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Abstract Wind energy prediction has an important part to play in a smart energy
grid for load balancing and capacity planning. In this paper we explore, if wind
measurements based on the existing infrastructure of windmills in neighbored wind
parks can be learned with a soft computing approach for wind energy prediction in
the ten-minute to six-hour range. For this sake we employ Support Vector Regres-
sion (SVR) for time series forecasting, and run experimental analyses on real-world
wind data from the NREL western wind resource dataset. In the experimental part
of the paper we concentrate on loss function parameterization of SVR. We try to
answer how far ahead a reliable wind forecast is possible, and how much informa-
tion from the past is necessary. We demonstrate the capabilities of SVR-based wind
energy forecast on the micro-scale level of one wind grid point, and on the larger
scale of a whole wind park.

1 Introduction

Wind energy forecasting is an important aspect for balancing authorities in a smart
grid. Up to now, the integration of decentralized energy into the grid is as good as
ignored. It is estimated that the stability of the energy grid decreases, if the amount
of ignored renewable energy exceeds about 15% to 20%. But wind resources are
steadily increasing. For a reasonable integration of volatile resources like wind, a
precise prediction for subhourly scheduling becomes necessary. Precise forecast will
allow balancing and integrating of multiple volatile power sources at all levels of the
transmission and distribution grid [10]. Soft computing can play an important role
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in forecasting, and control of smart grids. They have proven success in many ap-
plications, e.g., the visualization of network traffic data for intrusion detection with
neural techniques [5]. Also in energy and environmental sciences soft computing
methods have successfully been applied, ranging from detection of lifetime build-
ing thermal insulation failures [14] to the identification of typical meteorological
days [2].

State-of-the-art techniques in regression have already been applied to energy
forecasting. But the results are often limited to simplified case-studies of particular
windmills, neglecting parameter studies, or analyses of how far a regression method
can reliably predict wind on a short-term level. In this paper we basically investigate
the questions (1) can prediction of wind energy exclusively be based on the exist-
ing infrastructure of windmills and their wind speed measurements, and (2) what
are the limitations of state-of-the-art regression techniques for wind resource time
series forecasting. To answer these question we will conduct experiments based on
real-world wind data from the western wind data resource of the National Renew-
able Energy Laboratory (NREL) [7, 13] employing a state-of-the art kernel regres-
sion method: support vector regression (SVR) by Vapnik [18]. Our analysis will be
based on a direct mapping of wind speed measurements on produced wind energy.

Section 2 formalizes the regression problem, and illustrates the data scenario we
plan to investigate. In Section 3 we will give a short overview of related work on
wind resource forecasting, while Section 4 gives a brief introduction to SVR. Sec-
tion 5 presents an experimental analysis of SVR on different data scenarios that
help to understand the capabilities of SVR in the wind forecast scenario. The analy-
sis concentrates on the choice of the loss parameter €, and the question how far into
the future predictions are possible, and how much data are necessary from the past.
In Section 6 we summarize the results and discuss prospective research questions.

2 Problem Description

2.1 Formalization

We formulate the wind forecasting task as regression problem. We assume that a
time series of N wind measurements of K wind grid points x(¢) = (x; (¢),...,xx (¢))"
with time # and 1 <t < N is given, complemented by corresponding measure-
ments y(¢t) = (y1(¢),...,yk(t))T of wind production. The task is to predict the
wind production y, at time ¢ = #; + 0 based on the wind measurements at time
titi—1,t; —2,...,t; — 4, with g € N past observations. The following questions
arise:

e how much data from the past do we need (i.e., how to choose u to reduce the
validation error),

e how far can we look into the future (i.e., how does the validation error depend on
0), and
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e how many windmills do we need for reliable prediction (i.e., how to choose K,
and where do the K windmills have to be located for an optimal prediction).

In this work we concentrate on the production of a single windmill in Section 5.2,
and on the large-scale level of a whole wind park in Section 5.3. The third question,
how many, and which windmills to select in the optimal case, will be subject to
future work.

2.2 NREL Data

The data that are basis of our analysis are taken form the NREL western wind re-
sources dataset [7, 13]. The western wind resources dataset is part of the Western
Wind and Solar Integration Study, which is a large regional wind and solar inte-
gration study in the US. It was partly created with the help of numerical weather
predictions. The data were sampled every ten minutes and every two kilometers.
About 1.2 million grid points have been aggregated to 32,043 locations. Each grid
point is estimated to hold ten Vestas 3 MW turbines, and therefore the 32,043 loca-
tions in total exhibit more than 960 GW of capacity. The set contains data of 2004,
2005 and 2006. Potter et al. [13] describe how the data for the Western Wind and
Solar Integration Study have been created. The data have been measured every ten
minutes, resulting in 52,560 measurements a year.

