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Abstract

The exposure of wild carnivores to viral pathogens, with emphasis on parvovirus (CPV/FPLV), was assessed based on the
molecular screening of tissue samples from 128 hunted or accidentally road-killed animals collected in Portugal from 2008
to 2011, including Egyptian mongoose (Herpestes ichneumon, n = 99), red fox (Vulpes vulpes, n = 19), stone marten (Martes
foina, n = 3), common genet (Genetta genetta, n = 3) and Eurasian badger (Meles meles, n = 4). A high prevalence of
parvovirus DNA (63%) was detected among all surveyed species, particularly in mongooses (58%) and red foxes (79%), along
with the presence of CPV/FPLV circulating antibodies that were identified in 90% of a subset of parvovirus-DNA positive
samples. Most specimens were extensively autolysed, restricting macro and microscopic investigations for lesion evaluation.
Whenever possible to examine, signs of active disease were not present, supporting the hypothesis that the parvovirus vp2
gene fragments detected by real-time PCR possibly correspond to viral DNA reminiscent from previous infections. The
molecular characterization of viruses, based on the analysis of the complete or partial sequence of the vp2 gene, allowed
typifying three viral strains of mongoose and four red fox’s as feline panleukopenia virus (FPLV) and one stone marten’s as
newCPV-2b type. The genetic similarity found between the FPLV viruses from free-ranging and captive wild species
originated in Portugal and publicly available comparable sequences, suggests a closer genetic relatedness among FPLV
circulating in Portugal. Although the clinical and epidemiological significance of infection could not be established, this
study evidences that exposure of sympatric wild carnivores to parvovirus is common and geographically widespread,
potentially carrying a risk to susceptible populations at the wildlife-domestic interface and to threatened species, such as
the wildcat (Felis silvestris) and the critically endangered Iberian lynx (Lynx pardinus).
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Introduction

Canine parvovirus (CPV) and feline panleukopenia virus

(FPLV) are closely related viruses that have been included in the

unique species Feline panleukopenia virus together with other

antigenic and genetically related viruses, such as raccoon

parvovirus (RPV), raccoon dog parvovirus (RDPV), blue fox

parvovirus (BFPV) and mink enteritis virus (MEV) [1,2,3]. All

together, these viruses infect a wide range of domestic and wild

species of the order Carnivora [2]. VP2, the major structural

protein of the viral capsid, determines the pathogenicity, tissue

tropism and host ranges of this virus subgroup [4,5]. FPLV was

originally identified in domestic cats [6] and later on other large

felids, such as tigers, panthers, cheetahs and lions

[2,7,8,9,10,11,12]. Canine parvovirus (CPV-2) was detected for

the first time in 1978, possibly emerging from a FPLV like-virus

[13]. This highly virulent virus rapidly became endemic in dogs

throughout the world. Original CPV-2 strain did not infect cats

[4], however it was replaced by new antigenic variants, designated

CPV-2a, CPV-2b and CPV-2c that regained the ability to infect

felids [3,5,14].

Depending on age and immunological status, the infection of

young domestic carnivores and a few species of large felids can be

sub-clinical, acute (characterized by leukopenia, fever, depression,

dehydration, and diarrhoea), or cause sudden death [2,15].

However, in mustelids (otters, badgers, ferrets, martens and

fishers) and viverrids (genets and civets), the pathogenicity of the

disease caused by feline-like parvoviruses is still unclear. Reports

refer mainly to serological or virological evidences rather than to

clinical or anatomo-histological data (reviewed by [2]). MEV
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infection of minks is an exception, since most infected animals, in

particular the young ones, develop acute hemorrhagic enteritis,

frequently associated with leukopenia [16].

Little information is presently available on the incidence of

parvovirus in mesocarnivores from Portugal, but the existing

serological [17] and virological studies [18,19] suggest the

exposure of red foxes, common genets and stone martens to

infection.

Although the carnivore guild in mainland Portugal is highly

diversified, comprising 14 species, among the strictly terrestrial

predators, only red fox, stone marten, badger, common genet and,

more recently, the Egyptian mongoose, have a known generalized

distribution [20,21]. Genets and mongooses are carnivores whose

distribution is mainly restricted in Europe to the Iberian Peninsula

(Portugal and Spain) [22,23]. Only genet occupies southern

France territories [23]. Due to several factors, namely the recent

abandon of croplands, rural depopulation, great adaptability in

terms of its bio-ecology and lack of natural predators, mongoose

has been expanding rapidly from South to North, and, recently, it

has invaded the Northeastern areas of Portugal from where it was

absent in the beginning of the century [21,24]. The population

biology of these animal species is still largely unknown, namely

their contribution to pathogen cross-species transmission. There-

fore, the aim of the present work was to refine our understanding

of viruses circulating in the wild. For this purpose, we determined

the incidence of particular viruses in the most widely distributed,

strictly terrestrial, wild carnivore species free-ranging in mainland

Portugal: Egyptian mongoose, red fox, stone marten, Eurasian

badger, and common genet, obtained from road-kills or harvested

during predator control actions (mongoose and fox). Furthermore,

the knowledge on the molecular properties of field parvoviruses

that circulate within these populations was extended based on

sequence analysis. Even though animal sampling was widespread,

including sensitive areas for conservation, it was more intense in

the South region of the mainland, next to priority intervention

areas of the Iberian lynx Action Plan in Portugal that potentially

offer suitable habitat for the reintroduction of this endangered

carnivore species.

Results

Preliminary Screening of 34 Specimens for Relevant Viral
Pathogens Evidenced the Presence of Parvovirus in Wild
Carnivores
In a first stage of the present study, the presence of

parvovirus (PV), Coronavirus (CoV), Canine Distemper Virus

(CDV), Feline Herpesvirus (FHV), Aujeszky Disease virus

(ADV), Canine Adenovirus types 1 and 2 (CAV1 and CAV2)

and Influenza A virus (IV) was investigated on tissue samples by

real-time PCR (PV, FHV, ADV, CAV1/CAV2) and by reverse

transcription real-time PCR (CoV and IV), on a small scale

pilot survey performed on 34 specimens from the Herpestidae,

Canidae and Mustelidae families of the order Carnivora

(Table 1).

Parvovirus DNA was detected in 19 animals, specifically

mongoose (n = 14 out of 28, 50%), red fox (n = 4) and stone

marten (n= 1) (Table 1). The single Eurasian badger specimen

tested at this phase was parvovirus-DNA negative. Only one

mongoose, which was also exposed to PV, as indicated by PCR,

tested positive for CoV. All animal specimens were negative for

CDV, CAV1, CAV2, ADV, Influenza A and FHV (Table 1).

