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Abstract Respiration detection using microwave Dop-
pler radar has attracted significant interest primarily

due to its unobtrusive form of measurement. With less
preparations in comparison to attaching physical sen-
sors on the body or wearing special clothing, Doppler

radar for respiration detection and monitoring is partic-

ularly useful for long-term monitoring (LTM) applica-

tions such as sleep studies (i.e sleep apnea, SIDS). How-

ever, motion artefacts and interference from multiple

sources limit the widespread use and the scope of poten-
tial applications of this technique. Utilizing the recent
advances in Independent Component Analysis (ICA)

and multiple antenna configuration schemes, this work

investigates the feasibility of decomposing respiratory

signatures into each subject from the Doppler based

measurements. Experimental results demonstrated that

fastICA is capable of separating two distinct respira-

tory signatures from two subjects adjacent to each other

even in the presence of apnea. In each test scenario, the

separated respiratory patterns correlate closely to the

reference respiration strap readings. The effectiveness

of fastICA in dealing with the mixed Doppler radar

respiration signals confirms its applicability in health-
care applications, especially in long-term home based
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monitoring as it usually involves at least two people in

the same environment (i.e. two people sleeping next to

each other). Further, the use of fastICA to separate in-

voluntary movements such as the arm swing from the

respiratory signatures of a single subject was explored

in a multiple antenna environment. The separated res-

piratory signal indeed demonstrated a high correlation

with the measurements made by a respiratory strap

used currently in clinical settings.

Keywords Doppler radar · respiration pattern ·
Source Separation · fastICA

1 Introduction

Vital sign monitoring using microwave Doppler radar
has become an area of special interest for long term

respiratory monitoring applications. This form of res-
piration sensing mechanisms provide numerous addi-
tional advantages such as a non-contact form of mea-
surement, robustness and insensitivity to environmen-

tal parameters (temperature, lighting etc.). Essentially,

in long-term monitoring environments, the characteris-

tic of penetrating through the fabric allows the subjects

to wear comfortable clothing and facilitates information

capture in a truly natural environment. This is in stark

contrast to the currently used chest straps, where, in

addition to patient discomfort, the measuring system

interferes with the physiological function of respiration

due to the physical chest strap causing true breathing

information to be inherently corrupted by the measure-

ment system itself.

The use of microwave Doppler radar as a non-contact

technique in human vital sign monitoring has been widely

reported in a number of research articles (see, for in-

stance [18, 19, 28, 29]). All these demonstrated the fea-



Separation of Doppler Radar based Respiratory Signatures 3

sibility and capability of Doppler radar in capturing

human respiration by measuring the change in the fre-

quency of the transmitted signal due to the movement

of the abdomen during the process of inhalation and ex-

halation. Furthermore, Lee et al. [16, 17] demonstrated

that Doppler radar is capable of capturing different res-
piratory dynamics which include normal breathing, fast

breathing, apnea state as well as different rates of in-
halation and exhalation accurately when the motion
artefacts are appropriately excluded.

Most of the reported results focused on obtaining
non-contact respiration measurements for a single sub-
ject. In many practical applications, the received sig-

nal can easily be adversely affected when there is more

than one subject present in the immediate neighbour-

hood; especially in a home based, long term monitor-

ing application where the subjects share a bed with the
partner. Thus, it is necessary to take this case into ac-
count for the Doppler radar system to be able to consis-
tently measure the relevant respiratory signatures when

subjected to multiple competing signals. In certain ear-

lier work of source separation in Doppler radar sig-

nal processing, Alexander et al. [26] have demonstrated

the use of real analytical constant modulus algorithm

(RACMA) to separate certain human body motions

and the respiratory signal from the received signals.

The results reported in the paper used the wider fre-

quency range of the motion artefacts compared to the

targeted normal breathing frequency to clearly identify

two distinct sources present when the experiment was

conducted under normal breathing conditions.

