work.

The performance of SGD with relatively big step size is better in the first few iterations (1 pass
over the data), but quickly slows down and oscillates at low precision – this is due to the inherent
variance of the stochastic gradient. If we aim for a higher precision, one would need to decrease
the step size and thus make SGD slower than S2GD or SAG. The advantage of S2GD and SAG is
linear convergence at all distances from the solution. S2GD is slower than SGD in the beginning,
because it has to compute the full gradient before actually making a single step.

Allowing deviations from theory, performance significantly superior to all other methods is
offered by Algorithm 2 (S2GD+), where we first run SGD for a single pass through the data, to
find a good solution quickly, and then continue with S2GD with constant size of the inner loop
m = n. Note that we evaluate function value in S2GD only after each epoch, as illustrated with
markers in the figures.
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8 Conclusion

We have developed a new semi-stochastic gradient descent method (S2GD) and analyzed its com-
plexity for smooth convex and strongly convex loss functions. Our methods need O((κ/n) log(1/ε))
work only, measured in units equivalent to the evaluation of the full gradient of the loss function,
where κ = L/µ if the loss is L-smooth and µ-strongly convex, and κ ≤ 2L/ε if the loss is merely
L-smooth.

To the best of our knowledge, stochastic gradient descent methods have not been previously
shown to exhibit comparable convergence guarantees for non-strongly convex functions. Our results
in the strongly convex case match or improve on a few very recent results, while at the same time
generalizing and simplifying the analysis.

Additionally, we proposed S2GD+ —a method which equips S2GD with an SGD pre-processing
step—which in our experiments exhibits superior performance to all methods we tested. We leave
the analysis of this method as an open problem.
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