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ABSTRACT

Researchers demand much from their embodied conversa-
tional agents (ECAs), requiring them to be both life-like, as
well as responsive to events in an interactive setting. We
find that a flexible combination of animation approaches
may be needed to satisfy these needs. In this paper we
present SmartBody, an open source modular framework for
animating ECAs in real time, based on the notion of hi-
erarchically connected animation controllers. Controllers in
SmartBody can employ arbitrary animation algorithms such
as keyframe interpolation, motion capture or procedural an-
imation. Controllers can also schedule or combine other con-
trollers. We discuss our architecture in detail, including how
we incorporate traditional approaches, and develop the no-
tion of a controller as a reactive module within a generic
framework, for realizing modular animation control. To il-
lustrate the versatility of the architecture, we also discuss
a range of applications that have used SmartBody success-
fully.

Keywords

Virtual Humans, Conversational Characters, Character An-
imation

1. INTRODUCTION
Researchers demand much from their virtual human cre-

ations. We want them to be responsive; that is, they must re-
spond to the human user as well as other unexpected events
in the environment. They must be believable; that is, they
must provide a sufficient illusion of life-like behavior that the
human user will be drawn into the social scenario. Finally,
they must be interpretable; the user must be able to inter-
pret their response to situations, including their dynamic
cognitive and emotional state, using the same verbal and
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non-verbal behaviors that people use to understand one an-
other. The burden of realizing responsive, believable and
interpretable behavior falls in large measure on the anima-
tion algorithms and their coordination that constitute the
virtual human’s “body”.

The animation of the body must address a range of tech-
nical challenges. To be responsive to unexpected events, a
body must be interruptible. Life-like behavior may require
multiple parts of the body to be in motion. Gaze, for ex-
ample, requires coordination of eye movements, head/neck
movements, twisting of the joints in the torso as well whole-
body stepping movements as necessary. To support a co-
herent interpretation, body movements may also have to be
coordinated and synchronized with each other and with ex-
ternal modules. For example, gestures, head movements,
eyebrow lifts, eye flashes and postural shifts augment spo-
ken dialogue in various ways, and their animation must be
synchronized in time with each other and with the speech
audio.

A variety of approaches have been used to animate vir-
tual humans. Procedural animation readily supports bodies
that flexibly point and look at events in the virtual world.
However, it is challenging to create procedurally animated
bodies that also behave life-like or visually realistic. Con-
versely, to achieve life-like, highly expressive behavior, re-
searchers have animated the body with pre-defined motion
capture or hand-animated sequences of fairly long duration.
As a result, the body may not be sufficiently responsive to
events, and its outward behavior may not reflect its dynamic
cognitive and emotional state in detail.

Our experience has been that a combination of animation
approaches may be required to achieve responsive, life-like
and interpretable behavior. In previous work, we presented a
preliminary motion control architecture to help achieve this
combination of approaches [1]. The architecture was based
on controllers that could be hierarchically interconnected in
real-time in order to achieve continuous motion. This ap-
proach has evolved into a general character animation sys-
tem called SmartBody, an open source modular framework
for realizing virtual humans and other embodied characters.

Controllers in SmartBody can employ arbitrary animation
algorithms such as keyframe interpolation, motion capture
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or procedural animation. Controllers can also schedule or
blend other controllers. Having composable controllers pro-
vides flexibility and a wide range of potential behaviors from
a smaller set of simpler components. However, it also raises
the issue of how behaviors generated by these controllers
combine, synchronize and interact. For example, a proper
applied nod must avoid laterally re-orienting the head away
from a gaze target. Conversely, the gaze controller must
properly realize the vestibulo-ocular reflex while nodding.

In creating SmartBody, we seek to address several goals.
Fundamentally, we need a platform that supports research
in animation approaches but can also be employed in a range
of applications. In addition, we envision SmartBody’s open
source architecture as a means to facilitate collaboration and
as a way for groups to leverage each other’s work. For ex-
ample, one group’s gaze controller may conceivably be com-
bined with another group’s stepping or walking controller.
Further, because the crafting of an ECA (Embodied Con-
versation Agent) application is such a technologically and
artistically daunting task, we hope to lower the barrier of
entries by creating a open source system that can be used
in a large variety of research efforts and applications. To
help facilitate this goal, SmartBody was designed around
the SAIBA framework’s Behavior Markup Language (BML)
standard [2].