Furthermore, Olga et al. [3] demonstrated the use

of single and multiple antenna systems (SIMO/MIMO)

in sensing multiple subjects using Doppler radar. Here,

the experimental results indicated that it is possible to

separate respiratory sources through multiple antenna

configuration schemes albeit the experiment considered
only the continuous breathing of subjects and the signal
analysis was entirely based on the Fast Fourier trans-

form (FFT). This is unlikely in the case for a num-

ber of potential applications where abnormal breathing

patterns, for instance, apnea symptoms are present and

hence FFT analysis is no longer suitable to represent
the respiration signal state [16,17]. Therefore, it is also
vital to analyse the subject’s respiration patterns along
with the respiration rate [30]in the presence of possible

abnormal breathing patterns.

Initially, in this paper, mixed normal breathing sig-

nals from two subjects at different respiratory frequen-

cies were simulated. Then, we demonstrated the capa-

bilities of the fastICA algorithm in separating the sim-

ulated baseband respiratory sources and evaluated the

performance against the former FFT based approach as

well as the comparison on the distinct signal patterns.

In reality, the mixing could be different from the simu-
lation, thus, we first explore the use of multiple Doppler
radar modules in acquiring the respiration signals from

two subjects and performed the fastICA algorithm on

the mixed signal to further evaluate the effectiveness of

the separation algorithm. We also extended the analy-

sis to consider a mixture of signals composed of normal

and abnormal breathing patterns as listed in section 3.

In this paper, for simplicity, we performed the experi-

ments using two subjects for each scenario.

The remainder of this paper is organized as follows:

Section 2 provides the theoretical background relevant

to Doppler radar in measuring respiratory function in-

cluding the derivation of the mixed respiration signal

model involving multiple subjects. Section 2.2 describes

the separation algorithm fastICA implemented with the

mixed received Doppler radar signals and Section 3 de-

scribes the experimental mechanism employed for data

acquisition for multiple respiratory sources as well as for

artefact removal. Section 4 discusses the performance of

the source separation algorithm on the simulated base-

band signals and on the real practical experimentation

involving the two different cases of breathing scenarios.

Concluding remarks are given in Section 6.

2 Background

2.1 Respiration Sensing Using Doppler Radar

In respiration detection using the microwave Doppler

radar, the occurrence of Doppler shift is caused by the

movement of the abdomen, x(t) and this effect can be
observed from the modulated reflected signal as a phase

representation. The phase modulated signal is propor-

tional to the time varying chest displacement. In a ho-

modyne Doppler radar system, a monotonic source of

electromagnetic wave is transmitted continuously and

can be represented as

T (t) = Acos(2πf0t) + φ(t), (1)

where A, f0 are the amplitude and frequency of the
transmitted signal respectively. φ(t) is the arbitrary

phase noise of the signal source. In a single subject en-
vironment, the phase modulated signal at the receiving
end with a nominal distance d0 caused by the move-

ment of the abdomen during respiration activities can

be expressed as

R(t) ≈ cos(2πf0t −
4πd0

λ
−

4πx(t)

λ
+ φ(t −

2d0

c
)), (2)
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In a quadrature receiver, the reflected signal is further

expressed as:

I(t) = cos(
4πd0

λ
+

4πx(t)

λ
+ ∆φ(t)), (3)

Q(t) = sin(
4πd0

λ
+

4πx(t)

λ
+ ∆φ(t)). (4)

In a multiple subject (N) environment, the modulated

signal of each person due to respiration is Ri where i =

1, 2, ..., N referring to each subject and can be expressed
as

R1(t) ≈ cos(2πf0t −
4πd0

λ
−

4πx1(t)

λ
+ φ(t −

2d0

c
))

R2(t) ≈ cos(2πf0t −
4πd0

λ
−

4πx2(t)

λ
+ φ(t −

2d0

c
))

...

RN (t) ≈ cos(2πf0t −
4πd0

λ
−

4πxN (t)

λ
+ φ(t −

2d0

c
))

(5)

Considering the reflected signal from each target is in-

stantaneously linearly mixed, for instance in the case

of N = M = 2 where N is the number of subjects and

M is the number of transceivers, the received signal

(observation) can be represented by
[

Receiver1(t)
Receiver2(t)

]

=

[

a11 a12

a21 a22

] [

R1(t)
R2(t)

]

. (6)

where aij are the mixing parameters. In general, for
N = M = X, where X = 2, 3, ...N , equation 6 can be

represented as follows:











Receiver1(t)

Receiver2(t)
...