3 Related Work

Wind forecasting is an important task, and different approaches are known in lit-
erature. Costa et al. [3] review 30 years of short-term prediction concentrating on
forecasting methods, mathematical, statistical and physical models, as well as mete-
orology. Negnevitsky et al. [12] review forecasting techniques used for power sys-
tem applications with focus on electricity load, price forecasting and wind power
prediction. They classify methods based on time frames, application specific areas
and forecasting techniques. Milligan et al. [10] discuss, if wind is a capacity re-
source. They state that aggregation over a 750-km region leads to a reduction of
the wind energy forecasting error by about 50%. Furthermore, they state that for a
single wind power plant, predictions on a one- or two-hour basis can achieve an ac-
curacy level of approximately 57% mean absolute error to installed wind capacity,
increasing to 20% for day-ahead forecasts.

Machine learning approaches are successful methods for wind forecasting based
on past observations. As an overview of all methods is not the scope of this pa-
per, we restrict our overview to selected methods that are closely related to our
approach. Many methods are based on neural networks. Shuhui Li et al. [9] esti-
mate the wind energy production of single wind turbines at central and South West
Services Fort Davis. They discuss the structure and number of neurons in a multi-
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layer perceptron for turbine power production of single windmills. Gong Li et al.
[8] have introduced a robust two-step approach based on a Bayesian combination of
three neural networks (e.g., backpropagation, and radial basis functions networks).
They demonstrate the approach for a one-hour forecast of two wind sites in North
Dakota. Preliminary work on SVR, and wind forecasting has recently been intro-
duced. Mohandes et al. [11] compared an SVR approach for wind speed prediction
to a multi-layer perceptron. The approach is based on mean daily wind speed data
from Saudi Arabia. Shi ef al. [15] proposed an approach that combines an evolu-
tionary algorithm for parameter tuning with SVR-based prediction. The technique
allows a six-hour prediction, and is experimentally evaluated on wind data from
North China. Recently, Zhao et al. [19] compared SVR to backpropagation for a
ten-minute prediction of wind speed. Further work concentrates on special aspects
like prediction and diagnosis of wind turbine faults. Kusiak and Li [6] introduced an
approach based on fault prediction on three levels, e.g., fault category and specific
fault prediction in a five-minute to one-hour approach.

4 Support Vector Regression

As mentioned above, we make use of the support vector regression (SVR) [17, 18]
model to address our regressions tasks. The approach is one of the state-of-the-
art methods in regression. The goal of the learning process is to find a prediction
function f : 2 — R that assigns “good” predictions to unseen x € .2 (e.g., 2 =
R?). Here, we only sketch the key ideas of this concept and refer to, e.g, Smola and
Scholkopf [16] for a comprehensive overview. The SVR technique can be seen as a
special case of regularization problems of the form

n

1
inf ~ Y L(yi, £(x:)) +AlIf]1 5 (1

fest n =

where A > 0 is a fixed user-defined real value, L : R x R — [0,00) is a loss func-
tion and || f| |2% is the squared norm in a so-called reproducing kernel Hilbert space
A CR? ={f: 2 — R} induced by an associated kernel function k : 2" x 2" —
R (which can be seen as similiarity measure between the patterns). Plugging in dif-
ferent loss functions leads to different (but related) regression models. The so-called
e-insensitive loss Lg (y,1) = max (|t — y| — €,0) with € > 0 leads to

R I
Jinf, —, L max(1f (x) =yi| —e,0) +AI 1 &)

and, hence, to the SVR approach.! Here, the first term corresponds to the “differ-
ence” between the values predicted by the function (i.e., model) and the correspond-

! Note that in the latter formulation, the offset b is omitted for simplicity.
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ing real values given in the training set (residuals). The second term corresponds to
the “complexity” of the model. Ideally, one would like to have a model that fits the
data well, and that is not too “complex” at the same time to avoid overfitting.

The e-insensitive loss does not take into account small residual errors. The choice
of € defines the magnitude of errors that can be neglected. We will experimentally
analyze various settings for € in Section 5.1. Additionally, we will consider the
square-loss Ly (y,7) = (y —1)? instead of the e-insensitive loss for our experimental
evaluation.

5 Experimental Analysis

In the following, we will experimentally analyze forecasts with SVR based on the
NREL western wind resources datasets. The analysis concentrates on wind grid
points in the wind park of Tehachapi in California, USA. We employ the following
experimental settings. The SVR is trained on 1/10-th of the observations from 2006.
As core of the SVR implementation we employ is LIBSVM [1]. In the experiments
we make use of an RBF-kernel with kernel width o. Furthermore, we employ grid
search in the parameter space of A, and ¢ of the RBF-kernel. Grid search makes
use of a test dataset based on the second 1/10-th of the one-year data, and tests

the following values: 2% with o« = —15,...,15. For time-critical applications we
recommend to narrow the grid search bounds, as the successful parameters often lie
in the range between ¢ = 2% with o« = —10,...,—5,and A =2% witha = 5,...,10

for the NREL wind data. The final validation error is computed based on the second
1/5-th of the corresponding datasets, using the L, and the square-loss L.

