Software Fault Tree and Colored Petri Net Based
Specification, Design and Implementation of Agent-Based
Intrusion Detection Systems

Guy Helmet Johnny Wond,Mark Slagelli Vasant Honavar,Les Miller!
Yanxin Wang, Xia Wang, Natalia Stakhanova

Department of Computer Science
lowa State University
{ghelmer,wong,slagell,honavar,Imiller,wangyx,jxiangandubrov}@cs.iastate.edu

March 16, 2006

Abstract

The integration of Software Fault Tree (SFT) which desibérusions and Colored Petri Nets (CPNs)
which specifies design, is examined for an Intrusion Detec8ystem (IDS). The IDS under development
is a collection of mobile agents that detect, classify, amatate system and network activities. Software
Fault Trees (SFTs), augmented with nodes that describe temsporal, and contextual relationships, are
used to describe intrusions. CPNs for intrusion detectrenbailt using CPN templates created from the
augmented SFTs. Hierarchical CPNs are created to det¢ichtstages of intrusions. The agent-based
implementation of the IDS is then constructed from the CFRl@mples of intrusions and descriptions of
the prototype implementation are used to demonstrate h@@BN approach has been used in development
of the IDS.

The main contribution of this paper is an approach to sydtierspecification, design, and implemen-
tation of an IDS. Innovations include (1) using stages atlisibns to structure the specification and design
of the IDS, (2) augmentation of SFT with trust, temporal, aodtextual nodes to model intrusions, (3)
algorithmic construction of CPNs from augmented SFT, andjé¢heration of mobile agents from CPNs.

1 Introduction

A secure computer system provides guarantees regardirgitiielentiality, integrity, and availability of its
objects (such as data, processes, or services). Howestnsygenerally contain design and implementation
flaws that result in security vulnerabilities. An intrusitakes place when an attacker or group of attackers
exploit security vulnerabilities and thus violate the cdafitiality, integrity, or availability guarantees of a
system or a network. Intrusion detection systems (IDSspaletome set of intrusions and execute some
predetermined action when an intrusion is detected.

IDSs use audit information obtained from host systems ahslorks to determine whether violations of
a system’s security policy are occurring or have occurrgd@r Multi-Agents Intrusion Detection System
(MAIDS) [21, 19, 20] uses mobile agents [9] in a distributgdtem to obtain audit data, correlate events, and

* G. Helmer is with Palisade Systems, Inc. His research wadefdiin part by the Department of Defense, the Boeing Company i
the form of the Boeing Dissertation Fellowship, and the @ede College of lowa State University.

TFunded in part by the Department of Defense. Corresponditigoa Johnny Wong, 202 Atanasoff Hall, Department of Cotapu
Science, lowa State University, Ames, lowa 50011

discover intrusions. The MAIDS system consists of (1) stary data cleaning agents that obtain information
from system logs, audit data, and operational statistidcanvert the information into a common format, (2)
low level agents that monitor and classify ongoing actgticlassify events, and pass on their information to
mediators, and (3) data mining [10] agents that use mackaraing to acquire predictive rules for intrusion
detection from system logs and audit data.

One of the challenges in designing an IDS involves definiracdy what data elements should be cor-
related to determine whether an intrusion is taking place dhstributed environment. It is also difficult to
determine what data elements are necessary to discovesions. A model of intrusion detection is essen-
tial to describe how the data should flow through the systeterchine whether the system would be able to
detect intrusions, and suggest points at which countenmesisould be implemented.

Against this background, the paper presents a theoretarakfwork for modeling the operation of intru-
sion detection systems such as MAIDS. We use Software FergsTSFTs) to define intrusions and develop
the requirements model for the IDS. The SFT models of inbnsare used to create Colored Petri Net (CPN)
designs for the detectors in the IDS. The CPN detection miedbeEn mapped into a set of software mobile
agents that form the distributed intrusion detection gysteinally, the SFT models provide test cases for the
implementation.

The SFT analysis (SFTA) approach applies safety engingégchniques to the intrusion detection do-
main for developing IDS requirements. Each part of theseeldgwment processes — SFTA, CPNs, and
software agent implementation — is distinct, and each statiee development process must correctly carry
over the details of the previous stages. The constructigeoggh helps ensure the correctness of the design
with respect to requirements and correctness of the impi&atien with respect to the design.

We present the process for developing a CPN design for theuH§) a requirement specification based
on a SFTA of intrusions, and we show the procedure for crgamimplementation of a distributed agent-
based IDS from the CPN design [61]. These two procedureseiisat the design satisfies the requirements
and that the implementation matches the design.

The rest of this paper is organized as follows: Section Dihices temporal organization of stages of
intrusions and presents the intrusions examined in oulareBe Section 3 discusses SFTs as applied to
modeling intrusions and the augmentations needed to desicrirusions. Section 4 introduces CPNs and
defines the translation from augmented SFTs to CPNs. Setti@fines the translation of CPNs to software
mobile agents. Section 6 presents the intrusion scenavadsated in our system. Section 7 relates our
modeling solution to other graph-based intrusion deteatimdels. Section 8 presents the conclusions and
contributions of this work, discusses the generalizatibthe IDS design to intrusions other than those
presented in this paper, and describes future work.

