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Experimental work of the last two decades has revealed the general steps of the wound healing process. �is complex network has
been organized in three sequential and overlapping steps. �e �rst step of the in	ammatory phase is an immediate response to
injury; primary sensory neurons sense injury and send danger signals to the brain, to stop bleeding and start in	ammation. �e
following target of the in	ammatory phase, led by the peripheral blood mononuclear cells, is to eliminate the pathogens and clean
the wound. Once this is completed, the in	ammatory phase is resolved and homeostasis is restored. �e aim of the proliferative
phase, the second phase, is to repair wound damage and begin tissue remodeling. Fibroplasia, reepithelialization, angiogenesis, and
peripheral nerve repair are the central actions of this phase. Lastly, the objective of the �nal phase is to complete tissue remodeling
and restore skin integrity. �is review provides present day information regarding the status of the participant cells, extracellular
matrix, cytokines, chemokines, and growth factors, as well as their interactions with the microenvironment during the wound
healing process.

1. Introduction

1.1. Structure and Function of the Skin. �e skin provides
a life-protective barrier between the body and the external
environment against physical damage, pathogens, 	uid loss,
and has immune-neuroendocrine functions that contribute
to the maintenance of body homeostasis [1]. Its structure
is composed of two layers: the epidermis and the dermis.
�e epidermis contains keratinocytes, melanocytes, dendritic
cells, Langerhans cells and other immune cells, sensory
axons, and the epidermal-dermal basement membrane [2, 3].
�e dermis has the skin appendages, mast cells, �broblasts,
antigen presenting dermal cells, resident and circulating
immune cells [4]. Additionally, the dermis includes the extra-
cellular matrix complex that provides support to intercellular
connections, cellular movement, and regulates cytokine and
growth factors’ functions.

Skin innervation consists of a dense network of sensory
and autonomic �bers that form tight junctions with ker-
atinocytes and transmit sensations of pain, temperature, pres-
sure, vibration, and itch [5]. Skin circulation is composed of
parallel arterial-venous thermoregulatory shunt circulation

controlled by tonic adrenergic sympathetic vasoconstrictor
and vasodilator nerves that give origin to a subepidermal
capillary network that provide oxygen and nutrients to the
epidermis and remove CO2 and waste products [6]. �e
lymphatic vessels of the skin consist of lymph capillaries
that run horizontally under the epidermis, followed by
precollector vessels located deeper in the dermis and lymph
collecting vessels in the subcutaneous fat layer. Lymph vessels
are connected to the skin local draining lymph nodes, and
lymph vessels that exit these lymph nodes converge to the
regional sentry lymph nodes before reaching the thoracic
duct [7, 8].

2. The Healing Process

A�er injury, skin integrity must be promptly restored in
order to maintain its functions. In this process, peripheral
blood mononuclear cells, resident skin cells, extracellular
matrix, cytokines, chemokines, growth factors, and regula-
tory molecules participate in the wound healing process.
�e intricate skin repair process has been organized in three
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Figure 1: See text.

sequential and overlapping steps: the in	ammatory phase, the
proliferative phase, and the remodelling phase. �e in	am-
matory phase includes cutaneous neurogenic in	ammation
and hemostasis; these early events start in the �rst seconds
a�er injury and last approximately 1 hour. Followed by the
fast recruitment of neutrophils to the injured tissue during
the �rst 24 hours and its posterior decline during the sub-
sequent week. �e progressive in�ltration of in	ammatory
monocytes-macrophages to the wound starts the second day
a�er injury and continues to increase, reaching its maximum
during the proliferative phase, starting its decline during the
following two weeks, becoming the dominant mononuclear
cell in the tissue repair process. Circulating lymphocytes
migrate to the skin early a�er injury reaching a plateau by
day 4 and their presence continues for twomore weeks before
declining.�e last phase starts in the second week a�er injury
and includes remodeling the tissue previously formed in the
proliferation phase and the organization of a scar in order to
restore the skin integrity. �is last stage could last for months.
�is review provides present day information regarding the
central role of the resident and peripheral immune cells as
well as the microenvironment and their interactions during
the wound healing process.

3. The Inflammatory Phase (Alarm and
Stop the Damage)

3.1. Cutaneous Neurogenic In�ammation. �e peripheral ner-
vous system is among the �rst to respond to a skin injury. Skin
cell damage activates transient receptor potential channels
TPRV1 and TPRA1 present in primary sensory neuron
endings and in other cells such as keratinocytes, mast cells,
dendritic cells, and endothelial cells which act as nociceptive
receptors [9]. Injury stimulation of sensory neurons generates
action potentials that travel orthodromically to the spinal

