
E
ach year across the US, mesoscale weather
events—flash floods, tornadoes, hail,
strong winds, lightning, and localized
winter storms—cause hundreds of

deaths, routinely disrupt transportation and com-
merce, and lead to economic losses averaging more
than US$13 billion.1 Although mitigating the im-
pacts of such events would yield enormous eco-
nomic and societal benefits, research leading to that
goal is hindered by rigid IT frameworks that can’t
accommodate the real-time, on-demand, dynami-
cally adaptive needs of mesoscale weather research;
its disparate, high-volume data sets and streams; or
the tremendous computational demands of its nu-
merical models and data-assimilation systems. 

In response to the increasingly urgent need for a
comprehensive national cyberinfrastructure in
mesoscale meteorology—particularly one that can
interoperate with those being developed in other
relevant disciplines—the US National Science
Foundation (NSF) funded a large information tech-
nology research (ITR) grant in 2003, known as
Linked Environments for Atmospheric Discovery
(LEAD). A multidisciplinary effort involving nine
institutions and more than 100 scientists, students,
and technical staff in meteorology, computer sci-
ence, social science, and education, LEAD ad-
dresses the fundamental research challenges needed
to create an integrated, scalable framework for
adaptively analyzing and predicting the atmosphere. 

LEAD’s foundation is dynamic workflow orches-
tration and data management in a Web services
framework. These capabilities provide for the use of
analysis tools, forecast models, and data repositories,
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not in fixed configurations or as static recipients of
data but rather as dynamically adaptive, on-demand
systems that respond to weather as it evolves. Al-
though mesoscale meteorology is the particular
problem to which we’ve applied the LEAD concept,
the methodologies and infrastructures we’ve devel-
oped are extensible to other domains such as medi-
cine, ecology, oceanography, and biology.

In a companion article,2 we describe the organi-
zation and cataloging of metadata as LEAD work-
flows generate them. Here, we present a more
holistic view of LEAD and focus on the rationale
behind and structure of its architecture. Now be-
ginning its third of five years, LEAD is deploying
several of its key services to the research and edu-
cation communities. During the next 18 months,
the project will focus on how streaming observa-
tions and analysis/simulation output can be used to
modify workflows in real time.

The Case for Dynamic Adaptation
Those having experienced the devastation of a tor-
nado or hurricane, the raging waters of a flash flood,
or the paralyzing impacts of lake-effect snows un-
derstand that mesoscale weather develops rapidly,
often with considerable uncertainty with regard to
location. Such weather is also locally intense and
frequently influenced by processes on both larger
and smaller scales. Ironically, few of the technolo-
gies people use to observe the atmosphere, predict
its evolution, and compute, transmit, or store in-
formation about it operate in a manner that accom-
modates mesoscale weather’s dynamic behavior.
Radars don’t adaptively scan specific regions of
thunderstorms; numerical models are run largely on
fixed time schedules in fixed configurations; and cy-
berinfrastructure doesn’t allow meteorological tools
to run on-demand, change configuration in re-
sponse to the weather, or provide the fault tolerance
needed for rapid reconfiguration. As a result, today’s
weather technology is highly constrained and far
from optimal when applied to any particular situa-
tion. To demonstrate, let’s review examples in which
different modes of adaptation within numerical
models yield notable forecast improvements. We’ll
also look at the necessity of adaptive observations
and cyberinfrastructure in creating a suitable envi-
ronment for studying mesoscale weather. 

Adaptation in Time

One of the most basic adaptive strategies in nu-
merical weather prediction is rapid updating, in
which the appearance of features in a given forecast
suggests running successive forecasts more fre-
quently. For mesoscale weather, which can appear

suddenly and evolve rapidly, this capability is espe-
cially relevant, though not easily achieved owing to
on-demand requirements for computing and data
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Figure 1. Radar reflectivity (proportional to

precipitation intensity). Warmer colors indicate

greater intensity on this radar image of storms over

northeastern and central Kansas, on 21 June 2001.

The radar is located in the center of the image at

Wichita, Kansas.
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resources. To illustrate, Figure 1 shows reflectivity
(equivalent to precipitation intensity) from the Wi-
chita, Kansas, WSR-88D radar, also known as
next-generation radar (NEXRAD), at 0336 coor-
dinated universal time (UTC) or 10:36 p.m. cen-
tral daylight time (CDT) on 21 June 2001. Clearly
evident is a broken line of intense thunderstorms
(bright red colors) oriented northeast–southwest
and extending from just southwest of Topeka,
Kansas, to south of Great Bend, Kansas. A second
area of storms is present in northern Oklahoma. 