The High Sensibility of Real-time PCR as Detection
Method and Availability of Tissue Matrices Favored
Parvovirus DNA Detection, Disclosing Marked Incidences
in Mongoose and Red Fox Subpopulations
Since the first subset of animal samples tested negative for the

large majority of the viruses screened, only PV was evaluated on

a broader sample (Fig. 1A). Parvovirus vp2 sequences (93 bp) were

detected by real-time PCR in lymph node and intestine samples of

81 out of 128 specimens (Fig. 1A, Table 1). The Ct values were

high, ranging from 27.92 to 39.75 (Fig. 2). The average Ct was

34.73 cycles (standard deviation, sd, 3.36). Amplification of

parvovirus DNA yielded clear sigmoid-shaped, high-fluorescence,

amplification curves, while negative controls had no measurable

fluorescence indicated by a flat line in the plot (Fig. 2).

The high incidence of PV DNA in sampled specimens (63.3%)

suggests that, in Portugal, mesocarnivore species are highly

exposed to PV infection (Table 1). Almost 58% of Egyptian

mongooses examined (n= 57 out of 99) were PV DNA-positive

(Table 1, Fig. 1B). There were positive animals in all sampled

districts, however the incidence was higher in the South (70%), if

considering the areas with the highest sampling range (Fig. 1B).

Despite very restricted sampling, all genets (n = 3) and stone

martens (n = 3) tested, as well as three of four badgers examined,

were DNA-positive. Also limited in sample size, the red fox

subpopulation exhibited the highest incidence of parvovirus DNA

(78.9%, n= 15 out of 19) (Table 1). In this species, viral DNA was

detected among the specimens originated from six out of seven

sampled districts (data not shown).

Absence of Viral Infectious Particles and Autolysis of
Tissue Samples may have Hampered Viral Isolation in
Parvovirus DNA Positive Samples
Despite detection of short PV DNA fragments enabled by real-

time PCR, virus isolation in Candrell feline kidney (CRFK, ATCC

CCL#94) cells, attempted with a set of supernatants (n = 11) of

tissue homogenates from PCR positive specimens failed in all

cases, probably due to the low viral charge in the tissues, as

indicated by the high Ct values found during the screening PCR

test, and/or the absence of infectious particles.

The mesenteric lymph node and/or intestine of PV-positive

animal specimens were under significant autolysis (specifically,

90% of mongoose’s and 74% of red foxes’ tissues, as indicated by

microscopic examination), which may also have contributed to

unsuccessful virus isolation.

Detection of Parvovirus Antibodies in Lung Tissue
Extracts Confirmed the Circulation of Parvovirus in the
Wild
As sera samples were not available in our study, twenty-nine

lung tissue extracts (LTEs) prepared from a subgroup of parvovirus

DNA-positive animals and ten LTEs from PV DNA-negative

specimens were tested by a modified commercial indirect ELISA

to detect antibodies from all the animal species included in the

survey. This modified ELISA methodology detected CPV/FPLV

antibodies among all species, with 26 LTEs (90%) from DNA-

positive animals being considered serologically reactive (sample

optic density/positive control optic density, S/P.0.150): 18 from

mongoose (n = 20, 90%), two from red fox (n = 2), three from

Eurasian badger (n = 3), one from stone marten (n= 1) and two

from genet (n = 3). The LTEs from two mongooses (S/P.0.7) and

one juvenile female badger (S/P= 1.99) from Moura-Barrancos

region, one of the last strongholds of the Iberian lynx, were
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particularly reactive. None of PV DNA-negative specimens had

detectable PV antibodies.
Molecular Characterization of Parvoviruses from different
Hosts Based on VP2 Disclosed FPLV-like Viruses in
Mongooses and Red Foxes, and CPV-like Virus in Stone
Marten
Without virus isolation, amplification of the complete vp2 gene

(2 kb-long) for molecular characterization of parvoviruses circu-

Table 1. Results of the virological survey in free-ranging wild carnivores from Portugal.

Wild Carnivore Virus tested (positive samples/total samples tested)

Animal Species

No.

specimens

Collection

Methoda Parvovirusb PVc CoVc CDVc FHVc ADVc
CAV1/

CAV2c
Influenza

Ac

Red fox (Vulpes vulpes) 19 R, H 15/19 (78.9%) 4/4 0/4 0/4 0/4 0/4 0/4 0/4

Egyptian mongoose (Herpestes ichneumon) 99 R, H 57/99 (57.8%) 14/28 1/28 0/28 0/28 0/28 0/28 0/28

Stone marten (Martes foina) 4 R 3/4 1/1 0/1 0/1 0/1 0/1 0/1 0/1

Eurasian badger (Meles meles) 3 R 3/3 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Common genet (Genetta genetta) 3 R 3/3 – – – – – – –

aspecimen origin: Hunting (H) or Road-kill (R).
bResults of the parvovirus survey in 128 specimens.
cResults of the preliminary virological survey in 34 specimens. Parvovirus (PV), Coronavirus (CoV), Canine Distemper Virus (CDV), Feline Herpesvirus (FHV), Aujeszky
Disease virus *ADV), Canine Adenovirus types 1 and 2 (CAV1 and CAV2) and Influenza A virus.
doi:10.1371/journal.pone.0059399.t001

Figure 1. Geographical distribution and sampling range of animal specimens and regional prevalence rates of parvovirus in
mongoose. (A) The animal species are represented in the map by symbols, as indicated. The number of samples with the same GPS coordinates
(latitude; longitude) is indicated by the Arabic numbers. Thick lines separate Portugal districts. The distribution and range sampling per district of red
fox and mongoose subpopulations are evidenced in orange and grey scales, respectively, as indicated. (B) Prevalence of parvovirus in mongoose per
sampled district; the number of PCR-positive samples per total sampling is indicated in brackets. Priority intervention areas of the Iberian lynx Action
Plan are shown in green. Figure produced with open-access software QGIS.
doi:10.1371/journal.pone.0059399.g001
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lating in the animal species surveyed proved difficult and was only

fully achieved with viral DNA extracted from one mongoose

[specimen 22124-7, captured during 2009 (JF422105)] and one

stone marten [specimen 41524, collected during 2010

(JX411926)]. Only partial nucleotide sequences of the vp2 gene

were obtained from tissues of two mongooses [specimens 22124-8

(JF422106) and 41220-1, both obtained during 2010]) and four

red foxes [specimens 41219-1, 41219-2, 41219-3 and 5070, all

obtained during 2010] (Fig. 3). Polypeptide sequences were

deduced and the respective amino acid residues occupying

informative positions in VP2 protein were compared with the

homologous residues of FPLV and CPV, including CPV-2, CPV-

2a, newCPV-2a, CPV-2b, newCPV-2b and CPV-2c variants

(Fig. 4).