In this paper, we present an overview of SmartBody. We
describe the core elements of the architecture which include
behavior scheduling and synchronization, and the hierarchi-
cal organization of motion controllers. We follow up with
our results and a discussion of current, related and future
work.

2. EXAMPLE
Smartbody implements the behavior realization compo-

nent of the SAIBA embodied conversational agent frame-
work. That is, it transforms performance descriptions, spec-
ified in BML, into character animation and synchronized
audio. While each SmartBody process can control multiple
interacting characters, we will only discuss a single Smart-
Body character to simplify the exposition.

Here is an example request, to which we will refer through-
out the paper, for the character Alice, addressing Bob:

vrAgentBML request Alice Bob SPEECH_24

<?xml version="1.0" encoding="UTF-8"?>

<act> <bml>

<speech id="b1">

<text>

Wait! That’s <tm id="not"> not what I mean.

</text>

</speech>

<sbm:interrupt id="b2" act="SPEECH_23"

start="b1:start" />

<gaze id="b3" target="Bob" start="b2:start" />

<head id="b4" type="SHAKE" stroke="b1:not" />

</bml> </act>

Table 1: Example BML performance request

Note the BML is preceded by simple routing tokens identi-
fying the type of message, who is speaking, who is addressed,
and an act identifier. The BML specifies four behaviors,

identified as ”b1” through ”b4”. The primary behavior is Al-
ice’s speech. To ensure old speech is completed or cancelled,
the sbm:interrupt behavior cancels act ”SPEECH 23”. Si-
multaneous to both interrupt and speech, the gaze behavior
instructs Alice to look at Bob. Since the gaze does not de-
fine end or relax sync-points, the gaze behavior is assumed
to persist until the character is directed to gaze elsewhere.
And finally, Alice reinforces her contradiction with a simple
head shake, synchronized to the word ”not”. Figure 1 shows
these scheduled behaviors on a timeline.

Shared Synchronization PointTime

head shake "b4"

gaze "b3"

sbm:interrupt "b2"

speech "b1" "Wait! That's not what I mean."

act "SPEECH_23"

Figure 1: Timeline of the scheduled example behav-
iors

This example identifies several key issues for SmartBody.
First, behavior in SmartBody is realized by the scheduling
and blending of multiple controllers. For example, separate
controllers are used gaze, rhythmic head movements, and
lip visemes while speaking. These controllers are realized by
differing techniques. The viseme controller uses weighted
morph targets. The gaze uses a procedural controller that
can look at and track objects in the virtual world. And
the headshake is realized by another, simpler procedural
controller. These differing controllers must work together.
Specifically, the controllers must be organized in time and
evaluation order to realize prescribed transition and blend
simultaneous motion. For example, how should the gaze in-
teract with the head shake? If their respective motions are
simply added or interpolated, Alice’s gaze may not reach
the target or the gaze controller may overwrite the neck mo-
tions of the nod. The blending of controllers is discussed in
Section 4.2.3. Further, the behavior generated by these con-
trollers must be synchronized appropriately. For example,
the viseme and gesture animations must be tightly synchro-
nized with the phonemes in the dialog audio and the shake
synchronized with the word ”not.” Failure to achieve such
synchronization can significantly impact realism as well as
an observer’s interpretation of the behavior. Scheduling is
discussed in Section 4.1.

3. ARCHITECTURE OVERVIEW
The SmartBody architecture, depicted in Figure 2, works

within a network of modules interacting via a shared mes-
saging system. Each SmartBody process can host one or
more characters. Inputs include BML commands, speech
timing data, and world state updates. Smartbody also out-
puts character state updates and performance progress feed-
back (e.g., starts and stops) to other coordinating compo-
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Figure 2: SmartBody processes BML, speech data, and world state to generate animation.

nents over the messaging framework.
The behavior processing components of Smartbody can

be broken into two parts: a behavior & schedule manager,
which parses the incoming BML, and a motion controller
engine, which evaluates the hierarchical schedule of motion
controllers responsible for the motions for each character.