Just after noon that same day, an electric utility
in Kansas used a customized version of a fine-scale
computer prediction model called the Advanced
Regional Prediction System (ARPS)3 to generate
the 11-hour forecast shown in Figure 2a. The util-
ity initiated the forecast at 11 a.m. CDT and ex-
tended it through 10 p.m. CDT, or approximately
38 minutes prior to the radar image in Figure 1.
The forecast depicts an area of thunderstorms hav-
ing roughly the same alignment as what eventually
developed, but before mobilizing repair crews to
deal with possible power outages, the utility mod-
ified the model’s execution schedule and ran a
rapid update cycle, producing forecasts every two
hours (Figures 2b through 2d). Although the nine-
hour forecast (Figure 2b) produced a noticeably
different solution from that initiated two hours
earlier (Figure 2a), subsequent forecasts began to
“lock onto” a consistent solution as the time of in-
terest (10 p.m. CDT) approached, giving the util-
ity confidence in the forecast and sufficient lead
time to mobilize a response. By adapting the
model to the weather and to its needs, the power

utility took control of a potentially costly situation
and mitigated loss.

Adaptation in Space

In addition to increasing forecast frequency as a
means for obtaining more accurate solutions, mod-
els can adapt via the use of nested grids. This com-
putational modality is quite common across a wide
range of fluid dynamics applications, and researchers
have automated it so that the grid mesh responds dy-
namically to changes in the flow using both struc-
tured4 and unstructured5 approaches. Such grid
refinement is motivated by the desire to capture in-
creasingly fine-scale features—particularly individ-
ual thunderstorms—along with the larger-scale
environments in which they are embedded. 

Figure 3a shows a 12-hour radar reflectivity fore-
cast from the ARPS, valid at 0000 UTC or 6:00
p.m. central standard time (CST) on Friday, 29
January 1999, using a horizontal grid spacing of 32
km.6 In reality, the northeast–southwest-oriented
region of precipitation in Arkansas, which exhibits
little fine-scale structure in the model due to the
coarse grid, contained multiple lines of tornadic
thunderstorms (see Figure 4).

In an attempt to capture more detail, a nested grid
using 9-km horizontal spacing (the red box in Fig-
ure 3a) was spawned over a region of intense weather
and yielded the six-hour forecast shown in Figure
3b. Some explicit evidence of intense thunderstorms
emerges (yellow colors), although the 9-km grid is
unable to resolve the most energetic elements of the
flow—that is, individual updrafts and downdrafts.
Spawning yet another grid at 3-km spacing (Figure

Project Status

Given the LEAD service orchestration infrastructure’s

complexity and the number and diversity of services it

offers, we’re developing a series of LEAD prototypes that let

us incrementally test and evaluate approaches and compo-

nents within the controlled environment of the LEAD grid.

All of this is a prelude to production deployment of LEAD’s

“science gateway” on the US National Science Founda-

tion’s TeraGrid, a networked collection of some of the

largest computing and storage resources available in the US

for open scientific research.

At this writing, the LEAD team has developed and inte-

grated an operational portal with more than a dozen appli-

cations deployed as Web services and used in workflows.

We’ve conducted experiments with the prototype frame-

work atop the LEAD grid, and we estimate that 85 percent

of the infrastructure is complete. 

With regard to the LEAD architecture, all the cross-cutting

services exist and have been deployed on one or more of the

grid testbeds. The LEAD portal is operational but is expected

to evolve as usage patterns and needs change. With the ex-

ception of the scheduler, replica locator, and the generic in-

gest service, all the resource-access services have been

deployed. The workflow monitors and engines are opera-

tional, along with the virtual organization catalog and the

THREDDS service. Initial versions of the application and con-

figuration services exist and operate. Major services yet to be

developed and deployed are the data stream services and ap-

plication resource broker; both are critical components

needed to move from static to dynamic workflows. Rather

than build a new broker, we’re evaluating the solutions being

developed in several other TeraGrid and NSF ITR projects.
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3c), indicated by the red box in Figure 3b, yields a
forecast that captures the multiple line structure,
overall orientation, and generally correct movement
of the storms (compare with Figure 4). Upon closer

inspection, however, we see that the 3-km forecast
does differ from observations in important ways (for
example, the lack of storms in the “boot heel” of
Missouri). Nevertheless, the ability to spatially adapt

(a)

(c)

(b)

(d)

Figure 2. Radar reflectivity forecasts. From the Advanced Regional Prediction System model on 20 June 2001, warmer colors

indicate greater precipitation intensity at (a) the 11-hour forecast, (b) the nine-hour forecast, (c) the five-hour forecast, and (d)

the three-hour forecast.

(a) (b) (c)

Figure 3. Radar reflectivity forecasts. (a) This 12-hour forecast on 22 January 1999 uses 32-km horizontal grid spacing; (b) a six-

hour nested grid forecast using 9-km horizontal grid spacing shows some evidence of thunderstorms, but is still unable to

capture individual cells. (c) A six-hour nested grid forecast using 3-km horizontal grid spacing over the domain shows

remarkable agreement with observations in mode (broken lines of individual cells), orientation, and motion. The red boxes in

panels (a) and (b) show the nested domain locations in (b) and (c), respectively.
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the grid mesh (in this case, manually) clearly pro-
vides a positive impact by capturing individual thun-
derstorms that were absent at coarser grid spacings.
Note, however, that such adaptation might not be
warranted or desirable in all cases, nor may the req-
uisite computational resources be available. By min-
ing the model solution or observations for specified
characteristics, LEAD provides the framework for
intelligently, and automatically, generating nested
domains in a grid context and providing quality of
service estimates across the architecture.