2 Modeling Intrusion Detection

Our goal is to develop a software model for precisely desugila broad class of intrusions as well as the
process of detecting such intrusions. Any formalism usetkfme the intrusions has to be relatively easy to
use and at the same time be rich enough to describe both $iogi@nd distributed attacks. Software Fault
Trees (SFTs) provide the desired features. When combintédSeiftware Fault Tree Analysis (SFTA) they
provide an effective means for defining intrusions in a waat #xposes the critical aspects of determining an
intrusion.

However, SFTs have several limitations with regard to thbility to modeling intrusions. For example,
in their simplest form, they cannot capture temporal refehips between events. Hence, we extend the SFT
formalism to obtain augmented SFTs. By extending SFTaigmente&FTs, SFTs with additional system
information, it is possible to create a rigorous processitheapable of capturing intrusions.

But, even the augmented SFTs do not describe intrusions eteh of detail needed to automate the
generation of software agents that implement an IDS. Togkrithis gap, we have developed a rigorous
approach to convert the augmented SFTs to Colored Petri(Retss). While the augmented SFTs provide
a rigorous definition of the intrusions, the CPNs providegamus definition of the process of detecting the

intrusion. Then a conversion of CPNs to software mobile &gean be performed.

Each augmented SFT is seen as the specification of an indhiitttusion. The set of augmented SFTs is
the model of intrusions that the IDS is able to detect andétemiine. The set of CPNs that can be generated
from the set of augmented SFTs is the intrusion detectionainod

2.1 Temporal Stages of Intrusions

Each successful intrusion can vary greatly from other gitns. In addition, analysis of complete intrusions
is quite difficult. Therefore, a reasonable approach taisitm analysis is to divide attack into stages that
achieve intermediate goals of the attacker and developsiuin detection components that identify each
of the stages. Generally, the following stages can be digiged in intrusion analysis: Reconnaissance,
Vulnerability Identification, Penetration, Control, Entlatng, Data Extraction & Modification, and Attack
Relay [19].

We use these seven stages to analyze the intrusion exaraplessiéd in this paper and reduce the com-
plexity of each SFT. The CPNs examined in the paper genearatiespond to the first three stages: recon-
naissance, vulnerability identification, and penetratamessential stages of intrusion [19].

2.2 Intrusion Example

We use the FTP bounce attack throughout the paper to iltestnar approach to specification and imple-
mentation of IDS. The example was chosen based on the fadat thavell-known and the possibility that
more than one host in the victim’s network would be involvedtie attack. The “FTP Host” provides an
anonymous FTP service that allows uploads and the “Targst’igoovides a remote shell service that trusts
the users on the “FTP Host.”

1. In preparation, the attacker creates a file containindid k@mote shell(sh) message such as
\Oroot\Oroot\Oxterm -display bad.hacker.org:0.0
which means “l am the useoot on the local computer, | wish to execute a command on the mot
computer as the usenot , and the command | wish to execute will open a terminal winffom the
remote computer on my screen.”

2. The attacker scans for valid hosts in the target's netweok the purposes of our spatially distributed
attack, assume the attacker discovers at least two hosinsgsh the target's networks. (Reconnais-
sance)

3. The attacker scans for listening TCP ports on the targetark’s valid hosts. Assume the attacker
discovers a vulnerable anonymous FTP server listening & pat 21 on the “FTP Host”, and a
remote shell daemomghd) listening at port 514 on the “Target Host.” (Vulnerabilltyentification)

4. The attacker uploads the previously created file to theymous FTP server on the “FTP Host".

5. The attacker uses a “feature” of the FTP protocol to talfiP server to send the next download to
port 514 on the “Target Host". Then the attacker issues a camanto the FTP server that initiates a
“download” of the file containing the rsh message. If the getrHost” trusts the users on the “FTP
Host”, the remote shell daemon on the “Target Host” accdmstessage and executes it due to an
authentication vulnerability in the remote shell protod®enetration & Control)

6. The “Target Host” opens a terminal window on the attacket’Window server that provides the
attacker with root privileged shell. The attacker may pesteith any number of activities, including:
changing passwords or adding users; reading or changinfij@iy the system; erase traces of his/her
presence; and install tools to sniff passwords, provid& baors for future access, and disguise his/her
activities. (Embedding, Data Extraction & Modificationcettack Relay)

3 Software Fault Trees

In this section, we briefly describe Software Fault Trees;uls their use in specification of IDS and introduce
the augmented SFTs for modeling intrusions.

Fault-trees have been used for security assessment, githmmit explicitly for IDS. Cited advantages
include their "organization and preservation of informalcdissions about security ramifications of design
alternatives" (in argument trees [32]) and the possibibityefficient reuse of subtrees (in attack trees [54]).
However, fault trees suffer from several limitations widlyard to modeling "multiple attacker attempts, time
dependencies, or access controls" as well as for not magdejioles [47]. Hence, we augment the fault
tree formalism to overcome some of these limitations. Tiselteng augmented fault trees provide a useful
framework for modeling intrusions.