In most of our applications, the BML comes from a Non-
Verbal Behavior Generator (NVBG) [3] that generates the
BML from the agent’s communicative intent. The output
of the behavior & schedule manager is a hierarchical sched-
ule of motion controllers and events that specifies the mo-
tion and synchronization of the characters . The behavior
& schedule manager creates and makes necessary edits to
this schedule, usually comprised of inserting new motions.
Specifically, each BML request is mapped to skeleton-driving
motion controllers and feedback events in the schedule.

SmartBody currently supports eight types of BML be-
haviors: body postures, animations, head motions like nod-
ding and shaking, gaze, face for facial action units [4][5] and
visemes, speech, sbm:event for feedback notifications, and
sbm:interrupt interruption. The behavior & schedule man-
ager maps most behaviors directly to a single motion con-
troller, including animations, postures, head motions, and
gaze. However, some BML behaviors invoke network mes-
sages or schedule edits. Event behaviors can notify other
modules about behavior progress, or possibly facilitate the
coordination of multiple character interaction. For exam-
ple, event behaviors emit a message, scheduled to coincide
with a specific point in a behavior, such as when the stroke
of a gesture occurs, a gaze acquires a target, or when the
dialog is completed. Interrupt behaviors result in schedule
edits that modify the blend weights of previously scheduled
controllers and visemes during the interrupt.

The schedule & behavior manager must handle both in-
ternally and externally generated timing events. For exam-
ple, speech behaviors schedule audio control commands and
lip visemes. The timing of these commands comes from an
external audio source, as shown in Figure 2. SmartBody
supports both synthesized speech using text-to-speech syn-
thesizers, and pre-recorded audio via a file based audio and
timing database. Despite the distributed architecture, la-
tency beteen modules is insignificant. The speech synthesis
step introduces an inevitable delay, but the external speech
synthesis module implements caching of this data to mini-
mize this.

The second major component is the motion controller en-
gine, which evaluates the hierarchical schedule of motion
controllers responsible for the motions for each character.

For each frame of animation, the controller engine executes
and combines the immediate motion controllers to generate
a set of skeletal joint rotations and translations.

The results are sent over a fast network protocol to the
system’s rendering engine. The renderer applies the skeletal
motion to the character’s deformable mesh, displayed within
the application scenario. This separation from the applica-
tion rendering system keeps SmartBody portable to multiple
rendering engines.

The separation of animation calculation from the render-
ing environment also allows SmartBody to work in a coarsely
distributed architecture. Multiple SmartBody processes can
each manage one or more characters, sending all skeleton
updates to a shared rendering engine. As a platform for
experimental character animation, this facilitates the use of
computationally heavy controllers for behaviors like physical
balance. At the moment, characters hosted on separate pro-
cesses cannot interact with each other. We intend to solve
this problem with the integration of a world state protocol
capable of subscription-based tracking of objects, including
the position and orientation of individual character joints or
environmental objects outside of SmartBody’s control.

4. TECHNICAL DESCRIPTION
The following details the two major components of Smart-

Body.

4.1 Behavior & Schedule Manager
The Behavior and Schedule Manager parses BML into a

set of behavior requests and time references. The time ref-
erences refer to the standard BML synchronization points:
start, ready, stroke, etc. The behavior requests and time ref-
erences are used to realize a schedule of motion controllers
that animate the characters.