Ensemble Forecasting

Comparing Figures 1 and 2, it’s clear that any
given forecast can contain considerable uncer-
tainty, in large part because we never know the
atmosphere’s true state (due to incomplete sam-
pling, observation errors, and so on). Conse-
quently, a particular forecast’s initial condition
represents only one of numerous possibilities—
that is, a single member of a probability distribu-
tion of physically plausible states. Because
insufficient computational power exists to predict
the full probability distribution’s evolution
(known as stochastic–dynamic forecasting),7 me-
teorologists sample several states and produce
numerous forecasts instead of making just one.
This ensemble methodology—the creation of mul-
tiple concurrently valid forecasts from slightly
different initial conditions, different models, the
same model initialized at different times, or via
the use of different physics options within the
same or multiple models—has become the cor-
nerstone of medium-range (six to 10 days) oper-
ational global numerical weather prediction;8 in
fact, it’s even being extended to individual
storms.9 Of course, ensemble forecasting greatly
increases the required computational resources
and thus might be desirable only in certain situ-
ations, as dictated by the weather or a provisional
forecast’s outcome—thus, the need for intelli-
gent, automated adaptation. 

To illustrate the power of ensemble forecasting,
Figure 5 shows radar reflectivity at 6 p.m. CST on
29 March 2000 over north central Texas; the figure
is similar in content to Figure 1, except that it’s
from multiple radar data objectively analyzed to a
regular grid. Clearly evident is a north–south-ori-
ented line of intense thunderstorms, which ulti-
mately produced multiple tornadoes, one of which
passed through the Fort Worth, Texas, metropoli-
tan area (white arrow), causing three deaths and
nearly US$500 million dollars in damage.10

Researchers studying this case post facto initial-
ized a five-member ensemble of forecasts at 2300
UTC on 29 March 2000. The control forecast in
figure 6a captures the overall structure and motion
of the storms in northern Texas, but it fails to pre-
dict the extension of the system further south. The
other four ensemble members, initialized from
slightly different (though equally probable) states
and valid at the same time (see Figures 6b through
6e), exhibit considerable variability, with members
1 and 2 placing an extensive area of spurious storms
in the southeastern part of the domain. Member 3
is different from all other forecasts, as well as real-
ity (see Figure 5); if it were the only forecast avail-

Figure 4. Multiple tornadic storms. Image from 21

January 1999 over Arkansas from multiple radars with

their data objectively analyzed to a regular grid.6

Figure 5. Observed storms. For a thunderstorm

complex on 29 March 2000 over north central Texas,

the white arrow shows the supercell that produced a

major tornado in the Fort Worth metropolitan area.
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able, the guidance would obviously be quite poor.
The practical value of ensemble forecasting lies

in the ability to quantify forecast uncertainty and
emphasize intense local events through the use of
probabilities. Figure 7 shows the probability of
radar reflectivity exceeding a value of 35 decibel
units of radar reflectivity (dBZ), or heavy precipi-
tation. This calculation simply involves determin-
ing—at each grid point—how many forecasts meet
this criterion and then dividing by the total num-
ber of forecasts. Note how the ensemble de-em-
phasizes the spurious storms in the southeastern
part of the domain and highlights the region in
which all forecasts agreed—near Fort Worth—
where all the tornadic storms actually occurred. 

The ability to initiate an ensemble of forecasts au-
tomatically and then determine the ensemble’s size,
and thus the computational and networking load,
dynamically based on a control run’s output repre-
sents a significant adaptation to both observations
and model output and is one of LEAD’s key goals. 

Adaptive Observing Systems

The adaptive behavior illustrated in the previous
subsection is confined to the operation of a nu-
merical model. However, models are fed by obser-
vations, the instruments for which are typically
deployed in spatially regular arrays that remain
fixed in space, collect observations at prescribed in-
tervals, and operate largely independently (and in
the same mode), regardless of the type of weather
present. A prime example is the NEXRAD
Doppler weather radar network across the US: due
to the radars’ long range, Earth’s curvature pre-
vents them from sampling approximately 72 per-
cent of the atmosphere below 1 km. Furthermore,
the radars have only a few modes of operation and
can’t be tasked to focus on specific regions of the
atmosphere at the expense of others.

In recent years, researchers have supplemented
conventional observation strategies with adaptive
or targeted observations in which sensors are de-
ployed to specific areas where additional informa-

(a)

(d) (e)

(b) (c)

Control forecast Ensemble member #1

Ensemble member #4Ensemble member #3

Ensemble member #2

Figure 6. Five-member ensemble forecasting. In (a) a control forecast on 29 March 2000, warmer colors indicate greater

precipitation intensity during a two-hour run; each of (b) – (e) the four ensemble members is created from a slightly different but

physically plausible initial condition, yet the variation among predicted aerial coverage, intensity, and placement is significant.
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tion is most likely improve forecast quality.11 Ex-
amples include instruments dropped from aircraft
and deployed on unmanned aerial vehicles. Al-
though valuable, such strategies sample only a tiny
fraction of the atmosphere and aren’t suited to pro-
viding fine-scale, volumetric data in the interior of
a thunderstorm, which is a domain of remote sens-
ing exclusive to Doppler radar.