cord initiating pain. Action potentials start the axon re	ex by
traveling antidromically in other axonal branches of sensory
nerve endings promoting the release of substance P and
calcitonin gene-related peptide from sensory nerve endings
[10]. �ese neuropeptides have three targets: (a) in blood
vessels, CGRP act on microvascular smooth muscle �bers
promoting vasodilation and increased blood 	ow, (b) SP
causes vascular permeability, edema, and recruitment of
in	ammatory leukocytes, and (c) SP stimulates mast cells
degranulation with discharge of histamine, serotonin, pro-
teases, and other mediators [9, 11–13], promoting increased
microvascular permeability of the blood vessels encircling
the wound (redness and warmth) [14] and facilitating the
extravasation of �brinogen and other plasma derived factors
that serve as chemoattractants for the in	ux of in	ammatory
cells into the wound (swelling) [9, 15, 16]. Additionally, the
release of histamine from mast cells triggers the release
of substance P and CGRP from sensory nerve endings,
implementing the bidirectional link of cutaneous neurogenic
in	ammation [14] (see Figure 1). �e peripheral nervous
system continues to have regulatory interactions with mast
cells [17], monocyte-macrophages [18, 19], Langerhans cells
[20], and lymphocytes [21, 22], as well as microvascular, and
other local skin cells during the distinct phases of skin wound
healing [23].

3.2. PlateletsHemostasis. �ere are about 160,000-400,000/�l
blood platelets, being the second most abundant cells a�er

erythrocytes. An average healthy adult produces 1011 platelets
per day that circulate around 10 days. Platelets retain many of
the RNAmetabolic processes of nucleated cells. �ey contain
large amounts of noncoding RNAs, including microRNAs
and long noncoding RNAs, and utilize postranscriptional
mechanisms to preserve its proteome of approximately 4000
proteins [24]. A�er they are released into the blood, the
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progressive degradation of the antiapoptotic protein Bcl-xL
determines the lifespan of platelets in the blood, and at the
end of their life, they are removed from the circulation in
the liver and spleen [25, 26]. Under normal physiological
conditions, platelets do not interact with the endothelial
surface. Blood constituents tend to migrate toward the center
of the blood 	ow but, given the small size of platelets, they
are forced to circulate marginally toward the wall, where the
glycocalyx barrier impedes their contact with the endothelial
surface [27–29]. Vascular injury exposes the basement mem-
brane proteins and the macromolecules of the extracellular
matrix [30]. Platelet membrane surface receptors bind to
collagen, activating platelets and producing thrombin that
catalyze the initiation of the coagulation cascade [31]. Platelet
integrins binding to �brinogen give origin to �brin [32,
33] that accumulates with the interstitial collagen, trap-
ping neutrophils, erythrocytes, and other blood components
forming the clot [34, 35]. A provisional extracellular matrix
is formed by �brin monomers forming �brin proto�brils that
are stabilized by intermolecular links through the action of
Factor XIIIa. In vitro studies suggest that �brin �bers connect
to native collagen type I �bers with cells through �V�3
integrins, and this extracellular provisional matrix is used by
�broblasts and endothelial cells to migrate and to promote
protomyo�broblast-mediated contraction of the provisional
extracellular matrix [36–38]. �is initial extracellular matrix
is further remodeled by metalloproteinases released from
�broblasts [39] and macrophages, [40] forming a new provi-
sional extracellular matrix to support neutrophil and mono-
cyte migration [41, 42]. Besides hemostasis, degranulation
of alpha granules from platelets releases TGF-� that acts
as an important chemoattractant for the recruitment of
various types of immune cells including neutrophils and
macrophages [32]. Platelet cell surface receptors participate
in cell-cell interaction and microbial recognition and in
the release of growth factors such as PDGF, TGF-�1, FGF,
and VEGF that interact with endothelial cells, neutrophils
monocytes, dendritic cells, B and T cells, and natural killer
cells, promoting neutrophil activation, pathogen detection,
trapping, andmodulation of the innate and adaptive immune
responses [43, 44].

4. The Inflammatory Phase (Eliminate
Pathogens and Clean the Wound)

4.1. �e Role of Peripheral Blood Mononuclear Cells during

the In�ammatory Phase

4.1.1. Neutrophils. In healthy human adults, neutrophils con-
stitute 50-70% of all leukocytes. Neutrophils circulate in the
blood as quiescent cells with a lifespan of 8-12 hours and 1-
2 days in tissues. In the �nal stages of their lifespan, they
are cleared from the circulation in the liver, spleen, and
bone marrow [45]. Neutrophils follow platelets as principal
e�ector cells in the initiation of the in	ammatory phase at
sites of acute in	ammation or infection. �eir recruitment
is initiated by growth factors and chemokines released
by activated platelets in the blood clot [46, 47] and by

