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Abstract

Single-cell analyses of transcriptional heterogeneity during drug tolerance

transition in cancer cells by RNA sequencing

by

Mei-Chong Wendy Lee

The acute cellular response to stress generates a subpopulation of reversibly stress-

tolerant cells under conditions that are lethal to the majority of the cell population.

Stress tolerance is attributed to heterogeneity of gene expression within the cell popula-

tion to ensure the survival of a minority cell population. I performed whole-transcriptome

sequencing analyses of metastatic human breast cancer cells, MDA-MB-231, subjected

to the chemotherapeutic agent Paclitaxel at the single-cell- and cell-population lev-

els. Here, I show that specific transcriptional programs are enacted within untreated,

stressed, and drug-tolerant cell groups, while generating high heterogeneity between

single-cells within and between groups. I further demonstrate that drug-tolerant cells

contain specific expressed single nucleotide variants (RNA variants) residing in genes

involved in microtubule organization and stabilization as well as cell adhesion and

cell surface signaling. Unexpectedly, drug-tolerant cells rapidly reacquire Paclitaxel-

sensitivity, high cell-to-cell transcript variability, and a gene expression profile similar

to that of the untreated cells within a few rounds of cell division. Thus, single-cell anal-

yses reveal the dynamics of the stress response in terms of cell-specific RNA variants

driving heterogeneity, the survival of a minority cell population through generation

ix



of specific RNA variants, and the efficient reconversion of stress-tolerant cells back to

normalcy.
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Chapter 1

Introduction

A major barrier to successful cancer treatment is the recurrence of cancer cells

with acquired resistance to chemotherapy [10, 28, 94]. However, the molecular events

underlying cancer cell evolution towards a drug-resistant phenotype are largely un-

known. Recent studies using next generation sequencing (NGS) systems have at-

tempted to identify the genetic changes that drive tumorigenesis and resistance to

treatments [37, 61]. These studies have revealed that many of the resistance-imparting

mutations identified are different from tumor to tumor. In addition to heterogeneity

across tumors from different patients, intratumor heterogeneity adds another level of

complexity. Minor subpopulations of cancer cells can harbor aberrations that are asso-

ciated with resistance to therapy and tumor progression [27, 86, 90]. Thus, treatments

may be effective against the majority of the tumor, but a small population of resistant

cells can cause the persistence, recrudescence, or recurrence of cancer that is refractory

to further treatment. Sequencing-based studies on bulk tumor tissue can only identify
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mutations present in subpopulations of a heterogeneous tumor in a limited capacity.

Rare mutations that are only present in a small number of cells in a cell-population

might not be detectable by the traditional bulk-cell sequencing since the rare muta-

tions can be ”drown out” by the major alleles in the population. By sequencing the

transcriptome at the single-cell level, it is more likely to identify low abundance muta-

tions that will allow us to identify the drivers of drug resistance.

Resistance of cancer cells to different chemotherapy drugs has been reported

in different types of cancer, especially in metastatic breast cancer [43, 122]. One of

the commonly used chemotherapy drug for treating solid breast tumors is Paclitaxel

(Taxol
TM

) [7]. Palitaxel has been clinically shown to improve the overall and disease-

free survival of metastatic and early-stage breast cancer patients [9, 83]. This cytotoxic

agent targets microtubules to interfere with the mitotic spindle, resulting in cell cycle

arrest and, ultimately, in apoptosis. However, Paclitaxel resistance is common [65].

Paclitaxel treatment kills most tumor cells but, for the residual cancer cells, the mech-

anisms of resistance are unclear [7]. An important question is whether mutations that

drive drug resistance are common in a cell population, or arise from unique mutations

in individual cells.

Recent DNA sequencing advances have enabled the analysis of DNA and

RNA within a single-cell. The coupling of whole genome amplification and DNA se-

quencing has allowed multiple groups to study the genetics of single-cells, but not

without significant amplification biases [49, 51, 124]. Moreover, single-cell exome se-

quencing has confirmed the clonal heterogeneity of a solid tumor identifying key mu-
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tations across much of the genome [119]. DNA sequencing can identify mutations

across the genome, but is unable to illuminate expressional differences that can con-

tribute significantly to drug resistance. Multiplexed single-cell qPCR assays allow

expression-based analysis of up to 96 targets in a single experiment [18]. Recently,

a few groups have demonstrated that mRNA sequencing (RNA-Seq) of single-cells us-

ing NGS technology is feasible, reproducible, and usable for gene expression-based

classification of cell subpopulations [14, 35, 79]. A major advantage of RNA-Seq in

single-cell studies is that the entire transcriptome can be surveyed, rather than a lim-

ited number of genes. DNA and RNA methodologies are not mutually exclusive and

can be combined to generate more biologically significant information.

Here, I leveraged the power of single-cell RNA-Seq to identify single nu-

cleotide variants (SNVs) and gene expression at the single-cell level in a drug-tolerance

experimental paradigm. I evaluated three groups of cells from the human breast car-

cinoma cell line, MDA-MB-231: untreated cells, stressed cells that had been exposed

to Paclitaxel treatment for 5 days plus 1 day drug-free, and drug-tolerant cells from

a small (n<64) clonal population of cells that resumed proliferation after Paclitaxel

treatment. In addition to sequencing the mRNA of single-cells, DNA sequencing of

a population of untreated MDA-MB-231 cells and RNA-Seq of bulk cells from each

of the three groups were performed to facilitate the identification of single nucleotide

variants (SNVs) and RNA variants. I performed differential gene expression profiling

for single-cells and population cells of the three groups to identify the transcriptional

stress response and cytotoxic effects of Paclitaxel on gene expression. Using SNV call-
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ing methods, I performed SNV detection with two other published single-cell RNA-

Seq datasets, comparing the variants’ frequencies between the datasets from this study

and the others found in normal human single-cells and other cancer cells.
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Chapter 2

Background

2.1 Single-cell RNA Sequencing

The classical approach in studying gene expression is to grind up tissue and

analyze the contents of large pools of cells. However, tissue is often comprised of het-

erogeneous populations of cells where much variation occurs at the single-cell level.

For example, in tumor tissue, there are heterogeneous populations of multiple clonal

expansions [5, 27, 99]. Analyzing a tumor as a whole could mask rare, but impor-

tant, characteristics of the tumor. Many research groups have developed molecular

techniques to overcome the challenges of sequencing minute amounts of messenger

RNA (mRNA) inside a single-cell. The amount of total RNA present in a single-cell

is estimated to be between 1 to 50 picograms (pg), and only 1-5 percent of this mass

is composed of mRNA [58]. Most of the current next generation sequencing (NGS)

platforms require input amounts of 50-1000 nanograms (ng) of DNA [76]. In order to
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generate enough starting material for NGS, amplification of nucleic acid is an :essential

step for single-cell sequencing. The most commonly employed amplification method

is the polymerase chain reaction (PCR). In-vitro transcription techniques are also useful

in amplifying a cell’s RNA, and microfluidic sample preparation further improves the

efficiency of sequencing minute amount of mRNA in single-cells.

Single-cell RNA-Seq is a powerful tool for understanding the gene regulatory

network at the single-cell level. It has been applied to single-cell studies including

human preimplantation embryos, human embryonic stem cells [121], single-cells from

dissected hippocampal tissue of mouse [29], and immune cells from mouse [89]. In

this section, single-cell mRNA sequencing utilizing the two amplification methods de-

scribed above, as well as the microfluidic sample preparation technique will be cov-

ered. I will also cover a number of commercially available cDNA library preparation

kits that are capable of amplifying total RNA at the picogram level.

2.1.1 Single-cell RNA-Seq techniques using PCR technology

Polymerase chain reaction (PCR) is one of the most widely used methods in

amplifying DNA [81], commonly used in cDNA synthesis. Briefly, cDNA is first syn-

thesized from mRNA isolated from a single-cell using reverse transcriptase. A primer

site is added to the 3′ end of the first-strand cDNA by the action of a terminal trans-

ferase. After the second-strand cDNA is made, the amplification process utilizes the

added primer site in the first-strand cDNA and the poly(A) tail of the second-strand

cDNA as priming sites for PCR. In 2010, Azim Surani, Kaiqin Lao and colleagues
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adapted a single-cell protocol developed for single-cell microarray studies for single-

cell RNA-Seq, and performed deep sequencing for single-cells of the early mouse em-

bryo on the SOLiD sequencing platform [102]. This was the first method published

for single-cell RNA-Seq. First, single-cells were lysed in a relatively mild lysis buffer.

Subsequently, cDNA synthesis was performed with two oligo(dT) primers, both con-

taining a 24-nucleotide poly(dT) tail at the 3′ end and a 24-nucleotide anchor sequence

to add a universal tail to the cDNAs that served as a universal priming site for second-

strand synthesis. Then, the cDNAs were amplified in the PCR step using a pair of

primers with an NH2-modification at their 5′ ends with a C6 linker to suppress the

contamination of primer dimers in the sequencing library. At the time this paper was

published, this technique could only amplify molecules that were no more than 3 kilo-

bases long, so about 40% of transcripts were missed. Nonetheless, the method de-

tected expression of about 12,300 genes in the early mouse embryo cells, which was

75% more than were detected by microarray techniques. But there are a few draw-

backs to this technique: it preferentially amplified the 3′ end of mRNAs, and it did not

always generate read coverage across full transcripts. In the following year, a group

from Sweden, Islam and colleagues, published another PCR-based single-cell RNA-

Seq method for Illumina sequencing [35]. This method combines oligo(dT) priming

and a template-switching technology in the cDNA synthesis step, known as single-

cell tagged reverse transcription (STRT) (Fig 2.1). The goal of template switching is to

obtain first-strand cDNAs that have reached the 5′ ends of the RNA template. Using

this technique, Islam et al. had reliably detected 1,000-6,000 of the ∼25,000 genes in
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the mouse embryonic stem cells and 2,000-8,000 genes in the mouse embryonic fibrob-

last cells. There are a few drawbacks in this technique also. First, the majority of the

reads were found near the 5′ end of the transcripts, and endogenous transcripts often

were not sequenced to their full lengths. In 2012, another Swedish group introduced

a single-cell RNA-Seq protocol, known as Smart-Seq, with improved transcriptome

coverage by a combination of oligo(dT) priming and template switching, followed by

12-18 cycles of PCR amplification of cDNAs [79]. The cDNA synthesis and amplifi-

cation methods developed for this prococol is now commercially available, marketed

by Clontech, and is known as the SMARTer Ultra Low RNA Kit for Illumina sequenc-

ing. The cDNA synthesis steps, including the template-switching step, are identical

to the ones described by Islam et al. shown in Fig 2.1). They determined that if the

starting total RNA is below 1 ng, the detection rate of the less abundant transcripts

decreases by at least 40%. After analyzing 12 cancer line cells with this method (four

cells each from the LNCaP, PC3, and T24 cell lines), they detected about 8,000 genes

per cell with the sensitivity of gene detection similar to that achieved with ∼20 pg of

starting total RNA. They suggested that at the levels of about a million uniquely map-

pable reads per cell, the sequencing depth had little effect on transcript detection. It

appeared that the transcript detection sensitivity was mainly affected by limited start-

ing amounts of RNA and random loss of low-abundance transcripts, but the majority

of the low-abundance and highly expressed transcripts were reliably detected even at

the single-cell level. They also applied this method to determine if the global tran-

scriptome analyses of putative circulating tumor cells (CTCs) could reveal their tumor
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of origin. They performed single-cell sequencing for six NG2+ putative melanoma

CTCs isolated from peripheral blood from a patient with recurrent melanoma, two

primary melanocytes, seven melanoma cancer cell line (SKMEL5, n=4 and UACC257,

n=3) cells and eight human embryonic stem cells. The global transcriptomes and ex-

pression patterns of melanoma-associated transcripts strongly supported a melanoma

CTC identity for the NG2+ cells. Last, they investigated if the possibilities that this

method could be used to identify single-nucleotide polymorphisms (SNPs) and other

genetic variants associated with melanomas and other cancers. They identified 4,312

high-confidence genetic variants that are supported by at least two CTCs, and 92%

of the high-confidence variant loci coincided with documented SNPs. The authors

concluded that, with only a few cells, Smart-Seq could be utilized to screen for SNPs

and mutations in transcribed regions. In 2013, Sasagawa and colleagues published

another PCR-based single-cell whole transcript amplification method for single-cell

RNA-Seq known as Quartz-Seq [85]. This method introduced improvements in three

areas: 1) suppression of byproduct synthesis during the amplification process (Fig 2.2);

2) single-tube reaction utilization of a PCR enzyme; and 3) optimized conditions of

reverse transcription and second-strand cDNA synthesis. It appeared that the Quartz-

Seq was more robust against a shorter cDNA length, able to amplify more transcript

isoforms than Smart-Seq. With Quartz-Seq, it is possible to distinguish different cell

types but also different cell-cycle phases of the same cell type.
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Figure 2.1: Overview of the sample preparation steps using single-cell tagged reverse
transcription (STRT). (i) First strand cDNA is synthesized from the mRNA (brown)
using a tailed oligo-dT primer (green), with 3-6 cytosines added to the 3′ end of the
first strand cDNA; (ii) A barcode (shaded XXXXXX) is introduced through a template-
switching step initiated by a helper oligo (green); (iii) An amplified product resulted
from PCR with single-primer, followed by beads immobilization, fragmentation, and
A-tailing; (iv) Ligation of the Illumina P2 adapter (blue) to the free ends; (v) Introduc-
ing the P1 adapter in the library PCR step with a primer tailed with the P1 sequence
(blue); (vi) Sequencing the final library with a custom primer from the P1 side of tem-
plate. Each sequencing read begins with the barcode (arrow), followed by three to six
Cs and the mRNA insert. Figure copied from Islam et al [35].
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2.1.2 Single-cell RNA-Seq techniques with an in-vitro transcription tech-

nology

Hashimshony and colleagues published a single-cell RNA-Seq technique in

2012, called CEL-Seq [33]. This method utilizes barcoding and pooling of samples

before performing linear amplification of mRNA with only one round of in-vitro tran-

scription [33]. The first-strand cDNA synthesis is enabled by a reverse-transcriptase

reaction using a primer designed with an anchored polyT, a unique barcode, the 5′

Illumina sequencing adaptor, and a T7 promoter. After the second-strand cDNA syn-

thesis is performed, the cDNA samples are pooled for an in-vitro transcription reac-

tion. Next, the amplified RNA is fragmented to the appropriate size distribution for

sequencing, followed by the addition of the Illumina 3′ adaptor by ligation. The RNA

is then reverse transcribed to DNA. The DNA fragments containing both the Illumina

adaptors and a barcode are enriched for by PCR. The resulting DNA library is then

subjected to paired-end sequencing, where the first read contains the barcode, and the

second read contains the mRNA transcript (Fig. 2.3). In terms of robustness, sensitivity,

and reproducibility, CEL-Seq may have outperformed the STRT method published by

Islam and colleagues (a PCR-based method using single-cell tagged reverse transcrip-

tion), but is not without its own limitations. CEL-Seq selects for the single fragment of

each transcript closest to the 3′ end. Therefore, it has a strong 3′ bias, and is limited in

distinguishing alternative splice forms of transcripts. It is also sensitive to small copy

numbers of transcripts. By using spike-ins and dilution series, it appears that If the
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number of copies of a transcript is less than 5, the chance that CEL-Seq will miss it is

more than 50%.

2.1.3 Microfluidic Single-cell Preparation for RNA-Seq

Many single-cell RNA-Seq techniques have two main challenges — ampli-

fication bias and capture efficiency of the mRNA transcript during cDNA synthesis.

