
“Simplest” Paths: Automated Route Selection

for Navigation

Matt Duckham and Lars Kulik

National Center for Geographic Information and Analysis
University of Maine, Orono, ME 04469, USA

{duckham,kulik}@spatial.maine.edu

Abstract. Numerous cognitive studies have indicated that the form and
complexity of route instructions may be as important to human naviga-
tors as the overall length of route. Most automated navigation systems
rely on computing the solution to the shortest path problem, and not the
problem of finding the “simplest” path. This paper addresses the issue
of finding the “simplest” paths through a network, in terms of the in-
struction complexity. We propose a “simplest” paths algorithm that has
quadratic computation time for a planar graph. An empirical study of
the algorithm’s performance, based on an established cognitive model of
navigation instruction complexity, revealed that the length of a simplest
path was on average only 16% longer than the length of the corresponding
shortest path. In return for marginally longer routes, the simplest path
algorithm seems to offer considerable advantages over shortest paths in
terms of their ease of description and execution. The conclusions indi-
cate several areas for future research: in particular cognitive studies are
needed to verify these initial computational results. Potentially, the sim-
plest paths algorithm could be used to replace shortest paths algorithms
in any automated system for generating human navigation instructions,
including in-car navigation systems, Internet driving direction servers,
and other location-based services.

Keywords. Navigation, wayfinding, route selection, shortest path, in-
struction complexity.

1 Introduction

Most people will have had the experience of giving or receiving directions for
navigating through an unfamiliar geographic environment. For example, visiting
a foreign city for the first time, a tourist might ask a passer-by for directions to
a hotel or visitor attraction. In such situations, often what is required is not the
shortest route to a destination, but the simplest route, in terms of how easy it
is to explain, understand, memorize, or execute the navigation instructions for
the route. Most automated navigation systems rely on computing the solution to
the shortest path problem, and not the problem of finding the “simplest” path.

As a motivational example, consider the network in Fig. 1. This network
might represent, for instance, the block structure of a road network in a city.

2 Matt Duckham and Lars Kulik

Assuming the network is embedded in the Euclidean plane, there exist six equiv-
alent optimal shortest routes from intersection i1 (upper left) to intersection i9
(lower right)1. Without yet defining precisely what is meant by “simplest,” in-
tuitively only two of these six routes seem to be optimal simplest routes. Only
(i1, i2, i3, i6, i9) and (i1, i4, i7, i8, i9) avoid the more complex 4-way intersection
i5, and only these two routes require just one “turn.” We might describe the route
(i1, i2, i3, i6, i9) with the instruction sequence “orient yourself, go straight ahead,
and turn right at the end of the road.” In contrast, the route (i1, i2, i5, i8, i9)
might require a longer instruction sequence to describe, such as “orient yourself,
go straight ahead, turn right at the first intersection, then turn left at the second
intersection.”

In this paper, we propose an algorithm that can be used to select routes
that minimize the complexity of instructions, rather than the distance traveled.
The goal is to simplify navigation in an unknown environment when following
a route instruction. Following the literature review in Section 2, the algorithm
is introduced in Section 3, and its computational properties are reviewed. In
Section 4, an empirical comparison of the simplest paths algorithm with the
shortest paths algorithm is conducted, using an example road network data
set. A discussion of the results, conclusions, and suggestions for further work is
contained in Section 5.

i1 i2 i3

i4 i5 i6

i7 i8 i9

Fig. 1. Example network with six shortest and two “simplest” paths

1 i.e. (i1, i2, i3, i6, i9), (i1, i2, i5, i6, i9), (i1, i2, i5, i8, i9), (i1, i4, i5, i6, i9), (i1, i4, i5, i8, i9),
(i1, i4, i7, i8, i9)