Two interesting aspects of the requirements phase of thi®iype are as follows. First, the intrusion
SFT models have been interpreted as specifications of thbinations of events that must be detected. That
is, the IDS requirements are that each of the intrusion sempsepossible in the SFT should be detected
as soon (as low in the tree) as possible. The leaf eventsideseghat components of a distributed system
must be monitored by the software mobile agent. The intéaipom of the SFT serves as the requirements
specification.

Second, the intrusion SFTs have had to be extended withiadaliinformation specific to a particular
system prior to their mapping into CPNs. This informationfishree types:

e Trustindicates which members of a distributed system are trustedther members,

e Contextshows which events must all involve the same host(s) or atiumgs), process(es) or ses-
sion(s),

e Temporal orderingghat give which events must be adjacent with no intervenivents, or follow
within a specific interval of time.

Without this additional system-specific information, tiSl yields many false positives, detecting intru-
sions where, in a specific network, there is none. That iss¢hef events marked as intrusions by the SFT is
a superset of the set of events that are actually intrusioasy specific network and must be constrained by
additional network-specific knowledge. These topics asewudised in more detail below.

A fault treeis defined formally as a tree consisting of: 1) a hazard agé®stroot node, 2) basic events
that contribute to the hazard as the tree’s leaves, andi®BreM\D gates or OR gates (representing Boolean
AND or OR operations, respectively) as each of the interatediodes. The intermediate nodes determine
the combination of basic events necessary for the root daarccur.

3.1 Software Fault Tree Analysis

We adapt standard Software Fault Tree Analysis (SFTA) tigelen The root node in a fault tree represents
a hazard (here, the intrusion) being analyzed. The negegszgonditions for the hazard are specified in the
next level of the tree and joined to the root with a logical ANDa logical OR. Each precondition is similarly
expanded until all leaves are primitive events. SFTA ingeses the ways in which the hazard (root node)
might occur. If a credible scenario (i.e., path through tiee or, more precisely, a cutset of the tree) exists,
the SFTA identifies the nodes (i.e., which events) that shbalmonitored in order to detect intrusions.

SFTA [37] is used first to model intrusions and develop rezpaents for the IDS. SFTA is a natural fit as
the IDS design resembles a tree where data is obtained &aheddes, travels up through the internal nodes
as data is correlated with other information, and rises¢adiot node when an intrusion is identified.

3.2 SFTAin the IDS Development Lifecycle

The augmented SFT specification are mapped into ColoredNeets (CPNs) [29] that serve as the design
for the IDS. CPNs are a well-documented and frequently-abstraction for modeling complex distributed

systems. They appear particularly suited for describieggtithering, classification, and correlation activities
of an intrusion detection system.
The advantages of using SFT to model the specification, rétha using only CPNs, are fourfold:

1. Usability. The system support personnel who will be using the systguicdily have a great deal
of knowledge about intrusions that must be elicited andasgmted systematically in order for the
requirements for the IDS to be determined. Usually they ateemperienced in, or interested in,
formal modeling techniques such as CPNs. SFTs, on the oétmel, lare perceived as familiar, easy to
use, and easy to teach and learn. For an IDS to be effectesepticification must be readily updatable.
The usability of SFT is an advantage in eliciting and capigikinowledge about the requirements.

2. Support for gradual refinement for defining intrusio®T supports gradual development of intrusion
specifications with different subtrees being developetyging levels of detail, depending on the level
of concern and the level of knowledge regarding that subt@fNs, on the other hand, are better at
modeling a system at a uniform level of detalil.

3. Modeling the attackThe augmented SFT defines the intrusion specificationfribia this representa-
tion that the requirements for intrusion detection arevéeti The CPN models not the intrusion itself
but the intrusion detection system, i.e., the design of B |

4. Countermeasures analysiShe augmented SFT intrusion specification allows deteatiun of coun-
termeasures needed for an IDS to thwart attacks [22].

3.3 Augmented SFT

We define araugmented Software Fault Treebe an SFT where leaf nodes may specify trust, ordering, and

contextual constraints in addition to the basic events d¥ & Specifically, constraint nodes are added to SFT

to capture trust, order, and contextual relationships e&éal develop satisfactory specification of intrusions.
The effect of adding constraint nodes may be demonstratedsidering the sat’ of all combinations

of events that make the root node of a plain (unenhanced) 86&™ The setl C F of combinations of

events that aractualintrusions must also make the root node of the augmented 8&&"" (| 7| ought to be

much smaller than®|.) The constraint nodes added to an augmented SFT shoulddexitie vast majority

of the combinations of “false positive” evenis— I. Thus the augmented SFT, enhanced with the constraint

nodes described here, will more closely model the requirgsier detecting the intrusion being modeled.