On average, the limit of transcript detection is between five to ten mRNA molecules,

equivalent to converting between 5% and 10% of RNA molecules in a single-cell to

cDNA [33, 35, 79]. All single-cell RNA-Seq methods employ amplification. In 2013,

Islam et al. in the Karolinska Institute in Sweden, developed a single-cell RNA-Seq

preparation system that combined molecular tagging and microfluidics to reduce the

amplification bias and increase the efficiency of cDNA synthesis [36]. The molecular

tagging method uses unique molecular identifiers (UMIs), essentially the same single-

cell tagged reverse transcription (STRT) technique described in Section 2.1.1 that at-

taches short random sequences to each individual cDNA molecule (Fig. 2.4). UMIs

make each molecule in a population distinct, which allows one to measure the abso-

lute number of mRNA molecule in a single-cell prior to the amplification step. By

counting the number of UMIs, one can correct for PCR-induced artifacts and amplifi-

cation bias that are present in the sequencing data. Although, sequences that are not

amplified will not be account for. In addition, the use of a microfluidic system, the

Fluidigm C1 AutoPrep platform, allows the single-cell cDNA synthesis to take place in

an individual enclosed chamber with a reaction volume 200 times smaller than that in

12



Figure 2.2: Schematic of the single-cell whole transcriptome amplification method used
by Quartz-Seq. The entire whole transcriptome amplification process took place in a
single PCR tube. Step 1: The reverse-transcription (RT) primer that contains an oligo-
dT24, a T7 promoter (T7) sequence, and a PCR target region (M) sequence was used
in the first-strand cDNA synthesis. Step 2: Exonuclease I was then used to digest the
majority of the RT primer. Step 3: A poly-A tail was added to the 3′ ends of the first
strand cDNA and to any remaining RT primer. Step 4: A tagging primer was used
to synthesize the second-strand cDNA that produced double-stranded DNA product
with complementary sequences at both ends. Step 5: The byproducts from the remain-
ing RT primers were eliminated through the suppression PCR. Suppression PCR uti-
lizes template DNA that had complementary sequences at both ends that could bind
each other. DNA templates that became self-bound was not amplified by PCR. The
PCR primer could also binds one end of the template DNA. One end of the template
DNA competed with the binding between the PCR primer and one other end of the
same DNA template. It was more likely that a short DNA template would bind to it-
self because of the close proximity of the complementary sequences at the ends of the
template. Longer DNA template tend to bind to the PCR primer more readily than
binding to itself. The remaining RT primer DNA templates were short and would be
not be amplified while the longer cDNA were enriched. Step 6: The amplified cDNA
product was purified using a PCR purification column. Figure copied from Sasagawa
et al [85]
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Figure 2.3: The CEL-Seq DNA library preparation method with in-vitro transcription.
First-strand cDNA synthesis was performed using a primer containing a poly-T se-
quence, a unique barcode, the 5′ Illumina seqeuncing adaptor, and a T7 promoter.
Then, the second-strand synthesis was performed. The double-stranded cDNA sam-
ples were then pooled for the in-vitro transcription (IVT) reaction. Next, the amplified
RNA was subjected to fragmentation to a size distribution suitable for sequencing.
Then, the Illumina 3′ adaptor was ligated to the fragmented RNA. The RNA was then
reverse transcribed to DNA. Subsequently, PCR was employed to select for the DNA
with both the 5′- and 3′ Illumina adaptors. Then, the DNA library was subjected to
paired-end sequencing. Figure copied from Hashimshony et al. [33]
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a typical reaction tube. The reduction in reaction volume greatly improves the mRNA

capture efficiency from 5%-10% to 48%.

2.2 Commercially Available Single-cell RNA Amplification Meth-

ods

There are various types of RNA-Seq library construction kits available com-

mercially, depending on the input amounts and the quality of the RNA, and the reper-

toire of RNAs that one would like to enrich for in the sequencing library (Table 2.1).

For this study, I will give an overview of the RNA-Seq library construction kits that

are designed to amplify picogram amounts of total RNA, including NuGEN Ovation

RNA-Seq v2, Clontech SMARTer Ultra Low Input RNA Kit, Sigma Transplex WTA2-

SEQ Kit, and µMACS SuperAmp
TM

Kit by Miltenyi Biotec.

2.2.1 NuGEN Ovation RNA-Seq System

The NuGEN Ovation RNA-Seq system is an isothermal linear nucleic acid

amplification system for whole-transcriptome sequencing with input total RNA as lit-

tle as 50 pg [104]. First, total RNA is subjected to the first strand cDNA synthesis

through the reverse transcription reaction with a combination of random hexamers and

a poly-T DNA/RNA chimeric primer. The resulting cDNA/mRNA heteroduplex con-

tains a unique sequence at the 5′ end. Then, a heating step is used to degrade the origi-

nal RNA template. The second strand cDNA is synthesized with the first-strand cDNA
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Figure 2.4: Overview of molecular tagging using unique molecular identifiers (UMIs).
Two cells containing mRNA molecules (wiggly lines) from different genes represented
by distinct colors (top panel). The barcodes and UMIs (the color rectangles attached
to the wiggly lines) are attached to the mRNA molecules during reverse transcription.
The transcripts that are not tagged with the UMIs (grey wiggly lines) are not reverse-
transcribed (middle panel). UMIs make each molecule in a population unique, which
allows one to measure the absolute number of mRNA molecule in a single-cell prior
to the amplification step. By counting the number of UMIs, one can correct for PCR-
induced artifacts and amplification bias that are present in the sequencing data (bottom
panel). Figure copied from Islam et al [36]. Reprinted by permission from Macmillan
Publishers Ltd: Nature Methods 11:163-166, c©(2014). License number: 3373530538085.
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Commerical RNA-Seq
library preparation kit

Total RNA
input

RNA Quality Enrichment

Clontech SMARTer
Ultra Low Input RNA
Kit

10 ng
(0.01 ng)*

Single cells, from a
few to 1,000 intact
cells, or very low
amounts of total
RNA

poly-A containing
mRNA

Sigma Transplex
WTA2-SEQ Kit

1-50 ng
(0.01 ng)*

High Quality,
degraded or FFPE,

mRNA and non-
polyadenylated
transcripts

µMACS
SuperAmpTMKit by
Miltenyi Biotec

100ng
( 0.01 ng)*

Single cell, from 1
cell up to 10,000
cells

mRNA and non-
polyadenylated
transcripts

Epicentre ScriptSeq v2
RNA-Seq Library
Preparation Kit

25 ng
(0.05 ng)*

rRNA-deleted or
poly-A selected
RNA

mRNA and
ncRNA

NuGEN Ovation
RNA-Seq v2

10 ng
(0.05 ng)*

High quality,
degraded or FFPE

mRNA and non-
polyadenylated
transcripts

Illumina TruSeq Total
RNA Sample
Preparation Kit

500 ng
(100 ng)*

High Quality,
degraded or
formalin-fixed,
paraffin-
embedded
(FFPE)

mRNA and
non-coding RNA
(ncRNA), long
intergenic
noncoding RNA
(lincRNA), small
nuclear RNA
(snRNA), and
small nucleolar
RNA (snoRNA)

Illumina TruSeq RNA
Sample Preparation Kit
v2

1000-2000 ng
(100 ng)*

High Quality
poly-A containing
mRNA

Epicentre RNA
Sequencing Ribo-Zero
Magnetic Kit

(1000 ng)*
High Quality,
degraded or FFPE

mRNA and
non-coding RNA,
along with other
long intergenic
noncoding RNA
(lincRNA), small
nuclear RNA
(snRNA), and
small nucleolar
RNA (snoRNA)

*Minimum Assay Requirements

Table 2.1: A comparison of commercially available RNA-Seq library construction kits.
The metrics being compared are input RNA quantity and quality, and the repertoire of
RNAs enriched.
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as template, using DNA polymerase. The double-stranded cDNA is then purified and

amplified using a single-primer, isothermal, linear amplification (SPIA) process. SPIA

uses RNase H enzyme to degrade the RNA sequence that is complement to the unique

sequence at the 5′ end of the DNA/RNA heteroduplex double-stranded cDNA. This

results in the exposure of a DNA sequence for the SPIA DNA/RNA chimeric primer

to hybridize to. Subsequently, DNA polymerase initiates replication at the 3′ end of

the primer by displacement of the existing forward strand. Once again, RNase H en-

zyme degrades the RNA portion at the 5′ end of the newly synthesized ds-cDNA, and

the hybridization of the SPIA chimeric to the exposed DNA, DNA polymerization,

and strand displacement repeats. The SPIA product is then subjected to a sequencing

library preparation process (Fig. 2.5).

2.2.2 2.2.2 Clontech SMARTer Ultra Low RNA Kit

The cDNA library amplification process of the Clontech SMARTer Ultra Low

RNA Kit is based on the Smart-Seq method developed by Ramskld et al [79], and which

is described in Section 2.1.1.

2.2.3 Sigma Transplex WTA2-SEQ Kit

The Sigma Transplex WTA2-SEQ requires a two-step whole transcriptome

amplification process [113]. First, total RNA is reverse transcribed with the propri-

etary library synthesis primer. The 3′ end of this primer consist of a quasi-random,

non-self-complementary sequence while the 5′ end is a non-self-complementary, con-

18



Figure 2.5: NuGEN Ovation RNA-Seq system for cDNA library preparation. In step
1, first strand cDNA is synthesized from total RNA through reverse transcription reac-
tion with a combination of random hexamers and poly-T DNA/RNA chimeric primer.
The resulting cDNA/mRNA heteroduplex contains a unique RNA sequence at the 5′

end. In step 2, the original RNA template (black line) is degraded by heat. Then, the
second strand cDNA is synthesized with the first-strand cDNA as template using DNA
polymerase. The double-stranded cDNA is then purified and amplified. In step 3, lin-
ear amplification is performed using a single-primer, isothermal, linear amplification
(SPIA) process. The SPIA process first uses the RNase H enzyme to degrade the unique
RNA sequence at the 5′ end of the DNA/RNA heteroduplex double-stranded cDNA.
Then the SPIA DNA/RNA chimeric primerc can hybridize to the exposure of a DNA
sequence. DNA polymerase initiates replication at the 3′ end of the primer by displace-
ment of the existing forward strand. Step 3 is repeated for 2 hours. Figure copied from
Watson et al. (2008) [115]
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stant sequence that serves as the annealing site for the universal amplification primer

(Fig. 2.6). Then, the RNA template is degraded using RNase H enzyme. Next, the

second cDNA strand is synthesized by strand-displacement polymerization with the

library synthesis. The double-strand cDNA library is flanked by a universal end se-

quence, and is amplified by PCR using a single universal primer with WTA2 poly-

merase. A restriction enzyme (not specified in the manufacturers specification) is used

to remove the universal amplification primer sequence, which contains a type II re-

striction site, from the cDNA library prior to the downstream library preparation for

deep sequencing.

2.2.4 Magnetic µMACS SuperAmp
TM

Kit by Miltenyi Biotec

Magnetic µMACS SuperAmp
TM

Kit is a cDNA library preparation kit de-

signed to work directly with cells. After cells are lysed, mRNA is hybridized to the

magnetically labeled µMACS Oligo(dT) MicroBeads which contains a complemen-

tary tag (Fig. 2.7). The mRNA hybridized to the oligo(dT) beads are placed in the

µ-Column. The µ-Column is then place inside the thermoMACS Separator where a

magnetic force is applied to immobilized the magnetically labeled mRNA while all

other cell components are being washed away from the mRNA. The first-strand cDNA

is then synthesized by reverse transcription with random primers. A proprietary Tail-

ing Mix is then added to attach a nucleic-acid tag to the 3′ end of the first-strand cDNA.

By removing the column from the thermoMACS Separator, the cDNA is eluted. After

elution, a single primer is annealed to the nucleic-acid tag and used for PCR amplifi-
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Input RNA 

Add primers 

First Strand cDNA 

Anneal and extend 

Second Strand cDNA 

Denature 

Overlapping ds-cDNA Library 

PCR 

Amplified ds-cDNA 

Primer Removal 

Ready for Deep Sequencing Sample Preparation 

(No Fragmentation Required) 

Figure 2.6: Sigma Transplex
TM

WTA2 Amplification. Total RNA ranging from 20pg
to 1ng is used as input material for whole transcriptome amplification. In the first
step, library synthesis primer contains a quasi-random 3′ non-self-complementary se-
quence that facilitates priming throughout the entire RNA template in the first and
second strand cDNA synthesis. The 5′ end contains a constant universal, non-self-
complementary sequence. RNase H enzyme degrades the RNA template after first
strand cDNA synthesis. Then, strand-displacement polymerization generates the sec-
ond cDNA strand. The double stranded cDNA (ds-cDNA) is flanked by the universal
sequence that is subsequently amplified by PCR using a single universal primer. Prior
to the downstream sequencing library construction step, a restriction enzyme is used
to remove the universal primer sequence from the ds-cDNA. Figure copied from Ward
and Heuermann (2010) [113].
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cation of the cDNA.

2.3 Evaluation of cDNA Library Preparation Techniques

Exponential-amplification-based methods for cDNA library construction in-

clude single-cell tagged reverse transcription (STRT) [35], Smart-Seq [79], and commer-

cially available kits including Sigma Transplex
TM

WTA2 [113] and Clontech SMARTer

Ultra Low RNA Kit [79]. CEL-Seq [33], NuGEN Ovation RNA-Seq system [104], and

Magnetic µMACS SuperAmp
TM

are linear-amplification-based methods for mRNA am-

plification. When amplifying ultra-low amounts of mRNA, methods such as Smart-

Seq can generate a higher transcriptome coverage compared to linear-amplification

methods such as CEL-Seq. But the exponential amplification process is more likely to

produce spurious PCR products and primer-dimers, and distort the initial transcript

abundance levels due to sequence-, length-, and abundance-dependent biases [8, 91].

With about 30 million mapped mRNA-Sequencing reads per single-cell, the Clontech

SMARTer Ultra Low RNA Kit and Sigma Transplex
TM

WTA2 can detect about 20% and

40% more genes, respectively, than that of the NuGEN Ovation RNA-Seq system [118].

A recent study has shown that the NuGEN Ovation RNA-Seq system has successfully

amplified femtograms to attograms of viral RNA for sequencing on the Illumina HiSeq

and MiSeq sequencing platforms [60]. The de novo assembly of viral reads generated

consensus sequence for the complete, or nearly complete, coding sequences (CDS) of

several viral genomes [60]. One of the advantages of the linear cDNA amplification
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Figure 2.7: Magnetic µMACS SuperAmp
TM

Technology. First, the mRNA is enriched
by directly adding a dT-oligo tethered to superparamagnetic MACS MicroBeads to
the cell lysate. Then, the magnetically labeled mRNA is added to the µ-Column that
is placed in the magnetic field of a thermoMACS Separator. Other cell components
are washed away while the magnetically labeled mRNA is immobilized by the strong
magnetic field. The cDNA synthesis and cDNA purification steps are performed in
the same column to avoid loss of material. The proprietary MicroBead mixture is
added to the mRNA to generate first-strand cDNA fragments of uniform size. Sub-
sequently, cDNA is amplified by PCR with a single primer. Figure copied from Mil-
tenyi Biotec website, https://www.miltenyibiotec.com/˜/media/Images/P
roducts/Import/0002400/IM0002465.ashx
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system in the NuGEN Ovation RNA-Seq system is the ability to minimize the chance

of amplifying nucleotide incorporation errors in cDNA sequences introduced by DNA

polymerase during the early cycles of amplification. Only the second-strand cDNA

fragments are used in the amplification process, and none of the amplicons will be re-

amplified. Therefore, any nucleotide mis-incorporated during the early cycles of the

amplification process will not be re-amplified in the pool of cDNA.

2.4 Paclitaxel Resistance in Breast Cancer

Paclitaxel is one of the most commonly used chemotherapy drugs for treating

breast cancer, however, resistance of Paclitaxel has previously been observed in human

cancer cell line of breast origin [4]. Paclitaxel is a cytotoxic agent, originally derived

from the bark of the Pacific yew tree, Taxus bravifoliaa [1]. The substance arrests cells

at G2/M phase by interacting with the β-tubulin to promote the stabilization of the

microtubules, and prevents normal spindle assembly and cell division [23]. Despite

the benefits offered by Paclitaxel for overall and disease-free survival in early-stage

and metastatic breast cancer patients, the disease often recurs in a drug resistant man-

ner [23, 100].

A number of Paclitaxel-resistance mechanisms involving the regulation of cell

cycle and apoptosis have recently been identified. Previous work has shown the in-

volvement of genes CDK1, CDK2 [68], and the Hippo pathway component TAZ and its

downstream transcriptional targets Cyr61 and CTGF [46] in Paclitaxel resistance. These
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genes encode for proteins which regulate cell cycle and apoptosis [34, 55], respectively.

In addition, estrogen receptor (ER) is found to play a role in Paclitaxel sensitivity in

breast cancer cells. ER-positive cell lines were found to be resistant to Paclitaxel associ-

ated with Bcl-2 expression mediated by ER [100]. Although ER-negative cell lines ap-

peared to be more sensitive to Paclitaxel than ER-positive cells, ER-negative cells were

able to slip out of Paclitaxel-induced mitotic arrest mediated by the Bcl-xL/Bak interac-

tion. Downregulation of Bak was reported to suppress Paclitaxel-induced apoptosis in

MDA-MB-231 cells, an ER-negative metastatic breast cancer cell line [126]. The proteins

encoded by Bcl-2, Bcl-xL, and Bak belong to the BCL2 protein family, in which there are

about 20 known members with either pro-apoptotic or anti-apoptotic function [87]. A

number of proteins in the BCL2 protein family that are key players in the mitochon-

drial intrinsic apoptotic pathway have been linked to Paclitaxel resistance [23, 45, 114].