N-formyl peptides released by bacteria and damaged cells
[48]. Neutrophil accumulation in thewound increases during
the initial in	ammatory phase and declines 4 days later
[49]. �e presence of damage-associated molecular patterns
(DAMPs) released during cell damage and necrosis, and
the pathogen associated molecular patterns (PAMPs) from
bacteria and fungi creates a gradient that is sensed by the
numerous neutrophil pattern recognition receptors (PRRs):
transmembrane Toll-like receptors, C-type lectins, cytosolic
NOD-like receptors, and RIG-like receptors, activating the
innate immune response [50]. Neutrophil adhesion receptors
(selectins/selectin ligands and integrins) bind neutrophils to
the endothelium which then follow the leukocyte recruit-
ment cascade: rolling, adhesion, crawling, and migration to
the in	amed tissue [51]. Once in the wound, neutrophils
release more neutrophil-chemoattractant mediators to con-
tinue neutrophil recruitment [46, 48]. �eir concentration
reaches more than 5 x106 on the �rst 24 hours and continues
to increase on day 2, making neutrophils the most abundant
immune cells present in the wound [49]. In the in	amed tis-
sue, neutrophils capture Fc-receptors of opsonized pathogens
facilitating phagocytosis, while reactive oxygen species and
antibacterial proteins present in neutrophil granules are
released into the phagosome to eliminate the pathogen.
In addition to the intracellular killing mechanisms, neu-
trophils alone or triggered by proin	ammatory molecules
and platelets, eject neutrophils extracellular traps (NETs),
composed of DNA, histones, antimicrobial proteins, and lytic
enzymes attached to them. It is through these mechanisms
that NETs immobilize and kill microorganisms [45, 52,
53]. Moreover, neutrophils engage in cellular crosstalk via
cell-cell contact where numerous cytokines, chemokines,
and angiogenic factors activate resident hematopoietic cells,
macrophages, dendritic cells, B cells, T cells, and natural killer
cells modulating the innate and adaptive immune responses
[48].

4.1.2. Monocytes. Circulating human monocytes originate
from a monocyte-dendritic progenitor (hMDP) that gives
origin to monocytes and a dendritic cell precursor (hCDP)
in the bone marrow. Both of these cells are released to
the blood and further di�erentiate in the peripheral tis-
sues as macrophages or dendritic cells [54]. In the blood,
three monocyte subsets with di�erent phenotypes have
been identi�ed [55]: CD14++CD16− classical monocytes
(in	ammatory) capable of transmigrating and entering tis-
sues, CD14++CD16+ intermediate monocytes with increased
proangiogenic and antigen processing and presentation activ-
ities, and CD14+CD16++ nonclassical monocytes that patrol
the vesselswith endothelial and tissuemonitoring capabilities
[56]. �ese three monocytes di�er in size, morphology, and
transcriptional pro�les [57]. In a recent study of in vivo leuko-
cyte kinetics using deuterium labeling, a sequential transition
from monocyte progenitors to nonclassical monocytes was
reported [58]. �is study showed that in the bone marrow,
monocyte precursors di�erentiate into classical monocytes
that remained there for a postmitotic maturation phase of
38 hours, which are then released into the blood circulation
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where they have a short lifespan of 1 day. However, most
of these cells leave the blood or die, and only a small
proportion of them mature into intermediate monocytes
with a lifespan of 4 days. Lastly, most of these cells convert
into nonclassical monocytes with a lifespan of 7 days before
leaving the circulation or dying [58]. In the steady state,
monocyte emigration occurs constitutively, where they can
remain within the tissue as monocytes, acquire antigen-
presenting capabilities, or mature into macrophages [59, 60].
Circulating monocytes contribute to forming the skin tissue
monocyte-macrophage population [61].

4.1.3. Monocyte-Macrophages. A�er injury, the presence of
DAMPs andPAMPs is sensed by tissue-residentmacrophages
that in turn activate patrolling monocytes to migrate into
the wound [62]. Once inside, monocytes release cytokines
and chemokines [46, 47] to recruit neutrophils into the
wound.�e release of neutrophils granule contents promotes
the recruitment of in	ammatory monocytes that mature
into macrophages becoming soon the dominant monocyte-
macrophage population in the wound [62–64]. �ese cells
count with great plasticity [65–67], allowing them to dif-
ferentiate into diverse monocyte-macrophage phenotypes
[68] or transdi�erentiate to other cell types in response to
the particular microenvironments of the wound [64, 69–
71]. For instance, macrophages detect PAMPs and DAMPs
through their pattern recognition receptors (PRRs) [72],
and the production of interferon gamma (IFN�) and tumor
necrosis alpha (TNF-�) by innate or adaptive immune cells
induces macrophages to adopt an in	ammatory phenotype
(M1) that in turn produces proin	ammatory cytokines [65]
as well as reactive oxygen and nitrogen species needed to
kill and control microbial pathogens [73, 74]. In conjunction
with neutrophils, macrophages participate in the removal of
bacteria, dead cells, apoptotic neutrophils, tissue debris, and
other foreign materials. �is myelomonocytic interaction is
a key component of wound repair [62, 66, 75]. Neutrophils
and monocyte-macrophages cooperate as partners in time
and space during the initiation, evolution, and resolution
of the in	ammatory phase [76]. �e common progenitor of
neutrophils and monocyte-macrophages explains the simi-
lar functions they share: phagocytosis, intracellular killing
mechanisms, NET formation, similar transcriptional pro�les,
and cell surface receptors, as well as their participation in
the modulation of innate and adaptive immune response
[66, 75]. Once the wound is clean, neutrophils collabo-
rate with macrophages to orchestrate the resolution of the
in	ammatory phase [77]. �is stage starts one or two days
a�er neutrophil arrival to the in	amed tissue. Restoring of
homeostasis begins with neutrophils releasing microparticles
containing proresolving protein annexin A1 and proresolving
lipid mediators [78]; apoptotic neutrophils expose phos-
phatidylserine on the surface designating them for e�erocy-
tosis. During this process, neutrophil microparticles transfer
their molecules to macrophages upgrading the biosynthesis
of proresolving mediators: lipoxins, resolvins, protectins,
and maresins that are released into the wound tissue [79,
80]. E�erocytosis of apoptotic neutrophils by in	ammatory