To address this problem, the NSF funded the En-
gineering Research Center for Collaborative Adap-
tive Sensing of the Atmosphere.12 CASA seeks to
revolutionize the sensing of the lowest 3 km of the
atmosphere by developing inexpensive, low-cost,
low-power Doppler radars that can be located on ex-
isting infrastructures such as cell-phone towers and
buildings. Deployed in dense arrays, these radars are
designed to collaborate with each other in real time,
adaptively sensing multiple phenomena while simul-
taneously meeting multiple end-user needs. CASA
represents the principal technology by which adap-
tive meteorological observations will be collected for
use in LEAD; a four-radar CASA testbed in central
Oklahoma will be operational in early 2006. 

Adaptive Cyberinfrastructure

Achieving the types of adaptation we’ve described
so far requires a flexible, fault-tolerant, dynamic cy-
berinfrastructure that can be rapidly and automat-
ically reconfigured at the direction of remote
sensors, models, and users. Moreover, high-per-
formance computing and storage resources must
be available with little advance notice, and data
analysis and mining components must be able to
detect faults, allow incremental processing, and es-
timate runtime and memory requirements based
on evolving data properties. Owing to the highly
perishable nature of the information being gath-
ered and generated, network bandwidth must
therefore be made available on demand to transfer
large data sets and output files, and sufficient mon-
itoring and quality of service guarantees must be
available to support real-time experimentation and
decision-making, especially in a classroom setting.
In short, without an adaptive cyberinfrastructure,
none of what we’ve just described is possible. 

Managing the Forecast 

and Simulation Process

The potential value of dynamic adaptation is tem-
pered by the reality of today’s mesoscale meteo-
rology research and education environments.
Current weather tools such as data-ingest, quality-
control, and analysis systems, as well as forecast
models and post-processing environments, are
enormously complex, even if used individually.
They consist of sophisticated software developed
over long time periods, contain numerous ad-
justable parameters and inputs, require users to
deal with complex formats across a broad array of
data types and sources, and often have limited
transportability across computing architectures.
When linked together and used with real data, the
complexity increases dramatically. 

Only a few academic institutions have the soft-
ware infrastructure needed to automate the forecast
process we described earlier. One is the University
of Oklahoma and its Center for Analysis and Pre-
diction of Storms, a graduated NSF Science and
Technology Center that pioneered the science of
thunderstorm prediction using numerical models.
The software that manages its real-time forecast en-
vironment (http://caps.ou.edu/wx) consists of 50,000
lines of Perl code. This sophisticated and powerful
software requires considerable programming exper-
tise, is neither transportable nor scalable, and thus
presents a huge barrier for graduate and undergrad-
uate students as well as other users. The many other
universities running experimental forecasts on a
daily basis do so mostly in very simple configurations

Figure 7. Probability of radar reflectivity exceeding 35 dBZ (moderate

to heavy precipitation) based on the five-member ensemble forecast.

The agreement among model solutions in the region of tornadic storms

(upper center) yields the desired high probabilities.
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using local computing facilities and pregenerated
analyses to which no new data are added. Thus, an
important goal of LEAD is to lower the entry bar-
rier for using complex weather technologies.

System Capabilities
LEAD’s complex array of services, applications, in-
terfaces, and local and remote computing, network-
ing, and storage resources is assembled by users in
workflows to study mesoscale weather as it evolves.
Figure 8 shows the hierarchy of software required to
create and orchestrate this suite of capabilities.

From the high-level view (the top of Figure 8),
LEAD lets users query for and acquire information
(for example, observational data sets, model results,
the status of a resource or job, and so on), simulate
and predict weather by using numerical atmos-
pheric models, assimilate data (that is, combine ob-
servations under imposed dynamical constraints to
create a 3D atmospheric state), and analyze, mine,
and visualize data and model output. The outcomes
of these operations (the bottom of Figure 8) in-
clude data sets, model output, gridded analyses, an-
imations, static images, and a wide variety of
relationships and other information. The fabric
that links the user requirements with outcomes—
namely, the extensive middleware, tool, and service
capabilities—is LEAD’s research domain.

We’ve provided several foundational tools within

the LEAD environments (the second level in Fig-
ure 8), including 

• a Web portal, the primary (though not exclusive)
user entry point; 

• the ARPS Data Assimilation System,13 a sophis-
ticated tool for data quality control and assimila-
tion, including the preparation of initial
conditions for simulations and forecasts; 

• myLEAD,14 a flexible metadata catalog service; 
• the Weather Research and Forecast (WRF)

model,15 a next-generation atmospheric predic-
tion and simulation model; 

• ADaM (Algorithm Development and Mining),16

a powerful suite of tools for mining observational
data, assimilated data sets, and model output; and 

• Integrated Data Viewer,17 a widely used desktop
application for visualizing a variety of multidi-
mensional geophysical data.

As we’ll describe later, these foundational tools and
the resources that enable them are linked together
in a service-oriented architecture (SOA).