Aberrant expression or mutation in these genes could enable cells to escape the damage

induced by Paclitaxel, which induces prolonged mitotic arrest and ultimately activates

the mitochondrial intrinsic apoptotic pathway [24].
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Chapter 3

Single Nucleotide Variants at the

Single-Cell Level

High-throughput sequencing allows one to study the genetic changes across

the entire genome or transcriptome. But there is a limit of detection with this technol-

ogy where signals from rare single nucleotide variants (SNVs) in a cell population are

often drowned out by signals from the major alleles [79]. Thus far, all the previously

published single-cell RNA-Seq studies focused on single-cell gene expression. How-

ever, Ramsköld et al. suggests that it is feasible to detect SNVs using the single-cell

RNA-Seq technique [79]. RNA-Seq not only can detect mutations propagated from the

DNA templates to the RNA transcripts, but can also detect all other expressed vari-

ants that could be a result of RNA editing. Although ultra-deep sequencing of the

whole genome with bulk cells can potentially improve the chance of identifying rare

variants, the cost of performing ultra-deep sequencing is very high. On average, one
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sequencing run for the whole genome of human using the Illumina HiSeq 2000 with a

read length at 100 bp can generate roughly 30x depth of coverage, and each run cost

about $22,000 [15, 96]. In order to obtain a depth of coverage of 500x of whole genome

sequencing, it would cost more than $360,000. I hypothesize that rare variants not

detected through bulk-cells sequencing can be identified by sequencing at the single-

cell level when performing ultra-deep sequencing is not feasible. Here I leveraged the

power of single-cell RNA sequencing technology to identify SNVs in a drug-tolerance

experimental paradigm with Paclitaxel and the metastatic breast cancer cells MDA-

MB-231. A linear RNA amplification system, the NuGEN R© RNA-Seq system, was

employed in this study to preserve the transcript stoichiometry, as well as to minimize

the number of single-nucleotide mutations introduced during the cDNA amplification

step. In this chapter, I discuss the detection and comparison of SNVs within single-

cells and populations of cells. First, I validated of a set of SNVs using pyrosequencing.

To compare the single-cell variant frequencies in this study with those in normal hu-

man cells and other cancer cells, I analyzed two single-cell RNA-Seq datasets from two

previously published papers using the same methods that I employed for this single-

cell study. I also identified variants that were likely to be responsible for Paclitaxel

resistance in the MDA-MB-231 cell line.
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3.1 Methods and Materials

3.1.1 Cell culture, drug treatments and the Paclitaxel paradigm

MDA-231 cells were obtained from the Princeton Physical Sciences Oncology

Center tissue biorepository and routinely cultured in DMEM supplemented with 10%

fetal bovine serum. Taxol (Paclitaxel, Sigma, St. Louis, MO) was prepared as a 5 mM

stock solution in ethanol and serial dilutions were prepared for toxicity assays.

The Paclitaxel treatment paradigm was established as indicated in the dia-

gram of Fig. 3.1A. Briefly, 1×106 cells were plated in 100 mm culture dishes for 24

hours, and then treated with 100 nM Paclitaxel. After 3 days, fresh 100 nM Paclitaxel-

containing media was added for another 2 days, totaling 5 days of Paclitaxel treatment.

Cells were then rinsed with PBS and maintained in drug-free culture with media re-

placement every 48 hours and clones of drug-tolerant cells were expanded by the ring

cloning technique. Cells still alive 1 day after Paclitaxel removal were considered resid-

ual cells undergoing a stress response, most of which died within the next 2-4 weeks.

The clones of cells that resumed proliferation are considered recurrent drug-tolerant

cells. The frequencies of stressed and drug-tolerant cells is calculated by dividing the

number of the counted stressed or drug-tolerant cells by the total number of cells sub-

mitted to drug treatment.
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Figure 3.1: The response to Paclitaxel in cancer cells. (A) Regimen for expansion of Pa-
clitaxel (Ptx) stress-tolerant cells. Highly metastatic MDA-MB-231 naı̈ve (yellow) cells
were treated with Ptx (100nM) on Day 1 and Day 3. After 5 days, Ptx was removed and
cells were left in a drug free culture. Most stressed cells arrested (red) and ultimately
died, while rare drug-tolerant cells (orange) resumed proliferation after 10-15 days
and clones were expanded. Five single-cells per group were analyzed including before
treatment, 1 day after Ptx removal, and from recently established (n<64) or long-term
expanded, drug-tolerant clones. Populations were analyzed from long-term expanded
clones. Frequencies of surviving stressed and drug-tolerant cells observed are indi-
cated between parentheses. Cell-to-cell heterogenous RNA content is indicated with
varying colors. (B) Bright field images of untreated, stressed, and drug-tolerant cells at
the indicated times after drug removal. Total magnification is indicated. (C) Paclitaxel
toxicity assays on naı̈ve MDA-MB-231 cells (top) and MCF10A cells (bottom). Growth
Inhibitory Concentrations 50% (IC50) are indicated. Data shown are the mean ± SEM
from a quadruplicated representative experiment. (D) Bright field image of an MDA-
MB-231-Ptx-tolerant clone (n<64) during single-cell collection by micromanipulation.
The opening of the micropipette of roughly 20 microns is shown.
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3.1.2 Paclitaxel toxicity assays

Cell growth of naı̈ve or expanded recurrent drug-tolerant cells was deter-

mined as follows. Briefly, 25,000 cells were plated in each well of 12-well plates and

after 24 hour were treated with vehicle-ethanol or up to 100 nM Paclitaxel containing

media. After 4 days, cells were fixed with 10% formaldehyde and the IC50 (concen-

tration for 50% growth inhibition) was established by Giemsa staining. Cell number

was plotted as a percent of cells relative to vehicle control with standard error from 4

replicated wells used in a representative experiment.

3.1.3 Cell analysis experimental design

For the single-cells, RNA sequencing was performed for 5 naı̈ve (untreated)

cells, 5 stressed (day 5+1 day drug free) cells, and 5 drug-tolerant cells from one clone

at early growth (5 days Ptx + 15 days drug free). Thus, the RNA-Sequencing for the

5 drug tolerant cells was from a unique clone. The drug-tolerant cells shown in the

bottom panel of Fig. 3.1B was a clone expanded from an individual cell to over 8 mil-

lion cells (>23 population cell-doublings). The population cells that were used in RNA

sequencing include 10,000 naı̈ve MDA-MB-231 cells, 10,000 stressed cells (day 5+1

drug free, non-clonal) and 3 independent drug-tolerant clones, each with 10,000 drug-

tolerant cells. Pyrosequencing was performed for additional single-cells from different

drug-tolerant clones as well as from additional, untreated single-cells obtained as de-

scribed above.
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3.1.4 Isolation of single-cells and cell populations, and cDNA synthesis

Five single-cells from populations of untreated, stressed, or proliferating drug-

tolerant cells obtained from single clones as indicated in Fig. 3.1A were collected as

follows. Media was removed and replaced by PBS at room temperature. Single cells

were picked within the next 10 minutes with <20 µm-diameter glass needles using

Narshige MO-188 and MN-188 hydraulic micromanipulators over an inverted micro-

scope, washed and immediately lysed in Prelude
TM

Direct Lysis Module (NuGEN Tech-

nologies, Inc., San Carlos, CA) on glass-mounted microdroplets. For population anal-

yses, >10,000 cells from untreated, stressed, or drug-tolerant cells were lysed. Snap

frozen lysates were stored at -80◦C. cDNA was generated for each single-cell lysate

using the Ovation R© RNA-Seq system (NuGEN Technologies, Inc., San Carlos, CA)

per manufacturer’s recommended protocols and as described previously in Tariq et al.

[104]. For the single-cell cDNA synthesis and library preparation methods, please refer

to Appendix B.1 and Appendix B.2.

3.1.5 Quality control and mapping of the sequencing reads

The sequencing reads were subjected to a three-step quality control process.

First, the quality of the sequencing reads was evaluated with FastQC (http://ww

w.bioinformatics.babraham.ac.uk/projects/fastqc/). Then, sequencing

adapter sequences were removed from the reads using SeqPrep (https://github

.com/jstjohn/SeqPrep). In the single-cell RNA-Seq reads, the first six bases from

the 5′ appeared to have biased nucleotide usage due to the usage of random hexam-
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ers in the first-strand cDNA synthesis. Therefore, the six bases from the 5′ end of the

sequencing reads were trimmed. No additional end-trimmings were done on sequenc-

ing reads for the population RNA-Seq and the DNA sequencing of the MDA-MB-231

cell line.

There were three types of samples for whole transcriptome analyses – single-

cells, 5-cell pooled samples, and population. The 5-cell pooled samples were gener-

ated by concatenating all the fastq files from five single-cells into one pooled sam-

ple. The preprocessed sequencing reads were aligned against the UCSC hg19 hu-

man reference genome as paired-end reads using Tophat (version 1.3.2) [108] with

default settings. Uniquely mapped reads were used for differential gene expression

analyses and SNV calling. These reads were tagged with “NH:i:1” (NH stands for

the number of reported alignments that contains the query in the current record) and

were extracted from the bam files generated by Tophat using the GNU fgrep package

(http://www.gnu.org/s/grep). PCR duplicates were removed using the rmdup

function in samtools [53]. To facilitate the identification of DNA-RNA variants, DNA

sequencing reads were mapped to the UCSC hg19 human reference genome as paired-

end reads using Bowtie2 (version 2.0.0-beta6) [47]. Read-mapping quality analysis for

5′- and 3′ read biases was performed using RSeQC (version 2.3.1) [112].

3.1.6 SNV identification

The SNVs in single-cell RNA were called using BamBam [84] with sequenc-

ing read alignment data in each BAM file format as input. Each variant was assigned
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a confidence score according to the genotype accuracy likelihood. Variants with sup-

porting reads only in the first or last third of a read’s data were removed. Variants with

a genotype accuracy likelihood score lower than 30 were discarded, and the rest of the

variants were used in the downstream analyses only if they had passed two additonal

filters: the strand bias filter and the read alignment quality filter. A recent study had

shown that variant allele reads that were present exclusively on one strand are often

associates with false positive variant calls [50]. Therefore, I applied the strand-bias

filter to variants that had at least four supporting reads, and remove those that had

more than 90% of the supporting reads on either only the forward strand or the re-

verse strand. The read alignment quality removed variants that did not have at least

one supporting read with a base alignment quality (BAQ) score of 15. SNVs were writ-

ten in VCF (Variant Call Format) file format. The SNVs were divided into two groups:

known SNVs (those catalogued in the single nucleotide polymorphism database, db-

SNP, Build ID: 137), and novel SNVs (those not present in the dbSNP). Although the

quality of data cataloged in the dbSNP has been questioned [67] where half of the SNPs

are still candidate SNPs and have not yet been validated in a population, both novel

SNVs and dbSNP variants were analyzed in this study. Some true novel SNVs might

not be accounted for if they were mistakenly annotated as SNPs in the dbSNP.

The SNVs were filtered to find those within the exons of UCSC’s known gene

canonical transcripts, where the exon’s average mapped read coverage was greater

than 50. Each single-cell variant rate was calculated by summing the total number of

variants that pass this filter, and dividing by the total number of bases in exons with

33



average coverage greater than 50.

3.1.7 Identification of common and unique SNVs amongst single-cells and

populations of cells

To compare the SNVs between a single-cell and its corresponding popula-

tion, I first identified the comparable genomic regions where both the single-cell and

the populations of the same group have at least 10× RNA-Seq read coverage. I used

the depth function in samtools [53] to measure the read depth, extracted all the ge-

nomic locations where the read depth is at least 10, and output the results in BED file

format. I then identified the common and different SNVs between the single-cell and

the population that are within the comparable genomic regions using the --intersect

and --difference operators in BEDOPS (version 1.2.3) [69], respectively. For identify-

ing common and unique SNVs between any two single-cells, I performed all pair-wise

comparisons of single-cells in the same manner I did for comparing single-cell to pop-

ulation SNVs. I first identified comparable genomic regions where both single cells

have at least 10× RNA-Seq read coverage. Then, I identified common and different

SNVs between the two single cells that are within the comparable genomic regions.

3.1.8 Detection of DNA-RNA variants and candidate RNA variants

I used RADIA [77] to identify DNA-RNA variants and RNA-variants. DNA-

RNA variants are the SNVs that are only present in the RNA but not in the DNA. By

comparing the genomic DNA of MDA-MB-231 cell line sequencing data with RNA-Seq
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data from single-cells, I identified the DNA-RNA variants. DNA-RNA variants were

detected for each of the three groups of single cells (untreated, stressed, and drug-

tolerant). I first identified the DNA variants that were specific to the cell line by com-

paring the cell line DNA to the human reference genome (UCSC hg19). The MDA-MB-

231 DNA data were from two sources: one from our whole genome DNA sequencing

(20×), and the other from ultra-deep exome sequencing (200×) (GEO accession num-

ber: GSE48215 [17]). Next, I identified additional DNA-RNA variants by compared

untreated RNA to human reference genome (UCSC hg19) and all the cell-line specific

variants were excluded. A subset of DNA-RNA variants were then classified as RNA

variants if there was enough read coverage in the RNA to support the variant and

enough coverage in the DNA to determine that the variant seen in the RNA was not a

DNA variant. Specifically, RNA variants must be covered by at least 10 reads, and at

least four of the reads need to support the variant. In addition, at least 10% of the RNA

reads must support the variant. I also require 10 or more reads in the cell line DNA,

and none of the reads can support the RNA variant. I identified the high-confidence

RNA variants by requiring at least 100 reads in the cell line DNA at those loci and

none of the reads can support the RNA variant. All the aforementioned parameters

were carefully selected and tested using validated DNA and RNA sequencing dataset

from tumor and matched-normal samples [77]. I continued to determine candidate

RNA variants that were newly emerged in the stressed single-cells by comparing them

to the cell line DNA, human reference, and the untreated RNA. Last, I identified RNA

variants that had only occurred in the drug-tolerant cells by comparing them to the cell
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line DNA, human reference, untreated RNA, and stressed single-cells. I performed ad-

ditional filtering steps for all the RNA variants and removed all the RNA variants that

overlapped with SNP sites in dbSNP. I only retained RNA variants that were within the

accessible genome defined by the 1000 Genome Project Consortium [26]. To eliminate

false positive RNA variants, I used BLAT (BLAST-like alignment tool) [39] to ensure

unique mapping of reads that support any RNA variant.

3.1.9 PCR amplification for targeted SNV pyrosequencing

To validate the fidelity of sequencing platform, the Illumina HiSeq 2000, and

the mutation calling accuracy of BamBam, ten SNVs were selected for validation with

pyrosequencing using cDNA from nine different single-cells: 2 untreated cells, 2 stressed

cells, and 5 drug-tolerant cells. PCR primers and internal sequencing primers were de-

signed using Pyrosequencing
TM

Assay Design Software (Biotage, Uppsala, Sweden)

and were synthesized by IDT (Coralville, IA). Amplicons were designed to be 100-

200 bp long. Amplicons used in pyrosequencing were amplified from cDNA that was

used to generate the HiSeq libraries. Each PCR reaction in a 50 µL volume contained

the following: 5 ng cDNA, 0.1µM of each forward and reverse primer, 2.0 mM MgCl2,

200 µM dNTPs, 75 mM Tris-HCl (pH 8.0), and 1.5 U of Titanium R© Taq polymerase

(Clontech Laboratories, Inc., Mountain View, CA). The amplification was performed in

a Gene Amp PCR System 9700 Thermal Cycler (Applied Biosystems, Foster City, CA)

under the following conditions: 95◦C for 5 min, followed by 25 cycles of denaturing at

95◦C for 30 seconds and annealing at the primer specific annealing temperature for 30
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seconds, and a final extension at 72◦C for 4 min.

3.1.10 Validating SNVs with pyrosequencing

Biotinylated PCR amplicons (50 µL) were immobilized onto streptavidin-coated

paramagnetic beads (Dynabeads M-280-streptavidin; Dynal AS, Oslo, Norway) in 2×

binding wash buffer (10mM Tris-HCl pH 7.5, 1mM EDTA, 2M NaCl) and incubated

at room temperature for 15 min. The immobilized PCR product was treated with 100

µL of 20 mM NaOH for 5 min to denature into single-stranded DNA. Single-stranded

DNA attached to the beads was washed twice with 1× annealing buffer (200 mM mag-

nesium acetate, 0.1 M Tris-acetate, pH 7.75). Immobilized single-stranded DNA was

resuspended in 20 µL of 1x annealing buffer and 5 µL of sequencing primer at 10 µM.

The sequencing primer was annealed to single-stranded template at 95◦C for 2 min

and then 50◦C for 8 min. Primed single-stranded template was sequenced using the

PyroMark Q24 system (Qiagen, Hilden, Germany). SNV quantification was performed

using the PyroMark Q24 1.010 software (Qiagen, Hilden, Germany).