1. Trust: Members of a distributed system trust other members of thesy. An example of trust cur-
rently used in our SFT is authorization. The trust constraiti have to be enhanced when additional
intrusions are modeled that depend on other notions of. trust

As an example of trust, a Network File System (NFS) servergu8lUTH_UNIX authentication usually
trusts the source IP address and user ID in client requeis allows a user on a trusted client host to
access files on the file server without having to login to theese

Explicitly stating a trust relationship that is required &n intrusion to succeed provides information
to an intrusion detection system developer that will helpvdean accurate matching model for the
intrusion. The syntax of this predicate13-usts((destination), (source)) wheredestinationis an
ordered list of constants and variables describing theitislestination, such as name of destination
host, network, or netgroup and application awlirceis an ordered list of constants and variables
describing the trusted source, such as name of source lebstnk, or netgroup and application.

The T'rusts predicate is true if thelestinationassigns some trust to tlemurce Specifying trust
relationships in this way allows matching relationshipstounified [53] with other trust relation-
ships. A trust relationship isrue if one of system’s trust relationships successfully unifigth

the relationship specified by tHEusts predicate. An example of such a trust relationship may be
Trusts((Rshd, targetHost), (sourceHost)) which states that the remote shell daem@shd on a

targetHosttrusts asourceHost By convention, elements beginning with upper-case ketee con-
stants, and elements beginning with lower-case lettergaaiables.

. Context: Certain combinations of intrusive events must occur in soamemon context. For example,
a series of FTP commands and responses need to be groupedioyreon network connection to an
FTP server.

In the following definitions of forms of context, each of tharameters (host, connection, user, or
process) may be specified as a constant value or a variab@oNerelated events may be related by
events involving a single host, a pair of hosts, or a singteial network connection.

A single host that must be a common source or target for n&texants may be specified as a common
context for intrusive events. The syntax for this consti@itontext((: host Hostname) (FT NodeList))
whereHostnames the name or address of a host or group of hostsFardodeListis the list of one

or more SFT nodes to be included in the context. The predisateie when the host identified by
Hostnamas involved in each node specified by th&NodeList

Similarly, a pair of hosts that must be the source and taetdtwork events may be specified as a
common context for intrusive events using the syrtaxtext((: hosts Hostnamel Hostname2)
(FTNodeList)) whereHostnamel, Hostname2e names or addresses of hosts or groups of hosts.
The predicate is true when hosts identifiedHiystnamel, HostnameRe involved in each node spec-
ified by theFTNodeList

Finally, a pair of hosts communicating using a virtual netevoonnection that must be the source and
target for network events may be specified as a common coiateixttrusive events using the syntax
Context((: conn Hostnamel P1 Hostname2 P2) (FT NodeList)) whereP1 andP2 are names or
numbers of network ports. The Context predicate is true whaetwork connection involving the
endpoints identified bi?1 on HostnameandP2 on Hosthnamere involved in each node specified by
theFTNodeList

An authenticated user session on a host, such as via tedhegrdtp, may be a context for related events
using syntaxContext((: user U App LH RH Term LT) (FT NodeList)) whereU is the name of a
single user or group of uselppis the name of the method of access (e.g., telnet, ftp, ¢td.)s the
name of the host to which the user is conneciid,is the name of a remote host or group of hosts,
Termis the name of a terminal used for access (e.g., ttylOlL}s the time of login, andFTNodeListis

a list of one or more SFT nodes to be included in the context.

Events corresponding to a process (an instance of a prograrecution) may be a context for related
events using the syntaXontext((: process PID PqU Host ST) (FT NodeList)) wherePID is the
identification number of the process, Pg is the program besteguted, U is the set of user permissions,
Hostis the host on which the process executed, &fds the time the process began executing. The
context involves each node specified by BleNodeL.ist

. Temporal Ordering and Intervals: Events and conditions involved in an intrusion often mustuoc
in a particular order. Explicitly specifying the event orithg excludes other non-intrusive permutations
of events from being considered as intrusive. We use AllehFarguson’s interval temporal logic [3]
to develop temporal predicates.

(a) Occurs After
An event which takes place must make its node in the SFT trlengsas the existence of that
event may be combined with other events to make a parent naglelt seems an event'’s period
may last as long as the context exists in which it may be etadudn this sense, “occurs after”
is concerned only with the relative start of event’s periods
“Occurs after” is the condition where one event'’s periodeiguired to start after another event’s
period has started. Th&tarts(i, j) primitive is true when periodsand; begin simultaneously.
The Meets(i, j) primitive is true when period ends adjacent to the time where perjodegins.

Let Period(x) be the period that nodeis true. LetOccursAfter : Node, Node — Boolean
whereOccursAfter(i,j) = Im Starts(Period(i), m) A Meets(m, Period(j)) meaning that
the event or boolean expression indicated by the mnb@éeomes true in the time prior to the time
that the event or boolean expression indicated by the hbdeomes true.