ReceiverM (t)











=











a11 a12 · · · a1N

a21 a22 · · · a2N

...
... · · ·

...

aM1 aM2 · · · aMN





















R1(t)

R2(t)
...

RN (t)











.

(7)

In quadrature receiver architecture, generally, equa-

tion 3 can be structured as











I1

I2

...
IM











=











a11 a12 · · · a1N

a21 a22 · · · a2N

...
... · · ·

...
aM1 aM2 · · · aMN

























cos(θ + Cx1(t) + Θ)

cos(θ + Cx2(t) + Θ)
...

cos(θ + CxN (t) + Θ)















(8)

while equation 4 is represented as










Q1

Q2

...
QM











=











a11 a12 · · · a1N

a21 a22 · · · a2N

...
... · · ·

...
aM1 aM2 · · · aMN





















sin(θ + Cx1(t) + Θ)

sin(θ + Cx2(t) + Θ)
...

sin(θ + CxN (t) + Θ)











(9)

where θ =
4πd0

λ
, C =

4π

λ
and Θ = ∆φ(t).

2.2 Signal Processing -Source Separation (ICA)

Independent component analysis (ICA) is a statistical

method that performs the transformation of a multi-

dimensional random vector observations into sources

that are statistically as independent from each other

as possible [10] and generally uses techniques involving

higher order statistics [13]. The different implementa-

tion of ICA can be found in the literature [2,6,11] and

we will be only focussing on the fastICA algorithm [10]
in this application.

In essence, independent component analysis assumes

that in a set of m−dimensional measured time series

vector denoted as x(t) = [x1(t), x2(t), ...xm(t)]T to be
a linear combination of n-dimensional source vectors

whose components are assumed to be statistically in-

dependent and given as s(t) = [s1(t), s2(t), ...sn(t)]T ].

Further, it assumes that the dimension of x and s are

equal, for instance m = n [10]. ICA is often represented

as

x(t) = As(t), (10)

where A is a full rank m× n mixing matrix [13]. Then,

a separating or de-mixing matrix W must be estimated

under certain assumptions and constraints [10] in or-

der to extract each independent source signal from the

observations such that

s(t) = Wx(t). (11)

FastICA is based on a fixed point iteration scheme

that attempts to separate the underlying sources from

a given set of mixed measurements (observations) by

finding their maximum of the non-Gaussianity, wT x,

as measured in equation 12. Here, the measure of non-
Gaussian-ity, negentropy J(y) is based on the informa-

tion theoretic quantity of differential entropy which can
be is given as J(y) = H(ygauss − H(y)). Here H(.) is

the differential entropy and ygauss is a Gaussian random

variable with the same covariance matrix as output sig-
nal y. In FastICA, the approximation of the negentropy

was referrerd as,

J(y) ≈ ρ[EG(y) − EG(v)]2, (12)

where ρ is a positive constant, v is a Gaussian variable

with zero mean and unit variance and G(.) is any non-

quadratic function as typically suggested in [10].

The basic form of the fastICA algorithm (one unit)

can be denoted as follows:
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Algorithm 1 FastICA

1: procedure FastICA

2: Data centering

3: Whitening
4: Initialize weight vector, w,

5: loop:

6: w+ = E{xg(wT x)} − E{g
′

(wT x)},

7: w = w+

‖w+‖ ,

8: goto loop if not converged.

where g is the derivative of the non-quadratic func-

tion G, for instance;

G1(u) =
1

a1

log.cosh(a1u),

g1(u) = tanh(a1u),

g
′

1(u) = a(1 − tanh2(a1u)). (13)

Here, 1 ≤ a ≤ 2 is a suitable constant, normally

taken as a = 1. To estimate several independent com-
ponents (IC), the basic form of one unit FastICA needs

to be extended using several units with weight vectors

wi, i = 1, 2...n. The outputs wT
1 x, ..., wT

n need to be

decorrelated to prevent vectors from converging to the

same maxima after every iteration [12]. One method of

achieving decorrelation is through Gram-Schmidt like

decorrelation where estimation of IC is performed one

by one. When p Independent Components or p−vectors

w1, ..., wp were estimated, one unit FastICA is performed

for wp+1 and after each iteration, the projections of

wT
p+1wjwj , j = 1, ..., p of the previously estimated p vec-

tors are subtracted from wp+1 and renormalized. The

entire process can be represented as

1.Let wp+1 = wp+1 −

p
∑

j=1

wT
p+1wjwj ,

2.Let wp+1 = wp+1/
√

wT
p+1wp+1. (14)