“Simplest” Paths: Automated Route Selection for Navigation 3

2 Background

Several cognitive studies have indicated that the form and complexity of route
instructions may be as important in human navigation as the overall length of
a route. Streeter and co-authors [1, 2] looked at the use of verbal instructions in
human navigation. They found that human navigators were prepared to select
suboptimal routes, in terms of the total length of a route, in favor of routes
that were potentially easier to describe or follow. Golledge ranked ten differ-
ent criteria used in human route selection, based on experiments using human
subjects [3]. While the related criteria of shortest distance and least time were
ranked most highly, many other criteria, including number of turns, also ranked
highly. Michel Denis and coauthors studied the “informational units” contained
within human route descriptions [4]. Amongst other findings, Denis et al. showed
that those route descriptions that were considered more likely to prevent users
from making errors were preferred by study subjects. Following on from Denis,
Tversky and Lee have examined the relationship between pictorial and verbal
descriptions of routes [5, 6]. Tversky and Lee found both pictorial and verbal
route descriptions exhibited considerable redundancy in information, a feature
they attribute to the importance of reassurance and error prevention for hu-
man navigators. Research by Richter and Klippel [7], into optimal locations for
“You-are-here” maps, emphasizes the importance of the overall number of de-
cision points and the number of branches at an intersection as route selection
criteria, in addition to the length of a route. Research from the vehicle naviga-
tion literature has also confirmed that successful vehicle navigation systems rely
as much on clarity of route instructions as length of route [8, 9]. Shortest path
algorithms only minimize route efficiency, in terms of distance or travel cost, and
not route description complexity.

Algorithms for finding an optimal route that is not the shortest path have
been proposed by Shapiro et al. [10] as well as Liu [11, 12]. The approach of
Shapiro et al. can be used to take advantage of the type of roads (major roads
versus minor roads), generating a route that prefers major routes. The time to
find a route in the graph is considerably reduced, since the algorithm essentially
restricts the search to major roads. Liu [11, 12] also developed an efficient ap-
proach that incorporates road network knowledge to narrow the search for routes,
using the fact that major roads partion a road network. However, none of these
approaches have focused explicitly on the simplicity of a route description.

The aim of the simplest path algorithm presented in this paper is to mini-
mize the complexity of a route description, based on the amount of information
required to negotiate each decision point. Determining how much information is
communicated by some route description may itself be a difficult question (see
[13–15] for a discussion of the information content of geographic information in
general and route descriptions in particular). However, the simplest path algo-
rithm presented in this paper does not rely on any particular model of geographic
information content, so long as some measure of instruction complexity can be
derived for decision points along a route.

4 Matt Duckham and Lars Kulik

2.1 Automated Route Selection for Navigation

In 1986, David Mark [16] published a paper entitled “Automated route selection
for navigation” (hence the subtitle for this paper). Mark proposed a modifica-
tion of the A* shortest path algorithm, which took into account both the total
length and the “ease of description” of the route. Based on work of Streeter
and co-authors [1, 2], Mark [17] classified different intersections according to the
complexity of the instructions needed to successfully negotiate that intersec-
tion. Using this classification, Mark’s algorithm adjusted the weights used in the
shortest path computation to preferentially select routes through intersections
that could be described using less complex instructions.

The simplest paths algorithm below was motivated in part by the work pre-
sented by Mark. However, the algorithm below differs in at least three ways from
that presented in [16]. First, the simplest path algorithm does not use distance
or any other metric information in its operation. The algorithm computes the
simplest paths using only a measure of instruction complexity. Even without
any metric information, the results in Section 4 indicate that simplest paths
are still comparable in length to shortest paths. Second, the lack of distance
information means the simplest path algorithm does not depend on an arbitrary
assignment of weights to the relative importance of distance and instruction
complexity. Given a weighting function for instruction complexity, the simplest
path algorithm proposed here yields a uniquely determined simplest path from
start to destination. Third, the algorithm presented below is a single source al-
gorithm, able to efficiently compute the distance from a single source vertex to
every other vertex. Recent work by Duckham et al. [18] has indicated that sin-
gle source route finding algorithms are particularly important in the context of
navigation under imprecision, where a user’s precise location or destination may
be unknown. Other uses of single source route finding might include applications
where multiple route options need to be presented to the user, for example find-
ing the routes from a user’s current location to a variety of tourist attractions.
The computational properties of the algorithm are discussed in more detail in
Section 3.1.

3 Formal Model of Simplest Paths

Graphs are a common mechanism for representing networks, such as road net-
works. A graph G comprises a set of vertices V and edges E connecting those
vertices. A weighted graph additionally has a function w : E → R

+ associating
a weight with each edge e ∈ E. Finding the shortest paths, the paths of least
cost between vertices in a weighted graph, is a fundamental network analysis
function and a classic problem in computation. There have been estimated to be
more than 2000 articles published on the topic since the 1950s [19]. As a result,
we make no attempt here to summarize the different approaches to computing
shortest paths; any introductory textbook on algorithms (e.g. [20]) or artificial
intelligence (e.g. [21]) will contain such a summary.