5.1 Loss Function Parameter Study

We start the analysis with tests of different loss function parameters for the SVR
training process. The results will determine the choice of the €-value in the remain-
der of this work. Table 1 shows the analysis of five values for € that determine the
magnitude of residual errors not contributing to the overall error during training.

Table 1 Analysis of loss function parameter € on the validation error measures with Lg and L
loss.

loss 0.01 0.1 0.5 1.0 2.0

L 2,128 2.046 1.795 1.538 1.188
Ly 15.013 14.984 14.365 14.571 15.383
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For comparison we state the L¢, and the L, loss on the validation set. The experi-
ments are based on a 30-minute forecast of wind based on two time steps (data of
the last 20 min) from the past measurements of 15 wind grid points. The forecast
is computed for the energy production of one wind grid point in the middle of the
Tehachapi wind park. The results show that — as expected — the L¢-error decreases
with increasing tolerance threshold €. But the L, loss has a minimum at € = 0.5. We
assume that this setting is a reasonable choice for the following experiments.

5.2 Small-Scale Analysis: Wind Grid Point Level

The question is how far we can look into the future, and how much information from
the past is necessary for a reliable forecast. Intuitively, we would expect that a static
shot of the wind situation results in a loss of information, as no development, e.g.,
no change with regard to successive time steps is put into the model. Nevertheless,
this intuition can be misleading as hidden correlations and dependencies may exist
(e.g. relations like “strong wind measured by a northern windmill, and weak wind
by a southern means that the wind comes from the north”). In the following, we do
not rely on any assumption. We analyze the influence of the number of past time
steps on the prediction error for an increasing number of steps we look ahead.

Table 2 Forecasts for a single wind grid point in Tehachapi based on wind measurements of 15
grid points of Tehachapi and neighbored parks within a range of ca. 50 miles. The figures show
the validation error with regard to increasing steps into the future (lines, top to bottom), and an
increasing number of past measurements (columns, left to right).

1 2 3 6 12
steps Lg Ly Lg Ly Lg Ly Lg Ly Lg Ly

1.734  15.040 1.679 13.526 1.714 15384 1.690 13.558 1.807 13.592
1.765 14.654 1.767 15.698 1.797 16.022 1.798 14.790 1.860  14.193
1.869 17.128 1.868 16.605 1.823 15.571 1919 16.414 1.955 15.903
2220 20.526 2.149 18.836 2.233 19.996 2.248 19.185 2.259  18.852
2 2984 30.821 2.884 28.675 2.838 28.798 2.865 27.688 2.814  26.628

— O\ W N =

Table 2 shows the validation error for the energy forecast of a wind grid point
in Tehachapi. It is based on 15 grid points from Tehachapi and neighbored wind
parks within the range of about 50 miles. The figures show the validation error, i.e.,
L¢- and L,-loss on the validation set. From top to bottom the lines show predictions
going further into the future. From left to right the figures show predictions that
take more past time steps into account. One time step corresponds to ten minutes.
The results show that the error is increasing the further we try to predict the future
energy production. L¢- and Ly-loss are strongly correlated. Furthermore, the figures
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confirm a trend that is consistent with our expectations: the more past is taken into
account the better the predictions become.

Forecasts of sudden changes, e.g., caused by storm fronts passing, belong to the
most important aspects. As a measure for the quality of forecasts is no easy under-
taking, we employ a visual interpretation of two typical forecasts in the following.
Figure 1 shows two randomly chosen wind time series from 2006 that are not ba-
sis of the training and testing process. The plots show the actual wind (blue/solid
lines), and the forecasts based on a trained SVR model. Both plots on the left show
the ten-minute forecasts, the plots on the right show the two-hour forecasts. Red
(dark dotted) lines show the forecast based on the data from the last two hours (i.e.,
based on 12 - 15-dimensional vectors), while green (bright dotted) lines show the
forecasts only based on the last measurements ten minutes ago (i.e., based on 15-
dimensional vectors). In both situations we can observe that the ten-minute ahead
forecasts lead to very accurate results. In particular the forecast based on the last ten
minutes leads to a reliable prediction. More deviations from the true curve can be
observed, if we use the last two hours for predictions. It is known that too much ad-
ditional data can act like noise and disturb the prediction [4]. The situation changes
on the two-hour level, where the forecast based on wind measurements from the last
two hours leads to a higher accuracy. The forecast based on the ten-minute level is
much less reliable and leads to larger deviations.