Another approach to achieve decorrelation is through

a symmetric decorrelation where no vectors are ”priv-

iliged” over others [12, 14]. It can be implemented via

a classical method involving matrix square roots as fol-

lows [12]:

1. Let W = (WWT )−0.5W ,

where W is the matrix of w1, ..., wn of the vectors. The

inverse square root of (WWT )−0.5 is computed from the

eigenvalue decomposition WWT [14]. A more simplistic

alternative is given in the form of the following iterative

algorithm [10],

1. Let W = W/
√

‖WWT ‖

2. Let W = 1.5W − 0.5WWT W

3. Repeat 2 until converges.

3 Experiment Protocol for Real Data Sensing

Doppler radar 

module 

connected to 

NI-DAQ

Respiration strap connected 

to Powerlab

(a) Experimental Setup for the Data Acquisition of two subjects

Raw Data from Doppler 

radar measurements

DC offset 

Calibration 

FastICA

Reference 

respiration 

strap signals

Observations: 

Separated Sources

Correlation 

Coefficient and 

Mean Square 

Error

Comparison : 
Respiration 

Pattern

(b) General Flow of the Source Separation process

Experiment Person 1 Person 2

1 (2 Subjects) Normal Normal (faster pace)
2 (2 Subjects) Normal + apnea Normal

3 (1 Subject ) Normal + Arm swinging Nil

(c) Experimental Protocol for Different modes of Breathing

Fig. 1 Experiment Setup, Signal Processing Flow and Ex-
periment Protocol

The measurement of human respiration using the

non-contact Doppler radar was approved by the Fac-

ulty of Science and Technology Ethics Sub-Committee

HEAG (Faculty Human Ethics Advisory Groups), Deakin

University and all the participants provided their writ-
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ten informed consent to participate in these experi-

ments.

In this experiment, two 2.4 GHz Doppler radar mod-

ules [8] were used to capture the respiration signals

from two subjects (in each experiment) as shown in Fig-

ure 1(a). Each of the systems transmitted a continuous

wave (CW) of 2.4 GHz and was attached to two patch

antennae (transmitter and receiver) connected to a data

acquisition module (DAQ: NI-USB6009). The received

signals were then further processed in a MATLAB en-

vironment. In each experiment, the subjects were posi-

tioned 1 metre away from the antennae where the an-
tennae were aligned to focus on the abdomen of the
subjects. Respiration signals from the subjects were col-

lected with normal clothing and in a seated position in

the laboratory. An external respiration strap (MLT1132

Piezo Respiratory Belt Transducer) attached to Power-

Lab (ADInstruments) was used as a reference signal to

evaluate the performance results of the source separa-
tion technique on the measurements obtained from the
Doppler radar.

Two sets of experiments were then carried out to

evaluate the separation technique between two breath-
ing signals captured from the Doppler radar measure-
ments. In the first experiment, two subjects were breath-

ing normally but at different rates while in the second

experiment, one of the subjects was breathing normally

while the other subject role played apnea by stopping

the breathing for a certain duration multiple times. The

last experimental trial was performed on one subject
under the influence of motion artefacts (arm swing).
The summary of the experiments are shown in Figure

1(c). The general flow of the source separation process

is shown in Figure 1(b).

4 Results

4.1 Two Simulated Respiratory Sources

In order to commence with the basic idea of source sep-

aration, two sources mimicking respiration were consid-

ered in this simulation. As depicted in Figure 2, two res-

piration baseband signals (with a DC offset and Gaus-

sian noise) at 0.20 Hz and 0.28 Hz respectively were sim-

ulated using equations 3 and 4. Then, the baseband sig-
nals (in-phase (I) and quadrature-phase (Q)) were ran-
domly mixed (see equations 8 and 9) and re-calibrated

to eliminate the DC offset. From the constellation plot,

it was evident that DC offsets have been corrected. In

this particular step, we have used the curve fitting tech-

nique [21] to fit the I and Q data to a circle as shown in
Figure 2. Two different frequency spectra were clearly

observed from the spectrum plot denoting the respec-

tive baseband respiration frequencies that were simu-
lated. The main aim of this simulation was to evalu-
ate the source separation technique in separating the

simulated Doppler radar combined baseband respira-

tion signals into its relevant independent sources while

preserving the frequency and the breathing pattern in-

formation.