(b) Adjacent Events
Certain situations exist where an event must occur aftethen@vent within the same context
with no intervening events. LeétnmediatelyAfter : Node, Node — Boolean where
ImmediatelyAfter(i,j) = OccursAfter(i, j)A—(3In OccursAfter(i,n)ANOccursAfter(n,j))
meaning the event or boolean expression indicated by theirmetomes true in the time prior to
the time that the event or boolean expression indicatedédogdkdg becomes true. No intervening
events become true betweieand;.

(c) Interval
An event may be required to follow another event within someuant of time. LetStartO f (i)
be the start of discrete time periodThe Overlaps(i, j) primitive is true when period overlaps
periodj. ThenIniInterval : Node, Node,R — Boolean where
InInterval(i, j,t) = OccursAfter(i, j)ANOverlaps({StartO f (Period(i)), StartO f (Period(i)) + t) , j)
meaning the event or boolean expression indicated by nbdeomes true in time prior to the
time that the event or boolean expression indicated by hbdeomes true. Additionally,must
become true during the period specifiedtby

4 Colored Petri Nets

In this section we introduce Colored Petri Nets and desdfibaransformation from augmented SFTs for
intrusions to CPN templates for intrusion detection system

4.1 Colored Petri Nets Defined

CPNs are a powerful modeling technique for complex syst@@js CPNs model state and action through the
use of colored tokens (colors can be thought adas typepwhich reside irplaces(or state$. Tokens move
from one place to another through transitions. Transitaltsv tokens to pass if all input arcs agaeabled
(meaning tokens are available for each input arc). Toketesiag from multiple places may be merged (or
unified) at transitions. Tokens leaving transitions may bplidated to multiple destination places. CPNs
may be organized in hierarchical fashion to allow reuse apetiown or bottom-up development.

In a graphical representation of a CPN, places are denoteddly or circles, transitions are denoted by
squares or rectangles, and lines with arrows denote arespiédicate or tuple is written next to an arc, a
token must satisfy the predicate or unify with the tuple befbmay pass through the arc. Token colors are
defined at the entry point of each CPN in terms of tuples oftgtethvalues, such as strings or integers (tokens
may also be defined as data structures). Places may be latidteziparticular color by an italicized label.

Formally, a Colored Petri NetisatupléP N = (X, P, T, A, N, C, G, E, I) satisfying the requirements:
Y is a finite set of non-empty types, called color sétss a finite set of placed; is a finite set of transitions.
Ais afinite setof arcs such th&&NT = PN A=TnNA =), N is anode functio!d — P x TUT x P,
C'is a color functionP — ¥, G is a guard function defined frof into expressions such thst € 7 :
[Type(G(t)) = Boolean N Type(Var(G(t))) C X], E is an arc expression function defined frotrinto
expressions such thets € A : [Type(E(a)) = C(p(a))ms A Type(Var(E(a))) C X
wherep(a) is the place ofV(a)!. I is an initialization function defined fror® into closed expressions such
thatvp € P : [T'ype(I(p)) = C(p)ms].” [29].

A hierarchical CPN consists of a set of CPNs arranged in atdhical structure. The two building blocks
of hierarchical CPNs are substitution transitions anddfiagilaces. Substitution transitions and fusion places

1The subscript “MS” indicates a multi-set, which Jensen @sfims allowing “multiple appearances of the same elemed,’d. 66]

Figure 1: Unconstrained AND node with corresponding CPN

allow the construction of a hierarchical CPN by combiningianber of non-hierarchical CPNs. A hierarchi-
cal CPN may be translated into a behaviorally equivalentimenarchical CPN, and vice versa. Hierarchical
CPNs are important to our design of the IDS as they allow cansbn of detectors for components of attacks
that can be composed into detectors for the complete intnusi

CPNs have been applied to a variety of problems in secuegtyyarks, concurrent systems, VLSI chip
design, and chemical manufacturing systems [30]. Petrs Have also been applied to the safety domain
[38], which is closely related to the security domain [52]ddo IDS systems [34, 35].

Our work with modeling intrusion detectors as CPNs has shinahCPNs provide a formal foundation
for the agent-based distributed IDS and allow analysis eflBS for discovering inconsistencies between
components of the system, finding ideal places in the maiteystem for security improvements, and
proving that certain attacks can not be successful if a syssechanged so as to eliminate the identified
vulnerabilities.

4.2 From Augmented SFT to CPN Templates

Colored Petri Net template intrusion detectors may be gaedrfrom augmented SFTs for intrusions to
ensure correctness and correspondence between a requiisgaeification based on SFT and a design using
CPNs. The constraints added to an augmented SFT to deskdébmdering relationships between nodes
requires special handling to develop accurate CPN tengplaien augmented SFT.

Leaf nodes in the augmented SFT for intrusions correspobdd@ events in the system which must be
detected. Leaf nodes then correspond to token source ptattess CPN. The token source places produce a
new token each time the basic event takes place. Tokensajeddry token source places must have sufficient
descriptive information so that tokens may be matched aifébdrio satisfy any trust, context, and ordering
constraints that exist in the augmented SFT.

AND nodes in the SFT are of special interest in intrusion ni&ad8emantically, when all child nodes of
an AND node in a SFT are true, the AND node is true.