macrophages stimulates the synthesis of miR-21, promoting
the anti-in	ammatory phenotype of the poste�erocytotic
macrophage [81, 82]. �is alternative di�erentiation route
creates heterogeneous anti-in	ammatory M2 populations
[83, 84]. M2a macrophages display an anti-in	ammatory
phenotype, release IL-10, inhibit the production of IL-1� and
TNF-�, and participate in the resolution of the in	ammatory
phase. M2b and M2c macrophages mostly contribute to
resolving the in	ammatory phase by reducing the damage
caused by prolonged activation of M1 macrophages [67, 83,
84], and driving the resolution of in	ammation. An ordered
and well-controlled in	ammatory phase is essential for the
normal progress of tissue-repair and remodeling phases of
wound healing [68, 85].

4.1.4. Lymphocytes. �e skin immune system maintains and
protects body integrity. Innate immune system, including
neutrophils and monocyte-macrophages, provides a non-
speci�c immediate response to pathogens and toxins. Innate
cells collaborate with T and B cells of the adaptive immune
system that retain speci�c memory for a long time to �ght
speci�cally intracellular and extracellular pathogens.

4.1.5. Innate Lymphocytes. Innate lymphoid cells (ILCs) con-
sist of three family subsets with di�erent cell lineage markers
compared to T, B, and natural killer (NK) cells. Group 1
contains NK cells, releases interferon gamma (INF�) and
tumor necrosis factor (TNF-�), and has cytolytic functions
[86, 87]. ILC2 cells are present in healthy skin and increase in
number during in	ammation. Under IL-33 stimulation, ILC2
responses promote reepithelialization and wound closure
[88]. Invariant NKT cells (iNKT) promote skin wound heal-
ing by increasing the production of INF-� in the early phase
of wound healing, stimulating macrophages and �broblasts
to secrete VEGF and TGF-�, increasing collagen deposition,
producing myo�broblast di�erentiation and angiogenesis
[89], and preventing neutrophil in	ammatory response [90,
91].

4.1.6. CD8+ T Cells. A�er injury, DAMPs and PAMPs
released from damaged cells and pathogens are sensed by
a diversity of immune and nonimmune cells present in the
skin through a system of pattern recognition receptors that
include transmembrane Toll-like receptors and C-type lectin
receptors and cytoplasmic proteins, retinoic acid-inducible
gene-I-like receptors, and NOD-like receptors (NLRs) [92,
93]. PRRs initiate the immune response through the pro-
duction of proin	ammatory cytokines and antimicrobial
peptides, and by recruitment of neutrophils andmacrophages
[94]. �e role of Toll-like receptors in acute skin wounds
has been recently reviewed [95]. Early a�er acute wound,
DAMPs and PAMPs antigens are transferred inside the cell
by endocytosis and processed by professional and nonprofes-
sional skin resident dendritic cells (DC). �en, professional
DC migrate to skin local draining lymph nodes (LN) and
present the antigen to naı̈ve CD8+ T cells. Identi�cation of
their cognate antigen in the lymph node promotes naı̈ve T
cells di�erentiation into CD8+ skin homing e�ector memory
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T cells (TEM) and CD8+ central memory T cells (TCM). TEM

expressing cutaneous lymphocyte antigen (CLA) and CCR4
migrate to the skin wound to mediate pathogen clearance by
releasing proin	ammatory, immune-regulatory, and micro-
bicidal mediators [96]. Once the antigen sources have been
eliminated, the majority of TEM cells die from apoptosis, and
a small population of antigen speci�cT cells expressingCCR8
remains in the skin [97]. Known as CD8+ noncirculating
tissue-resident memory T-cells (Trm), these cells are the
most abundant T-cells present in human skin during resting

conditions, estimated as 2 x 1010, twice the amount of T cells
in the whole blood. Ninety percent of these cells remain in
the skin and only 10% of Trm circulate in the blood [98].
In the secondary lymphoid organs TCM express lymph node
homing receptorsCCR7 andCD62L and proliferate and some
di�erentiate into TEM that migrate to other peripheral lymph
nodes providing systemic immunological memory and dur-
ing local skin in	ammation they migrate to the in	amed site
[99, 100]. Upon reexposure to the pathogen, local DC present
the antigen to skin CD8+ Trm that proliferate and recruit TEM

from the blood to mediate pathogen clearance [99]. Later,
CD8+ Trm migrate to the epidermis �lling the site previously
occupied by delta gamma T cells [101]. Trm are responsible for
the �rst line skin immunological memory defending the skin
against reinfection.

