
Software Fault Tree and Colored Petri Net Based
Specification, Design and Implementation of Agent-Based

Intrusion Detection Systems

Guy Helmer∗, Johnny Wong,† Mark Slagell,† Vasant Honavar,† Les Miller†,
Yanxin Wang, Xia Wang, Natalia Stakhanova

Department of Computer Science
Iowa State University

{ghelmer,wong,slagell,honavar,lmiller,wangyx,jxiawang,ndubrov}@cs.iastate.edu

March 16, 2006

Abstract

The integration of Software Fault Tree (SFT) which describes intrusions and Colored Petri Nets (CPNs)
which specifies design, is examined for an Intrusion Detection System (IDS). The IDS under development
is a collection of mobile agents that detect, classify, and correlate system and network activities. Software
Fault Trees (SFTs), augmented with nodes that describe trust, temporal, and contextual relationships, are
used to describe intrusions. CPNs for intrusion detection are built using CPN templates created from the
augmented SFTs. Hierarchical CPNs are created to detect critical stages of intrusions. The agent-based
implementation of the IDS is then constructed from the CPNs.Examples of intrusions and descriptions of
the prototype implementation are used to demonstrate how the CPN approach has been used in development
of the IDS.

The main contribution of this paper is an approach to systematic specification, design, and implemen-
tation of an IDS. Innovations include (1) using stages of intrusions to structure the specification and design
of the IDS, (2) augmentation of SFT with trust, temporal, andcontextual nodes to model intrusions, (3)
algorithmic construction of CPNs from augmented SFT, and (4) generation of mobile agents from CPNs.

1 Introduction

A secure computer system provides guarantees regarding theconfidentiality, integrity, and availability of its
objects (such as data, processes, or services). However, systems generally contain design and implementation
flaws that result in security vulnerabilities. An intrusiontakes place when an attacker or group of attackers
exploit security vulnerabilities and thus violate the confidentiality, integrity, or availability guarantees of a
system or a network. Intrusion detection systems (IDSs) detect some set of intrusions and execute some
predetermined action when an intrusion is detected.

IDSs use audit information obtained from host systems and networks to determine whether violations of
a system’s security policy are occurring or have occurred [4]. Our Multi-Agents Intrusion Detection System
(MAIDS) [21, 19, 20] uses mobile agents [9] in a distributed system to obtain audit data, correlate events, and

∗ G. Helmer is with Palisade Systems, Inc. His research was funded in part by the Department of Defense, the Boeing Company in
the form of the Boeing Dissertation Fellowship, and the Graduate College of Iowa State University.

†Funded in part by the Department of Defense. Corresponding author: Johnny Wong, 202 Atanasoff Hall, Department of Computer
Science, Iowa State University, Ames, Iowa 50011

1

discover intrusions. The MAIDS system consists of (1) stationary data cleaning agents that obtain information
from system logs, audit data, and operational statistics and convert the information into a common format, (2)
low level agents that monitor and classify ongoing activities, classify events, and pass on their information to
mediators, and (3) data mining [10] agents that use machine learning to acquire predictive rules for intrusion
detection from system logs and audit data.

One of the challenges in designing an IDS involves defining exactly what data elements should be cor-
related to determine whether an intrusion is taking place ina distributed environment. It is also difficult to
determine what data elements are necessary to discover intrusions. A model of intrusion detection is essen-
tial to describe how the data should flow through the system, determine whether the system would be able to
detect intrusions, and suggest points at which countermeasures could be implemented.

Against this background, the paper presents a theoretical framework for modeling the operation of intru-
sion detection systems such as MAIDS. We use Software Fault Trees (SFTs) to define intrusions and develop
the requirements model for the IDS. The SFT models of intrusions are used to create Colored Petri Net (CPN)
designs for the detectors in the IDS. The CPN detection modelis then mapped into a set of software mobile
agents that form the distributed intrusion detection system. Finally, the SFT models provide test cases for the
implementation.

The SFT analysis (SFTA) approach applies safety engineering techniques to the intrusion detection do-
main for developing IDS requirements. Each part of these development processes — SFTA, CPNs, and
software agent implementation — is distinct, and each stagein the development process must correctly carry
over the details of the previous stages. The constructive approach helps ensure the correctness of the design
with respect to requirements and correctness of the implementation with respect to the design.

We present the process for developing a CPN design for the IDSusing a requirement specification based
on a SFTA of intrusions, and we show the procedure for creating an implementation of a distributed agent-
based IDS from the CPN design [61]. These two procedures ensure that the design satisfies the requirements
and that the implementation matches the design.

The rest of this paper is organized as follows: Section 2 introduces temporal organization of stages of
intrusions and presents the intrusions examined in our research. Section 3 discusses SFTs as applied to
modeling intrusions and the augmentations needed to describe intrusions. Section 4 introduces CPNs and
defines the translation from augmented SFTs to CPNs. Section5 defines the translation of CPNs to software
mobile agents. Section 6 presents the intrusion scenarios evaluated in our system. Section 7 relates our
modeling solution to other graph-based intrusion detection models. Section 8 presents the conclusions and
contributions of this work, discusses the generalization of the IDS design to intrusions other than those
presented in this paper, and describes future work.

2 Modeling Intrusion Detection

Our goal is to develop a software model for precisely describing a broad class of intrusions as well as the
process of detecting such intrusions. Any formalism used todefine the intrusions has to be relatively easy to
use and at the same time be rich enough to describe both singlehost and distributed attacks. Software Fault
Trees (SFTs) provide the desired features. When combined with Software Fault Tree Analysis (SFTA) they
provide an effective means for defining intrusions in a way that exposes the critical aspects of determining an
intrusion.

However, SFTs have several limitations with regard to theirability to modeling intrusions. For example,
in their simplest form, they cannot capture temporal relationships between events. Hence, we extend the SFT
formalism to obtain augmented SFTs. By extending SFTs toaugmentedSFTs, SFTs with additional system
information, it is possible to create a rigorous process that is capable of capturing intrusions.

But, even the augmented SFTs do not describe intrusions at a level of detail needed to automate the
generation of software agents that implement an IDS. To bridge this gap, we have developed a rigorous
approach to convert the augmented SFTs to Colored Petri Nets(CPNs). While the augmented SFTs provide
a rigorous definition of the intrusions, the CPNs provide a rigorous definition of the process of detecting the

2

intrusion. Then a conversion of CPNs to software mobile agents can be performed.
Each augmented SFT is seen as the specification of an individual intrusion. The set of augmented SFTs is

the model of intrusions that the IDS is able to detect and/or determine. The set of CPNs that can be generated
from the set of augmented SFTs is the intrusion detection model.

2.1 Temporal Stages of Intrusions

Each successful intrusion can vary greatly from other intrusions. In addition, analysis of complete intrusions
is quite difficult. Therefore, a reasonable approach to intrusion analysis is to divide attack into stages that
achieve intermediate goals of the attacker and develop intrusion detection components that identify each
of the stages. Generally, the following stages can be distinguished in intrusion analysis: Reconnaissance,
Vulnerability Identification, Penetration, Control, Embedding, Data Extraction & Modification, and Attack
Relay [19].

We use these seven stages to analyze the intrusion example discussed in this paper and reduce the com-
plexity of each SFT. The CPNs examined in the paper generallycorrespond to the first three stages: recon-
naissance, vulnerability identification, and penetration, as essential stages of intrusion [19].

2.2 Intrusion Example

We use the FTP bounce attack throughout the paper to illustrate our approach to specification and imple-
mentation of IDS. The example was chosen based on the fact that it is well-known and the possibility that
more than one host in the victim’s network would be involved in the attack. The “FTP Host” provides an
anonymous FTP service that allows uploads and the “Target Host” provides a remote shell service that trusts
the users on the “FTP Host.”

1. In preparation, the attacker creates a file containing a valid remote shell (rsh) message such as
\0root\0root\0xterm -display bad.hacker.org:0.0
which means “I am the userroot on the local computer, I wish to execute a command on the remote
computer as the userroot , and the command I wish to execute will open a terminal windowfrom the
remote computer on my screen.”

2. The attacker scans for valid hosts in the target’s network. For the purposes of our spatially distributed
attack, assume the attacker discovers at least two host systems in the target’s networks. (Reconnais-
sance)

3. The attacker scans for listening TCP ports on the target network’s valid hosts. Assume the attacker
discovers a vulnerable anonymous FTP server listening at TCP port 21 on the “FTP Host”, and a
remote shell daemon (rshd) listening at port 514 on the “Target Host.” (VulnerabilityIdentification)

4. The attacker uploads the previously created file to the anonymous FTP server on the “FTP Host”.

5. The attacker uses a “feature” of the FTP protocol to tell the FTP server to send the next download to
port 514 on the “Target Host”. Then the attacker issues a command to the FTP server that initiates a
“download” of the file containing the rsh message. If the “Target Host” trusts the users on the “FTP
Host”, the remote shell daemon on the “Target Host” accepts the message and executes it due to an
authentication vulnerability in the remote shell protocol. (Penetration & Control)

6. The “Target Host” opens a terminal window on the attacker’s X Window server that provides the
attacker with root privileged shell. The attacker may proceed with any number of activities, including:
changing passwords or adding users; reading or changing anyfile on the system; erase traces of his/her
presence; and install tools to sniff passwords, provide back doors for future access, and disguise his/her
activities. (Embedding, Data Extraction & Modification, and Attack Relay)

3

3 Software Fault Trees

In this section, we briefly describe Software Fault Trees, discuss their use in specification of IDS and introduce
the augmented SFTs for modeling intrusions.

Fault-trees have been used for security assessment, although not explicitly for IDS. Cited advantages
include their "organization and preservation of informal discussions about security ramifications of design
alternatives" (in argument trees [32]) and the possibilityfor efficient reuse of subtrees (in attack trees [54]).
However, fault trees suffer from several limitations with regard to modeling "multiple attacker attempts, time
dependencies, or access controls" as well as for not modeling cycles [47]. Hence, we augment the fault
tree formalism to overcome some of these limitations. The resulting augmented fault trees provide a useful
framework for modeling intrusions.