AND Nodes without Ordering Constraints An AND node unconstrained by an ordering in an SFT corre-
sponds to a transition and outgoing place pair in a CPN. An AldBe withn inputs translates to a transition
with n incoming arcs. Each incoming arc comes from either a tokarcegplace of an SFT leaf node, or the
outgoing place of an SFT gate node. Figure 1 illustrates ¢hespondence between an AND node and its
equivalent CPN transition/place pair, where:

1, ifzeD,
X = { 0, otherwise

Y:{ (1) ify € D,

otherwise

g 1, if(z € D;)A(y € Dy)
10, otherwise

X andY are the binary inputs to the AND gate, a#ds the binary output of the AND gate.andy are
the incoming tokens to the CPN transition, whérg and D,, are the domains of andy, respectively.z is
the output token from the CPN transition.

Tokens leaving the transition must be unified such that thggfg any related trust and context constraints
that exist higher in the augmented SFT. An examination ofrte and context constraints that are connected
to branches along the path to the root in the minimum cut o&tilggmented SFT will identify the constraints
for the events described by the incoming tokens. The designst construct the unifying expressions so that
the related elements in the output token(s) satisfy thetcaings. For example, if a constraint exists in the
minimum cut that requires two augmented SFT nodes to beetklat a common TCP network connection
context, the tokens must be unified using the elements of @ quad (source host, source port, destination
host, and destination port) that uniquely identifies a TQffheation; this would satisfy the connection context
constraint node in the augmented SFT.

AND Nodes with Ordering Constraints Nodes connected to an AND node in an augmented SFT may
have an attached constraint that requires the nodes to lesttoenin some particular order. Two cases exist:
first, nodes may be required to become true in order, butieténg events may occur; second, nodes may
be required to become true in order with no intervening exent

To support ordering, CPN tokens are required to containdioresequence numbers. If evenbccurs
before evenb, the timestamp in the token representing eventust be less than the timestamp in the token
representing evertt and no two events may have identical timestamps. Likevifigenta occurs before
eventb, the sequence number in the token representing evenist be less than the sequence number in the
token representing evetitand no two events may have identical sequence numbers.

Literal wall-clock times used for comparisons are a prob¥emen the times are obtained from different
computers in a distributed system [60]. Each computer Basah notion of the current time, and computer
clocks tend to skew at different rates. We assume that tlokskre kept synchronized and the skdvetween
a computer’s clock and the actual time is very small. As anlémgntation detail, the intrusion detection
system may itself synchronize the clocks and monitor thesoeal differencé,,, between clocks. The IDS
may have an established maximum sk&w,x and may consider an§,, > dyrax to be an intrusion.

In addition, the implementation may includein its comparisons between timestamps. The comparison
t1 + 0 < ta — § yields a tight bound on two events, which may result in falegatives. The comparison
t; — d < ty + ¢ yields a loose bound on two events, which may result in fatsstipes.

Sequence numbers are maintained per context and no coopar&y be made between sequence num-
bers across contexts.

The addition of temporal ordering to augmented SFT and thecated representation of time informa-
tion in event tokens enables temporal reasoning.

1. Occurs After:The case “occurs after” covers the situation where augrde3fd nodes must become
true in a particular order.

Figure 2 shows an example of an AND node constrained suchtuty must occur (become true)
after noder becomes true, where:

1, ifze D,
X = { 0, otherwise

v — 1, ifyeD,
0, otherwise

g 1, if (x € Dy) A (y € Dy) A (timel < time2)
0, otherwise

(x, timel) (y, time2)

[timel < time2]

XY

OccursAfter(X,Y)

Figure 2: AND node, constrained by “Y after X", with correspting CPN

4 (%, seql) (v, seq2

[seql + 1 =seq2]

XY

ImmediatelyAfter(X,Y)

Figure 3: AND node, constrained by “Y immediately after X'itvcorresponding CPN

In Figure 2 timel andtime2 denote the timestamps for eventandy, respectively. The related CPN
segment shows that a token for evenhust have a smaller timestamp than the token for eyemhe
significant differences between Figures 1 and 2 are theiaddif time information to the tokens, and
the guard on the transition that enforces the ordering ototken’s time.

Timestamps in the “occurs after” case may be either waltictome or sequence numbers.
. Immediately After: The case “occurs immediately after” covers the situatioeneraugmented SFT
nodes must become true in a particular order. Interveniagtsumay not occur.

Figure 3 shows an example of an AND node constrained suchtuay must occur (become true)
immediately after node becomes true, where:

1, ifze D,
X = { 0, otherwise

v — 1, ifyeD,
0, otherwise

7 1, if(z € Dy) A (y € Dy) A (seql + 1 = seq2)
0, otherwise

In Figure 3,seql andseq?2 denote the sequences numbers for everasdy, respectively. The related
CPN segment shows that a token for evernust have the timestamp immediately following the

10

Figure 4: OR node with corresponding CPN

timestamp for event, implying that discrete timestamps (sequence numbershecessary for the
operation of this CPN segment.