3.1.11 Private RNA variant frequencies and SNV per mapped reads in nor-

mal human single-cells and cancer cells

To compare our RNA-Seq variant calls and variant calls using other single-

cell RNA-Seq dataset that used normal human cells and other cancer cells, I performed

SNV analysis with two other published single-cell RNA-Seq datasets, including single-

cells collected from human early embryos, human embryonic stem cells (hESCs), and
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human melanoma cells. The raw sequencing read data from Ramsköld et al,. 2012 [79]

and Yan et al. 2013 [121] were downloaded from the Gene Expression Omnibus repos-

itory, with GEO accession ids GSE38495 and GSE36552, respectively. The number of

SNV per mapped reads were calculated by dividing the number of SNVs that passed

all the filters mentioned in the Methods Section 3.1.6 by the total number of mapped

reads. Private RNA variant frequencies were calculated by dividing the number of

novel variants (variants not present in dbSNP) that are unique to one cell but not in any

other single-cell of the same type in the comparable regions (where both single-cell and

the rest of the cells have at least 10× read coverage) by the number of transcriptomic

bases where all single-cells of the same type have at least 10× coverage.

3.1.12 Data simulation experiment for determining if RNA variants found

in three out of five drug-tolerant cells occurred by chance

In order to determine the probability that a RNA variant found in three out of

five drug-tolerant cells occurred by chance, I wrote a python script that was designed

to create a data set which consists of key and value pair corresponding to the genomic

locus and the allele. The data set consists of a dictionary of 3000 randomly generated

unique keys for the loci where random mutations were found in the human genome,

with the assumption that mutation rate is 10−6 and the human genome has 3 billion

bp. The script creates five of these dictionary data sets, and then it merges these data

sets into one larger dictionary. The idea behind this is to create a new dictionary of

overlapped keys. The overlapping keys represent common mutation loci found more
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than one cell. When an overlap happens during the merging of the five data sets, all

values that match that key will be appended, as a list of values associated with the same

key position. The length of the list indicates how many single-cells have mutation at a

particular locus. The generation of five dictionary data sets was repeated 100 times to

determine the probability that a RNA variant occurs in the same locus in three of five

single-cell.

3.2 Results

3.2.1 Generation of a Paclitaxel tolerance paradigm in metastatic human

cancer cells and isolation of single-cells

To investigate the molecular events associated with cancer cells response to

drug-treatment followed by drug withdrawal potentially associated with drug toler-

ance, cells from the Paclitaxel-sensitive (IC50 < 10nM) metastatic human breast cancer

cell line MDA-MB-231 [7] were exposed to Paclitaxel (100 nM) according to the reg-

imen diagrammed in Fig. 3.1A. After 5 days of drug exposure, most cells had died.

Residual cells alive 1 day after Paclitaxel removal were considered to be a “stressed”

cell population, and the majority of these cells underwent apoptosis within 2-4 weeks.

A small number of residual stressed cells resumed proliferation and established clones,

and such cells were considered to be “drug-tolerant” cells (Fig. 3.1B). A drug-toxicity

curve was also constructed using a range of Paclitaxel concentrations (Fig. 3.1C). The

IC50 was ∼7 nM with ∼20% of viable cells.
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3.2.2 Early drug tolerance dynamics analysis at the single-cell Level

To better understand the early events occurring soon after the onset of pro-

liferation of the rare drug-tolerant cells, I conducted whole transcriptome sequencing

analyses at the single cell level for untreated, stressed and drug-tolerant (collected from

a proliferating clone at less than six cell divisions) populations. Five single cells were

isolated from each treatment group by picking single cells with glass needles using

micromanipulators over an inverted microscope and immediately placing each cell in

lysis buffer (Fig. 3.1D). For whole population analyses, >10,000 pooled cells were col-

lected from each group. We used a linear RNA amplification system for the whole

transcriptome sequencing [44]. The use of such a system prevents reproduction of an

error introduced in earlier amplification cycles, a concern in exponential amplification

systems.

I generated similar average numbers of sequencing reads for individual sin-

gle cells and each cell population, 77 million reads and 100 million reads, respectively

(Appendix, Table A.1). With a somewhat similar number of sequencing reads, RNA-

Seq from single cells generated a much greater sequencing depth than it did for cell

populations. On average, there were 117 times coverage for single cells and 23 times

depth of coverage for cell populations. By contrast, RNA sequencing reads of the cell

populations covered 5.4 times more genomic regions compared with that of a single

cell (Appendix, Table A.2)). This result indicates that with a comparable number of

reads generated, the single-cell RNA sequencing generates less coverage than the cell
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population RNA sequencing, with the consideration that each individual cell may be

expressing only a fraction of the genes that are expressed in the bulk population. In-

deed, the fraction of genes expressed above 1 RPKM (or 1 adj-RPKM; Methods Section)

in single cells compared with their bulk populations is only 20%, whereas pooling and

mapping the reads from each cell within the same group resulted in a much greater ap-

proximation of the number of genes expressed above the same threshold (Appendix,

Table A.3).

3.2.3 The novel RNA variants in single-cells are not the major alleles found

in population

One of the main goals of performing single-cell sequencing is to exam the ge-

netic heterogeneity within a cell population. I suspect that each single-cell carry some

private variants that are not present in most cells in a population. The single-cell pri-

vate SNVs may consist of somatic mutations propagated from DNA or RNA variants

that are introduced by processes such as RNA editing or errors in transcription. RNA

variants in this study are supported by sufficient evidence that they are only present

in the RNA sequencing reads and not in any of the DNA sequencing reads. Novel

SNVs are variants that are not present in dbSNP (The Single Nucleotide Polymorphism

Database) [92]. Variants in dbSNP are common SNPs that are found in at least 1% of

the human population; therefore, they are not rare variants. Most of the novel SNVs

identified in single cells were not the major alleles at the cell population level, despite

the fact that there were 2-10 times more total SNVs found in cell populations than in
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single cells (Appendix, Table A.4) and that SNVs detected in the cell populations cover

more genomic regions than those from single cells. Within comparable genomic re-

gions where there was at least 10× depth of coverage, there were about 6 times fewer

SNVs detected at the population level than in single cells. In most cases, the novel

variants in single cells were not the major variants in the cell populations whereas

most dbSNP variants were shared between single cells and population cells (Fig. 3.2).

Since the number of RNA variants called could be directly related to the depth of se-

quencing, therefore, I also compared the amount of SNVs detected in both single cells

and cell populations at various depth of read coverage thresholds (Fig. 3.3)). The num-

ber of SNVs was normalized by the number of genomic bases with the corresponding

depth of read coverage to ensure that the difference in the number of SNVs was not

due to differences in genome coverage breadth. Strikingly, many SNVs were found

at genomic regions with less than 60x read coverage, while the genomic regions with

deeper read coverage do not present more SNVs. Moreover, more novel (non-dbSNP)

variants were detected from single cells than from populations regardless of the depth

of coverage. In contrast, more dbSNP variants were detected at the population-cell

level compared to the single-cell level at all depths of coverage. Additionally, I ob-

served that with a similar number of uniquely mapped reads for single-cells vs. pop-

ulations, the latter have only slightly more transcriptomic bases with reads at lower

depth of coverage but this difference is minimal or even reverts in regions with higher

depth of coverage (Fig. 3.4). Thus with a similar amount of resources and effort RNA

sequencing from single cells has increased sensitivity to detect novel SNVs which are
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not apparent from RNA-Seq from populations.

3.2.4 RNA variation is similar in drug tolerant cells and other cancer cells

Cells from cancer cell-line typically contain more SNVs compared to normal

cells. Here, I compared the RNA variant frequencies in single-cells in this study with

those found in single-cells with normal human single-cells and human cancer cell-line

single-cells from two recently published dataset. I also examined the amount of RNA

variants that are shared between any two single-cells of the same type to show the

degree of heterogeneity in single-cells.

To compare our RNA-Seq variant calls and variant calls using other single-cell

RNA-Seq datasets that used normal human cells and other cancer cells, I performed

SNV analysis with two other published single cell RNA-Seq datasets using the SNV

analysis method described in the Methods Section, including single cells collected from

human early embryos [121], human embryonic stem cells (hESCs) [121, 79], and human

melanoma cells [79]. To ensure that these datasets are comparable, I first examined the

number of SNV per mapped read in each sample in each dataset. The number of SNV

per mapped reads were comparable between single-cells from this study and those

from human early embryos, hESCs, and human melanoma cells (Table 3.4).

With the single-cell in this study, I measured the number of novel variants

shared between any two cells in the genomic regions where each single cell has at

least 10x read coverage. Prior to Paclitaxel treatment, untreated single cells shared

about 30% of novel variants (not present in the DNA) with any other untreated cell.
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Figure 3.2: The majority of novel variants in single-cells was unique to the single-
cells (gray bars), and these single-cell novel variants were not the majority alleles at
the population level. Most of the common variants that were present in a single-cell
and its corresponding population were known variants catalogued in dbSNP (orange
bars). A relatively small number of variants SNVs that were unique in the population
that were not the alleles found in the single-cells (green bars). An insignificantly small
number of dbSNP variants that were unique to single-cell, which could be due to the
differences between cell-line DNA and the normal human DNA.
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Figure 3.3: The number of SNVs detected in single cells and population regions cells
at various depth of read coverage. The number of SNVs was normalized by the num-
ber of genomic bases with the corresponding depth of read coverage to ensure that
the difference in the number of SNVs was not due to the difference in the breadth of
genome coverage. Many SNVs were found at genomic regions with less than 60x read
coverage, while the genomic regions with deeper read coverage do not present more
SNVs.
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Figure 3.4: Number of bases with reads at various depth of coverage. The number of
bases with reads in different genomic regions presenting low to high depth of sequenc-
ing was plotted to detect biases in coverage/depth of sequencing between single cells
vs. cell population RNA-Seq data.
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Figure 3.5: Novel SNV rates of single-cells and population cells from different treat-
ment conditions. There were highly disparate variant rates within the different treat-
ment conditions. Single cells from the stressed cell group (red circle) contained about
2x more novel SNVs than did single untreated cells or single drug-tolerant cells. Drug-
tolerant cells had a variant rate similar to that of untreated cells. Untreated: blue
square, Stressed: red circle, Drug-tolerant: green triangle, Single-cell: Unfilled shapes,
Population: Filled shapes.
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Figure 3.6: The amount of novel SNVs and known SNPs shared between single-cells
of the same treatment group. Novel variants are the ones that are not present in the
dbSNP database. The bar plot shows the average percent of novel shared variants
between any two single-cells for each group. Most known variants present in one cell
were present in another cell of any different group. The bar plot shows the average per-
cent of known (dbSNP) shared variants between any two single-cells for each group.
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Figure 3.7: The fraction of novel variants shared between any two single-cells. A high
heterogeneity is observed between single-cells within and between groups. UNT: un-
treated cells, S: stressed cells, DT: drug-tolerant cells.
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Upon exposing the cells to 5 days of Paclitaxel treatment, the stressed cells appeared

to have accumulated additional novel variants that were not previously present in the

untreated cells (Fig. 3.5). On average, stressed cells shared 24% of novel variants with

each other, but fewer than 20% novel variants in stressed cells were found in any single

cell in either the untreated- or drug-tolerant group (Fig. 3.6 and Fig. 3.7). Although

drug-tolerant cells were clonal, they shared similar percentages of novel SNVs among

themselves compared to untreated single cells, about 25-45%. Drug-tolerant cells and

untreated cells shared about 30% of novel variants. Overall, most novel variants in

one cell were unique (Fig. 3.6 and Fig. 3.7), and these novel variants could arise from

DNA-RNA transcription error or RNA editing. Furthermore, all single cells shared

more than 75% of the known dbSNP variants with any other cell of any of the three

groups (Fig. 3.6). This shows that those variants catalogued in the dbSNP are already

present in the DNA.

Single-cell RNA-Seq from human early embryos including oocytes, 2-cell em-

bryos, and 4-cell embyros shows that as cells go through each cell division, the num-

ber of novel variants progressively increases (Table 3.3). The polymorphism frequen-

cies from the other two datasets were 3.3e-4/bp for hES cells, 7.0e-4/bp for the cancer

cells [79]; 1.4e-4/bp for 2-cell stage human embryos and 4.7e-4/bp for 4-cell stage hu-

man embryos [121] (Fig. 3.9). Importantly, the frequency of cell-specific SNVs in this

study is about 4.7e-4/bp, which is higher than the polymorphism frequencies of nor-

mal human cells but comparable to that found in cancer cells from Ramsköld et al [79]

(Table 3.4). Moreover, although neither untreated cells nor long-term stressed cells
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are monoclonal, the frequency of cell-specific SNVs in the latter is greater, suggest-

ing either that cellular stress may increase errors in transcription such as when RNA

polymerase inserts the wrong base into the transcript or RNA editing events.

To identify the RNA-editing events, one needs to compare DNA and RNA

from the same cell. However, it is not yet possible to sequence whole genome DNA

and whole transcriptome RNA simultaneously from a single cell. To gain insight into

whether the single-cell RNA variants in this study result from RNA editing, I com-

pared the base substitution patterns between our single-cell RNA variants and other

previously published RNA editing events. A-to-G substitution is typically the most fre-

quently occurring RNA variants detected in other RNA editing studies [6, 41, 73, 75].

Curiously, I found that after T-to-C, A-to-G substitutions were the more frequent sub-

stitutions identified in our study (Fig. 3.8A). In addition, most of the A-to-G RNA

variants observed in the single cells occurred in the intronic and untranslated regions

(UTRs) (Fig. 3.8C), in agreement with previous A-to-G RNA editing studies [30, 70, 73].

One way to confirm that these A-to-G variants are indeed resulting from RNA editing

events is to conduct ADAR (adenosine deaminase acting on RNA) knockdown exper-

iment. ADAR is an enzyme that is known to mediate adenosine to inosine (A-to-I)

editing, where inosine is interpreted as guanosine (G) during translation [6].
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Figure 3.8: RNA variants identified at the single-cell level. (A) The distribution of the
12 RNA variants at the single-cell level showed that the most abundant types of RNA
variants were A-to-G and T-to-C. (B) Multiple filters were applied to identify candi-
date RNA variants. Any SNV in the DNA of the cell line that did not match the human
genome reference was considered to be a DNA variant specific to the MDA-MB-231
cell line. DNA-RNA variants were those in which the base call in the single-cell RNA
reads differed from that in the cell line DNA reads, and the base call in the reference
genome agreed with that in the cell line DNA. The DNA-RNA variants were first sub-
jected to two filters that removed all known variants and variants that were not within
the accessible genome defined by the 1000 Genome Project Consortium. Two filters
were applied to the rest of the DNA-RNA variants to ensure that the RNA variants
have enough sequencing reads to support an RNA variant call. (C) The distribution
of A-to-G RNA variants relative to gene boundaries. The majority of the A-to-G RNA
variants were clustered in non-coding regions including introns and 5′ and 3′ untrans-
lated regions (UTRs).
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3.2.5 RNA variants found only in drug-tolerant cells are involved in micro-

tubule stabilization and organization

One of the goals of this study is to identify RNA variants that reside in genes

associated with Paclitaxel resistance. Although it is challenging to elucidate the pre-

cise role of these alterations in Paclitaxel resistance, the identification of these RNA

variants at the single-cell level provides new opportunities for understanding tumor

heterogeneity and treatment of cancer.

The DNA-RNA variants and RNA variants in this study were identified using

a somatic mutation caller, RADIA [77]. In any single-cell, there were approximately

5,000 cell-line specific SNVs that were different from the human reference genome

(hg19), and about 63,000 cell-line specific SNVs were found in the population cells

of all three groups. After removing all cell line-specific variants, the remaining DNA-

RNA variants that passed all additional filters were considered to be RNA variants

(Fig. 3.8B). One of the filters was for removing RNA variants that overlap with dbSNP.

To accurately identify RNA variants, the most ideal way is to sequence both the tran-

scriptome and the genome with great depth from the same sample and compare the se-

quence differences between the ”matched” RNA and DNA. Since it is not yet possible

to sequence both the genome and transcriptome from a single cell, therefore, I followed

a commonly used method by other studies that used only RNA-Seq to identify RNA

variants – mapping the RNA-Seq reads to a (nonmatched) genomic reference sequence,

and remove the known SNPs to eliminate potential germline variants [78, 75]. An ad-
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ditional filter was applied to remove all the RNA variants that reside in reads that were

mapped to inaccessible sites in the genome defined by the 1000 Genomes Project [26].

The inaccessible sites mainly consist of segmental sequence duplications and high-

copy repeats. Sequencing reads are often incorrectly aligned to the inaccessible sites,

and leading to false positive variant calls [26]. The parameters being used in selecting

the RNA variants from the DNA-RNA variants (Fig. 3.8B) come from multiple param-

eter optimization experiments to achieve a maximum specificity while maintaining an

acceptable balance between specificity and sensitivity. These parameters allowed RA-

DIA to achieve a 98% specificity/84% sensitivity and a 99% specificity/85% sensitivity

balance in two independent TCGA validation experiments on data collected from over

500 patients [77].