“Simplest” Paths: Automated Route Selection for Navigation 5

The essential difference between shortest and simplest paths algorithms is
that the latter uses a weighting function that associates a weight with each
pair of connected edges (rather than each edge) in the graph, w : E → R

+ where
E = {

(

(vi, vj), (vj , vk)
)

∈ E×E}. The intuition behind these weights is that they
should reflect the amount or complexity of information required to negotiate the
“decision point” represented by the edge pair (i.e. negotiating the path from
vi to vk through intersection vj). The more information needed, the higher the
weight for an edge pair. The later discussion in Section 4.1 contains an example
of such a function.

The actual simplest path algorithm is presented in Algorithm 1 below. The
graph used in the simplest path algorithm is assumed to be directed (i.e. the
direction of the edges is significant), connected (i.e. there exists a path from any
vertex to any other vertex), and simple (i.e. there are no edges from a vertex to
itself and at most one edge between two different vertices). Algorithm 1 operates
by first initializing all edges connected to the starting vertex with zero weight.
Thus, the algorithm applies no cost to the initial orientation stage of routing.
A more sophisticated algorithm might include weights for initial orientation,
perhaps preferentially selecting initial orientations that are easier to explain
(for example, orientation towards an easily visible nearby landmark). Next, the
algorithm iterates through each edge, minimizing the cumulative instruction
complexity. At each iteration, the edge associated with the minimum instruction
complexity is selected, and the cumulative instruction complexity from that edge
to all connected edges is recalculated. The algorithm interates until all edges have
been visited. At no point in the algorithm is any distance information involved
in the calculation, only the instruction complexity.

Algorithm 1: Simplest path algorithm

Initial conditions: G = (V, E) is a connected, simple, directed graph; s ∈ V

is the starting vertex; E is the set of pairs of (directed) edges that share their
“middle” vertex, E = {((vi, vj), (vj , vk)) ∈ E × E}; w : E → R

+ is the graph
weighting function; cs : E → R

+ stores the weights of the simplest path from
s; S = {} is a set of visited edges.

Initialize cs(e) = ∞ for all e ∈ E

for all (s, vi) ∈ E do

set cs(s, vi) = 0

while |E\S| > 0 do

Find e ∈ E\S such that cs(e) is minimized
Add e to S

for all e′ ∈ E\S do

if (e, e′) ∈ E then

set cs(e
′) =min

(

cs(e
′), cs(e) + w(e, e′)

)

The function cs in Algorithm 1 stores the weights of the simplest paths
from s to every destination vertex. To recover the simplest path to a particular

6 Matt Duckham and Lars Kulik

destination vertex d ∈ V , we must first find the edge (vi, d) ∈ E where cs(vi, d)
is minimum. Reconstructing the simplest path is then a matter of iterating
backwards through the edges, at each iteration choosing the least costly edge
(Algorithm 2).

Algorithm 2: Retrieving the simplest path using cs (see also Algorithm 1)

Initial conditions: Weights cs from simplest path algorithm (see Algorithm
1), starting vertex s ∈ V and destination vertex d ∈ V .

Initialize t = d, path p = (t)
while t 6= s do

Find (v1, t) ∈ E such that cs(v1, t) is minimized
Prepend vertex v1 to path p

Set t = v1

3.1 Computational Issues

One way of explaining how the simplest path algorithm operates, is by consid-
ering the mapping of graph G = (V,E) onto G′ = (E′, E), which we term the
evaluation mapping µ. In the evaluation mapping, the set of vertices E′ in G′

is mapped from the set of edges E in G, where the direction of the edge is ig-
nored (i.e. (vi, vj) = (vj , vi) in E′). The set of (directed) edges in G′ is mapped
from the set of pairs of connected (directed) edges in G, introduced above and
denoted using E . Note that the evaluation mapping does not form the dual of a
graph. Furthermore, the evaluation mapping is not injective and does not nec-
essarily preserve planarity. Fig. 2 provides an example of an evaluation mapping
µ, which maps (undirected) edges in G onto vertices in G′, and pairs of con-
nected (directed) edges in G onto (directed) edges in G′. Finding the simplest
paths from v in G means finding the shortest paths from any vertex in G′ which
v maps onto (i.e. any edge in E which contains v). This can be accomplished
with any single source shortest paths algorithm, like the Dijkstra algorithm (see
[20]). Therefore, the simplest paths algorithm in Algorithm 1 can be considered
essentially equivalent to first mapping the graph, then finding the shortest path
through the mapped graph using a conventional shortest path algorithm.