Two interesting aspects of the requirements phase of this prototype are as follows. First, the intrusion
SFT models have been interpreted as specifications of the combinations of events that must be detected. That
is, the IDS requirements are that each of the intrusion sequences possible in the SFT should be detected
as soon (as low in the tree) as possible. The leaf events describe what components of a distributed system
must be monitored by the software mobile agent. The interpretation of the SFT serves as the requirements
specification.

Second, the intrusion SFTs have had to be extended with additional information specific to a particular
system prior to their mapping into CPNs. This information isof three types:

• Trust indicates which members of a distributed system are trustedby other members,

• Contextshows which events must all involve the same host(s) or connection(s), process(es) or ses-
sion(s),

• Temporal orderingsthat give which events must be adjacent with no intervening events, or follow
within a specific interval of time.

Without this additional system-specific information, the IDS yields many false positives, detecting intru-
sions where, in a specific network, there is none. That is, theset of events marked as intrusions by the SFT is
a superset of the set of events that are actually intrusions in any specific network and must be constrained by
additional network-specific knowledge. These topics are discussed in more detail below.

A fault treeis defined formally as a tree consisting of: 1) a hazard as the tree’s root node, 2) basic events
that contribute to the hazard as the tree’s leaves, and 3) either AND gates or OR gates (representing Boolean
AND or OR operations, respectively) as each of the intermediate nodes. The intermediate nodes determine
the combination of basic events necessary for the root hazard to occur.

3.1 Software Fault Tree Analysis

We adapt standard Software Fault Tree Analysis (SFTA) technique. The root node in a fault tree represents
a hazard (here, the intrusion) being analyzed. The necessary preconditions for the hazard are specified in the
next level of the tree and joined to the root with a logical ANDor a logical OR. Each precondition is similarly
expanded until all leaves are primitive events. SFTA investigates the ways in which the hazard (root node)
might occur. If a credible scenario (i.e., path through the tree or, more precisely, a cutset of the tree) exists,
the SFTA identifies the nodes (i.e., which events) that should be monitored in order to detect intrusions.

SFTA [37] is used first to model intrusions and develop requirements for the IDS. SFTA is a natural fit as
the IDS design resembles a tree where data is obtained at the leaf nodes, travels up through the internal nodes
as data is correlated with other information, and rises to the root node when an intrusion is identified.

3.2 SFTA in the IDS Development Lifecycle

The augmented SFT specification are mapped into Colored Petri Nets (CPNs) [29] that serve as the design
for the IDS. CPNs are a well-documented and frequently-usedabstraction for modeling complex distributed

4

systems. They appear particularly suited for describing the gathering, classification, and correlation activities
of an intrusion detection system.

The advantages of using SFT to model the specification, rather than using only CPNs, are fourfold:

1. Usability. The system support personnel who will be using the system typically have a great deal
of knowledge about intrusions that must be elicited and represented systematically in order for the
requirements for the IDS to be determined. Usually they are not experienced in, or interested in,
formal modeling techniques such as CPNs. SFTs, on the other hand, are perceived as familiar, easy to
use, and easy to teach and learn. For an IDS to be effective, the specification must be readily updatable.
The usability of SFT is an advantage in eliciting and capturing knowledge about the requirements.

2. Support for gradual refinement for defining intrusions. SFT supports gradual development of intrusion
specifications with different subtrees being developed to varying levels of detail, depending on the level
of concern and the level of knowledge regarding that subtree. CPNs, on the other hand, are better at
modeling a system at a uniform level of detail.

3. Modeling the attack. The augmented SFT defines the intrusion specification. It isfrom this representa-
tion that the requirements for intrusion detection are derived. The CPN models not the intrusion itself
but the intrusion detection system, i.e., the design of the IDS.

4. Countermeasures analysis. The augmented SFT intrusion specification allows determination of coun-
termeasures needed for an IDS to thwart attacks [22].

3.3 Augmented SFT

We define anaugmented Software Fault Treeto be an SFT where leaf nodes may specify trust, ordering, and
contextual constraints in addition to the basic events of a SFT. Specifically, constraint nodes are added to SFT
to capture trust, order, and contextual relationships needed to develop satisfactory specification of intrusions.

The effect of adding constraint nodes may be demonstrated byconsidering the setE of all combinations
of events that make the root node of a plain (unenhanced) SFT “true”. The setI ⊆ E of combinations of
events that areactual intrusions must also make the root node of the augmented SFT “true”. (|I| ought to be
much smaller than|E|.) The constraint nodes added to an augmented SFT should exclude the vast majority
of the combinations of “false positive” eventsE − I. Thus the augmented SFT, enhanced with the constraint
nodes described here, will more closely model the requirements for detecting the intrusion being modeled.

1. Trust: Members of a distributed system trust other members of the system. An example of trust cur-
rently used in our SFT is authorization. The trust constraint will have to be enhanced when additional
intrusions are modeled that depend on other notions of trust.

As an example of trust, a Network File System (NFS) server using AUTH_UNIX authentication usually
trusts the source IP address and user ID in client requests. This allows a user on a trusted client host to
access files on the file server without having to login to the server.

Explicitly stating a trust relationship that is required for an intrusion to succeed provides information
to an intrusion detection system developer that will help derive an accurate matching model for the
intrusion. The syntax of this predicate isTrusts((destination), (source)) wheredestinationis an
ordered list of constants and variables describing the trusting destination, such as name of destination
host, network, or netgroup and application andsourceis an ordered list of constants and variables
describing the trusted source, such as name of source host, network, or netgroup and application.

The Trusts predicate is true if thedestinationassigns some trust to thesource. Specifying trust
relationships in this way allows matching relationships tobe unified [53] with other trust relation-
ships. A trust relationship istrue if one of system’s trust relationships successfully unifieswith
the relationship specified by theTrustspredicate. An example of such a trust relationship may be
Trusts((Rshd, targetHost), (sourceHost)) which states that the remote shell daemon (Rshd) on a

5

targetHosttrusts asourceHost. By convention, elements beginning with upper-case letters are con-
stants, and elements beginning with lower-case letters arevariables.

2. Context: Certain combinations of intrusive events must occur in somecommon context. For example,
a series of FTP commands and responses need to be grouped by a common network connection to an
FTP server.

In the following definitions of forms of context, each of the parameters (host, connection, user, or
process) may be specified as a constant value or a variable. Network-related events may be related by
events involving a single host, a pair of hosts, or a single virtual network connection.

A single host that must be a common source or target for network events may be specified as a common
context for intrusive events. The syntax for this constraint isContext((:host Hostname) (FTNodeList))
whereHostnameis the name or address of a host or group of hosts andFTNodeListis the list of one
or more SFT nodes to be included in the context. The predicateis true when the host identified by
Hostnameis involved in each node specified by theFTNodeList.

Similarly, a pair of hosts that must be the source and target for network events may be specified as a
common context for intrusive events using the syntaxContext((:hosts Hostname1 Hostname2)
(FTNodeList)) whereHostname1, Hostname2are names or addresses of hosts or groups of hosts.
The predicate is true when hosts identified byHostname1, Hostname2are involved in each node spec-
ified by theFTNodeList.

Finally, a pair of hosts communicating using a virtual network connection that must be the source and
target for network events may be specified as a common contextfor intrusive events using the syntax
Context((: conn Hostname1 P1 Hostname2 P2) (FTNodeList)) whereP1 andP2 are names or
numbers of network ports. The Context predicate is true whena network connection involving the
endpoints identified byP1onHostname1andP2onHostname2are involved in each node specified by
theFTNodeList.

An authenticated user session on a host, such as via telnet, ssh, or ftp, may be a context for related events
using syntaxContext((:user U App LH RH Term LT) (FTNodeList)) whereU is the name of a
single user or group of users,App is the name of the method of access (e.g., telnet, ftp, etc.),LH is the
name of the host to which the user is connected,RH is the name of a remote host or group of hosts,
Termis the name of a terminal used for access (e.g., tty01),LT is the time of login, andFTNodeListis
a list of one or more SFT nodes to be included in the context.

Events corresponding to a process (an instance of a program in execution) may be a context for related
events using the syntaxContext((:process PID Pg U Host ST) (FTNodeList)) wherePID is the
identification number of the process, Pg is the program beingexecuted, U is the set of user permissions,
Host is the host on which the process executed, andST is the time the process began executing. The
context involves each node specified by theFTNodeList.

3. Temporal Ordering and Intervals: Events and conditions involved in an intrusion often must occur
in a particular order. Explicitly specifying the event ordering excludes other non-intrusive permutations
of events from being considered as intrusive. We use Allen and Ferguson’s interval temporal logic [3]
to develop temporal predicates.

(a) Occurs After
An event which takes place must make its node in the SFT true aslong as the existence of that
event may be combined with other events to make a parent node true. It seems an event’s period
may last as long as the context exists in which it may be evaluated. In this sense, “occurs after”
is concerned only with the relative start of event’s periods.

“Occurs after” is the condition where one event’s period is required to start after another event’s
period has started. TheStarts(i, j) primitive is true when periodsi andj begin simultaneously.
TheMeets(i, j) primitive is true when periodi ends adjacent to the time where periodj begins.

6

Let Period(x) be the period that nodex is true. LetOccursAfter : Node, Node → Boolean

whereOccursAfter(i, j) ≡ ∃m Starts(Period(i), m) ∧ Meets(m, Period(j)) meaning that
the event or boolean expression indicated by the nodei becomes true in the time prior to the time
that the event or boolean expression indicated by the nodej becomes true.

(b) Adjacent Events
Certain situations exist where an event must occur after another event within the same context
with no intervening events. LetImmediatelyAfter : Node, Node → Boolean where
ImmediatelyAfter(i, j) ≡ OccursAfter(i, j)∧¬(∃n OccursAfter(i, n)∧OccursAfter(n, j))
meaning the event or boolean expression indicated by the node i becomes true in the time prior to
the time that the event or boolean expression indicated by the nodej becomes true. No intervening
events become true betweeni andj.

(c) Interval
An event may be required to follow another event within some amount of time. LetStartOf(i)
be the start of discrete time periodi. TheOverlaps(i, j) primitive is true when periodi overlaps
periodj. ThenInInterval : Node, Node, R → Boolean where
InInterval(i, j, t) ≡ OccursAfter(i, j)∧Overlaps(〈StartOf(Period(i)), StartOf(Period(i)) + t〉 , j)
meaning the event or boolean expression indicated by nodei becomes true in time prior to the
time that the event or boolean expression indicated by nodej becomes true. Additionally,j must
become true during the period specified byt.