A key concern for the scheduling is the range of behaviors
that need to tightly synchronized with speech, including not
only behaviors such as visemes that represent the physical
manifestation of the speech but also a range of nonverbal
behaviors such as gestures, head movements and eye brow
movements that can be used to augment, emphasize or re-
place aspects of the spoken dialog. Such behaviors often rely
on audio with fixed timing and non-standard sync-points at
word breaks (in addition to the core BML synch-points).
When parsing speech behavior, SmartBody generates the
behavior request and time references normally, but also sub-
mits a request for speech timing and audio playback/stop
commands. This speech audio and word break timing comes
from either a speech synthesis system or an audio database.
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After speech and all other BML behaviors are parsed,
the behavior scheduler pauses processing until receiving the
speech timing reply message.

Next, the behavior scheduler assigns absolute timing to
the time references of each behavior request. The behaviors
are processed in BML order, such that the first behavior has
no timing constraints and is assigned the default timing for
the behavior type. Subsequent behavior time references are
assigned by scaling the behavior’s default sync-point timing
to any constrained durations. Partially constrained time
spans, where start or end sync-points may not be defined,
are time-scaled to match the adjacent span of the behavior
to avoid any discontinuities in animation speed. Because
some time constraints can result in scheduling behaviors into
the past, a final normalization pass may shift all scheduled
time markers values forward in time. During this pass, the
earliest behavior start and latest behavior end are noted and
later used to schedule upstream feedback events about the
performance progress.

When inserting new controller tracks, the schedule man-
ager must take into account the evaluation order of con-
trollers that affect common joints. As we will explain further
in subsection 4.2.3, where we describe blending techniques,
ordering affects some types of simultaneous motion primi-
tives. The behavior & schedule manager groups behavior
controllers into categories of behavior types. The categories
are ordered such that lower categories apply motion to the
animation channels first, allowing modifications and over-
writes by higher controller categories. Poses and motion
textures fall into the lowest category, providing a base pose
for the character skeleton. Higher categories include full
body animations, spine and gaze movement, head and neck
movement, and facial expressions, in that order. Generally,
higher categories implement more refined motions.

In addition to controllers, the schedule & behavior man-
ager may attach events to the time references in the form
of broadcasted messages. This automatically occurs for the
feedback events of the performance request, signaling the
completion of the performance. Additionally, several behav-
iors produce their own messages, such as the audio com-
mands of the speech behavior, and the sbm:event message
which broadcasts a string in sync with the behavior stroke.
In the future, we intend to support synchronizing to remote
events via the wait behavior, thus enabling a higher level of
coordinated performances between characters and with the
environment.

4.2 Motion Control Engine
The motion controller engine provides a framework in

which scheduled controllers can generate and apply skeletal
joint transformations. The engine maintains the articulated
skeletal model, and a compact buffer of channels represent-
ing the animated joint parameters. A motion controller is a
self-contained module that affects the motion of joints in a
skeleton or some subset, which can be combined with other
concurrent motion primitives to build up more complex be-
haviors.

Within the engine, controllers are organized in a sched-
ule, not only as a sequence of operations with overlapping
transitions, but also as a prioritized layering of concurrent
tracks that may affect common joints. This concurrency al-
lows us to compose simultaneous behavioral primitives with
ease. Looking at our example in Table 1 and Figure 1, the

primary body motion primitive is a Gaze controller, which
performs throughout the duration of the exchange. At a key
synchronization point, before Alice speaks the word ”not”, a
HeadShake controller applies its motion to affect a subset of
the joints otherwise controlled by the Gaze action.

When a controller executes, it is supplied with a reference
to a writeable channel buffer for storing the values for joints
on which it is configured to operate, shown in Figure 3. This
buffer initially contains the output channels from the con-
troller lower in the immediate controller stack, which has
just been executed. We call the contents of this buffer a
partial-calculation of the motion for the current frame. The
current controller can read this buffer as input to integrate
into its calculation. The channel buffer thus serves to pass
along the partial results of motion calculations, by accumu-
lating the motion effects produced by the ordered stack of
concurrent controllers.

Some controllers also require read-access to the skeletal
joint parameters from the previously completed animation
frame. The ability to reference the previous frame is impor-
tant for calculating spatial relationships of completed mo-
tions in the world, such as to maintain velocity control or
other spatial continuity as it executes. The controller frame-
work supplies the controller with a reference to the skeletal
model, to directly query the joint hierarchy for its local and
global matrices.