OR Nodes When any of the child nodes of an OR node in an augmented SkJeisthe OR node is true.
An OR node in an augmented SFT corresponds to a set of tamsénd outgoing place pairin a CPN. An
OR node withn inputs translates ta transitions, each havingincoming arc. Each incoming arc originates
in either a token source place based on an augmented SFTddaf ar the outgoing place based on an
augmented SFT gate node. Figure 4 illustrates the corréspae between an OR node and its equivalent
CPN transitions and place, where
X = { 1, ifz e D,

0, otherwise

Y:{ 1, ifyeD,

, otherwise

g 1, if(x e D;)V(ye€ D,y)
10, otherwise

As with constraints on events in an AND node, tokens leavirggttansition for an OR node must be
unified such that they satisfy any trust and context cormgsahat exist higher in the augmented SFT.

4.3 Generation of Token Definition

Defining token types in converting an augmented SFT into CPiare difficult than generation of places
and transition since there is a fundamental difference éetvaugmented SFT and CPN. Augmented SFTs
describe what constitute a hazard at a conceptual level imadegs details to the events than in data level.
But for CPNSs, especially for CPNs that are used to generategrgam, more detailed description of what
constitutes an event is needed.

For a leaf node in an augmented SFT (which corresponds toem tedurce place) we need to add some
explanation to the event. When the augmented SFT is traddi@iCPN, we then have the necessary informa-
tion about what constitutes the event and what kind of tokenukl be fired by the corresponding event. For
example, if the eventis FTP_PORT_OK, we may add an explamatithe representation of the augmented
SFT liketype = "RESPONSE” , src_port = 721”7 value = ”2xx”. Then when the token source place
is generated, we can specify enough information to destndevent in the token and enable further token
matching and unification.

11

4.4 Automatic Translation from Augmented SFT to CPN Templaes

Based on the translation rules given above, an automatisl&@on procedure has been designed and im-
plemented. The procedure makes use of XSL and XML definitidragsigmented SFTs and CPN templates.
Document Type Definitions (DTDs) have been developed fonarged SFTs and CPN templates.

The process has the following steps:

1. Convert an augmented SFT to its XML equivalent using taediation rules described above.

2. Translate the augmented SFT XML to the XML of the corresjog CPN template using an XSL
transformer program, such as Visual XML Writer.

3. View and validate the CPN corresponding to the resultiBiy@&mplate XML from step 2 using a CPN
tool, such as Design/CPN [11]. During this step, the CPN @agiimized to improve efficiency.

Figure 6 presents a CPN generated automatically from thmentgd SFT in Figure 5 for the FTP Bounce
Attack using the XSL technique.

5 From CPNs to an Agent-Based Implementation

Similar to the algorithmic approach for creating CPN tertggafrom augmented SFT, an algorithmic ap-
proach to creating an agent-based implementation fromethef €PN templates has been developed.

By using the translation algorithm to convert CPN desigr=oiie, we can be certain that the code imple-
ments the CPN design. Also, if the translation algorithnmsprees CPN semantics, any analysis performed
on the CPN design also applies to the implementation. Binakating an implementation in code allows the
developer to improve performance over the execution of @igdiCPN.

A distributed implementation of the CPN model using sofevarobile agents can provide a reliable,
robust, and efficient IDS [27]. Our implementation providssful information to the security analyst in the
form of a trail of transitions through which CPNs passed] fFévides further details regarding the MAIDS
implementation.

The MAIDS prototype uses the Voyager agent platform, ver8i@, from Objectspace [46] An agent
is an instance of a Java class, which may be created eittedlyloc remotely. Additionally, Voyager supports
code mobility of two types. One agent can move another agemden hosts, or an agent can request its
own migration. The use of Voyager is not central to the MAIBESSidn. Other agent platforms that have been
considered for use include Grasshopper from IKV++ [24] aNART [62].

5.1 Java-based Conversion Algorithm

Each CPN place maps to an agent in our implementation. Thoeitdm for translating a distributed CPN to
an implementation of software mobile agents in Java is dsvist

1. For each leaf place node in a CPN, instantiate an agendttexids théataPlace class;

2. For each internal place node, instantiateRlece class with a unique label;

3. For each leaf transition node, instantiate an agent #tahds theMobileTransition class;
4

. For each internal transition node, instantiate an adeitextends th&tationaryTransition
class;

5. Main console instantiates #iertPlace agent for the root node. Refer to it with lakadert in all
transitions that have an outgoing edge to it.