4.1.7. CD4+ T Cells. Skin homeostasis and peripheral toler-
ance to commensals and self-antigens are controlled by skin
immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs)
that suppress the abnormal e�ects of self-reactive immune
cells’ responses [102, 103]. Circulating Tregs expressing the
cutaneous lymphocyte antigen (CLA) and the skin-homing
receptor CCR6, migrate and accumulate in the hair folli-
cle niche of the skin [104]. Tregs increase the expression
of epidermal growth factor receptor (EGFR) which favors
wound reepithelialization wound closure, modulates tissue
in	ammation by limiting IFN� production, and reduce the
number of in	ammatory macrophages [105]. A�er clearance
of the pathogen skin, Tregs need IL-7 to remain in the
skin and express CD45RO which is indicative of previous
antigen exposure, as well as the memory associated markers
CD27 and BCL-2; data that characterize them as regulatory
resident memory T cells (Treg Trm) in the skin. In adult
healthy human skin, approximately 20% of tissue-resident
CD4+ T-cells are Tregs Trm expressing the transcription factor
Foxp3, and only 5% of Tregs recirculate [104]. In the presence
of antigen reexposure, dendritic cells process and present
their cognate antigen to resident Treg Trm allowing them to
respond rapidly.

CD4+ helper T cells include several subsets: �1, �2,
�17, �22, and �9 providing host defense by releasing
diverse cytokines that in turn promote the release of INF�,
defensins, and antimicrobial peptides and supply a protective
in	ammatory response to protect skin against intracellular
and extracellular pathogens [106–108].

4.1.8. B Cells. B cells are part of the humoral branch of the
immune system. �ey di�erentiate into antibody production

plasma cells, present antigens to T cells, and regulate local
immune responses by releasing growth factors and proin-
	ammatory and anti-in	ammatory cytokines [109–111]. In a
model of splenectomizedwoundedmice, it was found that the
wound healing process was delayed and the addition of exter-
nal B cells that produced antibodies against the wounded
tissue to these mice, recovers the normal wound repair
process [112]. B cells’ cytokine production that enhanced
the wound healing process has also been reported [113]. An
important recent work by Sirbulescu et al [114] demonstrated
that B cells are present in the wound bed 4 days a�er injury
persisting up to day 17 a�er injury. Using a mice model,
a 5 mm biopsy was made in the dorsal skin and topical
application of mature B cells at the time of injury accelerates
the wound healing process by 2-3 days [114] (see Figure 2).

5. The Proliferative Phase (Wound
Damage Repair)

�e proliferative phase is identi�ed by (a) �broplasia, includ-
ing �broblast proliferation and di�erentiation into myo�-
broblasts, extracellular matrix deposition, and wound con-
traction, (b) reepithelialization and epithelial-mesenchymal
interaction between keratinocytes and �broblasts, (c) angio-
genesis, including endothelial cell proliferation and new
vessel formation, and (d) peripheral nerve repair, con-
sisting in collateral reinnervation and nerve regeneration.
Macrophages are the dominant in	ammatory cells orches-
trating the proliferative phase of skin wound repair [63, 68,
116, 117].