4 Colored Petri Nets

In this section we introduce Colored Petri Nets and describethe transformation from augmented SFTs for
intrusions to CPN templates for intrusion detection systems.

4.1 Colored Petri Nets Defined

CPNs are a powerful modeling technique for complex systems [29]. CPNs model state and action through the
use of colored tokens (colors can be thought of asdata types) which reside inplaces(or states). Tokens move
from one place to another through transitions. Transitionsallow tokens to pass if all input arcs areenabled
(meaning tokens are available for each input arc). Tokens entering from multiple places may be merged (or
unified) at transitions. Tokens leaving transitions may be duplicated to multiple destination places. CPNs
may be organized in hierarchical fashion to allow reuse and top-down or bottom-up development.

In a graphical representation of a CPN, places are denoted byovals or circles, transitions are denoted by
squares or rectangles, and lines with arrows denote arcs. Ifa predicate or tuple is written next to an arc, a
token must satisfy the predicate or unify with the tuple before it may pass through the arc. Token colors are
defined at the entry point of each CPN in terms of tuples of standard values, such as strings or integers (tokens
may also be defined as data structures). Places may be labeledwith a particular color by an italicized label.

Formally, a Colored Petri Net is a tupleCPN = (Σ, P, T, A, N, C, G, E, I) satisfying the requirements:
Σ is a finite set of non-empty types, called color sets,P is a finite set of places,T is a finite set of transitions.
A is a finite set of arcs such thatP ∩ T = P ∩ A = T ∩ A = ∅, N is a node functionA → P × T ∪ T × P ,
C is a color functionP → Σ, G is a guard function defined fromT into expressions such that∀t ∈ T :
[Type(G(t)) = Boolean ∧ Type(V ar(G(t))) ⊆ Σ], E is an arc expression function defined fromA into
expressions such that∀a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ]
wherep(a) is the place ofN(a)1. I is an initialization function defined fromP into closed expressions such
that∀p ∈ P : [Type(I(p)) = C(p)MS].” [29].

A hierarchical CPN consists of a set of CPNs arranged in a hierarchical structure. The two building blocks
of hierarchical CPNs are substitution transitions and fusion places. Substitution transitions and fusion places

1The subscript “MS” indicates a multi-set, which Jensen defines as allowing “multiple appearances of the same element.” [29, p. 66]

7

z

x y

X Y

Z

Figure 1: Unconstrained AND node with corresponding CPN

allow the construction of a hierarchical CPN by combining a number of non-hierarchical CPNs. A hierarchi-
cal CPN may be translated into a behaviorally equivalent non-hierarchical CPN, and vice versa. Hierarchical
CPNs are important to our design of the IDS as they allow construction of detectors for components of attacks
that can be composed into detectors for the complete intrusion.

CPNs have been applied to a variety of problems in security, networks, concurrent systems, VLSI chip
design, and chemical manufacturing systems [30]. Petri Nets have also been applied to the safety domain
[38], which is closely related to the security domain [52], and to IDS systems [34, 35].

Our work with modeling intrusion detectors as CPNs has shownthat CPNs provide a formal foundation
for the agent-based distributed IDS and allow analysis of the IDS for discovering inconsistencies between
components of the system, finding ideal places in the monitored system for security improvements, and
proving that certain attacks can not be successful if a system is changed so as to eliminate the identified
vulnerabilities.

4.2 From Augmented SFT to CPN Templates

Colored Petri Net template intrusion detectors may be generated from augmented SFTs for intrusions to
ensure correctness and correspondence between a requirement specification based on SFT and a design using
CPNs. The constraints added to an augmented SFT to describe the ordering relationships between nodes
requires special handling to develop accurate CPN templates from augmented SFT.

Leaf nodes in the augmented SFT for intrusions correspond tobasic events in the system which must be
detected. Leaf nodes then correspond to token source placesin the CPN. The token source places produce a
new token each time the basic event takes place. Tokens generated by token source places must have sufficient
descriptive information so that tokens may be matched and unified to satisfy any trust, context, and ordering
constraints that exist in the augmented SFT.

AND nodes in the SFT are of special interest in intrusion models. Semantically, when all child nodes of
an AND node in a SFT are true, the AND node is true.

AND Nodes without Ordering Constraints An AND node unconstrained by an ordering in an SFT corre-
sponds to a transition and outgoing place pair in a CPN. An ANDnode withn inputs translates to a transition
with n incoming arcs. Each incoming arc comes from either a token source place of an SFT leaf node, or the
outgoing place of an SFT gate node. Figure 1 illustrates the correspondence between an AND node and its
equivalent CPN transition/place pair, where:

X =

{

1, if x ∈ Dx

0, otherwise

Y =

{

1, if y ∈ Dy

0, otherwise

8

Z =

{

1, if (x ∈ Dx) ∧ (y ∈ Dy)
0, otherwise

X andY are the binary inputs to the AND gate, andZ is the binary output of the AND gate.x andy are
the incoming tokens to the CPN transition, whereDx andDy are the domains ofx andy, respectively.z is
the output token from the CPN transition.

Tokens leaving the transition must be unified such that they satisfy any related trust and context constraints
that exist higher in the augmented SFT. An examination of thetrust and context constraints that are connected
to branches along the path to the root in the minimum cut of theaugmented SFT will identify the constraints
for the events described by the incoming tokens. The designer must construct the unifying expressions so that
the related elements in the output token(s) satisfy the constraints. For example, if a constraint exists in the
minimum cut that requires two augmented SFT nodes to be related by a common TCP network connection
context, the tokens must be unified using the elements of the TCP quad (source host, source port, destination
host, and destination port) that uniquely identifies a TCP connection; this would satisfy the connection context
constraint node in the augmented SFT.

AND Nodes with Ordering Constraints Nodes connected to an AND node in an augmented SFT may
have an attached constraint that requires the nodes to become true in some particular order. Two cases exist:
first, nodes may be required to become true in order, but intervening events may occur; second, nodes may
be required to become true in order with no intervening events.

To support ordering, CPN tokens are required to contain times or sequence numbers. If eventa occurs
before eventb, the timestamp in the token representing eventa must be less than the timestamp in the token
representing eventb, and no two events may have identical timestamps. Likewise,if eventa occurs before
eventb, the sequence number in the token representing eventa must be less than the sequence number in the
token representing eventb, and no two events may have identical sequence numbers.

Literal wall-clock times used for comparisons are a problemwhen the times are obtained from different
computers in a distributed system [60]. Each computer has its own notion of the current time, and computer
clocks tend to skew at different rates. We assume that the clocks are kept synchronized and the skewδ between
a computer’s clock and the actual time is very small. As an implementation detail, the intrusion detection
system may itself synchronize the clocks and monitor the measured differenceδm between clocks. The IDS
may have an established maximum skewδMAX and may consider anyδm > δMAX to be an intrusion.
In addition, the implementation may includeδ in its comparisons between timestamps. The comparison
t1 + δ < t2 − δ yields a tight bound on two events, which may result in false negatives. The comparison
t1 − δ < t2 + δ yields a loose bound on two events, which may result in false positives.

Sequence numbers are maintained per context and no comparison may be made between sequence num-
bers across contexts.

The addition of temporal ordering to augmented SFT and the associated representation of time informa-
tion in event tokens enables temporal reasoning.

1. Occurs After:The case “occurs after” covers the situation where augmented SFT nodes must become
true in a particular order.

Figure 2 shows an example of an AND node constrained such thatnodey must occur (become true)
after nodex becomes true, where:

X =

{

1, if x ∈ Dx

0, otherwise

Y =

{

1, if y ∈ Dy

0, otherwise

Z =

{

1, if (x ∈ Dx) ∧ (y ∈ Dy) ∧ (time1 < time2)
0, otherwise

9

(x, time1)

[time1 < time2]

(y, time2)

X Y

Z

OccursAfter(X,Y)

Figure 2: AND node, constrained by “Y after X”, with corresponding CPN

(y, seq2)

[seq1 + 1 = seq2]

(x, seq1)

X Y

Z

ImmediatelyAfter(X,Y)

Figure 3: AND node, constrained by “Y immediately after X”, with corresponding CPN

In Figure 2,time1 andtime2 denote the timestamps for eventsx andy, respectively. The related CPN
segment shows that a token for eventx must have a smaller timestamp than the token for eventy. The
significant differences between Figures 1 and 2 are the addition of time information to the tokens, and
the guard on the transition that enforces the ordering on thetoken’s time.

Timestamps in the “occurs after” case may be either wall-clock time or sequence numbers.

2. Immediately After: The case “occurs immediately after” covers the situation where augmented SFT
nodes must become true in a particular order. Intervening events may not occur.

Figure 3 shows an example of an AND node constrained such thatnodey must occur (become true)
immediately after nodex becomes true, where:

X =

{

1, if x ∈ Dx

0, otherwise

Y =

{

1, if y ∈ Dy

0, otherwise

Z =

{

1, if (x ∈ Dx) ∧ (y ∈ Dy) ∧ (seq1 + 1 = seq2)
0, otherwise

In Figure 3,seq1 andseq2 denote the sequences numbers for eventsx andy, respectively. The related
CPN segment shows that a token for eventy must have the timestamp immediately following the

10

yx

X Y

Z

Figure 4: OR node with corresponding CPN

timestamp for eventx, implying that discrete timestamps (sequence numbers) arenecessary for the
operation of this CPN segment.

OR Nodes When any of the child nodes of an OR node in an augmented SFT is true, the OR node is true.
An OR node in an augmented SFT corresponds to a set of transitions and outgoing place pair in a CPN. An

OR node withn inputs translates ton transitions, each having1 incoming arc. Each incoming arc originates
in either a token source place based on an augmented SFT leaf node, or the outgoing place based on an
augmented SFT gate node. Figure 4 illustrates the correspondence between an OR node and its equivalent
CPN transitions and place, where

X =

{

1, if x ∈ Dx

0, otherwise

Y =

{

1, if y ∈ Dy

0, otherwise

Z =

{

1, if (x ∈ Dx) ∨ (y ∈ Dy)
0, otherwise

As with constraints on events in an AND node, tokens leaving the transition for an OR node must be
unified such that they satisfy any trust and context constraints that exist higher in the augmented SFT.