A controller can also maintain and effectively ’drive’ its
own subordinate controller, by passing along the channel
buffer as input. Figure 4. The results are then retrieved
by the super-ordinate, and used as a secondary input to its
own motion. Controllers that accept a single subordinate
(see the Blend discussed below), can be chained together.
A controller with multiple subordinates is a branching con-
troller.

At the top level, our controller engine operates on a simple
stack of controllers that are successively combined. However,
the use of branching controllers allows for a general tree-like
arrangement of modules, and the aggregation of controllers
as a self-contained unit within a larger schedule. This model
will become useful for the creation of more advanced con-
trollers such as for walking and running, which must main-
tain a more complex internal state to ensure continuity of
their underlying scheduled motion cycles.

4.2.1 Motion Controller Types

For convenience, we can distinguish between ordinary mo-
tion controllers and meta-controllers which execute subordi-
nate controllers. Motion controllers simply generate motion
and apply it to the channel buffer one way or another.

Pose: The Pose controller is the most basic, writing pre-
stored values into the joint channels for full or partial-body
configurations. Typically, a character’s schedule is assigned
an underlying full-body pose of indefinite duration, to which
it returns when there are no overriding motions.

KeyFrame: The KeyFrame controller extends the idea of
the pose controller with a time-stamped series of pre-defined
poses, which are then interpolated on demand.

HeadTilt/Nod/Shake: These neck joint controllers add
their joint adjustments to the underlying pose or motion by
first reading the channel values, and then modifying their
relevant angular components, as described in subsection 4.2.3.

StepTurn: The StepTurn controller plays pre-defined
stepping-turn animations of the lower body, and modifies
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Id Type R/W Data
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Time and Delta Time

Evaluation Inputs:

Parameters, controller references

Skeleton Joint Hierarchy 

Channel Buffer

ready for next

controller

Initialization Inputs:

Figure 3: A controller module is initialized with configuration parameters, a skeleton reference, and optional
references to subordinate controllers. At run-time, it is supplied with clock time and delta, and a read-write
buffer of channels on which it acts.

the resulting joint values in order to acheive a desired turn
angle. This is sufficient for clearly defined styles of body
turns that take place on one spot, such as in conjunction
with gazing at a moving target that moves behind the head.

Gaze: Our Gaze controller coordinates the behavior of
joints in the back, neck, head, and eyes in order to manip-
ulate a character’s line of regard, and general communica-
tive appearance of visual or frontal attention. Each joint is
driven by a mini-controller routine that fulfills a designated
portion of the alignment task, yet operates independently
(within its limits) to maintain tracking even while parent
joints may be influenced by other controllers. In the eyes,
this mimics the vestibulo-ocular reflex, but the same princi-
pal applies to the tracking contribution of the head and neck.
The Gaze implementation also addresses more subtle issues
regarding gaze aversion, the apparent intensity of a gaz-
ing action, deictic head gestures, and dominant/submissive
spinal posture. The API defines a set of major control keys
(BACK, CHEST, NECK, HEAD, and EYES) that are in-
ternally mapped to the actual spine and head joints. This
abstraction provides a standardized set of handles for tuning
of parameterized behavior, distinct from the specific joints
used in the skeleton for a particular character.

4.2.2 Meta-Controller Types

Meta-controllers manipulate the behavior of subordinate
controllers by intercepting their run-time input parameters
and output channels.

TimeShiftWarp: The TimeShiftWarp controller helps
coordinate the timing and scheduling of subordinate mo-
tions to fit desired behavioral events. Clock time and delta
are mapped to new values, and passed to its subordinate con-
troller. This allows varied start times and playback speeds
of any specified motion.

Blend: The Blend controller, illustrated in Figure 4, com-
bines its input channel buffer with the output buffer of a sub-
ordinate controller, using an adjustable spline-based blend-
ing curve.