System Concept
LEAD’s conceptual underpinning is WOORDS, the
workflow orchestration for on-demand, real-time, dy-
namically adaptive systems. As used in LEAD, WO-
ORDS components have the following meaning:

Fundamental
capabilities

Simulate Assimilate PredictAnalyze/mine Visualize

Query

Execute

Store

Execute

Publish Authorize

Move

Edit

Configure

Monitor

Foundational
user tools

ADAS WRF IDVADaM

Catalog

Outcomes Data sets Model output AnimationsGridded analyses Static images Relationships

Build

Compile

Authorize

TriggerSteer

ManageDefine

Query & acquire

Portal

Enabling
functions

• Authorization
• Authentication
• Notification
• Monitoring
• Workflow
• Security
• ESML

• VO catalog
• THREDDS Catalog
• MyLEAD
• Control
• Query
• Stream
• Transcoder

• Ontology
• Host environment
• GPIR
• Application host
• Execution description
• Application description

New Knowledge, Understanding, Ideas

MyLead

Define

Middleware
services

Figure 8. LEAD system. Fundamental capabilities familiar to meteorologists are shown in the top level, below which are the

associated tools for enacting these capabilities and the middleware that links everything together. System-generated

products appear at the bottom.
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• Workflow orchestration is the automation of a
process, in whole or part, during which tasks or
information are exchanged among system com-
ponents to perform a specific action according to
a set of procedural rules.

• On demand is the ability to perform an action
immediately with or without prior planning or
notification.

• Real time is the transmission or receipt of infor-
mation about an event nearly simultaneously
with its occurrence. 

• Dynamically adaptive is the ability of a system, or
any of its components, to respond automatically
and in a coordinated manner to both internal and
external influences.

• A system is a group of independent but interrelated
elements that operate in a unified, holistic manner.

Another important notion is streaming data, which
connotes information transported in a nearly time-
continuous manner, often directly as input to ser-
vices without first being written to files.

Although mesoscale meteorology and numerical
weather prediction represent archetypal applica-
tions of WOORDS, the concept is far more gen-
eral. The effective suppression of wild fires, for
example, could depend on numerical simulations
that incorporate evolving weather conditions, fuel
availability, burn-line locations, and so on. Em-
bedded sensors could measure roadway conditions
and highway traffic flow to help reroute traffic in
case of accidents. These examples show how using
WOORDS as a general notion can benefit non-
meteorology communities. 

The LEAD System
LEAD consists of the following principal compo-
nents (see Figure 9):

• The user subsystem comprises the LEAD portal—
the principal mechanism by which users can ac-
cess LEAD technologies—as well as the
myLEAD personal workspace and the geo-ref-
erence graphical user interface.

• The data subsystem handles data and metadata,
any numerical model output produced by oper-
ational or experimental models, and user-gener-
ated information. 

• The tools subsystem consists of all meteorological
and IT tools as well as interfaces for user-sup-
plied tools.

• The orchestration subsystem provides the tech-
nologies that let users manage data flows and
model execution streams, and create and mine
output. It also provides linkages to other soft-

ware and processes for continuous or on-demand
applications. 

• Located at six of the nine participating institu-
tions (the University of Oklahoma, the Univer-
sity of Illinois at Urbana-Champaign, the
University of Alabama in Huntsville, the UCAR
Unidata Program, the University of North Car-
olina at Chapel Hill, and Indiana University), the
distributed computing systems in the LEAD grid
represent a distributed testbed for developing,
integrating, and testing LEAD’s components.

The LEAD system is instantiated as an SOA,
which organizes an enterprise or system’s key func-
tions as a set of services. Workflows orchestrate the
collections of service invocations and responses re-
quired to accomplish specific tasks. A Web service
performs a specific operation, or a set of operations,
based on requests from clients—for example, book-
ing airline flights or looking up a friend’s address.
Web services conform to a family of standards,
generally called “WS-*,” that specify most aspects
of the service’s behavior. For example,

• the Web Service Definition Language (WSDL;
www.w3c.org) specifies both how a service ex-
pects to receive requests and the type of re-
sponses it generates; 

• WS-Addressing defines the way a client accesses
a service and to what location the service should
send responses; and

• WS-Security defines protocols for secure com-
munication of messages from the client to the
service and back. 

SOAs are widely deployed in the commercial en-
terprise sector, and they form the foundation of
many scientific “grid” technologies.

As Figure 10 shows, the LEAD SOA has five dis-
tinct yet highly interconnected layers. The bottom
layer represents raw computation, application, and
data resources distributed throughout the LEAD
grid and elsewhere. The next level up holds the
Web services that provide access to raw services
such as those found in the Globus toolkit, as well
as services for accessing weather data (Unidata’s lo-
cal data manager [LDM]18 and the Open-Source
Project for a Network Data Access Protocol
[www.opendap.org]) and data access services such
as the replica location service19 and the Open Grid
Service Architecture Data Access and Integration
(OGSA-DAI) service.20