4.3 Generation of Token Definition

Defining token types in converting an augmented SFT into CPN is more difficult than generation of places
and transition since there is a fundamental difference between augmented SFT and CPN. Augmented SFTs
describe what constitute a hazard at a conceptual level and give less details to the events than in data level.
But for CPNs, especially for CPNs that are used to generate a program, more detailed description of what
constitutes an event is needed.

For a leaf node in an augmented SFT (which corresponds to a token source place) we need to add some
explanation to the event. When the augmented SFT is translated to CPN, we then have the necessary informa-
tion about what constitutes the event and what kind of token should be fired by the corresponding event. For
example, if the event is FTP_PORT_OK, we may add an explanation in the representation of the augmented
SFT like type = ”RESPONSE”, src_port = ”21”, value = ”2xx”. Then when the token source place
is generated, we can specify enough information to describethe event in the token and enable further token
matching and unification.

11

4.4 Automatic Translation from Augmented SFT to CPN Templates

Based on the translation rules given above, an automatic translation procedure has been designed and im-
plemented. The procedure makes use of XSL and XML definitionsof augmented SFTs and CPN templates.
Document Type Definitions (DTDs) have been developed for augmented SFTs and CPN templates.

The process has the following steps:

1. Convert an augmented SFT to its XML equivalent using the translation rules described above.

2. Translate the augmented SFT XML to the XML of the corresponding CPN template using an XSL
transformer program, such as Visual XML Writer.

3. View and validate the CPN corresponding to the resulting CPN template XML from step 2 using a CPN
tool, such as Design/CPN [11]. During this step, the CPN can be optimized to improve efficiency.

Figure 6 presents a CPN generated automatically from the augmented SFT in Figure 5 for the FTP Bounce
Attack using the XSL technique.

5 From CPNs to an Agent-Based Implementation

Similar to the algorithmic approach for creating CPN templates from augmented SFT, an algorithmic ap-
proach to creating an agent-based implementation from the set of CPN templates has been developed.

By using the translation algorithm to convert CPN designs tocode, we can be certain that the code imple-
ments the CPN design. Also, if the translation algorithm preserves CPN semantics, any analysis performed
on the CPN design also applies to the implementation. Finally, creating an implementation in code allows the
developer to improve performance over the execution of a general CPN.

A distributed implementation of the CPN model using software mobile agents can provide a reliable,
robust, and efficient IDS [27]. Our implementation providesuseful information to the security analyst in the
form of a trail of transitions through which CPNs passed. [57] provides further details regarding the MAIDS
implementation.

The MAIDS prototype uses the Voyager agent platform, version 3.2, from Objectspace [46]2. An agent
is an instance of a Java class, which may be created either locally or remotely. Additionally, Voyager supports
code mobility of two types. One agent can move another agent between hosts, or an agent can request its
own migration. The use of Voyager is not central to the MAIDS design. Other agent platforms that have been
considered for use include Grasshopper from IKV++ [24] and SMART [62].

5.1 Java-based Conversion Algorithm

Each CPN place maps to an agent in our implementation. The algorithm for translating a distributed CPN to
an implementation of software mobile agents in Java is as follows:

1. For each leaf place node in a CPN, instantiate an agent thatextends theDataPlace class;

2. For each internal place node, instantiate thePlace class with a unique label;

3. For each leaf transition node, instantiate an agent that extends theMobileTransition class;

4. For each internal transition node, instantiate an agent that extends theStationaryTransition
class;

5. Main console instantiates anAlertPlace agent for the root node. Refer to it with labelalert in all
transitions that have an outgoing edge to it.

2ObjectSpace spun off a new company called Recursion Software Inc. in 2001 to handle Voyager, http://www.recursionsw.com

12

FTP-Bounce

Upload-RSH Download-RSH

FTP-SETUP FTP-STOR

FTP-STOR-OK

FTP-SETUP2 FTP-PORT

FTP-PORT-OK

FTP-RETR

FTP-RETR-OK

FTP-RSH-CONN

FTP-RSH-4

FTP-RSH-3

FTP-RSH-2

FTP-RSH-1

FTP-RSH-5

FTP-PORT-OK-T

FTP-RETR-T

FTP-RSH-CONN-T

FTP-RETR-OK-T1

FTP-BOUNCE-T

FTP-STOR-OK-T

DWN-CONN UP-CONN RSH-TRUST

FTP-RETR-OK-T2

 FTP-BOUNCE - FTP Bounce 2000/10/11

D1. FTP connection established and authenticated
D2. FTP command "STOR pathname"
D3. FTP RETR command after FTP port OK response
D4. TCP connection from port 20 on FTP host to port 514 on target host
D5. OccursAfter(FTP-RSH-3, FTP-RSH-CONN)
E1. FTP port OK response after FTP PORT command
E2. FTP command "RETR pathname"
E3. ImmediatelyAfter(FTP-RSH-2, FTP-RETR)
F1. FTP PORT target,2,2 command issued in an FTP se ssion
F2. FTP response "2xx command successful"
F3. ImmediatelyAfter(FTP-RSH-1, FTP-PORT-OK)
G1. FTP connection established and authenticated
G2. FTP command "PORT target,2,2" to send data to target's RSH port (514)

A1. FTP Bounce
B1. Trusts((rsh, targetHost), (ftpHost))
B2. Upload input for RSH to FTP server
B3. Context(:conn ftpHost 21 attacker1 ephPort (FTP -STOR, FTP-STOR-
OK)
B4. Download file to RSH port on target
B5. OccursAfter(UPLOAD-RSH, DOWNLOAD-RSH)
B6. Context((:conn ftpHost 21 attackHost2 ephPort2) (FTP-RETR-OK, FTP-
RSH-CONN, FTP-RETR, FTP-PORT-OK, FTP-PORT)

C1. STOR issued in FTP connection
C2. FTP response "2xx Transfer Complete"
C3. ImmediatelyAfter(FTP-RSH-5, FTP-STOR-OK)
C4. RSH connection after FTP RETR issued
C5. FTP response "2xx Transfer complete"
C6. ImmediatelyAfter(FTP-RETR, FTP-RETR-OK)
C7. OccursAfter(FTP-RSH-CONN, FTP-RETR-OK)

A1

B1 B2 B3 B4 B5 B6

C1 C2 C3 C4 C5 C6 C7

D1 D2 D3 D4 D5

E1 E2 E3

F1 F2 F3

G1 G2

Figure 5: Fault tree for FTP bounce attack, with constraints

1
3

Network
Monitor:

FTP
FTP

IncomingIP_ENDS

TCP_QUAD

TCP_QUAD

Penetration
 Successful

TCP_QUAD

FTP_PORT &
FTP_PORT _OK

[seq1+1=seq2]

FTP_RETR[seq1+1=seq2]

FTP_RETR_OK[seq1+1=seq2,
time1<time2]

Network
Monitor:

TCP
Connections

FTP_RSH_CONN[time1<time2]

TCP_QUAD

1‘{src=src_host,dst=dst_host}

1‘{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seq1,t=time1}

1‘{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seq2,t=time2}

1‘{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seq1,t=time1}

1‘{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seq2,t=time2}

1‘{rtype=COMMAND,
 conn={ends={src=src_host, dst=dst_host},
 src=src_port, dst=FTP_PORT},
 value="PORT .*,2,2$",s=seq1,t=time1}

1‘{rtype=RESPONSE,
 conn={ends={src=dst_host, dst=src_host},
 src=FTP_PORT, dst=src_port},
 value="2xx",s=seq2,t=time2}

1‘{rtype=COMMAND,
 conn={ends={src=src_host, dst=dst_host},
 src=src_port, dst=FTP_PORT},
 value="RETR",s=seq2,t=time2}

1‘{rtype=RESPONSE,
 conn={ends={src=dst_host, dst=src_host},
 src=FTP_PORT, dst=src_port},
 value="2xx",s=seq2,t=time2}

1‘{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seq2,t=time2}

1‘{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seq1,t=time1}

1‘{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seq1,t=time2}

1‘{ends={src=dst_host,dst=target_host},
src=FTP_DATA_PORT,dst=RSH_PORT,s=seq2,t=time2}

Figure 6: FTP Bounce Attack Penetration CPN generated automatically from augmented SFT via XSL

14

The CPN arcs, which constitute the structure of the agent network, are not maintained centrally. Each transi-
tion knows about the places to which it is immediately connected, and places know nothing about the agent
network structure.

The algorithm preserves the CPN semantics in the implementation and allows for efficient execution.
Performance can be increased over the execution of a generalCPN by optimizing code segments to fit specific
intrusion detection applications. For example, matching and unifying tokens is computationally intensive, at
leastO(n2) in the general case; but in cases where the number and types oftokens are known in advance,
faster algorithms can be used. If a place holds tokens of a single type, an implementation could match tokens
in O(n log

2
n) time based on a binary search orO(n) time based on hash tables. Such enhancements could

be made to theTransitionsuperclass so that they would not be a burden to the end user, but they are not part
of the current MAIDS prototype.

Every agent must provide, strictly for debugging purposes,anagentName() method returning an iden-
tifying string. Beyond this, agents have specific requirements as follows.

1. Required methods for data place agents:The responsibility of a data place is to generate fresh to-
kens from whatever information is locally available. It must implement awork() method, taking no
arguments and returning aTokenBag. This method will be called periodically from theDataPlace
superclass code.

2. Required methods for transition agents:Transitions are much more complex, embodying as they do
all of the logic of the agent network. But most of the complexity is hidden in superclass code. Three
additional methods must be implemented:String[] sources(), String[] tokenSpec(),
Token[] unify (Token[] sourceTokens).

Of these, only the last is nontrivial to write.sources() should return an array of the labels of the places
that have arcs to this source;tokenSpec() should return an array of token colors, and determines what
kind of input theunify() method will see. For instance iftokenSpec() returns the array{“blue”,
“red”} , then wheneverunify() is called it will be given an array containing one blue token and one red
token, in that order.unify() is then responsible for deciding whether those tokens should be unified. If so,
it returns a new array of tokens; otherwise it returns null.