The accuracy of the RNA variant calls was further validated through pyrose-

quencing of 10 randomly selected SNVs (Table 3.1). I validated these SNVs using a new

set of single-cells from independent groups of the untreated MDA-MB-231 cell line and

different drug tolerant clones. All the SNVs identified by pyrosequencing agreed with

the ones detected using Illumina HiSeq 2000.

Each untreated cell had an average of 526±92 RNA variants, and about 84±9

of them were high-confidence rare RNA variants where there were at least 100 DNA

reads and none of them support the RNA variants. After exposing the cells to Pacli-

taxel treatment for five days, there were 110±92 new RNA variants that were found in

stressed cells; 31±15 are high-confidence rare RNA variants, and none were detected

in any of the untreated cells. Drug-tolerant cells contained about 94±52 new RNA
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variants that were not previously detected in untreated and stressed cells, and 29±15

were high-confidence rare RNA variants.

As described in Section 2.4, Paclitaxel blocks the G2/M phase in cells by sta-

bilizing the microtubules such that the cell cannot form the normal mitotic apparatus

for cell division. Therefore, any mutation found in genes that encode for proteins as-

sociated with microtubule functions and cell-cycle regulation is relevant and impor-

tant for understanding how it can potentially lead to Paclitaxel-resistance. There were

38 RNA variants in at least three out of five drug-tolerant cells that were not present

in any untreated or stressed cells and were not detected in the population sequenc-

ing (Table 3.2). I did a data simulation experiment and concluded that these 38 RNA

variants did not simply occur in three of the five cells by chance (see the Methods

section *** put ref). Interestingly, four of the 38 RNA variants resided in genes that

encode for proteins involved in microtubule stabilization and organization (PCM1,

NUDCD3, RAPGEF4, and KIAA1671) and two of them were located in genes that were

implicated in Paclitaxel resistance (RAPGEF4 and AMOTL1) (Table 3.5). One of the

variants present in all five drug-tolerant single-cells, was located on chromosome 8

(chr8:17885150) and represented a missense mutation in the PCM1 gene (pericentrio-

lar material 1). PCM1 encodes a protein essential for anchoring microtubules to the

centrosome [25, 19]. PCM1 is involved in microtubule stabilization and assembly of

centrosomal proteins [19]. Centrosome function is essential for completion of inter-

phase and mitosis [109] and aberrant centrosomal activity has been implicated in tu-

mor progression [56, 13]. The two other missense mutation were found in genes that

55



were involved in microtubule organization and stabilization during mitosis: RAPGEF4

and NUDCD3. RAPGEF4, Rap guanine nucleotide exchange factor 4, was previously

shown to interact with protein complexes that were involved in microtubule polymer-

ization and organization [59, 88]. RAPGEF4 protein is also known as Exchange Protein

Directly Activated by cAMP 2 (EPAC2) and is one of the binding partners of MAP1A

(microtubule-associated protein 1A) [59]. MAP1A is known to promote elongation

and nucleation of tubulin [74]. The gene NUDCD3 encodes the NudCL (nuclear dis-

tribution gene C-like) protein. NudCL has been shown to interact with the dynein

complex, a minus-end-directed microtubule motor [128], and is required for mitosis

and cytokinesis [127]. Depletion of NudCL causes loss of dynein function, which

leads to insufficient recruitment of γ-tubulin to spindle poles and mislocalization of

the dynein complex during mitosis [128]. The last mutation listed in Table3.5 resides

in the gene KIAA1671 that encodes a protein involved in mitosis and chromosome seg-

regation [71, 20]. Antibodies against this protein were found in sera of breast cancer

patients that had developed auto-antibodies [22].

The aforemented gene RAPGEF4 was also implicated in Paclitaxel resistance.

Depletion of RAPGEF4 showed a significant increase in Paclitaxel-induced microtubule

stabilization in Paclitaxel-resistant A549-T12 lung carcinoma cells and partially restored

Paclitaxel sensitivity in a previous study [3]. Another mutation was found in the

3′-UTR of AMOTL1. AMOTL1 protein was known to interact with the Hippo path-

way component TAZ, which was implicated in Paclitaxel resistance in breast cancer

cells [46, 16].
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Figure 3.9: Comparing single-cell SNV frequencies between cells from normal human
cells and cancer cell line cells. The Illumina sequencing platform is quite low (<0.4%
[76]), therefore, I expect a very small number of SNVs that are due to sequencing error.
However, it is the important to determine if the amount of SNVs found in the single-
cells in this study are comparable to that found in other single-cell RNA-Seq studies
that used the same sequencing platform. Here, I compared single-cell SNV frequencies
between cells from normal human cells and cancer cell line cells. The single-cell SNV
frequencies are calculated by dividing the number of private novel SNVs in a single-
cell by the total number of novel SNVs in that cell. Private novel SNVs are unique
SNVs only present in the single-cell and not in any other single-cell of the same type
type. I utilized the single-cell RNA-Seq data from Yan et al. 2013 [121] including three
oocytes, one pair of 2-cell embryo cells, and two sets of four single-cells from a 4-
cell embryo. From Ramsköld et al. 2012 [79] single-cell RNA-Seq dataset, I analyzed
two sets of single-cells from two different melanoma cancer cell lines (UACC257 and
SKMEL5), and eight human embryonic stem cells.
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Locus Cell IDs
HiSeq variant

calls
Pyrosequencing

results

chr17:33478229
DT-cell #4
DT-cell #9B.1
DT-cell #9B.2

A-to-T A-to-T

chr3:170078232

DT-cell #1
DT-cell #2
DT-cell #3
DT-cell #9B.2

G-to-A G-to-A

chr17:6917703
DT-cell #1
DT-cell #2
DT-cell #9B.2

G-to-A G-to-A

chr10:27459670
DT-cell #1
DT-cell #9B.1

C-to-T C-to-T

chr13:76378459
S-cell #1
S-cell #2
DT-cell #3.1

T-to-C T-to-C

chr16:2815237
DT-cell #2
DT-cell #4
DT-cell #9B.2

T-to-G T-to-G

chr3:196612295
DT-cell #1
DT-cell #9B.1

G-to-T G-to-T

chr3:196769982

S-cell #1
S-cell #2
S-cell #3
DT-cell #3.1

G-to-C G-to-C

chr16:33963248
UNT-cell #4
UNT-cell #5
UNT-cell #6

T-to-C T-to-C

chr9:33625096
UNT-cell #3
UNT-cell #6

T-to-C T-to-C

Table 3.1: SNV validation using pyrosequencing. Ten randomly selected SNV calls
were tested in single-cells from all three groups (untreated, stressed, and drug-
tolerant), and all were confirmed by pyrosequencing. The variant calls are made by
using the Allele Quantification (AQ) Pyrosequencing Assay in the PyroMark Q24 1.010
software. Cells with ID number greater than 5 are from repeated drug-treatment ex-
periments. DT: Drug-tolerant, S: Stressed, UNT: Untreated.
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Locus Gene affected Mutation type Gene Ontology

chr1:54232975 TMEM48 3′-UTR RNA localization and protein transport
chr1:54269670 TMEM48 Missense RNA localization and protein transport
chr2:128744486 SAP130 Missense Chromatin organization and regulation of transcription
chr2:141816502 LRP1B Missense Receptor-mediated endocytosis
chr2:166626700 GALNT3 Missense Glycoprotein biosynthetic process
chr2:173916571 RAPGEF4 Missense Ras-like GTPases
chr2:55201845 RTN4 Missense Negative regulation of anti-apoptosis
chr2:55200973 RTN4 Missense Negative regulation of anti-apoptosis
chr2:55200710 RTN4 Missense Negative regulation of anti-apoptosis
chr3:45007193 ZDHHC3 Intron Transition metal ion binding

chr3:63601583 SYNPR 3′-UTR cytoplasmic membrane-bounded vesicle
chr3:185211018 ZDHHC3 Missense transition metal ion binding
chr4:27010057 STIM2 Misense Ion transport
chr5:139908435 ANKHD1 Missense Negative regulation of translation
chr6:7882933 MUTED/TXNDC5 Missense/Silent Protein-disulfide isomerase
chr6:8015778 MUTED/TXNDC5 Missense/Silent Protein-disulfide isomerase
chr6:76412735 SENP6 Missense Protein catabolic process
chr6:122734789 HSF2 Missense Regulation of transcription
chr7:44425714 NUDCD3 Missense Protein binding and maintain the stability of dynein intermediate chain

chr7:93592725 BET1 3′-UTR Vesicle-mediated transport
chr7:115894125 TES Intron Focal adhesion
chr7:138822678 TTC26 Missense Cilium assembly
chr8:17885150 PCM1 Missense Microtubule cytoskeleton organization
chr9:95068105 NOL8 Missense Positive regulation of cell growth
chr9:95072953 NOL8 Misense Positive regulation of cell growth
chr9:123555243 FBXW2 Missense Protein catabolic process
chr10:12199974 SEC61A2 Missense Intracellular protein transport
chr10:71977528 PPA1 Intron Phosphorus metabolic process
chr11:83182669 DLG2 Missense Cytoskeleton

chr11:94607183 AMOTL1 3′-UTR Cell-cell junction
chr12:27542113 ARNTL2 Missense Regulation of transcription
chr12:42792740 PPHLN1 Stop Lost Epithelial cell differentiation
chr12:69743928 LYZ Silent Lysozyme activity
chr13:21044267 CRYL1 Intron Fatty acid metabolic process

chr15:89021827 MRPS11 3′-UTR DNA damage response

chr17:64208161 APOH 3′-UTR Negative regulation of endothelial cell proliferation
chr:19:46253959 AC074212.3 Silent Uncharacterized protein

chr22:25592835 KIAA1671 3′-UTR Uncharacterized protein

Table 3.2: This table shows the 38 novel RNA variants that are unique to the drug-
tolerant single-cells, and they are found in at least three of out of the five drug-tolerant
cells. These variants reside in genes with a wide variety of molecular functions, includ-
ing DNA binding, catalytic activity, enzymatic regulator activity, transcription factor
activity, receptor activity, structural molecule activity, and transporter activity.

59



Cell1 and cell2 comparison
Shared
novel
variants

Novel
variants
only in
cell1

Novel
variants
only in
cell2

%
Novel
shared
in cell1

%
Novel
shared
in cell2

%
Private
variants
in cell1

%
Private
variants
in cell2

Oocyte1-C1 & Oocyte1-C2 2441 721 565 77.20% 81.20% 22.80% 18.80%

Oocyte1-C1 & Oocyte1-C3 2277 672 472 77.21% 82.83% 22.79% 17.17%

Oocyte1-C2 & Oocyte1-C3 2289 566 493 80.18% 82.28% 19.82% 17.72%

2-Cell-Emb1-C1 & Emb2-C1 2455 732 827 77.03% 74.80% 22.97% 25.20%

2-Cell-Emb1-C1 & Emb2-C2 2580 740 953 77.71% 73.03% 22.29% 26.97%

2-Cell-Emb1-C1 & Emb3-C1 2290 813 1006 73.80% 69.48% 26.20% 30.52%

2-Cell-Emb2-C1 & Emb2-C2 2546 821 934 75.62% 73.16% 24.38% 26.84%

2-Cell-Emb2-C1 & Emb3-C1 2242 888 1000 71.63% 69.15% 28.37% 30.85%

2-Cell-Emb2-C2 & Emb3-C1 2323 1012 997 69.66% 69.97% 30.34% 30.03%

4-Cell-Emb1-C1 & Emb1-C2 2747 3548 3833 43.64% 41.75% 56.36% 58.25%

4-Cell-Emb1-C1 & Emb1-C4 2406 3088 3274 43.79% 42.36% 56.21% 57.64%

4-Cell-Emb1-C2 & Emb1-C4 2304 3287 3075 41.21% 42.83% 58.79% 57.17%

4-Cell-Emb2-C1 & Emb2-C1 2396 2759 2472 46.48% 49.22% 53.52% 50.78%

4-Cell-Emb2-C1 & Emb2-C3 2395 2862 1524 45.56% 61.11% 54.44% 38.89%

4-Cell-Emb2-C1 & Emb2-C4 2439 2906 2552 45.63% 48.87% 54.37% 51.13%

4-Cell-Emb2-C2 & Emb2-C3 2317 2634 1627 46.80% 58.75% 53.20% 41.25%

4-Cell-Emb2-C2 & Emb2-C4 2446 2791 2812 46.71% 46.52% 53.29% 53.48%

4-Cell-Emb2-C3 & Emb2-C4 2373 1708 2792 58.15% 45.94% 41.85% 54.06%

4-Cell-Emb3-C1 & Emb3-C2 2555 1713 2895 59.86% 46.88% 40.14% 53.12%

4-Cell-Emb3-C1 & Emb3-C3 2370 1572 1514 60.12% 61.02% 39.88% 38.98%

4-Cell-Emb3-C1 & Emb3-C4 2663 1872 2489 58.72% 51.69% 41.28% 48.31%

4-Cell-Emb3-C2 & Emb3-C3 2333 2623 1445 47.07% 61.75% 52.93% 38.25%

4-Cell-Emb3-C2 & Emb3-C4 2598 2961 2390 46.74% 52.09% 53.26% 47.91%

4-Cell-Emb3-C3 & Emb3-C4 2433 1499 2160 61.88% 52.97% 38.12% 47.03%

Table 3.3: The number of private novel RNA variants increases with the number of cell
division. This table shows the novel RNA variants found in single-cells of early human
embryos from Zang et al. 2013 dataset. The number of private RNA variants found in
single-cell increases with the number of cell-division, from oocyt (1-cell stage), 2-cell
stage, and 4-cell stage. Here, oocytes from the same individual are compared and the
number of private RNA variants in a single-cell is around 600. After one round of cell
division, the number of private RNA variants in a single-cell increased by 54% to about
900. After two rounds of cell division, the number of private RNA variants increased
to about 2,500 (a 328% increase from the one-cell stage). Emb: Embryo.
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Single-cell
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variant
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Oocyte1-C1 1.23E-04 1.8
Oocyte1-C2 9.37E-05 1.3 6.94E-04
Oocyte1-C3 8.95E-05 1.3

2-cell-embryo1-C1 1.24E-04 1.8
2-cell-embryo1-C2 1.39E-04 2.0
2-cell-embryo2-C1 1.36E-04 1.9
2-cell-embryo2-C2 1.42E-04 2.0 6.13E-04
2-cell-embryo3-C1 1.42E-04 2.0
2-cell-embryo3-C2 1.58E-04 2.3
4-cell-embryo2-C1 6.91E-04 9.9
4-cell-embryo2-C2 5.66E-04 8.1
4-cell-embryo2-C3 2.48E-04 3.5
4-cell-embryo2-C4 4.60E-04 6.6
4-cell-embryo3-C1 3.28E-04 4.7 8.53E-04
4-cell-embryo3-C2 6.34E-04 9.1
4-cell-embryo3-C3 3.72E-04 5.3
4-cell-embryo3-C4 4.98E-04 7.1
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ESC1 3.47E-04 5.0
ESC2 3.33E-04 4.8
ESC3 2.58E-04 3.7
ESC4 3.66E-04 5.2
ESC5 2.79E-04 4.0 5.96E-04
ESC6 3.52E-04 5.0
ESC7 2.50E-04 3.6
ESC8 4.77E-04 6.8

SKMEL5 cell1 8.84E-04 12.6
SKMEL5 cell2 7.77E-04 11.1
SKMEL5 cell3 6.30E-04 9.0
SKMEL5 cell4 9.47E-04 13.5 5.09E-04

UACC257 cell1 5.42E-04 7.7
UACC257 cell2 5.11E-04 7.3
UACC257 cell3 6.10E-04 8.7

Table 3.4: This table shows the SNV frequencies of single-cells in this study and single-
cells from two other published datasets with normal human cells and human cancer
cells. The single-cell SNV frequencies found in this study are slightly higher than those
found in normal human cells from Yan et al. and human embryonic stem cells (ESC)
from Ramsköld et al. [79].
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Function Gene Mutation Locus ∆aa* Ref.

Paclitaxel
resistance

RAPGEF4
Rap guanine

nucleotide exchange
factor (GEF) 4

Missense chr2:173916571 L1785M [3]

AMOTL1 Angiomotin like 1 3′-UTR chr11:94607183 -- [16, 46]

Microtubule
organization

and
stabilization

PCM1
Pericentriolar

material 1
Missense chr8:17885150 G227R [19, 25]

NUDCD3
NudC domain
containing 3

Missense chr7:44425714 H131D [127]

RAPGEF4
Rap guanine

nucleotide exchange
factor (GEF) 4

Missense chr2:173916571 L1785M [3]

KIAA1671
Uncharacterized

protein
3′-UTR chr22:25592835 -- [20, 71]

*Amino acid change

Table 3.5: This is a subset of the RNA variants listed in Table 3.2 that reside in genes
implicated in microtubule stabilization/organization and Paclitaxel resistance. These
mutations are useful for followup functional studies to determine if or how they are
indeed associated with Paclitaxel resistance.