Tehachapi, sequence 1, 10 min forecast Tehachapi, sequence 1, 2 h forecast

w;l

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
time time

Tehachapi, sequence 2, 10 min forecast Tehachapi, sequence 2, 2 hours forecast

MW

time time
Fig. 1 Ten-minute (left figures) and two-hour (right figures) ahead wind energy forecasts for one
Tehachapi wind grid point. Each figure shows the forecast based on ten minutes, and two hours of
past wind measurements.
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5.3 Large-Scale Analysis: Wind Park Level

Large-scale forecasting on the level of wind parks has an important part to play
for global control strategies. Besides the approach to aggregate the forecasts of all
windmills of the whole park, the sum of energy can be taken into account. In the
following, we conduct the prediction analysis on the level of a wind park near Salt
Lake City that consists of 28 wind grid points. For the forecasts we employ a set of
100 randomly chosen wind grid points in the whole western area.

Table 3 shows the experimental results of the analysis with regard to various
combinations of time steps from the past ([1,3]: ten and 30 minutes, [3,6]: 30 and 60
minutes, and [6,12]: 60 and 120 minutes), and the steps we try to look into the future
(from ten minutes to six hours). Similar to the previous section, the results show the
corresponding validation error. Based on these figures we can observe the trend that
the best forecast is achieved for the experiments predicting one hour ahead. Looking
further into the future decreases the forecasts, but still results in an acceptable vali-
dation error. Short-term forecasts do also not result in the best validation errors. This
is probably due to the fact that most of the windmills used for prediction are too far
away to determine ten-minute forecasts. They are spread across the whole western
area of the US. For the one-hour ahead forecast the past information from the last
ten minutes and 30 minutes achieves the best validation error. But employing other
combinations of time steps does not deteriorate the results significantly.

Table 3 Forecast of wind energy production of wind park near Salt Lake City. The figures show
the validation error for increasing time steps (lines, top to bottom) with regard to various time steps
from the past (columns) taken into account.

[1,3] [3.6] [6,12]
steps  Lg Ly L¢ Ly L Ly
1 57.549  9,044.233 57.218 9,271.327  58.313 9,148.557

58.786  9,932.734  58.047  9,355.095 57.745  9,433.448
12 56.113  8,774.924 56.879  8,899.538 56.649  8,822.972
24 58.448  9,250.796  57.700  8,965.454 56.869  8,804.929
36 58.598  9,599.905 59.171  9,436.259 58.992  9,968.387

Figure 2 shows a visualization of two random sequences and the corresponding
ten-minute, and six-hour ahead forecasts. The curves show the real wind that was
blowing, and the forecasts, each based on two past time steps. The plots show that
all forecasts achieve a relatively high prediction accuracy that should be satisfying
for most balancing activities in a smart grid. The predictions based on the last two
hours are even more reliable based on a ten-minute forecast than the predictions
based on the last 30 minutes. Also for the six-hour ahead forecast the prediction
based on the [6,12]-dataset results in the best curve. Local deviations from the true
curve are more frequent in the case of the [1,3]-dataset forecast.
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Wind park, Salt Lake City, sequence 1, 10 min forecast Wind park, Salt Lake City, sequence 1, 6 h forecast

MW

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
time time

It Lake City, sequence 2, 10 min forecast Wind park, Salt Lake City, sequence 2, 6 h forecast

MW

0 200 400 600 800 1000 1200 o 200 400 600 800 1000 1200
time. time

Fig. 2 Ten-minute (left figures) and six-hour (right figures) ahead forecasts for a wind park south-
east of Salt Lake City on two randomly selected sequences (upper part and lower part). Also in
case of the six-hour forecast the achieved accuracy is satisfactory.

6 Conclusion

Wind production forecasting is an important aspect for a stable grid. The integrity
and stability can be improved the better a forecast of volatile energy sources is pos-
sible. We have demonstrated that SVR is a successful method for the prediction of
wind energy production only based on wind measurements from windmills, in par-
ticular without further meteorological data or weather forecasts. SVR turns out to
be a fast and robust time series prediction technique. For the wind resource scenar-
ios we have found recommendable parameters in case the €-loss is employed. For
fast training of the SVR model, typical bounds can be identified, and the region of
interest for grid search can be narrowed. The experiments have shown that a reliable
forecast one the level of grid points is possible on the two-hour level, while the ten-
minute prediction leads to almost exact results. On the level of a whole wind park,
the results have shown that even a reasonable six-hour forecast is possible.

As a next step we plan to identify relevant prediction wind spots in a feature
selection approach. For this sake we plan to employ evolution strategies. Energy
production forecasting is not only necessary for wind data. In the future, we will try
to extend the prediction to solar energy, and to prediction of energy consumption on
the demand side.
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