Notably, there is no explicitdestinations() method. This information is placed in the tokens them-
selves via an argument to theToken constructor. In the case where the token is created by a data source
place, there is no delivery, so the source place itself is given as a destination; in the case where a transition is
creating a new token, the destination is determined by an outgoing arc on the CPN.

Behind the scenes, theTransition superclass is responsible for iterating through the tokensavailable
from the places given insources() , retrieving from there sets of tokens satisfying the description given in
tokenSpec, and presenting them to the agent class as an argument tounify() . If it gets an array of tokens in
return, it delivers them to their designated places and deletes the source tokens; otherwise it leaves the tokens
where they were found.

5.2 Preservation of CPN Semantics

The MAIDS representation of a CPN as a network of Java objectssatisfies the CPN properties listed in
Section 4.1 as follows:

1. Each type is a color in setΣ.

2. Each instance of aPlace is an element in setP .

3. Each instance of aTransition is an element in setT .

4. ArcsA between places and transitions are encoded in the transitions (when proceeding from place to
transition) and tokens (when proceeding from transition toplace); they are finite in number and satisfy
the requirement as they are distinct from places and transitions.

15

5. The encoding of arcs as described above defines the node functionN .

6. The assignment of color in theToken class constructor defines the color functionC.

7. A unify() method implements the guard expressions inG for each transition inT .

8. Theunify() method also implements the arc expressionE for each arca ∈ A.

9. A trivial initialization functionI makes each place begin with no tokens.

The implementation of transitions and places may impose additional constraints not present in the CPNs so
as to obtain efficiencies for particular expected token colors; as long as only expected token colors exist in
the places, the CPN semantics are satisfied by the implementation.

5.3 Algorithm For Translating CPN Design Templates to AgentImplementation

The MAIDS uses a distributed agent-based system to detect intrusions. If the CPN model of intrusion detec-
tion is expanded to include multiple data source nodes (which are simply duplicated places that provide the
same token colors to transitions), and transitions are given mobility, the result is a distributed CPN (DCPN).
In our design, transitions are selected for mobility based on their need to visit different sites in the distributed
system to collect tokens from duplicated place nodes for matching. The places visited by the transitions
are defined dynamically through the user interface, corresponding to the nodes that are being monitored by
MAIDS.

The previous section examined the implementation of a CPN asJava code. This section further details
the implementation of a CPN as agents in a distributed system.

1. Node Categories:The IDS CPN design resembles a tree where data is obtained at the leaf nodes, feeds
up through the internal nodes, and finally reaches the root node when an intrusion is identified. Tokens
in the IDS CPN represent information that, as tokens “rise” through the tree, is correlated with other
information to identify intrusions.

Source places (places which have no incoming arcs) are consideredleaf places. The transitions adjacent
defined to leaf places are consideredleaf transitions.

Sink places (places which have no outgoing arcs) are considered root places. The Alert place is cur-
rently the single root place in the CPN IDS design.

Internal placesand internal transitionsare the remaining places and transitions, respectively, inthe
CPN IDS design.

2. Leaf Places and Transitions:Raw audit data of various types and formats is obtained from monitored
systems for the IDS. Data cleaning agents have been developed to read and process the raw audit data
for use by the IDS. The data cleaning agents correspond to theleaf places and transitions in the CPN
design.

Leaf places and transitions are duplicated at each monitored system to manage the constant process of
data retrieval and cleaning.

The leaf places (data cleaners) are agents that remain in a single location to obtain raw data, such as
that available from log files. In the current MAIDS implementation, the leaf places are instantiated sep-
arately on each host by the operator, where they will remain stationary for the duration of their activity.
Next generation of MAIDS would allow the console to dispatchthe leaf nodes to the monitored host
and allow the console to recall the agent to replace it with anupdated agent or cease monitoring. The
leaf places perform minimal processing and do not place a substantial resource load on the monitored
systems.

16

Leaf places are an instance of places in the MAIDS DCPN implementation that require customized
coding to perform operating-system specific data gatheringand cleaning tasks. Nearly all other places
are generic, passive containers of tokens.

Leaf transitions (data gatherers) are software mobile agents that travel between monitored systems to
obtain tokens. Currently, single instances of each leaf transition perform the data gathering duties,
but in the future, multiple instances of each leaf transition could cooperate to gather data in a large
distributed system.

Informally, the leaf transitions perform the first level of data gathering and filtering in the IDS. For-
mally, the leaf transitions perform the token matching and unification specified by the CPN IDS design.

3. Internal Places and Transitions: Internal places act as passive containers for tokens. Internal places
are not duplicated; a single instance exists and accepts tokens from all (possibly mobile) transitions
connected to it. Internal places currently reside at the machine running the console, but they could be
given mobility if it becomes advantageous.

Internal transitions are similar to leaf transitions in that they apply token matching and unification rules
to tokens as they are obtained from incoming places and sent to outgoing places. Like internal places,
internal transitions are statically positioned at the machine running the console. Internal transitions
could be given mobility if advantages are found.

4. Root Place:The root of the CPN IDS design is the alert place. It acts as a passive container, but when
a token is added to the alert place, the IDS console interprets the token and displays it. Transitions are
required to set an urgency level parameter in tokens for use by the IDS console. Tokens are sorted on
the IDS console display by their urgency and then by their arrival time.

5. The IPlace Interface: TheIPlace interface specifies four methods:void storeToken(Token t),
TokenBad getTokens(), boolean lock() andvoid unlock() .

All Place agents in the network, except the data source (leaf) places,are instances of final classes.
As a result, the end implementer is never responsible for anyof these methods. They are called by
transition agents, but in superclass (Transition) code so that they are invisible to the implementer.
Additionally, DataPlace superclass code usesstoreToken() . The lock() andunlock()
methods allow a transition to atomically examine and eitherreplace or remove tokens from several
places.

5.4 Testing CPN design

A set of use cases (positive and negative examples of intrusions, i.e. set of paths in CPN leading to successful
or unsuccessful intrusion) were developed to test the intrusion detection system requirements. The CPN
design was tested using the use cases to observe the behaviorof the CPN and verify correct functionality.
Equivalence classes may be used to test representative samples from groups of intrusions to reduce the testing
effort [49].

Since the requirements model is less detailed than the CPN and may not be as expressive as a CPN model,
the CPN design further constrains the sets of events that will be identified as intrusions. Thus, some use cases
that are identified by the requirements as intrusions will not be considered intrusions by the CPN model and
the intrusion detection system implementation. Each use case must be annotated to describe whether the
requirements and/or design will identify the use case as an intrusion.

CPNs design was tested with the following methods:

1. Interactive simulation - Execute a CPN model in a way similar to interactively debugging a program.

2. Automatic simulation - Investigate functional correctness and performance of a CPN model by execut-
ing a CPN at full speed.

17

3. Creating occurrence graphs - Determine reachability of nodes in a CPN model.

4. Place invariants - Prove user-specified predicates to be satisfied for all reachable system states to prove
properties such as absence of deadlock.

Place invariants in particular may be useful for the intrusion detection CPN design, as they may allow in-
variants to be derived from requirements and verified in the CPN design. For example, a place in an FTP
bounce attack detector of Figure 6 may have an “FTP RESPONSE”token only if there exists a matching
“FTP COMMAND” token in the CPN, since a command must be issuedto receive a response.

Interactive simulation has been performed by building CPNsand simulating their execution in the De-
sign/CPN tool [11] using positive and negative examples of intrusions. Automatic simulation has been per-
formed indirectly by building an implementation of CPNs in Java and executing it.

5.5 Detecting FTP Bounce Intrusion

FTP bounce detection was tested using a script to launch the attack from a host outside the local network.
Because real intrusion data for this attack was not readily available in the form of network traces, we mixed
normal and malicious sessions to simulate attack under significant network traffic conditions. An upload of
a one-line text file followed by a download of the same file was our model of a “normal” session, and was
chosen for its superficial similarity to an instance of an FTPbounce attack. The normal session scenario, like
the attack scenario, was made repeatable using our scripts.A Perl script invoked these scripts to run 50 ftp
sessions sequentially; the sessions numbered 2 and 49 were malicious, and the rest were normal.

Two monitored hosts were attacked, one as relay and the otheras target. A third machine served as the
host console. The relay host was running a modified version ofthe wu-ftp server. Changes were made to
source code fileftpcmd.y to blindly enablePORTcommands regardless of source or destination. While
this very vulnerable server was active for testing, packet filtering was kept in place to discourage real attacks
from outside our laboratory’s domain. Also, the target host’s RSH service was not made vulnerable; instead,
RSH service was disabled and a proxy was set up to watch port 514 and echo its traffic to a terminal window.
By these measures, all the essential events could appear as areal attack, but with minimal danger of our test
systems being compromised.

When run in isolation, a scripted attack was detected typically between 2 and 5 seconds of its completion.
This time disparity was to be expected because of the discrete actions of the agents and the randomized delays
that were artificially inserted.

In tests of the 50-session ftp sequence, the two malicious sessions were reliably detected (i.e., no false
negatives) with no false positives.

Details of the alert tokens from one such test are shown in Figure 7. These text presentations appear at
the analyst’s console when a token is selected from the alertlist panel and the “details” button is pressed.
The hierarchical indentation scheme reflects the history ofunifications that led to the creation of a token.
(Note: the recorded creation times of theRSH_PORTandFTP_BOUNCE_ATTACKtokens reflect a clock
skew between the monitored hosts, since token timestamps depend on the machine where unification actually
takes place.)

Although both attacks were correctly identified out of the scripted ftp sessions, the later attack took
significantly longer to detect. Studying the contents of thetwo tokens, it is apparent that the bottleneck is in
the creation of theFTP port & retr token, which is the job of the complex transition that was created
as a result of node reduction. After the first attack, theFTP port & retr token appears at 20:26:24, 4
seconds after all four contributing tokens are available. But in the second attack this disparity is larger: the
contributing tokens are available by 20:29:14 and are not unified into aFTP port & retr token until 19
seconds later, at 20:29:33. The difference in performance is accounted for by the fact that each of the 48
intervening normal ftp sessions producedFTP_PORT_OK, FTP_RETR, andFTP_RETR_OKtokens, all of
which had to be processed by theFTPB_relay_MT agent in every possible combination.