The complete vp2 sequence from mongoose 22124-7 (JF422105)

and partial vp2 sequence from mongoose 41220-1 showed all

characteristic FPLV amino acid residues [2], indicating that both

are FPLV-like viruses (Fig. 3 and Fig. 4). Although only a 442 bp-

long sequence was obtained from mongoose 22124-8 (Fig. 3),

amino acids found at positions 426, 564 and 568 indicate that this

strain is also a FPLV–like virus (Fig. 4). Similarly, the amino acids

deduced from partial vp2 sequences obtained from the four red fox

specimens (41219-1, 41219-2, 41219-3 and 5070), showed

characteristic FPLV residues at key positions (Fig. 4).

The comparison of the disclosed nucleotide regions within vp2

from mongoose and red fox FPLV sequences showed that the

degree of genetic similarity is very high. In fact, apart from

nucleotide position 588, in which T and G were both present in

red foxes vp2, 100% identity was found among all the homologous

sequences analyzed (Fig. 3). Also interesting, the comparison of

these FPLV vp2 sequences with sequences available in GenBank

evidenced marked similarity with parvoviruses from captive

Felidae and domestic cats from Portugal (ranging from 99.94 to

99.88%) [25], followed by FPLV strains from Italy (99.82%).

Amplification of full vp2 gene for sequencing was only successful

with the material from one stone marten specimen among the

three that tested PV DNA-positive (JX411926).

Amino acids occupying positions 93 (Asn), 103 (Ala) and 323

(Asn) that are critical for the ability of CPV to replicate in dogs

were found preserved in the stone marten parvovirus. Also, CPV-

characteristic residues at positions Arg-80, Ser-564 and Gly-568,

together with Asp-426 and Ala-297, revealed that the stone

marten strain is a newCPV-2b virus type (Fig. 3 and Fig. 4).

Figure 2. Parvovirus DNA amplification curves obtained during real-time PCR assays with tissue samples from wild carnivores. The
relative fluorescence units (RFU) are plotted against cycle number. Ct variation was observed among positive samples from all surveyed species, with
the exception of genet tissues, which yielded homogeneous values below 35. The average Ct was 34.73 cycles (standard deviation of 3.36). Values
above 40 were considered negative. The Ct values of the positive controls used in each assay, a commercial vaccine containing the old CPV-2 strain,
are also represented. Negative controls had no measurable fluorescence indicated by flat lines in the plot.
doi:10.1371/journal.pone.0059399.g002
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Bayesian Analysis Exposed the Close Genetic
Relationship between Mongoose and Large Felidae
Strains from Portugal and between Stone Marten and
Asian Leopard Cat Strains
Bayesian analysis was performed with two complete vp2

nucleotide sequences obtained during this study (JF422105 and

JX411926) and thirty five vp2 sequences (25 FPLV-like; ten CPV-

like strains) from different wild carnivore species (Table S1, Fig. 5).

The stone marten strain from Portugal that was typified as

newCPV-2b grouped within the CPV-like cluster, showing the

highest genetic proximity with a newCPV-2b leopard strain from

Vietnam (Fig. 5).

The mongoose isolate clustered with two FPLV strains from

a tiger and a lion obtained during an outbreak that occurred in

2006 at the Lisbon Zoo, Portugal [25] (Fig. 5).

Modelling Analysis Showed No Influence of Biometric
Variables and Sample Origin on Parvovirus Detection in
Mongooses
The influence of gender, age, morphometry and carcass origin

on the detection of parvovirus was investigated on PCR positive

and negative mongooses (Fig. 6), whose representative sampling

(n = 99), enabled a more robust modeling analysis. Two positive

specimens were excluded as gender information was not available.

Our data revealed a non-significant spatial autocorrelation of

the collected samples (Moran’ I = 0.09; p = 0.206). Two of the

morphometric variables were highly correlated (body total length

versus tail length: r = 0.773; body mass versus body condition:

r = 0.749), and thus tail length and body mass were excluded from

further analysis.

A set of 30 models was created and tested and five models were

identified as the most parsimonious (AICc,2) to describe the

detection of FPLV in this species (Table S2). Those models

included the null model together with others combining age, origin

and body condition (Table S2). The AUC value, derived from the

ROC curve reached 0.609 (sd = 0.057), revealing a low accuracy

according to criteria defined elsewhere [26]. Therefore, we

conclude that, in this study, the detection of parvovirus in

mongooses cannot be predicted by influence of any of the

independent variables tested (age class, body condition or corpses

origin).

Discussion

Parvoviruses are considered endemic in most domestic and feral

carnivore populations worldwide [1,2]. The incidence rates

detected during this study in widely distributed wild carnivore

Figure 3. Multiple alignment of VP2 encoding sequences
(nucleotides 228 to 1755). CLUSTAL W was used to align vp2
nucleotide sequences from wild carnivore parvoviruses characterized
during this study and from parvoviruses representatives of each virus

type. FPLV, on the top line, is represented by the vp2 sequence from
a lion isolate (EF418569). Sequences 22124-7 (JF422105), 41220-1 and
22124-8 (JF422106) were obtained from E. mongooses, while sequences
41219-1, 41219-2 and 41219-3 refer to red fox specimens and sequence
41524 to the stone marten isolate. Other virus types are represented by
strains M23255 (CPV-2), DQ340410 (CPV-2a), DQ340422 (newCPV-2a),
AB054222 (newCPV-2a-Asp300), AF306450 (CPV-2b), AB054221
(newCPV-2b), AB054224 (newCPV-2b-Asp300), AF306449 (CPV2b-
Pro265) and FJ005240 (CPV-2c). Nucleotides which are identical to
those in FPLV are represented by dots, while those that differ are
indicated. Dashes represent non determined nucleotides. The position
of nucleotides within vp2 is indicated above FPLV reference sequence.
Triplets corresponding to characteristic amino acid positions are shaded
and their position is indicated below each triplet. Triplets harboring
nucleotide variations between feline and canine strains that encode the
same amino acid are also shaded and referred as synonymous.
doi:10.1371/journal.pone.0059399.g003
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species from mainland Portugal are consistent with this notion.

Although sample sizes were statistically limited, the incidence of

parvovirus found in red foxes (78.9%), genets, stone martens and

badgers (virtually all specimens tested) is notable. Also remarkable

is the rate of parvovirus DNA present among mongooses (58%),

which, to our knowledge, is reported for the first time in this

species. Even though most specimens presented autolysis, the use

of tissues, such as lymph nodes and intestine, as matrices in our

methodological approach, together with the higher sensibility of

real-time PCR facilitated viral detection and evaluation of

parvovirus prevalence in wild species, in comparison with other

studies performed in the country relying on the analysis of scats

with conventional PCR [19]. The high Ct values registered with

autolysed positive samples contrasted with lower Ct values

routinely obtained with fresh samples from cats and dogs under

active disease (Duarte et al., unpublished results), suggesting that

only small amounts of parvovirus DNA were present, likely

corresponding to persistent viral DNA left over from previous

infections. This possibility explains unsuccessful virus isolation in

CRFK cells and the absence of evident macro- or microscopic

pathological lesions in the subset of specimens that were not under

autolysis. The difficulty found in the amplification of the full vp2

gene, aiming the molecular characterization of the virus, is also

sustained by this hypothesis. Difficulty in viral isolation from feces

and intestine samples of wild species, particularly red fox, has been

referred before [27,28].