In this simulation, fast fixed-point algorithm for in-

dependent component analysis (fastICA) was used. From

the results shown in Figure 2, the mixed signals were

successfully separated where the approximated spectral
frequencies were 0.2014 Hz and 0.2808 Hz respectively.
This was achieved while preserving similarity of the

baseband signal pattern to the simulated respiration

signals. From the simulation, it was observed that by

using the in-phase signals from two baseband signals,

the spectral frequency and the patterns of the base-

band gave a better representation rather than using the

quadrature-phase signals.

4.2 Experiment involving real subjects

Simulation results indicated promising results in sepa-

rating the mixed signals from the respective I/Q chan-
nel into its respective independent component of base-
band respiration signal. Thus, we have implemented the
corresponding algorithm with the real respiration mea-

surement data from the Doppler radar. For these par-

ticular experiments, two subjects were located in front

of two Doppler radar transceivers while breathing ac-

cording to the conditions listed in figure 1(c). In the
first experiment, two subjects were asked to breathe
normally at different rates while in the second experi-
ment, one of the subjects was asked to hold their breath

(role playing central apnea) while the other subject was

continually breathing in a normal mode.

Figure 3(a) depicts a compilation of the results ob-

served from experiment 1. The raw mixed I signals were

pre-processed for DC offset calibration before the sep-

aration process. From one of the spectrum plots in the

calibrated mixed I signals, there were two dominant

breathing frequencies of 0.3052 Hz and 0.4425 Hz. The

expected outcome of this experiment would be two res-

piration signals from two different subjects in terms of
the respiration rates and patterns. For this purpose, we
have use the fastICA algorithm to separate the mixed I
signals into its independent components where the sep-

aration results were then compared to the independent

measurements of the respiration strap. The results are

shown in Table 1(a) in terms of the mean square error

(MSE) and correlation coefficient (Corr). Under normal
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breathing conditions, the respiration rate can be esti-

mated using fast fourier transform (FFT) [9, 17] and

as shown in Figure 3(a), the breathing rates estimated

from the independent respiration strap were similar to
the breathing frequency of each independent source de-
rived from fastICA (using the measurements acquired

from the Doppler radar).

As for the second experiment, the results of the

source separation are shown in Figure 3(b). In this

particular experiment, one of the subjects was asked

to hold his breath multiple times in two minutes of

recording to mimic the condition of central sleep ap-

nea [5]. This experiment was specifically designed to

evaluate fastICA source separation capabilities in deal-
ing with the mixed signals of normal breathing and ab-
normal breathing patterns. As shown in Figure 3(b),

(see Figure 3(b): (e)), the results show the occurrence

of multiple cessation of breathing in the patterns which

corresponds to the central apnea type of breathing.

The derived independent component for this is highly

correlated with the independent measurement of the
respiration strap. As for the second subject, a normal
breathing pattern was observed (see Figure 3(b): (f)) as

expected. From the spectral analysis (see Figure 3(b):

(h)), the normal breathing source was successfully sep-

arated from the mixed sources where the peak of 0.3815

Hz was detected in both the reference respiration strap

and the separated source. As for the spectral analysis

shown in Figure 3(b)(g), the FFT based evaluation for

abnormal respiration pattern is not a good measure to

estimate the respiration frequency. A technique such

as time-frequency analysis is needed to cater for such
respiration dynamics [17]. The qualitative evaluation of
this experiment is shown in Table 1(b).