Schedule: The Schedule controller maintains a stack of
subordinate controllers and enables their scheduling as tracks
of motion applied over time. Each track may use the Blend
and TimeShiftWarp controllers to adjust blending weights
and execution speeds. Since the Schedule is itself a con-
troller, a new Schedule can be dynamically invoked to serve
as another subordinate controller, effectively encapsulating
a group of related scheduled motions as a single unit.

4.2.3 Simultaneous Controller Interaction

In our previous work [1] we attempted to make a clear

distinction between source and connector controllers, as a
convenient way to frame a motion combinatorial system.
Connectors implemented the blending, scheduling, or other
filtering of motion sources required for combining motions,
without defining an intrinsic motion of their own. In our ex-
periments, we find it convenient to view a motion controller
as not just a passive source of motion, but an active module
that may determine the manner in which it is combined.

For example, the gaze controller allows for non-uniform
blending weights to be applied to a character’s joints. Be-
cause Gaze controls many joints in the spine and neck, it
would override any underlying posture or body motion. Non-
uniform weights allow some of the underlying posture to in-
fluence the lower range of the spine as desired, while main-
taining full control of the neck and eyes. Consider a seated
character, where gaze action on the back and chest is con-
strained by the chair. Attempting to implement this with a
generic blend controller would be unwieldy.

The ordering of controllers within the stack of concurrent
tracks determines the precedence of one controller’s effects
over another, as they are successively executed. However,
this ordering by itself does not address the complexities that
can arise when different controllers interact over the same
joints. In order to coordinate actions, the second controller
cannot always be blended with the first using simple linear
interpolation of the raw channel quantities.

In our Alice example, the Gaze controller takes precedence
in coordinating the rotations of spine, head and eye joints,
such that each joint contributes to the overall task of obtain-
ing alignment of Alice’s line of sight with her target, Bob.
The Gaze controller handles this task in part by having each
joint, such as an eye, track toward the target independently
of its parent joint, within its prescribed range of motion. We
wish to maintain the important target tracking contribution
of the neck while Alice shakes her head in disagreement.

Our HeadShake controller defines a smooth motion curve
which oscillates the neck joints about their vertical axis.
Rather than interpolating between motion sources, the Head-
Shake adds its motion directly to the output of the Gaze con-
troller, so that if Alice’s head is turned to the side to face
Bob, it remains turned, and the motion is applied relative
to this underlying angle. This result realizes the expected
behavior of a composable HeadNod or HeadShake controller
in a simple manner.

Our controllers can utilize information about the con-
text in which they are running, in order to adapt their be-
havior appropriately. This context can include the partial-
calculation, the previous frame’s skeleton, or even output
from a designated subordinate controller.
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Figure 4: Blend interpolates between the output of a controller lower in the stack with the output of a
subordinate controller.

5. SYSTEM INTEGRATION
A key goal for SmartBody is to be applicable to differ-

ent systems with different agent capabilities, different types
of characters and different renderers. To help realize wide
applicability, we have had to address several key concerns.
First, there must be an art pipeline, a flexible way for art
assets to be incorporated into SmartBody by character cre-
ators and animators. Second, there must be some standard-
ized API to control SmartBody that is amenable to use by
different research groups and application builders. Finally,
there must be a straightforward way to hook up Smart-
Body to differing rendering/game engines. In this section,
we briefly touch on these input/output aspects.

Art Pipeline: Although research platforms are often
built with a single character, we expect SmartBody might be
used across both research systems and applications with per-
haps a wide range of different characters, different skeletons
as well as different art pipelines for creating those charac-
ters. Currently, we use Maya to create characters, exporting
skeletal animation and geometry information into our simple
text data formats, via several Mel scripts and SmartBody-
specific tools. Animations are created using traditional key
frame techniques, or through motion capture, for use by
controllers such as Pose and KeyFrame. We also export the
skeleton and character mesh from Maya to the rendering
engine using the rendering engine’s toolset.

SmartBody can work with other 3D packages by writing
export scripts that write animation and skeleton data into
SmartBody’s simple text format. We also plan to support a
more generic Collada [6] bassed asset pipeline.