5.1. Fibroplasia. Fibroblasts are an ill-de�ned heterogeneous
group of cells with great plasticity and di�erent roles in
distinct dermal layers [37, 118]. Fibroblasts are able to
respond to tissue soluble extracellular signals such as IL-1,
tumor necrosis factor alpha (TNF-a), transforming growth
factor beta TGF-�1 [119], platelet-derived growth factor
(PDGF), epidermal growth factor (EGF), and �broblast
growth factor-2 (FGF-2) released by platelets, macrophage,
�broblast, endothelial cells, and keratinocytes [41, 118–
121]. �ese cytokines and growth factors activate �brob-
lasts to proliferate and modulate the production of met-
alloproteinases and inhibitors of metalloproteinases [122].
Mature �broblasts migrate into the granulation tissue,
initiate collagen synthesis, replace the �brin provisional
matrix [41], and di�erentiate into myo�broblasts increas-
ing collagen deposition and initiating wound contraction
[38, 123]. Fibroblasts also sense the strength and direc-
tion of mechanical load and translate this information
via mechanotransduction signals into gene expression and
growth factor production that are expressed as meaningful
adaptive responses that transform �broblast phenotype [37,
124, 125]. For instance, Vimentin, an intermediate �lament,
activates TGF-�–Slug signaling that triggers the epithelial-
mesenchymal transition, controls �broblast proliferation,
and increases collagen deposition which in turn activates
keratinocyte mesenchymal di�erentiation and reepithelial-
ization [126].
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5.2. Reepithelialization. Reepithelialization starts 16-24 hours
a�er injury and continues until the remodeling phase of
wound repair [3]. Early a�er injury, keratinocytes di�erenti-
ate and migrate between the �brin clot and the rich collagen
dermis while suprabasal keratinocytes located behind the
leading edge proliferate to provide more cells to �ll the gap.
Suprabasal keratinocytes close to the leading edge change
shape and migrate on top of basal keratinocytes, becoming
leading cells. In the �nal stages of reepithelialization, cells
dedi�erentiate into epithelial cells that remain �rmly attached
to the basal membrane. Cell-cell and cell-ECM interactions,
growth factors, and cytokines released by various cell types
stimulate keratinocytes tomigrate over the provisionalmatrix
deposited in the clot to cover the wound, while keratinocytes
at the wound edges begin to proliferate and follow themigrat-
ing front [3, 127]. �e extracellular matrix plays a key role in
the process of reepithelialization [128, 129]. Simultaneously,
an active paracrine interaction between keratinocytes, �brob-
lasts, neutrophils, monocytes-macrophages, and endothelial
cells increases the amount of cytokines, growth factors, and
other biomolecules to promote the epithelial-mesenchymal
interaction between keratinocytes and �broblasts, where
keratinocytes stimulate �broblasts to release growth factors
that in turn stimulate keratinocyte proliferation [118, 122, 130].
Lastly, �broblasts di�erentiate intomyo�broblasts, increasing
collagen deposition and initiating wound contraction [38].

5.3. Angiogenesis. During the proliferation phase, the
macrophage anti-in	ammatory phenotype (M2) emerges
as the dominant cellular population, orchestrating the
interaction with endothelial cells, �broblasts, keratinocytes,
extracellular matrix (ECM), and peripheral nerves
[68, 122, 131, 132]. �e reduction of blood supply and the
accelerated metabolism of cells working to repair injury cause
the wound tissues to become hypoxic, a major stimulus for
angiogenesis. Hypoxic conditions stimulate the synthesis of
hypoxia inducible factor-1 (HIF1) in macrophages [133, 134],
�broblasts [41, 135], vascular endothelial cells [136], and
keratinocytes [137].�e release of proangiogenic factors such
as VEGF, VEGFA, FGF2, PDGF, TGF-�1, and the metabolic
switch of endothelial cells initiate neovascularization [138].
�ree endothelial cell types are at the center of angiogenesis:
highly migratory tip cells that guide the new growing bud,
proliferative stalk cells that elongate the new vessel, and
the quiescent falanx cells that form the blood vessel lining
[138–140]. Di�erentiation of endothelial cells into each
subtype is primarily guided by the increased presence of
VEGF and macrophages [138]. Immature endothelial cells’
structures anastomose with other preexisting blood vessels,
a fusion facilitated by macrophages [139]. �ese structures
acquire lumens, a new basal membrane, and endothelial cells
release PDGF recruiting pericytes, which express receptor �
(PDGF-R�) and cover the new vessels with these mural cells
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[141], forming new stable blood vessels [138, 142, 143]. Finally,
�broblasts synthesize and deposit new extracellular matrix
that gives support to cells and new blood vessels [41, 144],
forming the granulation tissue.

5.4. Peripheral Nerve Repair. A�er injury, severed nerves
a�ect the homeostatic function of the skin. �e restoration
of neurological functions a�er traumatic peripheral nerve
injury involves two processes: collateral reinnervation and
nerve regeneration. Skin denervation stimulates collateral
sprouting of nociceptive skin a�erents from close undam-
aged axons to reinnervate the skin [145–147]. In adults,
the peripheral nervous system (PNS) is able to regenerate
nerve function following an injury, by regrowing the tips
of the myelinated two nerve stumps and reconnecting the
injured nerve. Monocyte-macrophages, Schwann cells (SC),
�broblasts, in	ammatory cytokines, transcription factors,
complement, and arachidonic acid metabolites participate in
this process [148]. SC store considerable plasticity, and a�er
injury, their myelin sheath is discarded and SC dedi�eren-
tiate to a progenitor-like cell to promote axonal regrowth
[149]. SC exit the nerve stumps and interact with �brob-
lasts accumulated at the injury site. Ephrin-B present in
�broblasts contacts the EphB2 receptors of SC and this
signaling promotes their directional movement [150]. Simul-
taneously, SC dedi�erentiation induces the release of mono-
cyte chemoattractant protein-1 (MCP- 1), IL-1�, IL-1�, and
pancreatitis-associated protein III (PAP-III) [151] that recruits
circulating monocytes/macrophages to the injury site, where
these cells release additional factors, thus increasing further
monocyte/macrophage recruitment. Macrophages sense the
hypoxic environment releasing vascular endothelial growth
factor (VEGF) and hypoxic growth factor (HIF) which
promote angiogenesis. Subsequently, the SC cords use the
new aligned vasculature as sca�old to guide the growing of
axons across the bridge between the tips of the two nerve
stumps [152–154] (see Figure 3).