3.3 Summary

In this chapter, I have demonstrated that single-cell RNA-Seq can identify

many private SNVs that are not detectable in bulk cells. I have also shown that the

single-cell RNA-Seq technique in this study has produced similar base call fidelity

compared to published datasets from previous single-cell RNA-Seq studies. Between

single-cells, the majority of the share SNVs are catalogued in the dbSNP database and

are not rare variants. Only a quarter of the novel SNVs are shared between single-cells.

A number of SNVs only present in the drug-tolerant single-cells reside in genes that

are involved in Paclitaxel resistance and microtubules organization and stabilization,

and they are interesting targets for future studies for their role in Paclitaxel resistance.
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Chapter 4

Whole-transcriptome Gene Expression

Analyses at the Single-cell Level

RNA-Seq technology not only has improved our understanding of the tran-

scriptomic landscape of humans and many other organisms, it has also provided a

higher dynamic range in the detection and quantification of gene transcripts compared

to microarray technology. Thus far, most RNA-Seq experiments were performed with

bulk cells and the gene expression levels detected were merely an average of many

cells. Aberrant gene expression that drives disease progression is often found in a rare

subpopulation of cells or even a single-cell. Therefore, there is a pressing need to study

gene expression at the single-cell level.

The aim of this chapter is to highlight the single-cell heterogeneity at the gene

expression level, and to demonstrate that the gene expression profile of a cell popula-

tion is not representative of that in a single cell. Here, I discuss the methods I used in
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determining the overall gene expression profile and the differentially expressed genes

among single-cells and bulk-cells from three conditions in the Paclitaxel-tolerant exper-

imental scheme: untreated, stressed, and drug-tolerant. I also identified the differen-

tially expressed genes that are likely to be responsible for the drug-tolerant mechanism.

4.1 Methods and Materials

4.1.1 Whole transcriptome gene expression analysis

Gene expression variability between samples can occur at many levels, bi-

ological and technical. Due to the minute amount of starting RNA material from a

single-cell, it was not possible to generate technical replicates from a single-cell and

that is one of the limitations of this study. Single cells in the same condition were

analyzed as biological replicates. One way to normalize the direct read counts is to

normalize the counts with respect to the library sizes and with respect to the length of

the transcripts, such as RPKM (Reads per kilobase per million) [66].

RPKM =

RPK

million mapped reads
(4.1)

RPK =

number of mapped reads

length of transcript in kilobase
(4.2)

However, normalizing the reads by the length of the transcript is based on

the assumption that longer transcripts give more read counts, but this is not entirely

valid in regards to the single-cell RNA-Seq data from this study where some parts of
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the transcript have highly uneven read coverage (Fig. 4.1). This phenomenon could

be partly due to the technical limitations in evenly amplifying a minute amount of

input genetic materials from a single cell, and it could also be due to sequence bi-

ases in the cDNA synthesis step using random hexamers. Using the typical RNA-Seq

gene expression quantification such as RPKM or FPKM with single-cell RNA-Seq data,

one could underestimate the expression level if the read coverage is highly uneven

(Fig. 4.2). Therefore, the read counts for single-cells were normalized with respect to

the library sizes and with respect to the number of bases in the transcript that has at

least 10 uniquely mapped reads. It is referred to as the adjusted-RPKM.

Adjusted-RPKM =

Adjusted-RPK

million mapped reads
(4.3)

Adjusted-RPK =

No. of mapped reads in regions with at least 10x coverage

positions in transcript in kilobase with at least 10x coverage
(4.4)

The total number of mapped reads for each transcript were obtained using the RNA-

Seq quality control package, RSeQC (version 2.3) [112], with the RPKM count.py script

using the following parameter settings: --strand=none, --skip-multi-hits, and using the

reference gene model in bed format. The reference gene model was downloaded from

the Table Browser in the UCSC Genome Browser with the following query (genome:

Human, assembly: Feb. 2009 GRCh37/hg19, track: UCSC Genes, table: knownGene,

region: genome) and the output format was set to BED (browser extensible data).
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4.1.2 Characterizing single-cells and bulk-cells using gene expression data

The gene expression levels of 15 single-cells (5 cells from each condition), 5-

cell pooled samples, and bulk-cells from the three groups were characterized using

principal component analysis (PCA) and hierarchical clustering with 1,000 bootstrap-

ping replications. A matrix was generated with adjusted-RPKM for each gene in each

single-cell sample. Only genes with adjusted-RPKM > 0 in at least one sample were

retained for further analyses. The principal component analysis was performed using

FactoMineR [52]. PCA is more suitable in this analysis compared to factor analysis

since the main goal here is to reduce a large number of observed variables to a smaller

set of important independent composite variables without any prior assumptions or

variables model. I used the Pvclust package (version 1.2-2) in R [98] to perform the

hierarchical clustering analysis on log2 transformed adjusted-RPKM using the Ward’s

method with distance measured in Euclidean distance. Psuedo count of 1 was added

to all counts prior to log2 transform of adjusted-RPKM.

4.1.3 Differential gene expression and functional classification analyses

Differential expression analysis was performed using adjusted-RPMK for single-

cells and population cells using DEGSeq (version 1.10.0) [111]. DEGSeq uses a non-

parametric approach with re-sampling to account for the different sequencing depths.

Nonparametric methods are more robust in selecting significant features than para-

metric method when the read counts do not follow any known distribution. Based on

the statistical methods defined by Tusher et al. (2001) [110], DEGSeq assigns a score to
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Figure 4.1: An example of uneven read coverage of single-cell RNA-Seq. The top track
contains the RNA-Seq read coverage of a single-cell that spans the 5′-UTR, 23 exons,
and the 3′-UTR. The middle track contains the RNA-Seq read coverage of population
cells that spans the same genomic regions as the single-cell read coverage track. The y-
axis on the top and middle tracks shows the number of reads. The bottom track shows
the 5′-UTR, 23 exons, and the 3′-UTR that the reads are aligned to. The thin colored
vertical lines along the top two tracks indicate where SNVs are detected.

each gene based on the change in gene expression relative to the standard deviation

of repeated measurements, and it uses uses permutations of repeated measurements

from a shuffled data set to determine the percentage of differentially expressed genes

identified by chance, the False Discovery Rate (FDR). Functional classification of the

differential expressed genes was performed using the PANTHER Classification Sys-

tem, version 8 [106] (http://www.pantherdb.org/). Hierarchical clustering of dif-

ferentially expressed genes was performed using the heatmap function in R (version

2.15.1) [105].
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Figure 4.2: A new method for normalizing the number of reads aligned to transcript
for single-cell RNA-Seq data. A) RNA-Seq with bulk-cells usually generates a fairly
even depth-of-coverage over transcriptomic regions. In order to compare gene expres-
sion levels between samples, it is common to normalize the number of mapped reads
by the transcript length, RPK (read per kilobase of transcript). B) Single-cell RNA-Seq
often results with uneven depth-of-coverage along the transcriptomic regions. If the
number of mapped reads along a transcript is simply normalized by the length of the
transcript, one could potentially underestimate the actual gene expression level. C)
This is a new method for normalizing the number of reads aligned to transcript for
single-cell RNA-Seq data. To correct for the underestimation of gene expression level
due to highly uneven depth of coverage, the kilobase of transcript length and the num-
ber of reads aligned to the transcriptomic regions with less than 10× depth of coverage
are excluded from the RPK calculation.
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4.2 Results

4.2.1 Stressed cells undergo a Paclitaxel-induced transcription response that

is not apparent in drug-tolerant cells

Although acute changes in gene expression (4-24 hours) have been exten-

sively analyzed for a number of stressors including chemotherapeutic compounds,

the gene expression profiles in long-term stressed cells are largely unknown. Single

cells from our long-term stressed cell group exhibited distinct gene expression pat-

terns. I first characterized the cell type using the adjusted reads per kilobase per mil-

lion (RPKM) for 15 single-cells using principal component analysis (PCA). The first

and second PCA components explained 25% of the variation in all the single-cells,

and they separated the stressed single-cells from the untreated and drug-tolerant cells

(Fig. 4.3A). And the hierarchical clustering analysis also showed similar clustering pat-

tern (Fig. 4.4A).

To further examine the molecular functions of the differentially expressed

genes that separate the stressed cells from the unstressed cells (untreated/drug-tolerant),

I performed hierarchical clustering and functional classification of the 50 most sig-

nificantly differentially expressed genes between the stressed- and unstressed cells.

The differentially expressed genes showed a long-term stress-induced response and

the effects of Paclitaxel on microtubules and mitosis in stressed cells including down-

regulation of genes involved in maintenance of chromatin architecture, microtubule

motor activity, mitosis, DNA repair, mRNA splicing, mRNA polyadenylation, and
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chromatin binding. In addition, gene expression was up-regulated in the following

functional areas: cell-cell adhesion and signaling, stress-induced response, apoptosis,

glycolysis, amino acid biosynthesis, translation, protein folding, and protein modifi-

cation (Fig. 4.5). The differential gene expression analysis between stressed and drug-

tolerant cells showed a reversed trend in up- and down-regulation compared with that

observed between untreated and stressed cells (Fig. 4.6).

Although the untreated and drug-tolerant cells appeared to exhibit similar

gene expression patterns, genes that were differentially expressed between these two

group could potentially explain the drug-resistance capability of the drug-tolerant cells.

Differential gene expression analysis between untreated and drug-tolerant cells showed

that microtubule motor activity, microtubule binding, and protein kinase activity were

up-regulated in drug-tolerant cells. Furthermore, genes involved in mRNA splicing,

mRNA transcription factor activity, translation, and cell adhesion were down-regulated

in drug-tolerant cells. Interestingly, I found that expression of ITGA6 (integrin alpha

6), histone demethylase KDM5A, and IGF1R (IGF1 receptor) were each up-regulated in

drug-tolerant cells but not in untreated or stressed cells (Fig. 4.6 and Fig. 4.7). Expres-

sion of these genes was observed in the majority of single cells as well as the popula-

tion. Importantly, our data are consistent with studies by Sharma et al. that implicated

IGF1R signaling and an altered chromatin state conferred, in part, by KDM5A as being

required to maintain a dynamic Palitaxel-tolerant phenotype [90]. Overexperssion of

ITGA6 has a synergistic effect on the suppression of Paclitaxel-mediated cell death via

the PI3K/AKT pathway mediated by a survival gene, Evi1 [57, 120]. In this single-cell
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study, Evi1 expression level was 2-fold higher in the drug-tolerant cells compared to

untreated cells.

4.2.2 Gene expression profile of single-cells is distinct from that of the pop-

ulation

As one cell expand into a clonal population, it is unclear if the gene expression

profile of the population is representative of that in a single-cell from that population.

I speculate that RNA-Seq for bulk-cells can provide an average gene expression profile

of all the cells in the population. To answer this question, I performed PCA and hier-

archical clustering with the gene expression data from single cells, pooled single-cells

(combing all paired-end reads of five single-cells and treated them as one sample for

read mapping and gene expression analysis), and bulk-cells. The hierarchical cluster-

ing and PCA showed that pooled cells clustered closer to the population cells in the

untreated and drug-tolerant groups (Fig. 4.3B and Fig. 4.4B). The single cells did not

cluster with their corresponding population, except for the stressed cells. However,

each stressed cell appeared to have distinct gene expression patterns; therefore, they

did not cluster together as tightly as untreated and drug-tolerant single cells (Fig. 4.3B

and Fig. 4.4B). I also examined the expression level of the genes extracted from the

first PCA component which separated the single-cells from the bulk-cells (pooled-cells

and population). It appeared that the gene expression level of those genes fluctuates

more in single-cells (with some single-cells having zero gene expression while other

single-cells having high gene expression) compared to bulk-cells. When I examined
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Figure 4.3: Single-cell and population cells were classified using Principal Component
Analyses. (A) Principal components analysis plot of adjusted-RPKM for 15 single-
cell samples from the untreated, stressed, and drug-tolerant group showed that gene
expression profiles of stressed cells (red) were much different from those of untreated
(blue) and drug-tolerant cells (green). (B) Clustering gene expression data in adjusted-
RPKM from single cells, pooled cells and population cells using PCA showed that
single-cells clustered closer to their corresponding pooled-cells than the population
sample. The round dots represent each sample (single-cell, pooled-cell or population).
The unfilled squares depict the barycenter of each cluster categorized by the cell type
(untreated, stressed, or drug-tolerant). Dim: Principal component dimension. POP:
population cells, Pooled: 5-cell-pooled sample.
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Figure 4.4: The gene expression profile of stressed single-cells is different than that of
untreated and drug-tolerant cells. A) Hierarchical clustering of log2-transformed of
adjusted RPKM for single-cells for all genes in Euclidean distance with 1,000 bootstrap
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the drug-tolerant single-cells, which were collected from a single clonal population, a

divergence of gene expression was found between any drug-tolerant single cell and

the averaged expression of the five-cell group. These results indicated that gene ex-

pression in a single cell is not reflected by the average expression found in the five-cell

group or in a large population of cells (Fig. 4.3B and Fig. 4.4B). These results underscore

the value of single-cell RNA-Seq to enhance the resolution of gene expression analysis

otherwise masked by averaged values of gene expression in a bulk population.

The higher variability of single-cell gene expression compared with bulk mea-

surements makes it more difficult to find clear patterns of differential gene expression

in single cells, particularly for those that are highly variable, as has been recently

described when performing RNA-Seq from normal single nuclei from human neu-

rons [82]. Moreover, a much larger sample size would empower a better examination

for those transcripts that are consistently highly variable.

4.3 Summary

In this chapter, I have shown that single-cell gene expression profiles are dif-

ferent than those of bulk cells. The 50 most significant differentially expressed genes

between untreated cells and stressed cells were those involved in the stress response.

Genes that are up-regulated in stressed cells are involved in apoptosis, glycolysis, pro-

tein synthesis, cell-to-cell adhesion and signaling. Genes required for chromatin ar-

chitecture, DNA repair, DNA replication, mRNA splicing, mRNA polyadenylation,

74



microtubule motor activity, and mitosis are down-regulated in stressed cells, and their

expression levels are similar between untreated and drug-tolerant cells. The differ-

ential gene expression analysis between untreated and drug-tolerant cells suggested

multiple drug-tolerant mechanisms including altering the chromatin state, switching

Integrin signals, and shifting the balance of pro- and anti-apoptotic signals in the intrin-

sic apoptotic pathway. Thus, a single molecular mechanism for drug tolerance might

not be needed since the diversity will ensure at any time that a given cancer cell con-

taining the right gene expression will be able to overcome massive stress.
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Figure 4.5: Paclitaxel-induced stress response at the single-cell level. Hierarchical clus-
tering of gene expression data for the 50 most significantly differentially expressed
genes between untreated and stressed single cells. These differentially expressed genes
showed the Paclitaxel-induced effects of Paclitaxel on microtubules and mitosis in
stressed cells including down-regulation of genes involved in maintenance of chro-
matin architecture, microtubule motor activity, mitosis, DNA repair, mRNA splicing,
mRNA polyadenylation, and chromatin binding. In addition, gene expression was up-
regulated in stressed cells in the following functional areas: cell-cell adhesion and sig-
naling, stress-induced response, apoptosis, glycolysis, amino acid biosynthesis, trans-
lation, protein folding, and protein modification.
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Figure 4.6: The stress response observed in stressed cells subsided in drug-tolerant
cells. Hierarchical clustering of gene expression data of the 50 most significantly dif-
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Chapter 5

Mitochondria Specific SNV and Gene

Expression Analyses

Altered mitochondrial metabolism can stimulate cancer cell proliferation. Mi-

tochondria also play a critical role in regulating apoptosis and necrotic cell death. Tian

and colleagues [107] had previously shown that tubulin and mitochondrial proteins

were the major cellular components exhibiting changes associated with Paclitaxel treat-

ment, and suggested that mitochondria may play a role in Paclitaxel resistance. Al-

though the regulation, transcription, and posttranscriptional processing of the human

mitochondrial genome had been extensively studied, very little is known about the

extent and distribution of sequence variation in the mitochrondrial transcriptome at

the single cell level. In this chapter, I discuss the single-cell transcriptomic mutations

and gene expression analyses of mitochondrial genes and nuclear genes that encode

proteins involved in mitochondrial functions that could be implicated in Paclitaxel re-
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sistance.