It follows that the time complexity of the simplest path algorithm is closely
related to the time complexity of the shortest path algorithm. Dijkstra’s algo-
rithm has a time complexity of O(|V |2), where |V | is the number of vertices in
the graph G. Therefore, the simplest path algorithm has a time complexity of
O(n2), where n is the number of vertices in G′, or equivalently the number of
edges in the graph G. In the worst case, the graph G′ could have as many as
n = |V |(|V | − 1) vertices, leading to a complexity of O(|V |4) for the simplest
path algorithm. However, such a worst case would require a totally connected
graph (every pair of vertices is connected by an edge). Most geographic net-
works can be considered to be planar graphs. Planar graphs have a maximum

“Simplest” Paths: Automated Route Selection for Navigation 7

v1

③ ③

③ ③

✐

✐ ✐
✌

✍✍✍

③

◆

✶

✮
✶

❑

◆

❑
✮

✶

③
✐

❑

✶

v2

v5v4 v6

v3

(v1, v4)

(v1, v2) (v2, v3)

(v3, v6)

(v5, v6)(v4, v5)

(v2, v5)

G = (V, E) G′ = (E′, E)

µ

Fig. 2. Evaluation mapping µ between graphs in the simplest path algorithm

number of edges m = 3(n − 2). This follows from Euler’s Polyhedron Formula:
a simple connected planar graph with n vertices, m edges, and f faces satisfies
n − m + f = 2. As a result, for a simple planar graph the time complexity
of the simplest path algorithm is O(|V |2). For planar graphs with nonnegative
edges Henzinger and co-workers [22] recently presented a linear-time algorithm
for single-source shortest paths. Since the graph G′ might not be planar, the
simplest path algorithm can be slower than the shortest path algorithm.

As indicated in Section 2.1, the simplest path algorithm is a single source
algorithm. Like the Dijkstra algorithm, it computes the shortest path to every
destination in the graph. Mark’s original work uses the A* algorithm to compute
the distance from a single source to a single destination only [16]. The relation-
ship between A* and Dijkstra is well documented in the literature (e.g. [21]).
The key difference between the two algorithms is that the A* algorithm uses a
heuristic to preferentially explore more promising paths. For geographic infor-
mation, the Euclidean distance to the destination forms an ideal heuristic, as it
is a consistent underestimate of the network distance to the destination. Unfor-
tunately, there is no natural heuristic for the mapped graph. There is no obvious
choice for a non-trivial heuristic function that provides a consistent underes-
timate of the instruction complexity between any two vertices in the mapped
graph. Unless such a heuristic function could be found, A* cannot be used for
simplest paths, although this has not yet been fully investigated. In the worst
case the computational complexity of the A* algorithm will be O(n2), the same
as for the Dijkstra algorithm. However, the heurisitic means that A* is on aver-
age more efficient than Dijkstra where only one route from a single source to a
single destination is needed.

4 Comparison of Simplest and Shortest Paths Algorithms

In order to explore the performance and properties of the simplest path algo-
rithm, the algorithm was implemented in Java and tested using an example
weighting function and an example road network data set. Section 4.1 below

8 Matt Duckham and Lars Kulik

provides details of the weighting function used, with the results following in
Section 4.2.

4.1 Choosing a Weighting Function

Any weighting function w : E → R
+ can be used in the simplest path algorithm

in Algorithm 1. However, as stated in Section 3, the weights should be chosen
to reflect the amount or complexity of information required to negotiate the
“decision point” represented by a pair of edges (ei, ej) ∈ E . The weights must be
ordered so that more complex decision points are associated with higher weights.
There are several studies that contain classifications of route instructions that
might be used as a basis for a weighting function. For example, Denis et al.
provide a model of idealized route instructions [23, 4] that might be used. Several
other models, including Kuipers’ TOUR model [24, 25] and the PLAN model of
Chown et al. [26], might yield different weighting functions. In implementing the
simplest path algorithm in this study, the weighting function described below
follows Mark’s original work [16], in which the weights were derived from the
work of Streeter and coauthors [1, 2].

In Mark [16], instructions are classified into frames, each frame having sev-
eral slots for different elements of an instruction. A generic turn instruction is
modeled as a frame containing a total of 9 slots. Each slot covers information
about whether to turn left or right (3 slots), how to recognize when to turn (2
slots), how to recognize if the navigator has gone too far (1 slot), and summary
information providing an overview of the turn (3 slots). A turn at a T-junction
contains only 6 slots, since it is easy to recognize and not possible to overshoot
a T-junction (so information about how to recognize the turn and what to do
it the navigator goes too far are unnecessary). A turn in the road that is not
at an intersection contains just 4 slots, and so on. The number of slots can be
considered as a measure of the information content of the instruction needed
to negotiate a decision point, and so was used as the weighting function in this
experiment.