5.4.1. Fibroplasia. A�er acute skin injury, �brinogen, �-
bronectin, proteoglycan, and platelets from plasma come
into contact with collagen of the extracellular matrix (ECM),
forming a �brin rich early provisional matrix cross-linked
with �bronectin (EPM) [41, 155]. Local resting �broblasts
become activated and begin producing collagen that gradu-
ally transforms the EPM into a late collagen rich ECM. Acti-
vated �broblasts then deposit collagen and di�erentiate into
myo�broblasts (MFs). Regulated by TGF-�1, MFs express
alpha smooth muscle actin and muscle myosin, forming
intracellular stress �bers that are attached to the �bronexus,
a cellular-ECM structure linking intracellular actin �laments
to extracellular �bronectin �brils through transmembrane
integrins [38, 41]. MFs bind intracellular stress �bers to
extracellular collagen through �bronexus complexes. Addi-
tionally, the contraction of stress �bers locally condenses
the ECM leaving a space that is replenished with newly
synthesized collagen. �is process is repeated by other local
MFs and the remodeling of small sections of the ECM
produces wound contraction [41, 156]. �e accumulation of

collagen in the wound site leads progressively to an almost
avascular and acellular scar formed 80-90% by regularly
organized collagen Type I �bers and the rest type III collagen
�bers.

5.4.2. Reepithelialization. A�er injury, basal keratinocytes at
the wound edge start the endothelial mesenchymal transition
by losing their desmosome connection to each other and
the hemidesmosome bond to the basal membrane. �e
cytoskeleton is then reorganized, losing its cuboidal shape
and adopting a 	attened morphology with lamellipodia,
expressing K6 and K16 that allow them to begin migration
into the provisional matrix to �ll the gap. Simultaneously, the
keratinocytes that remain behind the edge begin to proliferate
[127, 128, 157].

5.4.3. Angiogenesis. Wound healing angiogenesis is thought
to be an ongoing process in two phases: the proliferation of
new blood vessels and the pruning and remodeling phase.
Hypoxic conditions a�er injury stimulate the synthesis of
hypoxia inducible factor-1(HIF-1) in vascular endothelial
cells, �broblasts, keratinocytes, and macrophages, followed
by the release of angiogenic factors VGEF, FGF, PDGF,
and TGF-�1 by these cells, triggering neovascularization.
Degradation of the vascular basement membrane is followed
by pericyte loss and capillary sprouting carried out by three
di�erent EC subsets: (1) highly migratory tip cells that guide
the new sprout, having VEGF as a major chemoattractant
for these cells, (2) highly proliferative stalk cells that elongate
the sprout, and (3) the quiescent phalanx cells that form the
lining of the blood vessel [138, 139]. Lumen formation within
the sprout gives origin to the nascent vessel that, a�er being
covered by pericytes and in conjunction with the endothelial
cells, forms a new basal membrane, where a mature vessel
is covered by a basement membrane and mural cells [158].
�e process of regression and remodeling starts with the
contraction of the selected blood vessels. Endothelial cells
bind to the same cells of the opposite side of the vessel
wall until the lumen is occluded and blood ceases to 	ow.
�e EC of the retracting branch disintegrate and EC die
fromapoptosis, leaving behind a remodeled vascular network
[159].

5.4.4. Peripheral Nerve Regeneration. �e transection of the
peripheral nerve a�er injury is followed by retraction of
the stumps. �e poorly vascularized bridge between the
stumps becomes hypoxic. Macrophages sense hypoxia and
release VEGF, promoting angiogenesis along the original
tubes of the bridge formed of basement membrane. Mean-
while, distal stump degenerated by Wallerian degenera-
tion; Schwann cells are detached from the degenerating
axons, releasing their myelin, and dedi�erentiate into a
progenitor-like state. �ese dedi�erentiated SC recruit more
macrophages, and together, clean myelin and axon debris.
Macrophages promote the vascularization of the bridge
between the two stumps, preparing the site for axonal
regrowth. Simultaneously, dedi�erentiated Schwann cells
migrate along the recently formed vasculature, forming the
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bands of Büngner and guiding the regrowing axons to their
original target. Once the axons reinnervate, their original
targets, Schwann cells, redi�erentiate and remyelinate axons,
leading to the termination of the in	ammatory response
[152, 153].