The configuration and execution services in the
middle layer, consisting of five elements, represent
services invoked by LEAD workflows. The first is
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the application-oriented configuration service that
manages the deployment and execution of real ap-
plications such as the WRF simulation model, the
ARPS Data Assimilation System, and the ADaM
tools. Related to it is the application resource bro-
ker, which matches the appropriate host for execu-
tion to each application task, based on the
execution’s time constraints. The workflow engine
service, which drives experimental workflow in-
stances, invokes both the configuration service and
application resource broker. The fourth element,
known as catalog services, represents the manner
in which a user or application service discovers
public-domain data products, or LEAD services,
for use in computational experiments via a virtual
organization catalog. This catalog obtains infor-
mation about public data products by periodically
crawling THREDDS (Thematic Real-time Envi-
ronmental Distributed Data Services) catalogs,21

which store pointers to a wide variety of data.
Finally, users require a host of data services to

support rich query, access, and transformation op-
erations on data products. An important goal be-
hind LEAD is access transparency—facilitating user

queries across all available heterogeneous data
sources without adverse affects from different for-
mats and naming schemes. Achieving any level of
transparency requires at least minimal metadata for
describing data products.

Metadata are essential for managing huge
amounts of data generated by observing systems,
models, and other meteorological resources.
LEAD’s XML schema—called the LEAD meta-
data schema—adheres to the US Federal Geo-
graphic Data Committee (FGDC)-defined
standard for geospatial data. Specifically, we cre-
ated an FGDC profile for LEAD by modifying the
FGDC schema, restructuring it to handle the
LEAD notion of resource collection, and adding
other elements while still maintaining namespaces
for separate LEAD catalogs. We released version
1.0 of the schema in June 2005. 

A key Web service that maps higher-level at-
mospheric concepts to concrete terms used in data
services is the LEAD ontology service. Decoder
and interchange services, such as the Earth System
Markup Language,22 transform data from one form
to another. Stream services manage live data
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Figure 9. LEAD system framework. LEAD is composed of several interacting subsystems, with the LEAD grid representing a

stable, secure environment for development and testing. 
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streams such as those generated by the Nexrad
Doppler radar network (with a per-radar band-
width of approximately 14 Mbytes per five minutes,
and 142 radars in the national network).

Users have access to several cross-cutting ser-
vices within the LEAD SOA’s layers. One such ser-
vice—the notification service—lies at the heart of
dynamic workflow orchestration. Each service can
publish notifications, and any service or client can
subscribe to receive them. This strategy is based on
the WS-Eventing standard,23 in which notifica-
tions signal task completion, job failure, or user
commands. Another critical component is the
monitoring service, which we’ll discuss later. Mon-
itoring provides, among other things, mechanisms
to ensure that workflows are able to complete de-
sired tasks by specified deadlines—an especially im-
portant issue in weather research. 

Another vital cross-cutting service that ties mul-
tiple components together is the myLEAD user
metadata catalog. As an experiment runs, it gener-
ates data stored on the LEAD grid and catalogued

to the user’s myLEAD metadata catalog (see Fig-
ure 11). Notification messages generated during
the course of workflow execution are also written
to the metadata and stored on each user’s behalf.
Users access metadata about data products via
metadata-catalog-specific user interfaces built into
the LEAD portal. Through these interfaces, they
can then browse holdings, search for products on
the basis of rich meteorological search criteria,
publish and share products with broader groups,
create snapshots of experiments for archiving, or
upload text or notes to augment the experiment
holdings.24 Specialized services based on grid stan-
dards handle authentication and authorization.

The user interface to the system appears at the top
level of the architecture in Figure 10. It consists of
the LEAD Web portal and a collection of “service-
aware” desktop tools. The portal is a container for
user interfaces, called portlets, which provide access
to individual services. When a user logs into the por-
tal, his or her grid authentication and authorization
credentials load automatically. Each portlet can use
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these identity certificates to access individual services
on the users’ behalf, thus allowing them to com-
mand the portal as a proxy for composing and exe-
cuting workflows on back-end resources. 

The LEAD Grid and Portal
We’re currently deploying the LEAD SOA on the
LEAD grid, which consists of a set of compute and
storage resources (located at several of the LEAD
institutions), ranging from single-CPU Linux sys-
tems with a few terabytes of local storage to large
cluster-based systems and mass storage facilities ca-
pable of serving many petabytes of data. The
LEAD grid is built on two systems: the Globus grid
infrastructure framework25 and the LDM. The
LEAD SOA is layered on top of that. 

The LEAD grid provides a distributed “clean
room” environment within which to develop, inte-
grate, and test the LEAD SOA. By having com-
plete control over system and application software
version control, LEAD can enforce compatibility
requirements and avoid the numerous problems
that can plague research and development efforts
conducted in more open, unstable environments.
We’re currently developing strategies for migrat-
ing beyond this “safe sandbox” to other grids, such
as the TeraGrid. 

Most users access the LEAD grid via the LEAD
portal (Figure 11), which also provides a gateway
to the TeraGrid, a national infrastructure for com-
putational science. The LEAD portal is based on
the NSF National Middleware Initiative Open
Grid Computing Environment Portal toolkit
(www.ogce.org). This portal lets users load proxy
identity certificates (based on Globus’s GSI model)
into the portal server, which in turn allows the por-
tal server to interact with the LEAD grid on the
user’s behalf. The portal also provides the user with
options for configuring experiments and launching
them on the LEAD grid. 