Three small deviations from the weights used in Mark [16] seem sensible.
First, Mark’s weighting contains no cost for going straight on. A navigation
system should at least be able to reassure a user that they are on the right
track, even if just going straight on, so in our weighting function the cost of
straight on was one slot. Second, Mark [16] included a 3-slot weighting for an
instruction where the name of a road changed while continuing straight on.
The algorithm as implemented does not include this weighting, as this initial
work focuses solely on the geometry and topology of the road network, not the
attributes. However, such weights could easily be implemented (see discussion in
Section 5). Third, Mark’s original model does not distinguish between general
intersections of different degree. Intuitively, the instruction for turning left at a
3-way intersection requires less information than at a 4-way intersection, which
in turn requires less information than for a 5-way intersection. To reflect this
wrinkle, the weight for turning left or right at a general intersection vertex v

was set to 5 + deg(v). This means for a 4-way intersection, the weighting is as

“Simplest” Paths: Automated Route Selection for Navigation 9

in Mark [16], 9 slots, but for a 3-way intersection the weighting is 8 slots, and
for a 5-way 10 slots.

✻

✛

✛

✛

Straight on

Turn

Turn left or right

Turn left or right

1 slot

4 slots

6 slots

5 + deg(v)

(not at intersection)

at T-junction

at other junction ✛ slots
vv

Fig. 3. Weighting of different intersection types, based on [16]

The instruction classification and associated weights are illustrated in Fig.
3. Note that this weighting function means that unlike shortest paths, simplest
paths are not symmetric: the simplest route from A to B may not be the same
as the simplest route from B to A. For example, coming from one direction,
turning right at a T-junction is weighted 6 slots, while coming from the other
direction, turning left at a 3-way intersection is weighted 8 slots. The weighting
function also means that, unlike shortest paths, simplest paths do not satisfy the
triangle inequality : the simplest path from A to C may be longer than the length
of the simplest path from A to B plus the length of the simplest path from B to
C. The triangle inequality might be violated because adding the lengths of the
simplest path from A to B and from B to C ignores the information required to
negotiate the intersection at B, information that is included in the calculation
of the simplest path from A to C. Since simplest paths are neither symmetric
nor fulfil the triangle inequality, simplest paths cannot be determined by any
metric.

10 Matt Duckham and Lars Kulik

4.2 Algorithm Performance

The results of using of the shortest path algorithm on several example road
network data sets were encouraging. This paper reports the results of an ex-
haustive analysis on road network data set for the city of Bloomington, Indiana,
USA, which exhibits a wide range of different network configurations, including
a dense downtown grid network and sparser suburban networks. Fig. 4 shows a
comparison of simplest and shortest paths between two vertices from within a
downtown area of Bloomington.

400m

Key

Shortest path

Simplest path

Network edge

Start

Destination

Key

Shortest path

Simplest path

Network edge

Start

Destination

Fig. 4. Example comparison of a shortest and simplest path (approximate scale)

The thick black line in Fig. 4 shows the shortest path. The double black line
shows where the simplest path deviates from the shortest path. The simplest
path contains only four turns, all made at three-way intersections. The shortest
path contains many more turns: a total of 12 turns, made at a range of two-,
three- and four-way intersections. The lengths of the two paths are very similar:
the simplest path is 2% longer than the shortest path.

The performance of the simplest path algorithm was exhaustively tested for
the entire data set. With more than 3000 vertices in the data set, this involved
computing the shortest and simplest paths for a total of over 10 million pairs
of vertices. A comparison of the lengths of the simplest and shortest paths for

“Simplest” Paths: Automated Route Selection for Navigation 11

one set of 3200 shortest paths from a single source to every other vertex in the
data set is shown in Fig. 5. The figure provides a scatter plot of the normalized
simplest path length (the ratio of simplest to shortest path lengths), plotted
against shortest path length.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Length of shortest path (m)

R
at

io
 o

f
le

n
gt

h
s

o
f

si
m

p
le

st
 t

o
 s

h
o

rt
es

t
p

at
h

Fig. 5. Scatter plot comparing the simplest and shortest path lengths for a single source

In this example, more than 90% of the simplest paths between two vertices
are less than 50% longer than the corresponding simplest path. This example is
typical: for the entire data set of more than 10 million simplest paths, 93.2% of
the shortest paths are less than 50% longer than the corresponding shortest path.
Over the entire data set, on average a simplest path is 15.8% longer than the

12 Matt Duckham and Lars Kulik

corresponding shortest path. A noticeable but incidental feature of the scatter
plot is that it exhibits some strongly correlated “stripes” running from the top
left to the bottom right. These occur because the set of all shortest paths from a
single starting vertex is strongly correlated, with many of the paths containing
similar sequences of edges.