5.1 Methods

5.1.1 Mapping single-cell RNA-Seq reads to the mitochondrial reference

genome

For mitochondria-specific analyses, I first custom-built a Bowtie index us-

ing the bowtie-build function in Bowtie (version 0.12.8) [48] with the UCSC hg19 hu-

man reference genome where the DNA sequence for chromosome M was replaced by

the Revised Cambridge Reference Sequence (rCRS) of the human mitochondrial DNA

(NCBI reference sequence: NC 012920.1). Then, the pre-processed paired-end single-

cell and population RNA-Seq reads were mapped against this custom-built Bowtie

index with Tophat (version 1.3.2) with default settings [108]. Aligning the reads to

the rCRS reference allows for easy comparison with MITOMAP gene annotation [80].

Uniquely mapped reads were used for differential gene expression analyses and SNV

calling. These reads were tagged with “NH:i:1” (NH stands for the number of reported

alignments that contain the query in the current record) and were extracted from the

bam files generated by Tophat using GNU fgrep package (http://www.gnu.org/

s/grep). PCR duplicates were removed using the rmdup function in samtools [53].
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5.1.2 Detecting homoplasmic and heteroplasmic variants in mitochondrial

RNA

Uniquely mapped reads against the rCRS human mitochondrial reference

in BAM file format were used for the identification of mitochondria homoplasmic

(mtDNA sites that only carry one allele for all mitochondrial genomes in an individual)

and heteroplasmic (sites that carry more than one allele in an individual) variants us-

ing loFreq (version 0.6.0) with default settings [117]. SNVs that are supported by reads

with extreme strand bias, especially for novel non-synonymous variants, are more

likely to be due to false positive variant calls [31]. Therefore, I used the lofreq filter.py

program to remove variants with significant strand bias (Holm-Bonferroni-corrected

p-value<0.05). To identify heteroplasmic variants with high confidence, at least 100×

read coverage is needed [123], therefore, I removed variants that were not supported

by at least 100× depth of coverage prior to subsequent analyses.

5.1.3 Identify SNVs in nuclear-encoded genes involved in mitochondrial

functions

A list of 933 nuclear-encoded mitochondrial genes was compiled by querying

two databases, the Human Mitochondrial Protein Database (HMPDb, http://bioi

nfo.nist.gov) and the MitoCarta database [72]. SNVs found in these genes were

extracted from the filtered VCF files generated by the BamBam as described in the

SNVs Identification section in the previous chapter.
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5.1.4 Differential expression of genes that encode for proteins involved in

mitochondrial functions

The differential gene expression analyses for mitochondria-encoded genes

and nuclear-encoded genes were performed independently since these two groups

of genes are mapped to two different genomes, rCRS human mitochondrial refer-

ence genome and the UCSC hg19 human reference genome, respectively. The gene

expression level is measured in adjusted-RPKM and is calculated by first getting the

read counts per transcript using the RPKM count.py script in the RNA-Seq quality

control package, RSeQC (version 2.3) [112], using the following parameter settings: --

strand=none, --skip-multi-hits, and using the reference gene model in bed format. The

read counts for single-cells were normalized with respect to the library sizes and with

respect to the number of positions in the transcript that has at least 10 uniquely mapped

reads. This is referred to as the adjusted-RPKM (Equation 4.3 in section 4.1.1). The

UCSC hg19 human reference gene model was downloaded from the Table Browser [38]

in the UCSC Genome Browser [40] with the following query (genome: Human, assem-

bly: Feb. 2009 GRCh37/hg19, track: UCSC Genes, table: knownGene, region: genome)

and the output format was set to BED (browser extensible data). The rCRS human mi-

tochondrial gene model was downloaded from the MITOMAP (http://www.mito

map.org/bin/view.pl/MITOMAP/GenomeLoci) [80]. Differential expression anal-

ysis was performed using adjusted-RPMK for single-cells and population cells using

DEGSeq (version 1.10.0) [111]. Based on the statistical methods defined by Tusher et
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al. (2001) [110], DEGSeq assigns a score to each gene based on the change in gene ex-

pression relative to the standard deviation of repeated measurements from a shuffled

data set, and it uses uses permutations of repeated measurements to determine the

percentage of differentially expressed genes identified by chance, the False Discovery

Rate (FDR). Hierarchical clustering of differentially expressed genes was performed

using the heatmap function in R (version 2.15.1) [105].

5.1.5 Knockdown experiment of BNIP3L

RNAi of BNIP3L for the knock-down experiment was expressed from bac-

teria that carry the plasmid with the RNAi sequence and ampicillin resistance genes,

Bnip3L RNAi pSuper (Addgene, Cambridge, MA). The plasmid carrying bacteria were

streaked onto LB-ampicillin-agar plates, from which individual colonies were inocu-

lated into 5 mL LB broth cultures and grown overnight at 37◦C shaking. Overnight

cultures were pelleted and resuspended in 250µL resuspension buffer with RNase A.

The plasmid DNA was then extracted and purified using the Invitrogen Mini kit (Life

technologies, Foster City, CA) and the QIAGEN Plasmid Midi kit (QIAGEN, Venlo,

Limburg), respectively. The purified Bnip3L RNAi plasmids was then transfected into

the untreated MDA-MB-231 cells that were cultured to >90% confluency.

5.1.6 Cell viability assay

Cells were seeded in six well plates to 90% confluency and transfected using

either the Bnip3L RNAi plasmids with Lipofectamine 2000r(Life technologies, Fos-
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ter City, CA) or using only Lipofectamine without expression vector (negative control)

for 72 hours. Paclitaxel (100 nM, the same concentration that was used throughout

this study) was subsequently administered and cells were grown for 48-72 hours. The

viability of each well was measured by combining the suspended media with the corre-

sponding trypsinized adherent cells per individual well and the percentage of live cells

was counted using Bio-Rad TC-10 Automated Cell Counter (Bio-Rad, Hercules, CA).

The viable-cell-count between Paclitaxel-treated and untreated cells was compared to

determine if BNIP3L knockdown could increase survival rate of Palitaxel-treated.

5.2 Results

5.2.1 Mitochondria-encoded gene expression profile is unique when cells

are under stress

The mitochondrial genome contains 37 genes which encode for 2 ribosomal

RNAs (rRNAs), 22 transfer RNAs (tRNAs), and 13 subunits of the respiratory chain [21].

Single-cell and population RNA-Seq data in this study show that the majority of the se-

quencing reads that did not mapped to the nuclear transcriptome aligned to rRNA and

mRNA in the mitochondrial transcriptome (Fig. 5.1). The small mitochondrial genome

produced a very high depth of read coverage. The average read coverage of the mi-

tochondria genome is about 3650× per single cell, and is about 7270× per cell popu-

lation. A number of mitochondria-encoded genes were up-regulated in the stressed

single-cells, including cytochrome c oxidase, and 12S and 16S ribosomal RNAs.
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Figure 5.1: Proportion of RNA-Seq reads (that did not map to the nuclear genome)
aligning to rRNA, tRNA, mRNA, and other regions (including integenic and antisense
regions) of the mitochondrial genome. The majority of the RNA-Seq reads aligned to
the rRNA and mRNA regions of the mitochondrial genome. The pie chart on the left
shows the proportion of RNA-Seq reads from population cells aligning to the mito-
chondrial genome. The pie chart on the right shows the fraction of RNA-Seq reads
from single-cells to the mitochondrial transcriptome.

Mitochondrial genes encoding NADH dehydrogenase and ATPase are down-

regulated in stressed cells (Fig. 5.2), compared to untreated cells and drug-tolerant

cells, which share similar gene expression profiles. Paclitaxel did not have a significant

effect on tRNA production.

5.2.2 Nuclear-encoded mitochondrial genes

Since the majority of the mitochondrial proteins (more than 99%) are syn-

thesized in the cytosol of the cell and are imported into the mitochondria [11], it is

important to study the expression level of the nuclear-encoded mitochondrial genes

to get a complete picture of the overall mitochondrial gene expression profile in the

Paclitaxel-resistance experimental scheme. A number of nuclear-encoded mitochon-
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drial genes were significantly differentially expressed in drug-tolerant cells compared

to untreated cells and were implicated in the cell death mechanisms (Table 5.1). Two

genes involved in the intrinsic apoptotic pathway were down-regulated in the drug-

tolerant cells, BNIP3L and BCL2L1. The intrinsic apoptotic pathway is regulated by

the mitochondria. BNIP3L, also known as NIX, is a pro-apoptotic protein that has

been shown to interact with adenovirus E1B19kD protein and the anti-apoptotic pro-

tein BCL2 [63]. BNIP3L protein was found to be down-regulated in lung cancer and

erythroleukemia cells[2, 97]. BCL2L1 has two known splice variants, BCL-xL and BCL-

xS [95]. BCL-xL is the longer isoform that encodes for an anti-apoptotic protein, 233

amino acids in length. BCL-xS is 63 amino acids shorter than BCL-xL and is has pro-

apoptotic effects. Chemotherapeutic drugs are found to induce apoptosis by shift-

ing the splicing of BCL2L1 pre-mRNA in favor of pro-apoptotic Bcl-xS [93]. Cytotoxic

agents, such as Paclitaxel, can shift the balance of the pro- and anti-apoptotic pro-

teins in favor of pro-apoptotic proteins, which increase the permeability of the mito-

condrial membrane, resulting in the release of cytochrome c from the mitochondrion.

Cytochrome c, pro-caspase-9, and Apaf-1 form the apoptosome complex that activates

pro-caspase-9 by changing its conformation. The activated caspase-9 then triggers the

downstream caspase cascade which executes apoptosis [95]. The down-regulation of

pro-apoptotic genes could potentially shift the balance of pro- and anti-apoptotic pro-

teins and enhance the anti-apoptotic effects in the cells.
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Figure 5.2: Stressed cells exhibit distinct mitochondrial expression pattern in genes en-
coded for proteins of the mitochondrial respiratory chain complex. Hierarchical clus-
tering of mitochondrial mRNAs and rRNAs expression across 15 single-cells. Genes
that encode for rRNAs (RNR1 and RNR2) and cytochrome c oxidase (CO1, CO2, and
CO3) were up-regulated whereas ATPase (ATPase6 and ATPase8) and NADH dehy-
drogenases (ND3, ND4, ND5, and ND6) were down-regulated in the stressed cells
compared to untreated and drug-tolerant cells.
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5.2.3 SNVs in mitochondrial genes

Mutations present in genes encoding for mitochondrial proteins can poten-

tially affect mitochondrial functions, including energy production through cellular res-

piration, maintenance of the proper cellular calcium ions concentration, and regulation

of intrinsic apoptosis. Three different missense mutations were detected in the RTN4

gene in three different drug-tolerant cells. RTN4 protein was previously shown to se-

quester the anti-apoptotic proteins BCL2 and BCL-xL in the endoplasmic reticulum

and prevent them from entering mitochondria [101]. The missense mutations in RTN

can potentially alter its binding affinity for BCL2 and BCL-xL, and increase the concen-

tration of the anti-apoptotic proteins in the mitochondria. With the down-regulation

of pro-apoptotic genes, it is possible that the shift in balance of pro-apoptotic proteins

and anti-apoptotic proteins is the cellular mechanism for drug-tolerance (Fig. 5.4).

5.2.4 Recapitulate the drug-tolerant phenotype by manipulating the expres-

sion level of BNIP3L

The genes that encode for the pro-apoptotic proteins BNIP3L was found down-

regulated significantly in the drug-tolerant single cells compared to untreated and

stressed cells, which were discussed in Section 5.2.2. To further understand the role of

BNIP3L protein in the drug-tolerant experimental scheme, I designed and performed a

knockdown experiment of this pro-apoptotic gene. I speculated that if BNIP3L was not

expressed, then the pro-apoptotic effect in the cell would decrease and fewer Paclitaxel-
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Gene Up-regulated Down-regulated log2Fold∆ Function Ref.

BNIP3L Untreated Drug-tolerant 3.3 A pro-apoptotic protein [63]

BCL2L1 Untreated Drug-tolerant 3.8

It has both pro-survival, Bcl-XL,
and pro-apoptotic, Bcl-XS , gene
products through alternative
splicing

[116]

C1QBP Drug-tolerant Untreated 1.5
Promotes cell proliferation,
migration and resistance to cell
death

[64]

TMABADH
(ALDH9A1)

Drug-tolerant Untreated 2.3

Aldehyde dehydrogenase family
of proteins. ALDH-positive
breast cancer cells are resistant
to Paclitaxel

[54]

MRPS27 Drug-tolerant Untreated 4.7

It encodes a 28S subunit protein
that may be a functional partner
of the death associated protein 3
(DAP3 - a positive mediator of
cell death)

[103]

Table 5.1: Nuclear-encoded mitochondrial genes involved in cell death and were signif-
icantly differentially expressed when compared between untreated and drug-tolerant
single-cells.

treated cells would undergo Paclitaxel-induced apoptosis. Knockdown of Bnip3L gene

appeared to enhance the cell survival against Paclitaxel killing from three independent

knockdown experiments (Fig. 5.3).

5.2.5 Heteroplasmic mitochondrial variants

Heteroplasmic mitochondrial mutations (present in only a fraction of the mi-

tochondrial DNA) are often disease related and have been associated with tumor ac-

tivity and cancer progression [12, 42]. I examined the extent of heteroplasmic variants

present at the single-cell level (Fig5.5). There were heteroplasmic sites along the mito-

chondrial genome, but no unique heteroplamsic variant arise from Paclitaxel-induced

stress.
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Figure 5.3: Knockdown of Bnip3L gene appeared to enhance the cell survival against
Paclitaxel killing. The percent survival relative to untreated was calculated by divid-
ing the number of viable cells of the Paclitaxel-treated samples by that of the untreated
samples. Bnip3L-KD samples were cells that had been transfected with the Bnip3L
RNAi plasmids using Lipofectamine. The Control samples were the negative con-
trol that had undergone the mock transfection using Lipofectamine alone, without the
Bnip3L RNAi plasmids. This result was obtained from three independent knockdown
experiments.
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Figure 5.4: Proposed drug-tolerance mechanism. The missense mutations found in
RTN4 gene can potentially reduce the ability of RTN4 to keep the anti-apoptotic
proteins, BCL-2 and BCL-xL, in the endoplasmic reticulum (ER), and allow more
anti-apoptotic proteins to localize in the mitochondria. If the pro-apoptotic pro-
tein (BNIP3L) and the apoptotic activtor (BCL-xS) are both down-regulated in drug-
tolerant cells, then it is possible that the anti-apoptotic signal will become stronger than
the apoptotic signal in the mitochondria, preventing the cell from entering apoptosis.
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Figure 5.5: Heteroplasmic and homoplasmic variants across the mitochondrial genome
at the single-cell level. The variants in each single-cell are plotted along the mitochon-
dria genome (along the x-axis) as a circle (a heteroplasmic variant, where the bigger
the circle, the higher the frequency of that variant at the locus) or a vertical line (ho-
moplasmic variant). The color of the circle/vertical line represents the alternative base
compared to the reference.

5.3 Summary

Mitochondria are not only the powerhouses of cells, they also determine if

cells should live or die through the instrinsic apoptotic pathway. Paclitaxel inhibits

the microtubules in achieving the metaphase spindle configuration, and ultimately,

activates the intrinsic apoptotic signal by prolonging the activation of mitotic check-

point. From the single-cell RNA-Seq data in this study, I observed that stressed cells

had elevated gene expression for 12S and 16S ribosomal RNAs and cytochrome c ox-

idase while NADH dehydrogenase and ATPase were down-regulated compared to

untreated and drug-tolerant cells. Paclitaxel-induced stress did not appear to alter the

level of tRNA transcript production and the frequency of heteroplasmy. I have dis-

covered three different nonsense mutations in the gene encoding the RTN4 protein in

three different drug-tolerant cells that are not present in untreated or stressed cells.
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RTN4 is known to sequester anti-apoptotic proteins, BCL2 and BCL-xL, in the endo-

plasmic reticulum, hence, reduces the anti-apoptotic components in the mitochondria.

Mutations in RTN4 could affect the binding affinity between RTN4 and anti-apoptotic

proteins, BCL2 and BCL-xL. In addition, two genes involved in the intrinsic apoptotic

pathways were down-regulated in the drug-tolerant cells compared to the untreated

cells: BNIP3L and BCL2L1. Aberrant and down-regulation of the pro-apoptotic genes

can affect the balance of the pro- and anti-apoptotic proteins and allow cells to escape

from apoptosis.
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Chapter 6

Discussion

It has become technically and economically feasible to sequence RNA from

single-cells, which enables highly sensitive detection of rare single-nucleotide variants

(SNVs). Such technologies will be critical for examining individual cells from tissue

biopsies of heterogenous cell populations. Although not all rare variants are relevant

to personalized cancer treatment, some have the potential to drive drug resistance or

serve as biomarkers of therapeutic success. Thus, the ability to detect rare SNVs and

specific gene expression profiles distinguishing drug-terminally-arrested versus drug-

tolerant single-cells at the very early onset of recurrence offers extremely valuable in-

formation as this may potentially provide diagnostic/prognostic value to assess suc-

cess or failure of cancer chemotherapies shortly after administration, and guide the

selection of appropriate treatments that will ultimately increase therapeutic efficacy.