The test conditions are such that theFTPB_relay_MT transition unifies inO(n4) time, wheren is
the maximum number of tokens of any color. It would seem that asmall n is required to prevent the

18

--- Token: [urgency 9] [type FTP BOUNCE ATTACK] ---
FTP BOUNCE ATTACK [0] Mon Apr 02 20:28:27 CDT 2001

FTP port & retr [0] Mon Apr 02 20:26:24 CDT 2001
> 986261179000 986261180000

FTP_PORT [585] Mon Apr 02 20:26:19 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT r equested
FTP_PORT_OK [586] Mon Apr 02 20:26:19 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT s ucceeded
FTP_RETR [587] Mon Apr 02 20:26:19 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR r equested
FTP_RETR_OK [588] Mon Apr 02 20:26:20 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR s ucceeded

RSH_PORT [0] Mon Apr 02 20:28:21 CDT 2001
> tcp://judge.cs.iastate.edu:8000/tcp monitor: rsh conn ection from ftp

--- Token: [urgency 9] [type FTP BOUNCE ATTACK] (1) ---
FTP BOUNCE ATTACK [1] Mon Apr 02 20:31:37 CDT 2001

FTP port & retr [2] Mon Apr 02 20:29:33 CDT 2001
> 986261354000 986261354000

FTP_PORT [816] Mon Apr 02 20:29:14 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT r equested
FTP_PORT_OK [817] Mon Apr 02 20:29:14 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT s ucceeded
FTP_RETR [818] Mon Apr 02 20:29:14 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR r equested
FTP_RETR_OK [819] Mon Apr 02 20:29:14 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR s ucceeded

RSH_PORT [7] Mon Apr 02 20:31:15 CDT 2001
> tcp://judge.cs.iastate.edu:8000/tcp monitor: rsh conn ection from ftp

Figure 7:Alert tokens from node-reduced test

FTPB_relay_MT transition from wasting a great deal of the local host’s CPU time, even if the observed
total detection times of under 30 seconds were otherwise deemed acceptable.

To correct this, the first impulse might be to test an agent system based on the original CPN before node
reduction. But to facilitate component reuse it is desirable to keep theFTP port & retr token intact.
Therefore the unreduced CPN is rearranged as in Figure 8 for asecond test with the same 50-session ftp
script.

As in the previous test, both attacks were detected and therewere no false positives. The attack token
details are shown in Figure 9.

The first attack is detected more slowly than before, but the second more quickly (compare creation times
of the FTP_RETR_OKandFTP port & retr tokens, to witness that the bottleneck is relieved). Total
detection times from these tests, calculated from reception of the attack egg to creation of final alert token,
are summarized in Figure 10.

We see that node reduction, in addition to simplifying the layout of the agent system, decreases the
constant agent communication and migration overhead, and so performance improves under light-traffic con-
ditions. But when large numbers of tokens accumulate in a short period of time, complex transitions perform
poorly and overall performance suffers.

This performance analysis is by no means exhaustive but gives a general indication of the effect of node
reduction.

6 Other intrusion scenarios

FTP Bounce attack example demonstrates all development stages of intrusion detection system (from specifi-
cation of intrusion to design and implementation of the intrusion detection agents) and the final result of this
process - actual detection of an attack. In addition to this intrusion, we have also tested several other attack
scenarios in wired and wireless settings. For brevity we only include the descriptions of those scenarios.

19

FTP port & retr
place, holds tokens of color

"FTP bounce suspicion"

[seq2 + 1 = seq3]

(FTP_RETR, seq3, time3)

FTP_RETR

(FTP_PORT, seq1)

(FTP_PORT_OK, seq2)

[seq1 + 1 = seq2] FTP_PORT &
FTP_PORT_OK

Network
Monitor:

FTP

Network
Monitor:

TCP

FTP_RSH_CONN

FTP_RETR_OK[seq3 + 1 = seq5]

(FTP_RSH_CONN, time4)

(FTP_RETR_OK, seq5, time5)

[time3 < time4 && time4 < time5]

Figure 8:FTP bounce CPN, rearranged for later component reuse

20

--- Token: [urgency 9] [type FTP BOUNCE ATTACK] (2) ---
FTP BOUNCE ATTACK [2] Mon Apr 02 22:31:43 CDT 2001

FTP port & retr [1161] Mon Apr 02 22:35:44 CDT 2001
> 986268932000 986268932000

col 2 [1160] Mon Apr 02 22:35:37 CDT 2001
> 986268932000

col 1 [1159] Mon Apr 02 22:35:35 CDT 2001
FTP_PORT [1158] Mon Apr 02 22:35:32 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT r equested

FTP_PORT_OK [1159] Mon Apr 02 22:35:32 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT s ucceeded

FTP_RETR [1160] Mon Apr 02 22:35:32 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR r equested

FTP_RETR_OK [1161] Mon Apr 02 22:35:32 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR s ucceeded

RSH_PORT [35] Mon Apr 02 22:31:30 CDT 2001
> tcp://judge.cs.iastate.edu:8000/tcp monitor: rsh conn ection from ftp

--- Token: [urgency 9] [type FTP BOUNCE ATTACK] (3) ---
FTP BOUNCE ATTACK [3] Mon Apr 02 22:34:25 CDT 2001

FTP port & retr [1394] Mon Apr 02 22:38:23 CDT 2001
> 986269090000 986269091000

col 2 [1393] Mon Apr 02 22:38:17 CDT 2001
> 986269090000

col 1 [1392] Mon Apr 02 22:38:13 CDT 2001
FTP_PORT [1391] Mon Apr 02 22:38:10 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT r equested
FTP_PORT_OK [1392] Mon Apr 02 22:38:10 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT s ucceeded

FTP_RETR [1393] Mon Apr 02 22:38:10 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR r equested

FTP_RETR_OK [1394] Mon Apr 02 22:38:11 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR s ucceeded

RSH_PORT [40] Mon Apr 02 22:34:09 CDT 2001
> tcp://judge.cs.iastate.edu:8000/tcp monitor: rsh conn ection from ftp

Figure 9:Alert tokens from test without node reduction

low-traffic attack high-traffic attack
With node reduction 6 22

Without node reduction 13 16

Figure 10:Detection times (in seconds) from Figures 7 and 9

21

6.1 Denial-of-service attack (DoS)

Denial-of-service attack is an off-line attack that was adapted from [1]. The goal of this scenario is to ensure
MAIDS agents can gather and correlate data from multiple hosts to find intrusions. It uses pre-conditions
and post-conditions to link events. As alerts are generatedby an IDS, they are compared against rules in a
database to determine if a correlation can be made. If one is made, a hyper-alert is generated to represent the
alerts involved.

Test data for this scenario was taken from [1] and arbitrarily divided between multiple files in such a way
that each file is similar in length, and no two of these files have data from the same line in the original file. The
new files are then placed on different hosts in the network. Anagent, created to visit each node in the network,
collects alert data from these files, and attempts to link events using pre-conditions and post-conditions.

The correlation is done in a decentralized fashion. Using pre-condition and post-condition rules (stored
in arrays in the agent code), the events collected by the agent on each host are compared against the rules to
determine if a correlation can be made. If a correlation is made, a hyper-alert is generated to represent the
alerts involved. Once the agent has visited all hosts in the network, it writes all hyper-alerts to the console
machine for analysis by an administrator.

6.2 Nmap scan

The second considered attack is a distributed Nmap scan[16]. Nmap is a program that is capable of scanning
large networks in order to determine which hosts are up and what services are available on those hosts. Nmap
scan is considered as an attack as it is likely to be a first stepin carrying out an intrusion. As such, hosts
suspected of executing these scans are often disconnected from the network.

The attack is performed by sending SYN packets to targeted hosts. RST packet received from the target,
instead of an ACK packet, is an indication that the port is notactive and cannot be used in a later intrusion
attempt. To reduce the chance of being detected, the attacker can scan the target machines at random time
intervals and using pseudo-random port numbers while also randomizing the hosts.

In this scenario, the agent travels between three hosts. Theattacker, on a third machine, performs a
randomized port scan on ports 20 to 150 on the other two hosts.The job of the agent is to detect what appears
to be completely random (and few in number) port activity on each host, and to correlate the aggregated
results to decide if an Nmap port scan is being carried out on the network.

For this experiment, the agent correlated the events if similar alert patterns are found on all hosts with
the same source address as seen earlier. If enough of these events are correlated, the agent takes a predefined
action. In this scenario, once 100 unique ports have been discovered coming from the same host, the agent
raises its alert level and prints a message to the screen of each host it visits to alert users of the scan.

6.3 Distributed real-time attack

The third attack demonstrates a distributed attack resulting in a compromised system. It was tested on the
network of four hosts. Host A and T are the attacker and the target machine respectively. C1 and C2 are
nodes which have been compromised by an attacker and are usedto carry out the attack on T.

The first step of this attack is to perform a port scan from C1 onthe target machine. Following the port
scan, the attacker attempts to obtain information about theservices running on the open ports of the target
and launches a more intrusive attack from C2 against it. The intrusive attack that was implemented is the
Nachi worm [2]. This worm starts by sending an ICMP ping to thevictim machine, and if reply is received it
attempts to propagate.

In this scenario, agent is looking for three things: a port scan, a machine trying to obtain banner infor-
mation from a service, and the virus signature. The port scanis detected by the same method as described
in Scenario 6.2. When the agent detects a machine trying to obtain banner information from a local service
on the current host, the agent checks the service port against previously scanned ports. If the port has been
previously scanned, the agent correlates those two events.

22

As the agent moves from host to host, it also carries with it a signature for the Nachi worm. This signature
is a pattern for detecting traffic from the worm. When the pattern is found in the log file, agent also checks
previously scanned ports for the signature. If there is a match, the events are correlated. Once the worm has
been detected, the agent raises its alert level status and prints the alert, along with the correlated events, to the
screen of each host.

7 Related Models

An early intrusion detection approaches proposing detection of intrusions through anomalous user behavior
were introduced by Anderson [6] and Denning [14]. Since thensubstantial amount of research attention has
been directed into intrusion detection area [5, 7, 8, 12, 48,31]. One of these intrusion detection techniques is
misuse detection approach, although widely employed for detection of known attack patterns, also shown to
have potential of recognizing unknown intrusions [40].