5 Further Discussion

We have also performed the separation of sources us-
ing fastICA with different type of non-linearities, i.e
g functions (refer to Table 2) where the performance

of each function was shown in Table 1(a) and Table

1(b) by comparing each independent source with the

reference respiration strap. Considering data from four

different subjects in two different experiments, tanh as

the g function performs better(in terms of MSE) in sep-
arating the sources from the Doppler radar based mea-

surements compared to other common non-linear func-

tions considered. A reasonable correlation with shorter

processing time was observed as shown in Figure 4.
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Table 1 Performance Evaluation on FastICA using different non-linearity g function with Reference Respiration Strap Signal
Patterns

(a) Experiment 1

Source 1 Source 2
g function MSE Corr MSE Corr Time (s)

tanh 0.2055 0.8765 0.0474 0.8811 0.0536

power 0.2098 0.8765 0.0838 0.8819 0.0575

gauss 0.2068 0.8764 0.0473 0.8809 1.3024
skew 0.2207 0.7959 0.0372 0.7737 1.2907

(b) Experiment 2

Source 1 Source 2
g function MSE Corr MSE Corr Time (s)

tanh 0.1670 0.9080 0.1280 0.9543 0.0766

power 0.1717 0.9071 0.1281 0.9543 0.1183

gauss 0.1713 0.9072 0.1279 0.9543 0.0926
skew 0.1766 0.9057 0.1269 0.9520 1.7229

We have also evaluated the performance of vari-

ous BSS algorithms [20] on all the datasets and the

results are given in Table 3(a) & 3(b). The tested al-

gorithms include EFICA [15], WASOBI [23], COMBI

[24], MCOMBI [25], FCOMBI [7], BEFICA [15] and

BARBI [22]. From the results, most of the BSS algo-

rithms are capable of performing the separation with a

low MSE and good correlation coefficient but fastICA

with tanh function performs better; more suitable for

real time applications particularly due to shorter pro-

cessing time.

Table 2 Non-linearity of g function

Nonlinearity g(u)

tanh g(u) = tanh(au)

power g(u) = u3

gauss g(u) = u ∗ exp(−au2/2)

skew g(u) = u2

5.1 Separation of Hand Motion

In addition to the decomposition of signals, we have also
explored the use of fastICA in the removal of motion
artefacts. In particular, we investigated separating the

respiratory signal from a typical interfering signal, i.e

a subject’s right arm movement as a a motion artefact.

The performance of the separation task is shown in the

figure 5. The separated hand motion from the mixture

of signals is clearly observed in Figure 5(d) as marked,

while the filtered respiration signal pattern is shown in

Figure 5(c).

Although the motion due to the swinging of the arm

is separated from the mixture of the signals, the sepa-

rated respiration signal is not entirely free from other

noise inputs (for instance, possible artefacts due to the

slight motion of the body during the swinging process)

as shown in Figure 5(c). Therefore, even for the case
of respiration detection involving a single subject, the
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Fig. 4 Pictorial representation of the Performance Evalua-
tion of FastICA using different non-linear functions with Ref-
erence to Respiration Strap Signal Patterns

use of a multiple antenna configuration would signif-

icantly improve the coverage, detection and the char-

acterisation capabilities of human motion in general.

For instance, in characterising the capabilities of hu-

man motion, multiple antennas can be used to identify

the motion from various bodies parts such as leg, arm

or head in correspondence to the placement of the an-

tenna. In particular sleep studies where periodic limb

movements are of interest, the source separation can be
used to analyse the artefacts.

Typically, DWT uses a dyadic grid [1] where the
dyadic wavelet transform of signal s(t) is given as:

DWT s(m, n) = 2−m/2

∫ ∞

−∞

s(t)ϕ ∗ (
t − 2mn

2m
)dt, (15)
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Table 3 Performance Evaluation on different BSS algorithms separated sources with Reference Respiration Strap Signal
Patterns for Experiment 1

(a) Experiment 1

Source 1 Source 2
Algorithm MSE Corr MSE Corr Time (s)

EFICA 0.2055 0.8765 0.0472 0.8832 0.2118

WASOBI 0.1566 0.7683 0.0437 0.8037 0.3643
COMBI 0.2053 0.8765 0.0472 0.8832 0.2097
MCOMBI 0.2053 0.8765 0.0472 0.8832 0.1700

FCOMBI 0.2053 0.8765 0.0472 0.8832 0.1629
BEFICA 0.1922 0.8751 0.0469 0.8837 0.2841
BARBI 0.2332 0.8434 0.0473 0.8745 0.1309