In agreement with the study of Santos et al. [17], we detected

CPV/FPLV antibodies in red foxes, stone martens and genets, as

well as in the other species surveyed, with a total of 26 (90%) out of

29 LTEs from DNA-positive animals being serologically reactive.

However, to our knowledge, this is the first report on the detection

of parvovirus antibodies in badgers. Parvovirus antibodies have

been reported in wild red foxes from other geographical areas,

namely Spain [29] and Canada [30]. Interestingly, the antibody

prevalence observed in Canada was very close to the viral

prevalence found in this species during our study (78% out of 19

surveyed animals).

Amplification of complete or even partial vp2 gene sequences

allowing the molecular characterization of the viruses from

badgers and genets was not achieved in our study. In contrast,

our sequencing results clearly show that the mongoose and red fox

strains belong to the feline parvovirus cluster, as they encode key

amino acids characteristic of FPLV. Whereas FPLV is maintained

independently in the mongoose and red fox populations, or

acquired through the direct or indirect contact with other infected

wild or domestic carnivores, is unknown. Parvovirus is extremely

stable and can remain infectious in the environment for many

months, which facilitates transmission by fecal-oral route among

susceptible species. Wild species, particularly red foxes and

raccoons, have been pointed as candidate evolutionary inter-

mediates of FPLV-CPV [27] and CPV-2-CPV-2a parvovirus

evolution [31] respectively. The molecular data obtained during

our study, regarding the characterization of parvoviruses from

Vulpes vulpes in Portugal, does not clarify this hypothesis, as we

cannot exclude that domestic cats, or even mongooses, may have

been the source of FPLV-like viruses infection to these foxes. The

higher degree of genetic similarity between the FPLV viruses from

different wild species originated in Portugal, in comparison with

the FPLV sequences presently available in GenBank, may suggest

the geographic clustering of parvoviruses that circulate in Western

Iberia. A phylogenetic analysis using the two vp2 complete

sequences obtained during this study and thirty five strains from

several wild species reinforces this hypothesis, as the mongoose

FPLV-like virus grouped with two FPLV strains from large captive

Felidae from Lisbon, diverging only in two nucleotide positions

(760 and 871). On the other hand, parvovirus fromMartes foina was

molecularly characterized as new-CPV-2b, providing the first

publicly available parvovirus vp2 nucleotide sequence from this

species. Although a stone marten CPV-2a strain was referred by

Steinel et al. 2001 [2], its nucleotide sequence is not available in

Genbank. The phylogenetic analysis showed a close genetic

similarity of the stone marten isolate with Asian leopard

parvoviruses, also belonging to the newCPV-2b subtype. Due to

the genetic similarity found between the stone marten vp2

sequence and a newCPV-2b domestic dog strain from USA

(EU659121), and the circulation of different CPV-2b strains in

Portugal [32], it is likely that the stone marten virus may have

been originated in infected domestic species, and do not appear to

represent an evolutionary intermediate in the CPV-2b branch.

Parvoviruses have been isolated from the feces of clinically

healthy domestic and wild felines [33]. Although a carrier stage

has not been defined for dogs after infection by CPV, it has been

observed that asymptomatic adult dogs may periodically shed the

virus [34]. It is also known that infected cats, whether symptomatic

or not, serve as reservoirs and source of infection to other animals

[35]. Concerning the animal species under study, data on the

severity of the disease has been reported for red foxes experimen-

tally infected [30]. In that study, a marked immune response was

apparently developed after infection with FPLV but no clinical

signs were detected with MEV and CPV-2 inoculation [30].

Regarding previous works in badgers, macro and microscopic

lesions suggestive of CPV myocarditis on an adult specimen have

been reported [36], as well as parvovirus-associated enteritis

followed by death of badger cubs [37]. Our work was inconclusive

with this respect, as tissue autolysis of positive badger specimens

limited the investigation of pathological findings. To our

knowledge, there are no virological reports dedicated to the study

of the susceptibility of herpestids, particularly the Egyptian

mongoose, to parvovirus infection. However, Millan and colla-

borators (2009) have previously reported the detection of

parvovirus antibodies in this species (n = 18, 50%) [38]. The

remarkable prevalence found during this study in red foxes and

mongooses, together with the concomitant lack of evident gross

gastro-enteric lesions during necropsy, argues for the presence of

viral DNA persisting from previous infections. Any significant

parvovirus disease is likely in neonatal or young animals, so the

lack of lesions suggestive of acute parvovirus infection at necropsy

would likely not be connected to the effects of the original

infections by these viruses on the specimens surveyed. Further-

more, as sampling did not include animals found naturally dead,

or apparently sick, the possibility that mongoose or red fox may

also undergo acute disease cannot be overlooked. No specimen

Figure 4. Multiple alignment of VP2 complete amino acid sequences. CLUSTAL W was used to align the deduced VP2 sequences from wild
carnivore parvoviruses characterized during this study and from parvoviruses representatives of each virus type. Characteristic amino acid positions
are shaded. The amino acid sequences represented correspond to a lion isolate (EF418569), on the top, sequences 22124-7 (JF422105), 41220-1 and
22124-8 (JF422106) to E. mongooses, sequences 41219-1, 41219-2 and 41219-3 to red foxes, and sequence 41524 to the stone marten isolate. Other
virus types are represented by strains M23255 (CPV-2), DQ340410 (CPV-2a), DQ340422 (newCPV-2a), AB054222 (newCPV-2a-Asp300), AF306450 (CPV-
2b), AB054221 (newCPV-2b), AB054224 (newCPV-2b-Asp300), AF306449 (CPV2b-Pro265) and FJ005240 (CPV-2c).
doi:10.1371/journal.pone.0059399.g004
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Figure 5. Bayesian Analysis. Bayesian analysis of the vp2 complete nucleotide sequences from one mongoose and one stone marten obtained
during this study and other wild carnivore parvoviruses available in Genbank (Table S1). A phylogenetic tree was obtained with a Bayesian inference
of phylogeny throughout the MrBayes v3.1.2 software, using the GTR model (nst = 6) with gamma-shaped rate variation with a proportion of
invariable sites (rates = invgamma). The analysis was performed with ngen= 106, nchains = 4 and samplefreq= 10. The numbers included on each
boot strap represent the Bayesian posterior probability.
doi:10.1371/journal.pone.0059399.g005
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had clinical signs suggestive of haemorrhagic enteritis or conges-

tion, as observed in cats or dogs under active disease. In addition,

whenever present, faeces were consistently moulded and no signs

of diarrhoea were ever noticed.

The lack of knowledge on the susceptibility, pathogenicity and

morbidity of the FPLV/CPV infection in many wild species,

including mongoose, genet and stone marten hampers the true

understanding of the dynamics of this disease in wild populations.