6. The Remodeling Phase (Restoring
Skin Integrity)

In this last phase of wound healing, the granulation tissue
undergoes a gradual diminishing process. �e epidermis,
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dermal vasculature, nerves, and myo�bers of the skeletal
muscle are remodeled, forming a functional tissue. Vascular
components of �broblasts and myo�broblast of the granula-
tion tissue are decreased and PBMC cells undergo apoptosis
or leave the wound. Similarly, the amounts of proteogly-
cans and glycosaminoglycans that provided structural and
hydration role are diminished. Collagen metalloproteinases
released by �broblasts and macrophages degrade collagen
Type III of the granulation tissue and replace it with collagen
Type I, which is further reorganized into paralleled �brils,
forming a low cellularity scar [42, 68, 117, 160].�is last phase
can last for months (see Figure 3).

6.1. Common Complications of Normal Skin Acute Wound
Healing Process. Two common complications are associated
with alterations of the normal skin acute wound healing
process: �brosis and chronic skin wounds. �ese alterations
a�ect millions of people around the world, representing
a major health challenge and healthcare expenditure for
patients and countries globally. Some challenging problems
will be brie	y addressed in the following paragraph.

Fibrosis is characterized by excessive production of extra-
cellular matrix. In human skin, �brosis is recognized as
hypertrophic scars and keloids. Hypertrophic scars grow a�er
surgery, trauma, or burns causing deformity and contractures
across the joints. Keloids develop as profuse scarring that
extends beyond the limits of the original injury causing
deformity, pruritus, and hyperesthesia [161]. In the setting of
normal skin wound healing, tissue remodeling, scar forma-
tion, peripheral blood mononuclear cells, resident skin cells,
extracellular matrix components, and signaling pathways are
orchestrated in a highly regulated process to restore tissue
homeostasis. In contrast, skin �brosis presents a deregulation
of this process, including: (1) pathologically sustained in	am-
mation due to the permanence of in	ammatory macrophages
and altered communication between macrophages, �brob-
lasts, and epithelial and endothelial cells [68]; (2) increased
�brosis with the constant presence of activated myo�brob-
lasts and hyperproduction of collagen [38, 68, 162]; (3)
altered signaling pathways of �broblast growth factor (FGF),
hepatocyte growth factor (HGF), epidermal growth factor
(EGF), and transforming growth factor-beta (TGF-�); (4)
persistent epithelial-mesenchymal transition (EMT) [38]; (5)
altered extensive communication between the di�erent ECM
components, growth factors, and the cells immersed in it;
and (6) Changed composition of the ECM, altering the
mechanotransduction mechanisms between ECM and cells
[163–165]. A recent publication summarizes the main factors
involved in �brosis: macrophages, myo�broblasts, matrix,
mechanics, and miscommunication [166].

�e second complication is chronic nonhealing wounds,
clinically known as venous and arterial leg ulcers, pressure
sores, and diabetic foot ulcers. We will refer brie	y to the
most important pathophysiological challenges of diabetic
foot ulcers.

Diabetic foot ulcer is a serious and expensive com-
plication of diabetes associated with peripheral vascular
disease and neuropathy in the lower limbs that frequently

end in amputation [167]. Diabetes hyperglycemia disrupts
the homeostasis of glucose metabolism in endothelial cells,
neurons, Schwann cells, and peripheral blood mononuclear
cells (PBMC) because these cells are not able to reduce
the intracellular glucose transport in the presence of hyper-
glycemia [168]. �e excess of glucose interrupts the normal
	ux of glycolysis.�is causes intermediates to be diverted into
collateral pathways that increase the production of reactive
oxygen species, peroxynitrite, and toxic advanced glycation
end products (AGES). �e increased activity of PKC causes
vascular abnormalities and proin	ammatory gene expression
[169]. �ese toxic alterations lead to vascular, nerve, and
PBMC damage, manifested as vascular disease, neuropathy,
and immune alterations. Hyperglycemia induced changes are
also manifested in the skin [170], keratinocytes [171], and
�broblasts [172]. �us, diabetic foot ulcers exhibit a chronic
in	ammatory status and altered molecular environment
including growth factors, cytokines, and proteases [173] and
in	ammatory cells present a dysfunctional phenotype [174,
175].

7. Conclusion and Perspectives

Experimental work of the last two decades has revealed
the general steps of the wound healing process. All cells,
tissues, cytokines, chemokines, and growth factors of the
skin participate in the wound healing process, revealing
redundant and pleiotropic functions and interactions in
many of the cellular and extracellular participants in wound
repair. Further understanding of this complex network will
elucidate how skin cell interaction with the changing tissue
microenvironment de�nes their phenotype in every stage
of tissue repair. Present knowledge has revealed that when
cells are healthy, the in	ammatory phase is well orchestrated,
lasting only a few days, and the following stages of tissue
repair: reepithelialization of the wound, granulation tissue
formation, wound contraction, and scar formation, proceed
normally. However, when cells are dysfunctional, as in dia-
betes, the in	ammatory process is extended, the integrity of
the skin is not restored, and ulcer or pathological �brosis
occurs. Macrophages are the dominant cells present in all
phases of tissue repair. �ey have an essential regulatory role
and are therefore seen as important therapeutic targets to
control the wound healing process in the future.
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