(b) Experiment 2

Source 1 Source 2
Algorithm MSE Corr MSE Corr Time (s)

EFICA 0.1752 0.9063 0.1264 0.9514 0.1044

WASOBI 0.1797 0.9043 0.1253 0.9502 0.0456
COMBI 0.1752 0.9063 0.1264 0.9514 0.1015
MCOMBI 0.1752 0.9063 0.1264 0.9515 0.1228

FCOMBI 0.1753 0.9062 0.1265 0.9515 0.1763
BEFICA 0.1783 0.9050 0.1286 0.9535 0.1745
BARBI 0.1671 0.7314 0.1198 0.9539 0.0432
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tion/noise signal source (DWT-Detailed component)

where m and n are scale and time shift parameters re-
spectively, ∗ is the complex conjugate and ϕ(t) is the

given basis function (mother wavelet).

In general, the output of the low pass filter is known

as wavelet approximation (scaling) coefficient cAm and

the output of the high pass filter is called wavelet detail

coefficient cDm [4, 27]. The approximation and the de-

tail coefficient at the mth level can be denoted as (16)

and (17) respectively.

cAm[n] =
∞
∑

−∞

ld[k]cAm−1[2n − k], (16)

cDm[n] =

∞
∑

−∞

hd[k]cAm−1[2n − k], (17)

The taps of the high-pass filter hd and the low pass filter

ld are derived from the scaling and wavelet function of

a chosen mother wavelet family, i.e Daubechies, Haar

or Coiflet.

As shown in Figure 5 (e), we used Discrete Wavelet

Transform (DWT) to filter the artefacts/noise from the

signal mixture where the reconstructed respiration sig-

nal (approximation component from DWT) is highly

correlated and smoother than the results obtained from
fastICA. Type of wavelet used in this experiment trial
is Daubechies (Db10) with 10 levels of decomposition.
The motion artefacts/noise can be obtained from the

detail components as shown in Figure 5 (f). The DWT

technique is particularly useful in filtering the arte-

facts/noises from the mixture of signals due to its na-

ture. From our observations, this is not the case in sepa-
rating multiple respiration sources due to multiple sub-
jects.

As the main focus of this paper is the separation of

respiration sources (multiple subjects) using fastICA,

the exploration of using DWT for the removal of arte-

facts is not discussed here. Indeed the DWT technique

can be useful and yield a better result compared to

blind source separation technique as demonstrated in

[26] and more importantly, it can be implemented with

only a single antenna configuration. Nevertheless, using

DWT solely will not improve the respiration detection

coverage; specially when more than one source of res-

piration exists which is the main focus of this paper.

6 Conclusion

In this paper, we investigated respiration detection us-
ing Doppler radar involving multiple subjects incorpo-
rating the use of the multiple Doppler radar systems.

The need to measure multiple sources in respiratory

monitoring is essential specially for long-term home-

based monitoring applications(i.e. sleep apnea, sleep

studies) where typically more than one person is in a
bed. For this purpose, we have demonstrated the use of
the fastICA algorithm in separating the mixed Doppler
radar measurements of two people under two different

scenarios involving either normal breathing only or ab-
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normal breathing (mixture of normal breathing and ap-

nea) as discussed in the experiment protocol.
From the source separation results, it was shown

that we are able to estimate the breathing rate as well

as to identify corresponding respiratory patterns associ-

ated with normal breathing and apnea symptoms accu-

rately. Further, we have also investigated the separation

of motion artefacts from the mixed respiration signals
using fastICA where the motion due to the swinging of
the subject’s arm can be identified from the Doppler

shifted data. In conclusion, we used a multiple antenna

configuration to demonstrate the possibility of decom-

posing a Doppler radar based respiratory patterns into

separate sources using fastICA even when the sources

are potentially interfered by motion artefacts.

Future work would be extended to involve respira-

tion measurements under the influence of motion arte-

facts. These artefacts, i.e. movement of the body and

the jerking of the arm, will be studied thoroughly to be

incorporated as the prior knowledge to the source sepa-

ration algorithm in order to obtain the desired respira-

tory signatures as well as to isolate the artefact signa-

ture. These artefacts signature could be of use in certain

sleep studies.
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