Some studies have evaluated the factors influencing the seropre-

valence of viral agents in wildlife and showed a clear influence of

age on the exposure risk [39]. However, in our modelling effort,

we failed to detect such influence on mongoose susceptibility to

parvovirus. The mongoose population that we surveyed was

strongly biased by adult specimens. Thus, we believe that other

factors, not considered in our study due to lack of data, such as

domestic pet distribution in rural areas (e.g. free ranging domestic

cats), and species-specific ecological variables, like feeding habits

and land use, or carnivore guild diversity, distribution, and social

character, may be crucial in the patterns of infection of wild

species by this viral agent.

The significant exposure of wild carnivores to parvovirus,

particularly in certain geographical regions of mainland Portugal

that include sensitive areas for conservation (e.g. along the

Guadiana river and nearby the Malcata Mountain) is of relevance,

since epizootics may lead to declines in infected populations

[2,38,40]. This is especially dramatic if species of conservation

value or endangered are affected, as is the case of the Iberian lynx

(Lynx pardinus), the most endangered felid in the world [38] that is

expected to be reintroduced in Portugal in the future. The

introduction of parvovirus-susceptible lynx [38] into geographical

areas where the virus is circulating in the wild, and potentially

excreted to the environment, should take into account the effective

risk of transmission to the particularly susceptible young cubs.

Targeted surveillance efforts should therefore be reinforced to

improve our understanding of the ecological and epidemiological

factors associated with microbial infection, in order to develop

sustained management and conservation strategies for animal

species at risk.

Materials and Methods

Animal Samples Collection and Study Area
One hundred and twenty eight animals from the Herpestidae,

Canidae, Mustelidae, and Viverridae families of the order

Carnivora, including Egyptian mongoose (Herpestes ichneumon,

n = 99), red fox (Vulpes vulpes, n = 19), Eurasian badger (Meles meles,

n = 4), stone marten (Martes foina, n = 3) and common genet (Genetta

genetta, n = 3), were analyzed in this study. The complete panel of

viruses tested is described below and also indicated in Table 1.

Samples, collected from 2008 to 2011, included animals from

road-kills (n = 26, all surveyed species) and animals captured under

legal game management actions aiming the control of predator

densities [mongoose (n = 93) and red fox (n = 9)].

No animals were sacrificed for the purposes of this specific

study. None of the authors were responsible for the death of any

animals nor were any samples used in the study collected by the

authors. Road killed animals were collected by the road

maintenance technicians of ‘‘EP - Estradas de Portugal, S.A’’,

whenever they were found accidentally dead as the result of

vehicle-wildlife collisions in the roads under surveillance and

management by the company. This organized animal sample

collection and donation results from a collaboration protocol

established between CBA/FCUL (Universidade de Lisboa, Centro

de Biologia Ambiental, Faculdade de Ciências de Lisboa) and ‘‘EP

- Estradas de Portugal, S.A’’, which is entitled " Monitoring of

vertebrate mortality caused by road-kill in Portuguese roads",

which aimed to update carnivore distribution maps, genetically

characterize some predator species and to model carnivore habitat

connectivity in a conservation perspective.

Carnivores hunted in the scope of hunting activities or predator

control actions, legally authorized by the National Forest

Authority (Autoridade Florestal Nacional) that emits permits for those

actions, were gathered by hunting associations. Animals were

killed in legal hunting sessions (following the Portuguese game

legislation) by hunters with valid permits assigned by ‘‘Autoridade

Florestal Nacional’’, and totally or partially donated for scientific

purposes by the hunting associations/confederations responsible

for managing the hunting journeys.

Shortly after death, or shortly after being found dead on the

road, animal carcasses were preserved in sealed plastic bags, taken

refrigerated into a collection center and kept frozen at 220uC

until necropsy. Animal Corpse transportation was done under the

license from the Institute for Nature Conservation and Biodiversity

(ICNB – Licence no. 222/2010/TRANS).

Animals were sampled from 15 out of the 18 administrative

regions (districts) of mainland Portugal, the westernmost country of

the Eurasian supercontinent (Fig. 1A). Geographical location

coordinates and date of collection of all sampled animals were

Figure 6. Biometric measurements and collection method of mongoose subpopulation (n=97) used in modeling analysis.
doi:10.1371/journal.pone.0059399.g006
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recorded. The majority of the animal specimens were sexed and

age was determined according to tooth characteristics and size.

Age was not available for six animals while sex was not recorded

for 14 specimens. Adults were predominant (76.5%). The sub-

population for which sex data was available (89%) exhibited

a similar predominance of males (51.75%) and females (48.25%).

Samples from lung, spleen, liver, small intestine and mesenteric

lymph node were collected from each animal during necropsy and

processed for further analysis. All animals showing clear signs of

putrefaction were excluded from this analysis. No gross lesions

were apparent at autopsy, even though histopathological exam-

inations evidenced autolysis in, approximately, 90% of specimens.

Detection of Viral Pathogens
The presence of Parvovirus (PV), Coronavirus (CoV), Canine

Distemper Virus (CDV), Feline Herpesvirus (FHV), Aujeszky

Disease virus (ADV), Canine Adenovirus types 1 and 2 (CAV 1

and CAV2) and Influenza virus (IV) was preliminarily investigated

in wild carnivores for a subset of animal specimens (n = 34), using

the tissue matrices and following the methods indicated in Table 2

[41,42,43,44,45]. Subsequently, the detection of parvovirus in

mesenteric lymph nodes and small intestine tissue samples was

attempted for all animal specimens (n = 128) using the molecular

technique described by [46] that targets a 93 bp-sequence of the

vp2 gene (Tables 2 and 3).

The appropriate tissues collected during necropsy (Table 2)

were homogenized with PBS and submitted to nucleic acids

extraction in a BioSprint 96 nucleic acid extractor (Qiagen,

Hilden, Germany), according to the manufacturer’s protocol.

Extensive DNA/RNA contamination precautions were taken

during all stages of experimental work to avoid DNA/RNA

carry-over.

The presence of viral DNA and viral RNA was tested using the

FastStart TaqMan Probe Master (Roche, Roche Diagnostics

GmbH, Mannheim, Germany) and the OneStep RT-PCR

(Qiagen, Hilden, Germany) commercial kits, according to

Table 2. Six tissue samples testing positive for parvovirus and

the coronavirus positive sample were re-tested using different

amounts (2.5, 5.0, 7.5 and 10 mL) of DNA and RNA, respectively,

to determine the more appropriate volume to be used in the

subsequent viral screenings. The lowest Ct values were obtained,

respectively with 5 mL of DNA and 10 mL of RNA per PCR

reaction, although all the other volumes generated positive signals.