BML Input: As discussed above, SmartBody takes the
SAIBA framework’s BML commands for the behavior con-
trol. We are largely noncommittal as to how the BML is
crafted. In some SmartBody applications (see section 6)
use the BML is handcrafted. In others, the BML is gen-
erated automatically (e.g., by the virtual human’s ”brain”).
Most of our current applications using SmartBody generate
BML using NVBG [3], a rule-based module that analyzes
the virtual human’s communicative intent, emotional state,
and speech text to determine various nonverbal behaviors
including facial expressions and gestures.

Rendering: Finally, there must be a straightforward way
to connect SmartBody to different rendering engines. Our
current integration with rendering systems is via a network
interface. We have full and partial integrations with the
following renderers: Unreal 2.5 (full), Gamebryo, Ogre3D
and Half-Life 2 (via a user mod).

6. RESULTS & APPLICATIONS
Two key goals for the SmartBody project were generality

and ease of use. We wanted an animation system that could

be used by others in a wide range of systems. Further, we
wanted to simplify and speed up the process of crafting vir-
tual human and ECA applications. All of these goals have
been demonstrated by Smartbody’s use in seven different ap-
plications, including fielded training applications, commer-
cial systems and research systems. Here we briefly discuss
four, SASO-ST[7], ELECT[8], Virtual Patient[9], and Vir-
tual Rapport[10].

In the Stability and Support Operations Simulation and
Training (SASO-ST) project (See Figure 5), a single Smart-
body controls two characters in a 3-party conversation with
a human participant. SASO-ST is a platform for virtual hu-
man research. ELECT, on the other hand, is a fielded train-
ing system designed to teach cross-cultural negotiation skills.
In ELECT, the SmartBody was used by an outside game
company. The company crafted their own characters and
added animations to SmartBody’s existing repertoire. The
Virtual Patient system uses SmartBody to realize a virtual
boy with a conduct disorder, as a demonstration of how vir-
tual humans can be used as standardized patients for train-
ing health care professionals. In all these systems, NVBG is
used to generate the BML annotations from the speech text.
A few behavior rules were changed for the different applica-
tions, but most of the rules were common across all projects.
Across all the various systems that have used SmartBody,
there has been very significant reuse of keyframe animation
assets, and they all use the same procedural controllers.

However, the surrounding system in which SmartBody is
being used has differed considerably. In the SASO-ST ap-
plication, voices are generated using text-to-speech, in real
time with timing information from the Rhetorical system.
For ELECT and the Virtual Patient, voices are pre-recorded.
Also, each of these systems use entirely different agent de-
signs to drive SmartBody. SASO-ST uses the Austin virtual
human architecture that incorporates task reasoning, emo-
tion modeling and dialog management, while ELECT and
Virtual Patient use lighter weight reactive agents that map
the users input dialog to the agent’s response. On the other
hand, the Virtual Rapport agent does not interact with di-
alog at all. Rather it tries to provide nonverbal listening
feedback such as posture shifts and head nods to a user
speaking to the system. It determines its responses using
vision and audio data derived from the user’s head move-
ments and speech.

In summary, different groups both inside and outside our
organization created these systems and they used different
sensor, agent and speech technologies to do it. Nevertheless,
SmartBody has proven to be efficient and flexible, greatly
reducing the time and cost to build the virtual humans in
the respective projects.
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Figure 5: SASO-ST, ELECT & Virtual Patient.

7. RELATED RESEARCH
A wide range of computer animation techniques are avail-

able for the animation of interactive virtual humans, for
instance: walking [11, 12], reaching and object manipula-
tion [13, 14, 15], inverse kinematics [16, 17], parameterized
models [18] and keyframe interpolation of designed or mo-
tion captured [19] keyframes. These works produce com-
pelling results, however they do not address synchronization
issues when different methods must be combined to achieve
a composed, full-body behavior.

Instead of focusing on individual animation techniques,
SmartBody is based on the concept of achieving complex
behaviors by the composition of motion generators, with an
emphasis on simple primitives. Such an approach is sup-
ported by strong evidence found in neuroscience research
dealing with biological motion organization [20, 21].