Here, by using a single-cell RNA sequencing approach, I interrogated both

the single-nucleotide variants and the expression levels present at very early onset of
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the evolution of a monoclonal population of drug-tolerant cells. I demonstrated that

the majority of novel RNA variants in a single-cell were unique to that cell. Most of the

RNA variants shared among single cells or between cell populations were SNPs cata-

logued in the dbSNP database. There were more SNVs detected in stressed cells than

in untreated and drug-tolerant cells. This could be the result of Paclitaxel-associated

down regulation of DNA repair that was detected in the differential gene expression

analysis. I identified drug-tolerant-specific RNA variants residing in genes that were

involved in Paclitaxel resistance and microtubule stabilization and organization.

Although it would be more rigorous to measure SNV frequency at the DNA

level, my data provides an indirect approximate estimation of the maximum effec-

tive SNV rate of cancer cells from individual cells at the RNA level. Furthermore,

the cell-specific SNV frequencies I found in the previously published single-cell RNA-

Seq datasets by Ramsköld et al. [79] and Yan et al. [121] were very similar to ours

and among themselves, regardless whether the cells were normal or cancerous, and

despite the different protocols used in each study. This suggests that our single-cell

RNA-Sequencing appears to show equivalent base call fidelity to those previously pub-

lished.

Classifying cells using gene expression data could be valuable in predicting

the clinical significance of residual cancer cells after chemotherapy. In this study, I

was able to apply Principal Component Analysis (PCA) and hierarchical clustering

analysis to the gene expression data to differentiate the distinct gene expression pro-

files of stressed cells from that of untreated and drug-tolerant cells. Drug-tolerant cells
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presented gene expression profiles more similar to untreated cells than to long-term

stressed cells. These drug-tolerant cells could be either cells that became stressed and

then resolved the stress, or cells that had been in a pre-existing condition and were

never engaged in a stress response. Some SNVs in the drug-tolerant cells reside in

genes related to tubulin metabolism, showing a cellular memory of the damage pre-

viously encountered. This would suggest that these cells have been stressed, but ob-

viously they enacted a rare program that ensured survival. Drug-tolerant cells might

originate from stressed cells. I identified SNVs in different subset of drug-tolerant

cells that reside in genes associated to a wide variety of molecular functions, including

DNA binding, enzymatic regulator activity, transcription factor activity, receptor ac-

tivity, structural molecule activity, transporter activity, intrinsic apoptosis, microtubule

stability and organization, and regulation of cell growth 3.2. I speculate that a single

molecular mechanism for drug tolerance might not be needed since the diversity will

ensure at any time that a given cancer cell containing the right gene expression and/or

RNA variant will be able to evade killing by cytotoxic agents.

Paclitaxel acts on cells by stabilizing the microtubules that leads to a mitotic

arrest in the late G2/M-phase of the cell cycle. Prolonged mitotic arrest will trigger

the activation of intrinsic apoptosis, which is regulated by the mitochondria. Inter-

estingly, I identified differentially expressed genes involved in the intrinsic apoptotic

pathway between untreated and drug-tolerant cells. Two of these genes, BNIP3L and

BCL2L1, encode for pro-apoptotic proteins that have not been previously implicated

in Paclitaxel resistance in cells under normal physiological oxygenation condition. The

96



gene knockdown experiment in this study showed that the downregulation of BNIP3L

appeared to enhance the survival rate of the Paclitaxel-treated cells.

RTN4 is another protein that controls the concentration and the balance of

pro- and anti-apoptotic proteins in the mitochondria, which is known to interact with

the pro-apoptotic proteins BCL-2 and BCL-xL in the endoplasmic reticulum, prevent-

ing them from entering the mitochondria to enhance cell survival. Interestingly, three

different missense mutations were found in the gene RTN4 in three different drug-

tolerant single-cells but not in any untreated or stressed cell. These missense mutations

can potentially affect the binding affinity between RTN4 and BCL-2 and/or BCL-xL

and promote anti-apoptotic responses in the cell. Further studies will be needed to

confirm the localization of BCL-2 and BCL-xL in cells with these mutations in RTN4.

Drug-resistance can be a result of aberrant gene expression or genetic muta-

tions, but the phosphorylation states of proteins also play an important role in reg-

ulating the intrinsic apoptosis. One of the major pro-apoptotic proteins in the in-

trinsic apoptotic pathway is the Bcl-2-associated death promoter (BAD), which inac-

tivates anti-apoptotic proteins BCL-2 and BCL-xL when it is in its dephosphorylated

form [125]. In this study, the Insulin-like growth factor receptor (IGF1R) is upregulated

in the drug-tolerant cells. IGF1R can activate phosphatidylinositol 3-kinase (PI3K) sig-

naling cascade, and ultimately, inactivates BAD by phosphorylating it [32]. The inacti-

vation of BAD will lead to the activation of anti-apoptotic proteins BCL-2 and BCL-xL,

which can promote cell survival. In another study, Sharma et al. found that activation

IGF1R signaling, together with the histone demethylase KDM5A activity, can alter the
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chromatin state in a subpopulation of cells, and provides those cells with a reversible

Paclitaxel resistance capability [90].

In sum, drug-tolerant mechanisms can arise from genetic, transcriptomic, and

epigenetic alterations. Figure 6.1 provides a summary of the genes I have identified,

from the single-cell RNA-Seq data in this study, that are involved in various drug-

tolerance mechanisms. I believe that many of the drug-tolerant mechanisms can also

be identified using population RNA-Seq data (but I cannot be sure since I did not have

biological replicates for most of the population RNA-Seq data due to the experimental

resource constraints). But what makes single-cell RNA-Seq unique and worthwhile, is

that it allows us to detect cell-to-cell transcript heterogeneity at the single-nucleotide

level, and it can also identify gene expression heterogeneity among single cells.

Analyzing cell populations only generates an averaged gene expression level

in all cells. Interestingly, Marinov and colleagues have recently reported the stochastic

gene expression heterogeneity found between single cells. They were able to reconsti-

tute the averaged gene expression given by an entire population of cells by pooling the

single-cell RNA sequencing results from 30 to 100 single cells [62]. In this study, the

5-cell-pooled samples did cluster closer to their corresponding populations compared

to single-cells. The data in this study suggest that pooling five cells from the same bi-

ological conditions is not sufficient to accurately reconstitute the averaged expression

of the populations.

Here I demonstrated that single-cell gene expression profiles differ from pro-

files of their corresponding populations in significant and illuminating ways. Single-
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cell RNA-Seq allows one to study gene expression and single-nucleotide variants at a

higher resolution which can help identify genes that are not yet implicated in cancer,

cancer treatment, or other disease states.
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Figure 6.1: Multiple drug-tolerance mechanisms regulated by the genes that were iden-
tified in this study. IGF-1R was found to be up-regulated the drug-tolerant cells. Upon
activation of IGF-1R, it phosphorylates and activates phosphoinositol-3-kinase (PI3K).
Phosphorylated PI3K, in turn, phosphorylates and activates protein kinase B, also
known as AKT. The activated AKT can then phosphorylate and inhibit pro-apoptotic
protein BAD from binding to anti-apoptotic proteins BCL-2 and BCL-xL. BAD inhibits
the anti-apoptotic proteins only when it is in its non-phosphorylated form. RTN4, also
known as Reticulon 4, has been shown to interact with BCL-2 and BCL-xL and reduces
their anti-apoptotic activities by keeping them in the endoplasmic reticulum. Pro-
apoptotic genes, BNIP3L and BCL-xS , were both down-regulated in the drug-tolerant
cells. IGF1R signaling and the histone demethylase KDM5A activity, together, alter
the chromatin state and provide cells with a reversible Paclitaxel resistance capability.
Another gene that was found to be up-regulated in the drug-tolerant cells is Integrin
alpha-6 (ITGA6). Increased expression of ITGA6, together with a high expression level
of Evi1, is known to enhance Paclitaxel resistance. Evi1 activates the PI3K pathway by
repressing PTEN expression (PTEN expression was not detected in any single-cell or
population in this study). PTEN suppresses PI3K activity by dephosphorylating PIP3,
an important signaling component of the PI3K.
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Appendix A

RNA-Seq read mapping statistics for

single-cells and bulk-cells
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Samples
Total number of
paired-end reads
sequenced

Total number of
properly paired
mapped-reads without
PCR duplicates

UNT 1 72,398,342 42,429,918
UNT 2 97,896,104 69,651,740
UNT 3 32,434,019 25,731,672
UNT 4 86,764,133 62,280,876
UNT 5 55,056,490 22,804,666
UNT Pop 94,393,218 80,834,490
S 1 93,752,892 89,363,318
S 2 77,374,749 59,347,478
S 3 57,117,251 27,832,072
S 4 76,309,928 56,447,554
S 5 63,019,868 46,954,348
S Pop 89,785,654 73,548,017
DT 1 94,547,328 47,021,098
DT 2 86,555,396 46,399,478
DT 3 69,507,808 43,944,268
DT 4 86,185,154 66,641,812
DT 5 105,928,132 61,132,450
DT Pop1 110,801,220 85,512,326
DT Pop2 106,855,138 70,235,819

Table A.1: Number of sequencing reads and mapping statistics. This table shows the
total number of paired-end reads that were sequenced for each single-cell and bulk-
cells, as well as the total number of mapped reads that both paired-end reads are prop-
erly paired after removing PCR duplicates. We generated similar number of sequenc-
ing reads for individual single-cells and each cell population. Pop: population, UNT:
untreated, S: stressed, DT: drug-tolerant.
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Samples % Genomic coverage

S
in

g
le

ce
ll

s

UNT 1 6.5%
UNT 2 7.1%
UNT 3 2.3%
UNT 4 6.5%
UNT 5 11.0%

S 1 20.9%
S 2 14.2%
S 3 12.1%
S 4 5.1%
S 5 5.1%

DT 1 9.9%
DT 2 6.1%
DT 3 3.9%
DT 4 5.5%
DT 5 5.8%

P
o

p
u

la
ti

o
n UNT Pop 49.5%

S Pop 48.2%
DT Pop 1 36.7%
DT Pop 2 41.9%

Table A.2: RNA sequencing reads of the population cells cover more genomic region
than that of single cells. For each sample, the percent genomic coverage is calculated
by dividing the total number of transcriptomic-bases with at least 1x read coverage by
the total number of transcriptomic bases.
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Samples
Number of genes
with RPKM>1

% detected
genes
compared to
population

Number of genes
with adj-RPKM>1

% detected
genes
compared to
population

UNT 1 2484 20% 2212 17%
UNT 2 2431 19% 2172 17%
UNT 3 1266 10% 959 7%
UNT 4 2288 18% 2040 16%
UNT 5 3635 29% 3070 24%
UNT Pooled 5cells 8175 65% 10146 79%
UNT Pop 12541 - 12854 -
S 1 4442 32% 4565 38%
S 2 3992 29% 3835 32%
S 3 3869 28% 3383 28%
S 4 2011 15% 1665 14%
S 5 1909 14% 1644 14%
S Pooled 5cells 10209 74% 12855 107%
S Pop 13796 - 12007 -
DT 1 3261 24% 2927 25%
DT 2 2641 20% 2137 18%
DT 3 2091 15% 1564 13%
DT 4 2247 17% 1902 16%
DT 5 2310 17% 1879 16%
DT Pooled 5cell 8175 60% 9760 82%
DT Pop 1 12443 - 11981 -
DT Pop 2 14609 - 11795 -

Table A.3: Number of genes with RPKM>1 and adjRPKM>1 in single cells and popu-
lation cells. Pop: population, UNT: untreated, S: stressed, DT: drug-tolerant.
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Cell Type

All SNVs
in

population
passed all

filters

Single-
cell
ID

All SNVs
in

single-cell
passed all

filters

Comparable
SNVs in

single-cell

Comparable
SNVs in

population

Novel
SNVs

only in
single-cell

Novel
SNVs

only in
popula-

tion

Novel
SNVs
in both

single-cell
and

population

dbSNP
variants
only in
single-

cell

dbSNP
variants
only in
popula-

tion

dbSNP
variants in

both
single-cell

and
population

Untreated 63578

1 6284 2109 2411 1356 470 760 28 93 663
2 8382 3097 2809 2270 516 834 36 104 715
3 2267 784 451 644 107 142 15 17 116
4 7595 2257 2155 1602 402 658 35 108 566
5 4000 2292 2919 1292 545 1003 33 144 877

Stressed 35227

1 13756 5278 5439 3211 824 2071 59 309 1897
2 8886 4832 2967 3641 392 1196 34 127 1086
3 6152 2902 2000 2217 336 687 23 142 623
4 4342 1850 1025 1464 152 392 31 58 351
5 5748 2873 1021 2442 139 435 30 42 390

Drug-
tolerant

11857

1 8100 2112 1913 1343 363 773 31 98 683
2 3684 1280 1248 780 251 503 14 63 442
3 2688 965 728 677 137 289 11 28 251
4 6933 1630 977 1233 186 401 18 43 349
5 4315 1336 955 992 199 348 11 50 305

Table A.4: The number of common and unique SNVs detected in single-cells and pop-
ulation in three different groups. Related to Fig. 3.2. Comparable SNVs are the variants
located in genomic regions where there is at least 10× RNA read coverage in both the
single-cell and the population. SNVs variants in single-cell and/or in population are
parts of the comparable SNVs. SNVs consist of novel and dbSNP variants.
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Appendix B

Additional Methods and Materials

B.1 Single-cell cDNA synthesis

Total RNA of cell lysate was reverse-transcribed to first-strand cDNA using

a combination of random hexamers and poly-T chimeric primers and then converted

to double-stranded (ds) DNA using fragmentation and RNA-dependent DNA poly-

merase. Finally, the ds cDNA was amplified linearly using a SPIA process and puri-

fied by using MyOne
TM

carboxilic acid-coated superparamagnetic beads (Invitrogen,

Carlsbad, CA). The cDNA was prepared for fifteen individual single-cells for library

preparation. The quality and quantity of single-cell cDNA were evaluated using the

Agilent Bioanalyzer 2100 DNA High Sensitivity chip (Agilent, Palo Alto).
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B.2 RNA-Seq library preparation and sequencing

For paired-end whole transcriptome library preparation, ∼0.5-1.0 µg cDNA

of each sample was sheared to a size ranging between 200-300 bp using the Covaris-S2

sonicator (Covaris, Woburn, MA) according to the manufacturer’s recommended pro-

tocols. Fragmented cDNA samples were used for the preparation of RNA-Seq libraries

using TruSeq v1 Multiplex Sample Preparation kit (Illumina, San Diego, CA). Briefly,

cDNA fragments were end-repaired, dA-tailed and ligated to multiplex adapters ac-

cording to manufacturer’s instructions. After ligation, DNA fragments smaller than

150 bp were removed with AmPure XP beads (Beckman Coulter Genomics, Danvers,

MA). The purified adapter ligated products were enriched using polymerase chain re-

action (14 cycles). The final amplified libraries were resolved on 2.0% agarose gel and

manually size-selected in the range of 350-380 bp. The final RNA-Seq libraries were

quantitated using the Agilent bioanalyzer 2100 and pooled together in equal concen-

tration for sequencing. The pooled multiplexed libraries of single-cells were sequenced

in four independent sequencing runs, with eight flow cell lanes per run which gener-

ated 2×50 bp paired-end reads on HiSeq 2000 (Illumina, Inc; San Diego, CA). On the

same sequencing platform, population RNA-Seq was performed in two flow cell lanes

in one run, generating 2×100 bp paired-end reads. Due the timing and the cost of

sequencing, the sequencing read-length generated for single-cells and population are

not the same. However, since both single-cell and population sequencing generated

paired-end reads, the read-length difference should have a minimal impact on the read
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alignment accuracy.

B.3 Whole genome DNA sequencing of naı̈ve MDA-MB-231

cells

For high-throughput sequencing, high-molecular weight genomic DNA (gDNA)

was obtained from MDA-MB-231 cells (Princeton PSOC). For the DNA library prep,

1µg of gDNA was first sheared down to 200-300 bp using the Covaris S2 (Woburn,

Massachusetts) per manufacture recommendations. A target insert size of 200-250 bp

was then size-selected using the automated electrophoretic DNA fractionation system,

known as LabChip XT (Caliper Life Sciences, Hopkinton, Massachusetts). Paired-end

sequencing libraries were prepared using Illumina’s TruSeq DNA Sample Preparation

Kit (San Diego, CA). Following DNA library construction, samples were quantified

using the Agilent Bioanalyzer per manufacturer’s protocol (Santa Clara, CA). DNA

libraries were sequenced using the Illumina HiSeq 2000 in two flow cell lanes with

sequencing paired-end read lengths of 2×100 bp. Reads were de-multiplexed using

CASAVA (version 1.8.2).
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