Based on the results obtained, aliquots of 5 mL of DNA or 10 mL

of RNA were added to each 25 mL PCR reaction containing

1 mM of each PCR primer (Eurofins MWG Operon, Ebersberg,

Germany) and 0.2 mM of the TaqMan probe (Eurofins MWG

Operon, Ebersberg, Germany). Amplifications were done in a Bio-

Rad CFX96TM Thermal Cycler (Bio-Rad Laboratories Srl,

Redmond, USA) taking into account the annealing temperatures

of the primers and the characteristics of the amplification kits used

for each nucleic acid amplification. For parvovirus amplification,

reactions were carried out at 95uC for 10 min, followed by 40

cycles of 95uC for 15 s, 52uC for 30 s and 60uC for 30 s, while, for

coronavirus amplification, reactions were composed by a step of

30 min at 50uC, followed by 15 min at 95uC and 50 cycles of

95uC for 15 s, 56uC for 30 s, 72uC for 30 s. For the remaining

viral agents, PCR conditions were those described at the

references enlisted in Table 2. Primers and probes used for

parvovirus detection and characterization are described in Table 3.

Positive and negative controls were used in each assay. Fluores-

cence measurements were recorded after each annealing step.

Data was analyzed with the appropriate sequence detector

software (Bio-Rad CFX Manager, version 3.0). The specificity of

the primers and probe used in this survey for parvovirus DNA

detection [46] was assessed against the NCBI nucleotide sequence

database (27.11. 2011) (ftp://ftp.ncbi.nih.gov/blast/db/FASTA).

The in silico analysis showed 100% identity between the nucleotide

sequences of the primers and probe and the homologous

sequences in Canine, Feline and Mink parvoviruses, demonstrat-

ing that this real-time PCR, published as a molecular tool to detect

and quantify CPV in dog samples [46], detects also Feline

parvoviruses.

Non-template controls were included in each assay to rule out

contamination within the PCR reagents. A commercial vaccine

containing the old CPV-2 strain (Primadog, Merial, France) was

used in each assay as positive control. For all calculations, the

baseline was set automatically and the fluorescence threshold

manually. The negative controls never crossed the threshold line

in any of the experiments, appearing as horizontal flat lines, while

the positive control confirmed the performance of the PCR. A

number of positive samples were retested by PCR without the

inclusion of positive control. Consistency in the generated results

ruled out contamination at sample level.

Table 2. Methods, tissues and genomic regions used for virus detection.

Viruses

Nucleic

acid Kit used for amplification

Type of

PCR

Genomic

region

Targeted

Size of the

amplicon Tissue Reference

CPV/FPLV DNA Fast start Master Mix, Roche real-time vp2 gene 93 bp small intestine lymph
nodes

[46]

FCoV/CCoV RNA One-step RT-PCR, Qiagen real-time 7b gene 102 bp small intestine lymph
nodes

[41]

CDV RNA One-step RT-PCR, Qiagen real-time N gene 161 bp lungs in house (not
published)

ADV DNA Fast start Master Mix, Roche real-time gB gene 94 bp lungs [42]

CAV-1 DNA High Fidelity Master Mix, Roche conventional E3 gene 508 bp liver [43]

CAV-2 DNA High Fidelity Master Mix, Roche conventional E3 gene 1030 bp lungs [43]

FHV DNA High Fidelity Master Mix, Roche real-time TK gene 56 bp lungs [44]

Influenza A RNA One-step RT-PCR, Qiagen real-time Matrix gene 100 bp lungs [45]

doi:10.1371/journal.pone.0059399.t002
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Parvovirus Isolation
Parvovirus isolation was attempted with a number of tissue

PCR-positive samples, specifically those displaying low Ct values

(five mongooses, two red foxes, one stone marten, and three

genets). Lymph node and intestinal samples were homogenized

and suspended in phosphate-buffered saline containing penicillin,

streptomycin and amphotericin B (antibiotic-antimycotic), used

according to the manufacturer (Gibco, Life Technologies Corpo-

ration, Carlsbad, USA). Following centrifugation, the supernatant

was filtered using a 0.45 mm filter and used to inoculate

subconfluent Crandell feline kidney (CRFK, ATCC CCL#94)

cell monolayers, grown in Dulbecco’s modified Eagle’s medium

supplemented with 8% FCS (Gibco, Life Technologies Corpora-

tion, Carlsbad, USA) and 50 mg/ml gentamycin (Gibco, Life

Technologies Corporation, Carlsbad, USA). Cell cultures were

observed daily for cytopathogenic effect (CPE). After 5 days,

cultures with no apparent CPE were trypsinized and maintained

for further 5 days. Failure in virus isolation was considered after

four passages with no CPE and negative Parvovirus-PCR of the

culture supernatants.

Serological Assays
Lung tissue extracts (LTE) were prepared as described by

Ferroglio et al. [47] and used to test the presence of circulating

antibodies against parvovirus in PCR positive specimens. Briefly,

lung tissue was homogenized in PBS, centrifuged at 10000xg for

10 min and the supernatant conserved at 220uC. The presence of

antibodies against parvovirus (feline or canine parvoviruses) in

LTEs was determined with a commercial indirect ELISA test for

canine parvovirus antibodies (Ingezim CPV� 15.CPV.K1,

Ingenasa, Madrid, Spain). Using this ELISA test, it is not possible

to determine if the antibodies detected are raised against FPLV or

CPV due to the high antigenic similarity between these viruses. In

order to detect antibodies from the different carnivore species, the

anti-dog conjugate was replaced by Protein A-Peroxidase Staph-

ylococcus aureus/horseradish (PA-HRPO) (Sigma-Aldrich, St. Louis,

USA) at the dilution of 1:2000, determined after titration of PA-

HRPO in parallel with the kit conjugate, which generated OD

values for the positive and negative controls identical to those

obtained with the kit conjugate. All the other steps followed the

recommendations of the manufacturer. This adapted ELISA has

been used successfully in our laboratory to detect parvovirus

antibodies in serum samples of large Felidae, namely lions and

tigers (Duarte et al., unpublished results). LTEs of seven

mongooses and three red foxes that were negative in the real-

time PCR were selected as putative antibody negative samples and

tested in this adapted ELISA to infer about possible unspecific

backgrounds and to evaluate the suitability of the kit cut off value

for the ELISA PA-HRPO. Lower non-specific reactivity was

detected in LTEs from PCR negative samples when using protein

A-HRPO. The OD450 nm values obtained in mongoose’s LTEs

ranged from 0.057 to 0.135, corresponding to a S/P ratio (sample

optic density/positive control optic density) of 0.03 and 0.07,

respectively, and in red-fox’s LTEs ranged from 0.060 to 0.101,

corresponding to a S/P ratio of 0.05 and 0.04, respectively. These

results confirmed the successful use of protein A-HRPO in ELISA

to detect mongoose IgGs. Protein-A conjugate has also been used

in other studies to detect fox IgGs [48,49]. The cut-off established

by adding 2 standard deviations (SD) to the mean of the negative

control duplicates was in agreement with the cut-off criteria of the

kit (samples considered positive if S/P value above 0.150).