Key

Shortest path

Simplest path

Network edge

Start

Destination

Key

Shortest path

Simplest path

Network edge

Start

Destination 2500m

Fig. 6. Comparison of a typical shortest and simplest path (approximate scale)

Fig. 6 shows an example of one path where the starting point is some way out
of the dense downtown road network. The example in Fig. 6 is drawn from the
data set plotted in Fig. 5. The simplest path (shown as double black line) has
total length of approximately 10km, 30% longer than the shortest path (thick
black line), placing it somewhere near the middle of the scatter plot in Fig. 5.
Fig. 7 shows the “worst case” outlier simplest path, also drawn from the data set
plotted in Fig. 5. This simplest path has a total length of approximately 18km,
75% longer than it’s corresponding shortest path, placing it right at the top of
Fig. 5. The most noticeable features of the simplest paths in both Fig. 6 and 7 is
that they tend to skirt the city center areas, in favor of longer routes through less
dense road networks. In the “worst case” example in Fig. 7, the simplest path
actually goes south, in the opposite direction from the destination, in order to

“Simplest” Paths: Automated Route Selection for Navigation 13

join a long straight road with relatively few intersections (actually an Interstate
highway), and travels north past the destination before switching back south to
the destination. Despite being the “worst case,” this does not seem an unreason-
able route to choose. The route avoids the numerous complicated intersections
traversed by the shortest path, at the cost of increased total distance.

Note that Interstate highway has fewer intersections than it would appear
from Fig. 7 alone: several minor roads cross the Interstate, but do not intersect
it (underpasses or bridges). This is the reason why the simplest path must travel
south away from the destination to join the Interstate and north past the desti-
nation to leave it. The example highlights that the assumption of a planar graph
(see Section 3.1) is an oversimplification for road networks. Note also that the
algorithm has no access to information about what sort of road it is selecting.
A more sophisticated algorithm could preferentially select routes that use more
important or faster roads. That is not what is happening in Fig. 7: it is simply
that the relatively low frequency of intersections and straightness of the highway
means it is a low cost route for the simplest path algorithm.

2500m

Key

Shortest path

Simplest path

Network edge

Start

Destination

Key

Shortest path

Simplest path

Network edge

Start

Destination

Fig. 7. Comparison of a “worst case” shortest and simplest path (approximate scale)

14 Matt Duckham and Lars Kulik

Finally, Fig. 8 summarizes the entire data set of 10 million shortest paths.
Fig. 8 shows the spatial distribution of the standard deviation of the normalized
lengths of the simplest paths. Each point in Fig. 8 represents the standard devi-
ation of normalized length for all simplest paths starting from that point. The
standard deviations have been classified in five quantiles (five classes with equal
cardinality).

Lowest (x< 0.14)

Low (0.14<=x<0.17)

Mid (0.17<=x<0.2)

High (0.2<=x<0.24)

Highest (0.24<=x<0.6)

Fig. 8. Spatial distribution of the standard deviation of normalized simplest path
length

The figure shows generally low standard deviations (lighter gray data points)
in the denser downtown road network regions and in the sparse suburban road
network regions (c.f. the road network in Fig. 7). The higher standard deviations
(darker gray points) generally occur at the periphery of the dense downtown
road networks, at the transition to sparse suburban road networks. This greater
variability can be interpreted as a result of the deviations of the simplest path
from the shortest path being more pronounced at the periphery of the dense
downtown road networks. Starting locations within the downtown road network
have no option but to traverse this denser network. Starting locations well away
from the downtown road network require relatively smaller deviations to avoid

“Simplest” Paths: Automated Route Selection for Navigation 15

the denser network if necessary. Those locations at the periphery of the denser
downtown road network are more likely to require larger deviations from the
shortest path, such as that shown in Fig. 7. A similar diagram showing the spatial
distribution of mean normalized simplest path length revealed no appreciable
spatial pattern.