In the past two decades a number of misuse techniques have been proposed. Among these are methods
based on rule-based expert systems [17, 18, 28, 55] and attack graph-based approaches [34, 35, 39, 56, 58].
Several works have focused on languages for specifying attack signatures [15, 33, 41, 50] and state-transition
analysis of anomalous system behavior [13, 25, 26],

An example of such system is STAT approach [26] that graphically models intrusions as transitions in
a state machine. Each state in the state machine represents asnapshot of the monitored system as a set of
assertions about the elements of the system. Each transition shows actions that move the system closer to the
compromised state.

STAT can be considered as a high-level specification and, in that respect, compares with our SFT approach
to modeling intrusions. A detailed representation of STAT state machine could be used as a design for an
IDS or executed as an IDS, and in this respect, corresponds tothe use of CPNs and agents in our system.
However, the separate tools (SFTs, CPNs, and agents) used for the different concerns (requirements, design,
and implementation) in our approach provide a clearer distinction between the development activities than
it is done in an approach that uses state machines throughoutthe development lifecycle. Additionally, SFTs
tend to be more understandable as a high-level specificationthan state machines.

As our work is based on integration of SFT and CPN for intrusion detection we will primarily focus on
the graph-based approaches.

One of the earlier misuse detection models,Intrusion Detection In Our Time (IDIOT), was developed
by Kumar and Spafford [34, 35]. The system employs Colored Petri Nets to represent intrusion signatures,
patterns. Although, as authors suggested, CPN is the most suitable technique for conditional matching of
patterns, several modifications of CPN were made (elimination of concurrency, removal of local condition
variables at transitions, addition of start and final statesetc.) to make IDIOT model generic and applicable to
any well defined input.

Our proposed IDS is also based on Colored Petri Nets, howeverthe concept is applied to design specifi-
cation rather than a direct execution of a CPN to allow the implementer to improve performance. In addition,
we define a transformation from the CPNs to the implementation of the software agent intrusion detection
system that preserves the CPN semantics. Another benefit of our model is its ability to operate in a distributed
environment using an agent-based approach.

Another graph-based approach to misuse intrusion detection, called GrIDS,the Graph-Based Intrusion
Detection System[58] was designed for distributed attacks against networks. It dynamically builds activity
graphs describing network traffic by applying user-defined rules to audit data. Nodes in the graphs represent
hosts or aggregations of hosts while edges represent network activity. Rather than building a single graph
including all system activities, individual graphs are maintained by rule sets. Each rule set matches certain
events from the network audit trail and either builds a new graph or adjusts an existing graph.

The model also allows intuitive aggregation of nodes and edges into reduced graphs which provides
higher level of analysis and data sharing, resulting in a scalable design. Although, this system is built to
detect security policy violations, it should be possible toextend the model to analyze for anomalies based on

23

selected objects and events.
While GrIDS considers only communication patterns betweenhosts, our modeling technique applies to all

events in the monitored system. Also, rather than directly using the graphical model, a mobile agent intrusion
detection system is developed using the CPN model as the design specification to improve performance and
allow flexibility in implementation.

Similar to GrIDS approach,the Adaptable Real-time Misuse Detection system (ARMD)represents mis-
uses as directed acyclic graphs (DAGs) [39]. Abstract events are represented by nodes in a graph and edges
show the ordering of inter-event rules satisfied by the nodes. The intra-event rules determine the nodes chosen
for the graph. The inter- and intra-event rules together define misuse signatures (named MuSigs). If a graph
is built such that a sink node has an edge to it, an intrusion isdetected.

Unlike the model used by GrIDS or by our approach that allows for aggregation through unification of
tokens, MuSig graphs are not amenable to aggregation. Edgesin a MuSig graph only mean that a predicate
has been satisfied and they have no values or attributes that can be aggregated. At the same time, nodes in
a MuSig graph correspond to specific events, which can be hardto aggregate in the absence of structured
methods to aggregate the attributes associated with the events.

Finally, MuSig graphs can not be used for anomaly detection since by definition a MuSig graph detects
a misuse intrusion. Thus, the GrIDS-style object/event model seems to be more powerful for general misuse
and anomaly intrusion modeling. While our proposed approach allows for anomaly detection, it has another
advantage of not requiring matching of graphs, as CPN graphsare mainly used for the design specification.

In recent years, several methods have been proposed to represent intrusion signatures through attack
graphs which can be constructed from the alerts reported by intrusion detection system [42, 43, 45, 56].
These graphs precisely model attack paths in the network through nodes representing host vulnerabilities and
edges showing connectivity between these hosts [56]. Whileattack graphs are exhaustive and precise, their
manual construction is tedious and often error-prone. Recently, several projects have focused on automatic
generation of such graphs [56, 59]. Another concern relatedto attack graphs is their scalability. While
it became possible to build attack graphs for large networksusing automatic tools, it is still quite difficult
to manage their complexity. Several visualization techniques have been proposed to cope with this problem
[43, 44]. Our approach also employs attack graphs, however,graph representation of intrusion is only required
for design of the IDS rather than actual intrusion detection.

8 Discussion and Conclusions

This paper details the procedure by which a distributed, agent-based IDS was implemented from a SFT-based
requirements and a CPN-based design. Intrusions are divided into temporal components which are modeled
using SFT. Constraint nodes, specifying trust, temporal, and contextual relationships, are used to augment
SFTs and restrict the combinations of events which define intrusions. Algorithmic approaches are used to
create CPN templates from augmented SFT and agent implementations from the CPN templates. The result
is an intrusion detection system to detect intrusions whichwere specified by the original requirements.

Dividing components of intrusions into temporal stages allows the development of CPNs that detect in-
dividual attacks3. Composition of the CPNs into a hierarchy models the correlation of individual attacks
to detect complete intrusions. Future work may investigatehow attacks may fit together into complete in-
trusions and determine how to further compose CPNs. For example, if detectors for individual attacks are
developed, data mining techniques such as frequent episodes [36] may discover groups of attacks that occur
in combination. A detector for the group of attacks could be made by composing the individual detectors
together.

Constraint nodes were added to enable augmented SFT to modeltemporal, contextual, and trust relation-
ships between events. Such information is necessary to distinguish actual intrusions from events that bear

3A number of highly-effective intrusions (e.g., CodeRed II and Nimda) are simple, scripted attacks that do not follow thedistinct
temporal stages. Simpler intrusion detection systems thatmatch single events, such as SNORT [51], tend to be effectiveat detecting
these intrusions.

24

similarity to intrusions and improve the false-positive rate of the implemented system.
An algorithm is used to convert augmented SFT intrusion specifications into CPN detector design tem-

plates. This conserves the relational constraints of the augmented SFT and preserves the logic of the SFT.
Likewise, an algorithm is used to convert CPNs into agent implementation templates. The implementation
preserves the properties of the CPN design while providing agents for use as a distributed intrusion detection
system.

The augmented SFT, conversion from augmented SFT to CPN template, and the implementation of the
IDS using the CPN design templates act together to preserve the correctness from requirements to implemen-
tation. The requirements engineer must refine the initial augmented SFT by adding constraints to specify the
temporal, contextual, and trust relationships between events that take place as part of the intrusions. The de-
signer must complete the CPN design by adding places to provide tokens to the CPN and refining the tokens
so that they unify to satisfy the contextual constraints.

Our use of SFT with trust, temporal, and contextual constraints to model intrusions for a requirement
specification has assisted the development of CPNs for intrusion detection. The use of CPNs to model intru-
sion detection system is novel. Likewise, agents can be usedto implement intrusion detection systems. Our
requirements to use augmented SFT, CPNs, and intrusion detection agents structures the development of an
intrusion detection system into a repeatable and verifiableprocess.

Agents in our prototype intrusion detection system function as CPN places and transitions. Places are
generally static agents which either act as a source of information or hold information until a transition
requests it. Transition agents are the active components which accept tokens from places, act on or unify the
information in the tokens, and pass the resulting tokens to other places. Viewing MAIDS agents and data
as an implementation of a CPN has conveniently generalized the system and enabled further development.
Transition agents are given a set of places to visit by the user interface. Future enhancement will enable the
transition agents to self-direct their travels. Such capability in an agent could allow evasion of an attacker or
faster response to important events.

We have implemented a prototype FTP bounce attack detector based on the CPNs detailed in this paper
using agent technology based on our MAIDS implementation.

Future work will include investigation of the length of timetokens that should be kept in places. Since
performance of the IDS degrades significantly as meaningless tokens accumulate, the current policy allows an
uncollected token to expire after a fixed timeout. One possible extension is to allow a timeout to be specified
in the Token constructor, making it possible to script delays into an attack to evade detection. This complicates
the CPN model by adding work for the system designer (who would have to specify token lifetimes as part
of the SFT). Furthermore, the development of an algorithm for token garbage collection should be explored
to address the underlying issue of token lifetime management.

The augmented SFT and CPNs presented in this paper model misuse intrusion detection. Ongoing work
is investigating the application of these techniques to anomaly intrusion detection. One of our first steps
was modeling rules learned by a data mining algorithm for anomaly intrusion detection with CPNs [23]. We
have created an algorithm to transform the learned rules into a CPN. Further work is required to develop an
augmented SFT that describes this data mining technique andother techniques for anomaly detection, and
then leads to a CPN model of anomaly detection.

Acknowledgement

We would like to thank Professor Robyn Lutz for her contributions to Section 3.

References

[1] In Proc. Of the 9th ACM Conf. on Comp. and Comm. Security, 2002.

25

[2] Network Associates. Nachi worm. Online, march 2004.http://vil.nai.com/vil/content/
v_100559.htm .

[3] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic. Journal of Logic and
Computation, 4(5):531–579, 1994.

[4] E. Amoroso.Intrusion Detection. Intrusion.Net Books, Sparta, NJ, USA, 1999.

[5] D. Anderson, T. F. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Detecting unusual program behavior using
the statistical component of the next-generation intrusion detection expert system (NIDES). Technical
Report SRI-CSL-95-06, Stanford Research Institute Computer Science Laboratory, May 1995.