Therefore, the validation criteria of the test were adopted: test

was considered valid if OD450nm of the positive control.1.0 and

OD450 nm of the negative control,0.150. For interpretation of the

ELISA PA–HRPO test results, samples were considered positive if

S/P value was above 0.150. To evaluate the sensibility of the

modified test, LTEs from two foxes, that were found respectively

antibody positive and antibody negative by this adapted ELISA,

were also tested in parallel with the heterologous conjugate (anti-

dog IgG-HRPO) from the commercial ELISA, since sufficient

cross-reactivity exist between anti-canine IgG and serum antibody

Table 3. Primer sequences and their positions in the genome of parvovirus.

Primer Nucleotide sequence (59–39) Positiona Sense Specificity Ref. Purpose of use

CPV-For AAACAGGAATTAACTATACTAATATATTTA 4101–4130 + FPLV&CPVm [46] Viral survey

CPV-Rev AAATTTGACCATTTGGATAAACT 4138–4167 2 FPLV &CPV

CPV-Probe FAM-TGGTCCTTTAACTGCATTAAATAATGTACC-TAMRA 4171–4193 + FPLV &CPV

CPV-1F ACCAGATCATCCATCAACATC 2653–2673 + FPLV &CPV [51] vp2 gene
amplification

CPV-1R CAATTAGTTGCCAATCTCCTG 3153–3173 2 FPLV &CPV

CPV-2F AAATTGTAACACCTTGGTCATTG 3096–3118 + FPLV &CPV

CPV-2R AAATGGTGGTAAGCCCAATG 3636–3655 2 FPLV &CPV

CPV-3F ACAGGTGATGAATTTGCTACAG 3554–3575 + FPLV &CPV

CPV-3R TTACAGGAAGGTTAAAGTTAAT 4037–4058 2 FPLV &CPV

CPV-4F CAACAGGAGAAACACCTGAG 3954–3974 + FPLV&CPVm

CPV-4R TCTTCTATTTCTTACAGTTATTG 4718–4740 2 FPLV &CPV

555-For CAGGAAGATATCCAGAAGGA 4002–4021 + FPLV &CPV [52] vp2 gene
amplification

555-Rev GGTGCTAGTTGATATGTAATAAACA 4561–4585 2 FPLV &CPV

P1 ATGAGTGATGGAGCAGTTC 2786–2804 + FPLV &CPV [12,50] vp2 gene
amplification

PR TTTCTAGGTGCTAGTTGAG 4512–4530 2 FPLV &CPV

aposition in the complete genome of strain CPV-N (NC001539). mmismatch in some isolates.
doi:10.1371/journal.pone.0059399.t003
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from red foxes [49]. Our results showed that the ELISA using

protein A affinity conjugate was slightly less sensitive for measuring

anti-parvovirus antibodies in foxes than the equivalent commercial

ELISA. In the case of the antibody positive red fox LTE, S/P

ratios of 0.304 and 0.429 were obtained with the modified and

commercial ELISA test, respectively; and, in the case of the fox

LTE testing antibody negative, ratios of 0.03 and 0.064 were

registered, respectively.

Molecular Characterization of Parvovirus
The molecular characterization of parvovirus from ten mon-

gooses, three common genets, three badgers, three stone martens

and eight red foxes was endeavored through amplification of the

complete vp2 gene (approximately 1.9 kb), attempted by using

different combinations of primers described by [25,50,51,52]

(Table 3).

Amplification was carried out with the High Fidelity PCR

Master Mix (Roche Diagnostics GmbH, Mannheim, Germany), by

performing 50 cycles of denaturation at 94uC for 30 s, annealing

at 50uC for 30 s and extension at 72uC for 2 min, followed by

a final extension step of 10 min at 72uC. After electrophoresis on

a 1.5% agarose gel with red gel staining (GelRed Nucleic acid

stain, Biotium), the PCR products were excised and purified by

a commercial kit (QIAquick gel extraction kit; Qiagen, Hilden,

Germany). The resulting products were directly sequenced using

a 3130 Genetic Analyser (Applied Biosystems, Foster City, CA,

U.S.A). Sequences were analyzed using Seqscape software v2.7

(Applied Biosystems, Foster City, CA, USA) and the polypeptide

sequences deduced in order to determine and differentiate the type

of virus present.

Phylogenetic Analysis
For Bayesian analysis, the vp2 complete nucleotide sequences

from one mongoose (Herpestidae) and one stone marten

(Mustelidae) obtained during this study (JF422105 and

JX411926) were compared with the vp2 sequences from several

wild carnivore parvoviruses available in the NCBI database (Table

S1), namely felids (tiger, wildcat, lion, mountain lion, leopard,

lynx), viverrids (civet), mustelids (mink), canids (blue fox, raccoon

dog), procyonids (raccoon), and ailurids (red panda). A PPV (pig

parvovirus) isolate was used as an outer group.

Multiple alignments were generated by CLUSTAL W [53] and

the result was converted to the NEXUS format using Mesquite

software [54]. The phylogenetic tree was obtained with a Bayesian

inference of phylogeny throughout the MrBayes v3.1.2 software

that uses Markov chain Monte Carlo simulation technique to

approximate the posterior probabilities of trees [55,56]. MrBayes

analysis was performed using the GTR model (nst = 6) with

gamma-shaped rate variation with a proportion of invariable sites

(rates = invgamma). The analysis was run for 106 generations

(ngen= 106) with four chains of temperature (nchains = 4) and

each chain was sampled every 10th generations (samplefreq = 10).

Analysis of the Influence of Biometric Variables and
Sample Origin on Parvovirus Detection in Mongooses
The influence of gender, age class (juvenile, subadult, and

adult), morphometry (body total length, tail length, body mass and

body condition) and corpse’s origin (road-kill versus predator

control) on parvovirus positivity (detection/non-detection) was

tested by using a Generalised Linear Model (GLM) with a binomial

distribution and a logit link function [57]. With the exception of

the body condition index, all morphometric measures were taken

during necropsy. The residuals from ordinary least squares (OLS)

regression of body mass on total length were used as indices of

body condition [58].

Prior to the modeling procedure, spatial autocorrelation was

evaluated by the Moran’ I index [59] to assure no violation of the

assumption of independence, with the consequent pseudoreplica-

tion [60,61]. Multicollinearity between morphometric variables

was also tested using the Spearman’s rank correlation coefficient

(rs) [62]. For pairs of variables where the correlation was higher

than 0.7 [63], the one with a higher biological/ecological meaning

was selected.