5 Discussion and Conclusions

The results of this work are generally encouraging. The simplest paths are on
average only 16% longer than the shortest paths, and more than 90% of sim-
plest paths are less than 50% longer than the corresponding shortest paths. In
return for paths of slightly longer length, the simplest paths algorithm produces
routes through a network that are cognitively plausible, in the sense that they
are based on a cognitive model of the complexity of instructions needed to com-
plete a route. Further, the simplest paths algorithm requires no distance or other
metric information to operate. Diagrams like Fig. 4 provide compelling (if sub-
jective) evidence that the simplest paths are indeed more cognitively plausible
that simplest paths. Even the “worst case” examples, like Fig. 7 do not appear
to be unreasonable routes. A major component of future work, therefore, should
be cognitive studies with human subjects to test the hypothesis that the route
instructions based on simplest paths are preferable, less error prone, or easier to
explain and use for human navigators, when compared with route instructions
based on shortest paths.

The analysis presented in this paper has empirically examined the relation-
ship between the lengths of simplest and shortest paths. While the data set
used in the analysis does exhibit a range of different network configurations and
densities, further empirical work studying different types of road network might
reveal some different properties (for example, the road networks in many Euro-
pean cities, which have developed over longer periods of time). Moreover, the
work presented in this paper lacks a theoretical basis for the relationship between
the length of simplest and shortest paths. As a result, further theoretical work
is needed to explore this relationship, including the investigation, identification,
and classification of different types of graph with respect to the properties of
simplest and shortest paths through those graphs.

The simplest path algorithm can have a longer computation time than short-
est path algorithms. Assuming the graph is planar, the algorithm has at most
quadratic computation time. In some cases, graphs may be locally non-planar,
as in road networks where roads cross but do not intersect, (e.g. overpasses or
bridges). However, road networks still retain relatively low connectivity, so it
seems unlikely that these locally non-planar graphs would significantly increase
the computational complexity of the simplest paths algorithm. The simplest
paths algorithm can efficiently compute the simplest paths from a single source
vertex to every other vertex in the graph. This property can be vital for dealing
with imprecision in navigation, for example, where the location or destination
of a navigation agent may not be precisely known [18].

16 Matt Duckham and Lars Kulik

The simplest path algorithm might easily be adapted to provide more so-
phisticated behavior. As seen in Fig. 7, the simplest path algorithm sometimes
selects major roads simply by virtue of their straighter geometry and less con-
nected topology (i.e. fewer intersections). A modification of the weighting func-
tion could easily be used to explicitly prefer certain types of road [10–12]. For
example, major roads could be preferred in the route selection by making the
weights for turning onto a major road smaller, and turning off a major road
larger. Conversely, minor roads could be avoided by making the weights for
turns onto a minor road larger, and turning off a minor road smaller. Many
other possible adaptations of the algorithm could result from other modifica-
tions of the weighting function. Another important component of future work,
therefore, should be cognitive studies with human subjects to determine what
types of weighting functions are most appropriate for human users in a particular
contexts.

Acknowledgements

This work was conducted under the SmartMaps project, supported by the Na-
tional Imagery and Mapping Agency, grant no NMA201-01-1-2003. The authors
would like to acknowledge David Mark, for an early conversation which helped
initiate many of the ideas for this work, as well as later comments on a first
draft which helped shape the paper. In addition, comments and suggestions
from Max Egenhofer and Mike Worboys were valuable. This research has also
benefited from collaboration with Jörg-Rudiger Sack at Carleton University, Ot-
tawa (NSERC supported Collaborative Research and Development grant). The
authors are also grateful to the three anonymous reviewers for their constructive
comments.

References

1. Streeter, L., Vitello, D., Wonsiewicz, S.: How to tell people where to go: Comparing
navigational aids. International Journal of Man Machine Interaction 22 (1985)
549–562

2. Streeter, L., Vitello, D.: A profile of driver’s map-reading abilities. Human Factors
28 (1986) 223–239

3. Golledge, R.: Path selection and route preference in human navigation: A progress
report. In Frank, A., Kuhn, W., eds.: Spatial Information Theory: A Theoretical
Basis for GIS (COSIT ’95). Number 988 in Lecture Notes in Computer Science,
Berlin, Springer (1995) 207–222