Workflows and 
Incremental Development
The LEAD system is a sequence of prototypes that
serve to test and refine research concepts, engage
end users, stimulate new ideas, and provide a mech-
anism for ensuring effective integration among
multiple disciplines. The fundamental “building
blocks” of these prototypes are a series of Web ser-
vices (see Figure 12a) that also consist of services
and can be used as standalone applications or as
part of the overall LEAD environment. Users can
combine the services, via an orchestration interface,
in numerous ways to create a wide array of capa-
bilities, adding other services as necessary or creat-

ing and saving workflows of services that can also
be combined in new workflows to solve increas-
ingly complex problems (see Figure 12b).

Figure 11. The LEAD portal. Upon logging in, the

user is presented with a view of the myLEAD

workspace, which is a private metadata catalog of

results from the user’s computational experiments.
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Figure 12. Web services and workflow engine. (a)
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wide array of capabilities for research and education.
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Building Workflows

Because a complete experiment in LEAD might re-
quire the orchestration of a dozen or more appli-
cation services, we describe it using a graphical tool
that translates a “picture” of the workflow into a
low-level workflow language. Figure 13 shows an
actual LEAD workflow graph used to acquire and
analyze atmospheric data, followed by the initia-
tion of a numerical forecast. Each box in the graph
is a Web service, a Web service-wrapped applica-
tion, or an input parameter. Some of the applica-
tion services merely stage files and start application
tasks that run on compute clusters, such as those
available through the TeraGrid. Other services
function as brokers to provide access to compute
resources by using an estimate of the computation
work required and time constraints to select the re-
sources needed to complete the task. The workflow
instance, itself a Web service that runs in a work-
flow engine hosted on the LEAD grid, has a highly
interactive relationship with the myLEAD personal
metadata catalog.2 The workflow shown in Figure
13, along with other workflows and the basic capa-
bilities needed to create, edit, and execute them, are
now running on the LEAD grid. 

As shown schematically in Figure 14, LEAD is
evolving three distinct yet related generations of
workflow technology. In Generation 1, workflows
are static—that is, all tasks to be performed, in-
cluding their order of execution, data dependen-
cies, and computational resources, must be
determined prior to job launch and can’t be

changed until the job concludes. In Generation 2,
the user can modify workflows during execution,
or the workflow can modify itself in response to any
number of conditions (such as loss of data, identi-
fication of new features in output or observations,
or availability of computing resources). Further-
more, on-demand capabilities will become avail-
able in Generation 2, requiring sophisticated
monitoring and performance-estimation resources,
given the workflows’ dynamic nature. Generation
3 will provide the capability for meteorological
tools to interact mutually with adaptive remote
sensors, most notably the CASA Doppler weather
radars. Currently, LEAD supports static workflows
executing services running across multiple LEAD
grid nodes. Efforts in 2006 and 2007 will focus on
automated, dynamic workflows. 

Workflows in a 

Dynamically Adaptive Environment

A simulation’s space and time adaptation require-
ments, the potential of adaptive instrumentation,
and an adaptive cyberinfrastructure make LEAD
workflow management unique. Traditional work-
flows involve static patterns that coordinate fixed
sets of partners through carefully orchestrated ac-
tivities. Humans are in the loop, but at prescribed
points at which a specific decision or approval is re-
quired. In sharp contrast, LEAD workflows are
event driven—for example, a data-mining agent
could monitor a streaming radar data feed to detect
a specific set of weather patterns. Once detected, the
agent can notify the workflow engine. The work-
flow engine is a persistent Web service that can
manage hundreds of workflow instances concur-
rently, so when it receives a message, it identifies the
appropriate workflow instance (to which the mes-
sage is addressed) and then advances the state of that
workflow through its tasks until another message
comes through. The workflow instance is then “sus-
pended” and placed back into the database. 

LEAD is building its workflows on the Business
Process Execution Language (WS-BPEL),26 a
widely accepted industry standard that provides the
relevant control constructs for modeling dynamic
behavior. We’ve built a BPEL execution engine that
works within the SOA security mechanisms defined
by the LEAD grid. Because BPEL is completely
service-oriented, it can query and respond to exter-
nal services such as resource allocators and moni-
toring services. BPEL also has a well-defined
“exception” model that allows a workflow to change
course if an unexpected condition arises. 

Unfortunately, BPEL isn’t well suited to the ca-
sual scientific user. Consequently, we’re providing

Figure 13. LEAD workflow. The composer shows the workflow for

ingesting data, analyzing it, and then creating a numerical forecast.
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a “drag and drop” composition tool that will let
users intuitively, “graphically” construct workflows
that are then translated into BPEL. Deciding the
best way to design such workflows remains an open
research problem. 