[6] J. P. Anderson. Computer security threat monitoring andsurveillance. Technical report, Fort Washing-
ton, 1980.

[7] J. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. H. Spafford, and D. Zamboni. An archi-
tecture for intrusion detection using autonomous agents. Technical Report COAST TR 98-05, Purdue
University Department of Computer Sciences, 1998.

[8] T. Bowen, D. Chee, M. Segal, R. Sekar, T. Shanbhag, and P. Uppuluri. Building survivable systems:
An integrated approach based on intrusion detection and damage containment. InProceedings, IEEE
DARPA Information Survivability Conference and Exposition (DISCEX I), 2000.

[9] J. M. Bradshaw, editor.An Introduction to Software Agents. MIT Press, Cambridge, MA, USA, 1997.

[10] P. Cabena, P. Hadjinian, R. Stadler, J. Verhees, and A. Zanasi.Discovering Data Mining: From Concept
to Implementation. Prentice-Hall PTR, Upper Saddle River, NJ, 1998.

[11] CPN group at University of Aarhus, Denmark. Design/CPNonline. Online, 2000.http://www.
daimi.au.dk/designCPN/ .

[12] M. Crosbie and G. Spafford. Defending a computer systemusing autonomous agents. Technical Report
95-022, COAST Laboratory, Department of Computer Sciences, Purdue University, Apr. 1994.

[13] B. J. d’Auriol and K. Surapaneni. A state transition model case study for intrusion detection systems.
In Proc. of the 2004 International Conference on Security and Management (SAM’04), pages 186–192,
2004.

[14] D. E. Denning. An intrusion-detection model.IEEE Transactions on Software Engineering, SE-
13(2):222–232, Feb. 1987.

[15] B. V. Eric Totel and L. Mé. A language driven intrusion detection system for events and alerts correla-
tion. In Proceedings ot the 19th IFIP International Information Security Conference, 2004.

[16] “Fyodor” <fyodor@dhp.com> . Nmap stealth port scanner for network security auditing. Online,
1999.http://www.insecure.org/nmap/ .

[17] T. Garvey and T. Lunt. Model-based intrusion detection. In Proceedings of the 14th National Computer
Security Conference, 1991.

[18] N. Habra, B. L. Charlier, A. Mounji, and I. Mathieu. ASAX: Software architecture and rule- based
language for universal audit trail analysis. InEuropean Symposium on Research in Computer Security
(ESORICS), pages 435–450, 1992.

[19] G. Helmer. Intelligent multi-agent system for intrusion detection and countermeasures. PhD thesis,
Iowa State University, Ames, IA, USA, Dec. 2000.

26

[20] G. Helmer, J. Wong, V. Honavar, and L. Miller. Automateddiscovery of concise predictive rules for
intrusion detection.Journal of Systems and Software, 60(3):165–175, Mar. 2002.

[21] G. Helmer, J. Wong, V. Honavar, and L. Miller. Lightweight agents for intrusion detection.Journal of
Systems and Software, 67(1), 2003.

[22] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller, and R. Lutz. A software fault tree approach to
requirements analysis of an intrusion detection system. InProceedings, Symposium on Requirements
Engineering for Information Security, volume 7, pages 207–220. Springer, 2002.

[23] G. Helmer, J. S. K. Wong, V. Honavar, and L. Miller. Intelligent agents for intrusion detection. In
Proceedings, IEEE Information Technology Conference, pages 121–124, Syracuse, NY, USA, Sept.
1998.

[24] IKV++ GmbH Informations und Kommunikationssysteme, Berlin, Germany. Grasshopper User’s
Guide, Release 2.2, 2001.http://www.grasshopper.de/index.html .

[25] K. Ilgun. Ustat: A real-time intrusion detection system for unix. In SP ’93: Proceedings of the 1993
IEEE Symposium on Security and Privacy, page 16, 1993.

[26] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State transition analysis: A rule-based intrusion detection
approach.IEEE Transactions on Software Engineering, 21(3):181–199, Mar. 1995.

[27] W. Jansen, P. Mell, T. Karygiannis, and D. Marks. Applying mobile agents to intrusion detection and
response. Technical Report Interim Report - 6416, NationalInstitute of Standards and Technology, Oct.
1999.

[28] M. D. Jean-Philippe Pouzol. Formal specification of intrusion signatures and detection rules. InProc.
15th IEEE Computer Security Foundations Workshop (CSFW’02), 2002.

[29] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, volume 1.
Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1992.

[30] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, volume 3.
Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1997.

[31] S. P. Joglekar and S. R. Tate. Protomon: Embedded monitors for cryptographic protocol intrusion
detection and prevention.J. UCS, 11(1):83–103, 2005.

[32] D. M. Kienzle and W. A. Wulf. A practical approach to security assessment. InProceedings of the 1997
workshop on New security paradigms, pages 5–16, Langdale, Cumbria, United Kingdom, 1998.

[33] C. Kruegel and T. Toth. Distributed pattern detection for intrusion detection. InNetwork and Distributed
System Security Symposium Conference Proceedings: 2002, 2002.

[34] S. Kumar. Classification and Detection of Computer Intrusions. PhD thesis, Purdue University, West
Lafayette, IN, USA, Aug. 1995.

[35] S. Kumar and E. H. Spafford. A pattern matching model formisuse intrusion detection. InProceedings
of the 17th National Computer Security Conference, pages 11–21, Baltimore, MD, USA, Oct. 1994.

[36] W. Lee, S. Stolfo, and K. Mok. Algorithms for Mining System Audit Data, Data Retrieval and Data
Mining. Kluwer Academic Publishers, Boston, MA, USA, 1999. T. Y. Lin and N. Cercone, eds.

[37] N. G. Leveson.Safeware: System Safety and Computers. Addison-Wesley, Reading, MA, USA, 1995.

[38] N. G. Leveson and J. L. Stolzy. Safety analysis using petri nets. IEEE Transactions on Software
Engineering, SE-13(3):386–397, Mar. 1987.

27

[39] J.-L. Lin, X. S. Wang, and S. Jajodia. Abstraction-based misuse detection: High-level specifications and
adaptable strategies. InProceedings, IEEE Computer Security Foundations Workshop, pages 190–201,
Rockport, MA, USA, June 1998.

[40] U. Lindqvist and P. A. Porras. Detecting computer and network misuse through the production-based
expert system toolset (p-BEST). InIEEE Symposium on Security and Privacy, pages 146–161, 1999.

[41] C. Michel and L. Me. ADeLe: an attack description language for knowledge-based intrustion detec-
tion. In Sec ’01: Proceedings of the 16th international conference on Information security: Trusted
information, pages 353–368, 2001.

[42] P. Ning, D. Xu, C. G. Healey, and R. A. S. Amant. Building attack scenarios through integration of
complementary alert correlation methods. InProceedings of the 11th Annual Network and Distributed
System Security Symposium (NDSS ’04),, pages 97–111, 2004.

[43] S. Noel, M. Jacobs, P. Kalapa, and S. Jajodia. Multiple coordinated views for network attack graphs. In
Proceedings of the Workshop on Visualization for Computer Security, 2005.

[44] S. Noel and S. Jajodia. Managing attack graph complexity through visual hierarchical aggregation. In
VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on Visualization and data mining for
computer security, pages 109–118, 2004.

[45] S. Noel, E. Robertson, and S. Jajodia. Correlating intrusion events and building attack scenarios through
attack graph distances. InProceedings of the 20th Annual Computer Security Applications Conference,
2004.

[46] ObjectSpace, Inc., Dallas, TX.ObjectSpace Voyager Core Technology User Guide, 1999. Version 3.0.0.

[47] C. Phillips and L. P. Swiler. Proceedings of the 1998 workshop on new security paradigms. InNew
Security Paradigms Workshop, pages 71–79, Charlottesville, Virginia, United States, 1998.

[48] P. Porras, D. Schnackenberg, S. Staniford-Chen, M. Stillman, and F. Wu. The common intru-
sion detection framework architecture. Online, 1999.http://www.gidos.org/drafts/
architecture.txt .

[49] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A.Olsson. A methodology for testing
intrusion detection systems.IEEE Transactions on Software Engineering, 22(10):719–729, Oct. 1996.

[50] M. F. Raihan and M. Zulkernine. Detecting intrusions specified in a software specification language. In
COMPSAC (1), pages 143–148, 2005.

[51] M. Roesch. Snort: Lightweight intrusion detection fornetworks. InProceedings of the Thirteenth
Systems Administration Conference (LISA 99), Seattle, WA, USA, Nov. 1999. USENIX.

[52] J. Rushby. Critical system properties: Survey and taxonomy.Reliability Engineering and System Safety,
43(2):189–219, 1994.

[53] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1995.

[54] B. Schneier.Secrets and Lies: Digital Security in a Networked World. John Wiley & Sons, New York,
2000.

[55] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst.Expert systems in intrusion detection: A case
study. InProceedings of the 11th National Computer Security Conference, 1988.

28

[56] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation and analysis of
attack graphs. InSP ’02: Proceedings of the 2002 IEEE Symposium on Security and Privacy, 2002.

[57] M. Slagell. The design and implementation of MAIDS (mobile agent intrusion detection system).
Technical Report TR01-07, Iowa State University Department of Computer Science, Ames, IA, USA,
2001.

[58] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip,
and D. Zerkle. GrIDS-a graph based intrusion detection system for large networks. In19th National
Information Systems Security Conference Proceedings, pages 361–370, Oct. 1996.

[59] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer-attack graph generation tool. InDISCEXII
Proceedings, DARPA’s Information Survivability Conference and Exposition, 2001.

[60] A. S. Tanenbaum.Distributed Operating Systems. Prentice-Hall, Englewood Cliffs, NJ, USA, 1995.

[61] Y. Wang, S. R. Behera, W. Johnny, G. Helmer, V. Honavar, L. Miller, R. Lutz, and M. Slagell. Towards
the automatic generation of mobile agents for distributed intrusion detection systems.Accepted by
Journal of Systems and Software in August 2004, available atsciencedirect.com.

[62] J. Wong, G. Helmer, V. Naganathan, S. Polavarapu, V. Honavar, and L. Miller. SMART mobile agent
facility. Journal of Systems and Software, 56(1):9–22, 2001.

29