4. Denis, M., Pazzaglia, F., Cornoldi, C., Bertolo, L.: Spatial discourse and navi-
gation: An analysis of route directions in the city of Venice. Applied Cognitive
Psychology 13 (1999) 145–174

5. Tversky, B., Lee, P.: How space structures language. In Freksa, C., Habel, C.,
Wender, K., eds.: Spatial Cognition. Number 1404 in Lecture Notes in Computer
Science, Berlin, Springer (1998) 157–176

“Simplest” Paths: Automated Route Selection for Navigation 17

6. Tversky, B., Lee, P.: Pictorial and verbal tools for conveying routes. In Freksa, C.,
Mark, D., eds.: Spatial Information Theory. Cognitive and Computational Foun-
dations of Geographic Information Science (COSIT’99). Number 1661 in Lecture
Notes in Computer Science, Berlin, Springer (1999) 51–64

7. Richter, K.F., Klippel, A.: “You-are-here maps”: Wayfinding support as location
based service. In Moltgen, J., Wytzisk, A., eds.: GI-Technologien für Verkehr und
Logistik. IfGI Prints 13, Münster (2002)

8. Burnett, G.: ‘Turn right at the traffic lights’: The requirement for landmarks in
vehicle navigation systems. Journal of Navigation 53 (2000) 499–510

9. May, A., Ross, T., Bayer, S.: Drivers’ informational requirements when navigating
in an urban environment. Journal of Navigation 56 (2003) 89–100

10. Shapiro, J., J., W., Nir, D.: Level graphs and approximate shortest paths algo-
rithms. Networks 22 (1992) 691–717

11. Liu, B.: Using knowledge to isolate search in route finding. In: Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95.
Volume 1., Montréal, Québec, Canada, Morgan Kaufmann (1995) 119–125

12. Liu, B.: Intelligent route finding: combining knowledge, cases and an efficient
search algorithm. In: 12th European Conference on Artificial Intelligence (ECAI-
96), Budapest, Hungary, John Wiley and Sons (1996) 380–384

13. Frank, A.U.: Pragmatic information content—how to measure the information
in a route description. In Duckham, M., Goodchild, M.F., Worboys, M.F., eds.:
Foundations in Geographic Information Science. Taylor & Francis, London (2003)
47–68

14. Goodchild, M.F.: The nature and value of geographic information. In Duckham,
M., Goodchild, M.F., Worboys, M.F., eds.: Foundations in Geographic Information
Science. Taylor & Francis, London (2003) 19–31

15. Worboys, M.F.: Communicating geographic information in context. In Duckham,
M., Goodchild, M.F., Worboys, M.F., eds.: Foundations in Geographic Information
Science. Taylor & Francis, London (2003) 33–45

16. Mark, D.M.: Automated route selection for navigation. IEEE Aerospace and
Electronic Systems Magazine 1 (1986) 2–5

17. Mark, D.M.: Finding simple routes: ’ease of description’ as an objective function
in automated route selection. In: Proceedings, Second Symposium on Artificial
Intelligence Applications (IEEE), Miami Beach (1985) 577–581

18. Duckham, M., Kulik, L., Worboys, M.F.: Imprecise navigation. GeoInformatica 7

(2003) 79–94
19. Pallottino, S., Scutellà, M.: Shortest path algorithms in transportation models:

Classical and innovative aspects. In Marcotte, P., Nguyen, S., eds.: Equilibrium
and Advanced Transportation Modelling. Kluwer, Amsterdam (1998) 245–281

20. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. Sec-
ond edn. McGraw-Hill (2001)

21. Luger, G., Stubblefield, W.: Artificial Intelligence: Structures and strategies for
complex problem solving. Third edn. Addison-Wesley, Reading, MA (1998)

22. Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. Journal of Computer and System Sciences 55 (1997)
3–23

23. Denis, M.: The description of routes: A cognitive approach to the production of
spatial discourse. Cahiers de Psychologie Cognitive 16 (1997) 409–458

24. Kuipers, B.: Representing Knowledge of Large-Scale Space. PhD thesis, Mathe-
matics Department, Massachusetts Institute of Technology (1977) Technical Re-
port 418, M.I.T. Artificial Intelligence Laboratory.

18 Matt Duckham and Lars Kulik

25. Kuipers, B.: Modelling spatial knowledge. Cognitive Science 2 (1978) 129–153
26. Chown, E., Kaplan, S., Kortenkamp, D.: Prototypes, location and associative net-

works (plan): Towards a unified theory of cognitive mapping. Journal of Cognitive
Science 19 (1995)