Several previous works on computer animation [22, 23,
24] have addressed composition of motion controllers, yet
are mainly limited to achieving smooth transitions between
controllers with blending. For instance, Boulic et al [24]
propose a system where arbitrary sets of joints can be ac-
tivated and blended with smooth transitions, but without
handling scheduling or hierarchical motion flow. Animation
packages available in recent game engines also offer simi-
lar capabilities. For instance the Ogre3D game engine uses
the notion of animations for key frame animations and con-
trollers for user-implementable motion generators; however
no framework is given for solving the scheduling and hierar-
chical needs addressed by our approach.

The problem of automatically composing motion controllers
in order to achieve a desired behavior is more difficult to ad-
dress in general situations. An approach based on selecting
individual controllers for guiding a simulated character un-
der dynamics has been proposed by Faloutsos et al [25],
however it does not address our scheduling and hierarchical
needs.

The specific problem of synthesizing realistic behaviors for
conversational characters has been also addressed by several
researchers [26, 27, 28, 29]. In general, for conversational
characters, the usual approach has been to compose anno-
tated sequences in order to match timing constraints.

For instance, the BEAT system [27] correctly addresses
time-synchronized sequential animations driven by the speech
text. However its scheduler treats non-verbal behaviors as
immutable, unable to adapt them to scheduling constraints,
nor refer to their inner structure. As such, preparatory
action and transitional behaviors must be independently
scheduled, or left to the animation engine to coordinate.
In contrast, Smartbody’s scheduler generalizes timing con-
straints beyond spoken word boundaries and correctly han-

dles non-verbal behavior. The scheduler understands no-
tions of behavior transition corresponding to BML’s ready
and relax sync-points, as well as important moments of ac-
tion such as strokes. That said, BEAT does address the
issue of conflicting behavior requests, currently ignored by
SmartBody’s scheduler.

The Max system [26] also uses a similar notion of prim-
itive controllers, called local-motor-programs, that operate
on separate parts of the character: hand, wrist, arm, neck,
eyes, etc. Motor programs are then recombined by an ab-
stract motor control program (MCP). Although joint shar-
ing and blending are addressed they do not model generic
and flexible reconnections and processing of arbitrary prim-
itive motion controllers.

In a different approach, Stone et al [29] focuses on reusing
motion captured sequences, reducing the amount of time in
designing and annotating timing constraints, but requiring
suitable motion capture performances as input to be reused
in the lines to be simulated.

In general, our system differs from these models mainly
by providing a unique architecture for the dynamic and hi-
erarchical composition of controllers. In particular, Smart-
Body offers mechanisms for precise time scheduling, auto-
matic handling of warping and blending operations to meet
time constraints, and integration of custom controllers for
achiving a wide range of effects. Furthermore, our behav-
ior & schedule manager is able to assemble and orchestrate
controllers following input from BML specifications. The ca-
pability of hierarchically organizing the motion flow between
controllers, both concurrently and sequentially, builds a flex-
ible framework for expressive interactive virtual humans.

8. STATUS & FUTURE
The work on SmartBody has been designed to address

several goals. We sought a platform that both lowered the
barrier of entry in creating ECAs and was flexible enough for
a wide range of applications. The range of applications and
research efforts that now use SmartBody provide solid evi-
dence of our progress in achieving that goal. We also sought
an open platform that supports research in addressing the
challenges of animating ECAs. To help achieve that goal,
we are in the process of preparing SmartBody for release to
the public. We hope to coordinate with other institutions
to develop new controllers and support new applications.

We are also actively expanding SmartBody on several
fronts. At the scheduling level, we are expanding our sup-
port for BML sync-point notations and core behaviors. At
the controller level, we are exploring parameterized stepping
and an intelligent step-planning controller. We have recently
completed bone-based facial control and are currently test-
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ing it. We are also exploring the integration of controllers
that employ physical simulations.

You can follow our progress at:
http://www.smartbody-anim.org/
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