A set of models was created, corresponding to all combinations

of the considered independent variables (gender, age class, and

species). To select the most parsimonious model, an information

criterion model selection procedure (Akaike’s information criterion

for small samples AICc - [64]) was used. The best models were

assumed to be those with the lowest AICc value. However, as

suggested by [64], those with DAICc ,2 (DAICc being the

difference between the AICc of the ith model and the minimum

AICc value) were considered best models (Table S2). Finally, the

Akaike weights (wi) were calculated to obtain each model’s

probability of being the best model for the data [65]. The area

under each curve (AUC), derived from receiver-operating

characteristics plots (ROC), was used to evaluate the performance

of the model [26].

All modelling analyses were performed using R software,

version 2.10.0 (R Development Core Team 2008), together with

the ‘‘ape - Analyses of Phylogenetics and Evolution’’ [66] and the

MuMIn [67] packages.

Supporting Information

Table S1 Information on the complete vp2 nucleotide
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carnivore parvovirus.

(DOCX)

Table S2 Summary of best fitted models information

criteria.

(DOCX)

Acknowledgments

The authors gratefully acknowledge the technical support of Maria João

Teixeira, Rosário Ferreira and Filipa Matos. Special thanks are also due to

Luciana Simões, the ‘‘EP - Estradas de Portugal, S.A’’ workers and hunting

federations, associations and hunters for collaboration in animal corpse

collection and donation.

Author Contributions

Devised the sampling strategy: MVC. Performed the sampling: CF LMR

TB VB MPB. Performed the necropsies, tissue collection and pathological

analysis: MM PC PM. Critical discussion during data analysis: MVC

MDD AMH. Bioinformatic analysis: AMH MDD SCB. Contributed

discussion during preparation of the paper: AMH LMR MF. Revised the

manuscript: AMH MF MPB LMR CF TF SCB TB VB. Conceived and

designed the experiments: MDD MVC. Performed the experiments: MDD

TF. Analyzed the data: MDD MVC AMH. Contributed reagents/

materials/analysis tools: CF LMR MVC MDD MF. Wrote the paper:

MDD MVC.

Snapshot of Viral Infections in Wild Carnivores

PLOS ONE | www.plosone.org 12 March 2013 | Volume 8 | Issue 3 | e59399



References

1. Parrish C (1994) The emergence and evolution of canine parvovirus- an example
of recent host range mutation. Semin Virol 5: 121–132.

2. Steinel A, Parrish CR, Bloom ME, Truyen U (2001) Parvovirus infections in
wild carnivores. J Wildl Dis 37: 594–607.

3. Decaro N, Buonavoglia C (2012) Canine parvovirus–a review of epidemiological
and diagnostic aspects, with emphasis on type 2c. Vet Microbiol 155: 1–12.

4. Truyen U, Parrish CR (1992) Canine and feline host ranges of canine parvovirus
and feline panleukopenia virus: distinct host cell tropisms of each virus in vitro
and in vivo. J Virol 66: 5399–5408.

5. Truyen U, Platzer G, Parrish CR (1996) Antigenic type distribution among
canine parvoviruses in dogs and cats in Germany. Vet Rec 138: 365–366.

6. Hammon WD, Enders JF (1939) A Virus Disease of Cats, Principally
Characterized by Aleucocytosis, Enteric Lesions and the Presence of Intra-
nuclear Inclusion Bodies. J Exp Med 69: 327–352.

7. Studdert MJ, Kelly CM, Harrigan KE (1973) Isolation of panleucopaenia virus
from lions. Vet Rec 93: 156–158.

8. Steinel A, Munson L, van Vuuren M, Truyen U (2000) Genetic characterization
of feline parvovirus sequences from various carnivores. J Gen Virol 81: 345–350.

9. Spencer JA (1991) Survey of antibodies to feline viruses in free-ranging lions.
S Afr J Wildl Res 21: 59–61.

10. Cockburn A (1947) Infectious enteritis in the Zoological Gardens, Regent’s Park.
Br Vet J 103: 261.

11. Driciru M, Siefert L, Prager KC, Dubovi E, Sande R, et al. (2006) A serosurvey
of viral infections in lions (Panthera leo), from Queen Elizabeth National Park,
Uganda. J Wildl Dis 42: 667–671.

12. Mochizuki M, Hiragi H, Sueyoshi M, Y.Kimoto, Takeishi S, et al. (1996)
Antigenic and genomic characteristics of parvovirus isolated from a lion
(Panthera leo) that died of feline panleukopenia. J Zoo Wildl Med 27: 416–420.

13. Parrish CR, O’Connell PH, Evermann JF, Carmichael LE (1985) Natural
variation of canine parvovirus. Science 230: 1046–1048.

14. Nakamura K, Sakamoto M, Ikeda Y, Sato E, Kawakami K, et al. (2001)
Pathogenic potential of canine parvovirus types 2a and 2c in domestic cats. Clin
Diagn Lab Immunol 8: 663–668.

15. Hoelzer K, Parrish CR (2010) The emergence of parvoviruses of carnivores. Vet
Res 41: 39.

16. Uttenthal A, Larsen S, Lund E, Bloom ME, Storgard T, et al. (1990) Analysis of
experimental mink enteritis virus infection in mink: in situ hybridization,
serology, and histopathology. J Virol 64: 2768–2779.

17. Santos N, Almendra C, Tavares L (2009) Serologic survey for canine distemper
virus and canine parvovirus in free-ranging wild carnivores from Portugal.
J Wildl Dis 45: 221–226.

18. Oliveira M, T Sales-Luı́s, A Duarte, S. F Nunes, C Carneiro, T Tenreiro, R
Tenreiro, M Santos-Reis, L Tavares, and C. L Vilela (2008) First assessment of
microbial diversity in faecal microflora of Eurasian otter (Lutra lutra Linnaeus,
1758) in Portugal. Eur J Wildl Res 54: 245–252.

19. Maldonado CG (2009) Avaliação da Prevalência Viral em Carnı́voros no Sı́tio
Moura-Barrancos: implicações de conservação. Portugal: Faculdade de
Ciências, Universidade de Lisboa.

20. Cabral M, Almeida J, Almeida PR, Delinger T, Ferrand de Almeida, N Oliveira,
ME Palmeirim, JM Queiroz, AI Rogado, L Santos-Reis, M editor (2005) Livro
vermelho dos vertebrados de Portugal. Lisboa: Instituto da Conservação da
Natureza/Assı́rio e Alvim.

21. Barros T, Fonseca C (2011) Expansão do sacarrabos Herpestes ichneumon
(Linnaeus, 1758) em Portugal. Galemys 23: 9–15.

22. Blanco JC, editor (1998) Mamı́feros de España: Insectı́voros, quirópteros,
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67. Bartoń K (2009) MuMIn: multi-model inference. R package, version 0.12.2.
Available: http://r-forge.r-project.org/projects/mumin/. Accessed 2011 Feb 3.

Snapshot of Viral Infections in Wild Carnivores

PLOS ONE | www.plosone.org 14 March 2013 | Volume 8 | Issue 3 | e59399