Monitoring’s Vital Role
Events that cause adaptive behavior can occur at
any level in the system—in the atmosphere when a
weather condition arises, a forecast-model analysis
that results in directives to a local radar, the service
layer in response to inefficiencies in an ongoing
workflow execution, or at the hardware and system
software layer in response to excessive computa-
tional or network loads. The complexity of the
LEAD architecture’s dynamic characteristics makes
monitoring and understanding application resource
behavior both critical and challenging. When re-
acting to crucial weather changes or changing re-
source availability, the LEAD system must
proactively assess and detect system performance
anomalies, enable recovery, and ensure continued
operation. For the system to be responsive to si-
multaneously occurring high-priority events, it
uses detection services to detect, sense, and moni-
tor the environment. 

Before a workflow can begin execution, it must
be mapped to a set of physical resources that can
meet expected performance and reliability guaran-
tees. The quality of service provided to a given
workflow depends on its criticality, workflow com-
ponent behavior, and the underlying execution re-
sources’ changing capabilities. In addition, the
execution resources’ geographically distributed na-
ture introduces new failure modes, so monitoring
services must be able to monitor and predict possi-
ble resource losses. In turn, the LEAD system must

be able to use knowledge of application needs and
the current resource state, obtained from the mon-
itoring services, to allocate new resources to the
workflow. This allocation’s goal is to enable timely
execution of the workflow with the desired perfor-
mance and reliability guarantees.

To support real-time monitoring of distributed
LEAD workflows, we developed a new infrastruc-
ture that combines elements of the Autopilot dis-
tributed performance monitoring toolkit,27 the
SvPablo application performance toolkit,28 a newly
created Health Application Monitoring Interface
(HAPI), and a workflow-annotation system that
shows the state of executing workflow elements.
Autopilot sensors execute as part of the monitoring
services to collect performance data periodically. At
each stage, the workflow engine publishes events
about the workflow’s progress (for example, the
workflow started, LDM started, or WRF ended).
A central control service subscribes to these events
to monitor the workflow’s progress, which enables
a correlation between collected performance data
and workflow progress. This central service can
monitor progress during workflow execution or
trigger scheduling/rescheduling decisions during
the workflow’s orchestration. 

We’re exploiting the SvPablo application instru-
mentation and performance tuning toolkit to capture
data on the interaction of workflow components with
system resources. By measuring the performance of
computation-intensive components such as the
WRF model, we can optimize component perfor-
mance as well as improve workflow scheduling.

Figure 15 shows the LEAD monitoring system
that’s currently operational on the LEAD grid. The
visual representation of the workflow progress ex-
tends the workflow composer and displays the sta-
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tus of the workflow’s tasks with a color-coded dis-
play. Different colors represent status, and color in-
tensities represent the collective resource
information’s CPU load values (for example, yel-
low indicates the task hasn’t started, and green rep-
resents the currently active branch of the
workflow). Trends in performance and reliability
on relevant resources are displayed below the
workflow graph.

A reliability-monitoring toolkit complements the
performance-monitoring infrastructure. It helps
LEAD use reliability data to make scheduling de-
cisions, anticipate likely failures, and take action be-
fore workflows are disrupted. The failure indicator
infrastructure in LEAD is based on HAPI, an in-
terface for discovery and use of health-related di-
agnostic information. By combining performance
and failure models, the infrastructure can guaran-
tee continued operation of weather forecasting and
respond to additional resource requests based on
weather phenomena.

Dynamically Adaptive Learning
In addition to creating a dynamically adaptive cy-
berinfrastructure for mesoscale meteorology,
LEAD is evolving a consistent education concept
known as the Dynamically Adaptive Learning En-
vironment (DALE). In contrast to more conven-
tional learning in which a student proceeds through

a largely deterministic pathway toward under-
standing a particular concept, DALE places the
student in an inquiry-based environment in which
he or she can explore new ideas by creating entirely
new pathways and tools—specifically, interacting
with weather to explore new questions as they
emerge in the student’s mind. 

Tools and services that offer student-centered ca-
pabilities are predicated on the existence of rich, dy-
namic models of student understanding.29 Such
models depict key ideas that learners should under-
stand, common learner conceptions and misconcep-
tions, and how these ideas change over time as
student understanding becomes increasingly sophis-
ticated.30 DALE provides students with the ability to
explore their own ideas in virtual concept spaces and
is scalable and extensible to other disciplines.

T
he construction of the LEAD system
and grid has been under way for two
years, and we’ve learned many lessons.
Some are common to most grid-ori-

ented projects—for example, security is always
more difficult to implement in a multi-institutional
environment than expected. Moreover, it’s impos-
sible to avoid software being installed in different
ways on different hosts even in a clean-room test-
bed built from dedicated resources, as is the case
with the LEAD grid. Consequently, the construc-
tion of distributed applications with complete de-
pendence on system-level coherence is virtually
impossible. This fact reveals the distinct advantage
of an SOA: interacting with service interfaces hides
low-level system differences. 

Finally, we’ve learned that maintaining large
numbers of continuously running or persistent ser-
vices is very difficult and places a substantial bur-
den on system administrators. A viable solution is
to build a system in which a small number of ser-
vices (in our case, the crosscutting services and por-
tal) are persistent, with the remainder instantiated
on-demand by reliable core services. We anticipate
learning many more lessons upon moving into the
domain of dynamically adaptive workflows.
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