20bjectSpace spun off a new company called Recursion Saftlmar in 2001 to handle Voyager, http://www.recursionsmc

12

€T

Al. FTP Bounce

B1. Trusts((rsh, targetHost), (ftpHost))

B2. Upload input for RSH to FTP server

B3. Context(:conn ftpHost 21 attackerl ephPort (FTP-STOR, FTP-STOR-
OK)

B4. Download file to RSH port on target

B5. OccursAfter(UPLOAD-RSH, DOWNLOAD-RSH)

B6. Context((:conn ftpHost 21 attackHost2 ephPort2) (FTP-RETR-OK, FTP-
RSH-CONN, FTP-RETR, FTP-PORT-OK, FTP-PORT)

C1. STOR issued in FTP connection
C2. FTP response "2xx Transfer Complete"
C3. ImmediatelyAfter(FTP-RSH-5, FTP-STOR-OK)

Al

C4. RSH connection after FTP RETR issued
C5. FTP response "2xx Transfer complete"

FTP-Boy

C6. ImmediatelyAfter(FTP-RETR, FTP-RETR-OK)
C7. OccursAfter(FTP-RSH-CONN, FTP-RETR-OK)

I T

B1 B2
RSH-TRUST Upload-RSH
C1l Cc2 C3

FTP-RgH-5 FTP-STOR-OK FTP-STOR-OK-T

B3

UP-CONN

B4 BS B6

0

DownloadfRSH

FTP-BOUNCE-T DWN-CONN

C4 C5 Cé Cc7

FTP-RgH-4 FTP-RETR-OK FTP-RETR-OK-T1 FTP-RETR-OK-T2

D4 D5

FTP-RSH-CONN-T

D1. FTP connection established and authenticated

D2. FTP command "STOR pathname"

D3. FTP RETR command after FTP port OK response

D4. TCP connection from port 20 on FTP host to port 514 on target host
D5. OccursAfter(FTP-RSH-3, FTP-RSH-CONN)

E1. FTP port OK response after FTP PORT command

E2. FTP command "RETR pathname"

D1 D2 D3
FTP-SETUP FTP-STOR FTP-RYH-3 FTP-RSH-CONN
E1l E2 E3
FTP-RgH-2 FTP-RETR FTP-RETR-T
I 1
F1 F2 F3
FTP-RYH-1 FTP-PORT-OK FTP-PORT-OK-T
—_— |
Gl G2

FTP-SETUP2 FTP-PORT

E3. InmediatelyAfter(FTP-RSH-2, FTP-RETR)

F1. FTP PORT target,2,2 command issued in an FTP se ssion

F2. FTP response "2xx command successful"

F3. ImmediatelyAfter(FTP-RSH-1, FTP-PORT-OK)

G1. FTP connection established and authenticated

G2. FTP command "PORT target,2,2" to send data to target's RSH port (514)

FTP-BOUNCE - FTP Bounce

2000/10/11

Figure 5: Fault tree for FTP bounce attack, with constraints

IP_ENDS @ 1'{rtype=COMMAND,

conn={ends={src=src_host, dst=dst_host},

1Y{src=src_host,dst=dst_host} src=src_port, dst=FTP_PORT},
value="PORT .*,2,2%$",s=seq1,t=timel}
-
[seql+1=seq2] FTP_PORT &
FTP_PORT _OK
14ends={src=src_host,dst=dst_host}, 14rtype=RESPONSE,
src=src_port,dst=FTP_PORT, conn={ends={src=dst_host, dst=src_host},
s=seq2,t=time2} src=FTP_PORT, dst=src_port}, FTP
value="2xx",s=seqz2,t=time2}
TCP_QUAD
1{ends={src=src_host,dst=dst_host}, 1{rtype=COMMAND,
src=src_port,dst=FTP_PORT, conn={ends={src=src_host, dst=dst_host},
s=seql,t=time1} src=src_port, dst=FTP_PORT},

i\‘ value="RETR",s=seq2,t=time2}
[seql+l=seq2] FTP_RETR <

14{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,

s=seq2,t=time2}
TCP_QUAD

1{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seql,t=timel}

Monitor:
TCP
Connections

1{ends={src=dst_host,dst=target_host},
src=FTP_DATA_PORT,dst=RSH_PORT,s=seq2,t=time2}

\ 4
[time1<time2] ‘FTP_RSH_CONN ‘

1{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seql,t=time2}

TCP_QUAD
1{ends={src=src_host,dst=dst_host},

src=src_port,dst=FTP_PORT,
s=seql,t=timel}

1{rtype=RESPONSE,
conn={ends={src=dst_host, dst=src_host},
src=FTP_PORT, dst=src_port},
value="2xx",s=seqz2,t=time2} /

timel<time2]
1{ends={src=src_host,dst=dst_host},
src=src_port,dst=FTP_PORT,
s=seq?2,t=time2}

TCP_QUAD

Figure 6: FTP Bounce Attack Penetration CPN generated attoafly from augmented SFT via XSL

14

The CPN arcs, which constitute the structure of the agemtar&f are not maintained centrally. Each transi-
tion knows about the places to which it is immediately comeeécand places know nothing about the agent
network structure.

The algorithm preserves the CPN semantics in the impleriientand allows for efficient execution.
Performance can be increased over the execution of a ge&fekbby optimizing code segments to fit specific
intrusion detection applications. For example, matchimgj @nifying tokens is computationally intensive, at
leastO(n?) in the general case; but in cases where the number and typpekesfs are known in advance,
faster algorithms can be used. If a place holds tokens ofggesippe, an implementation could match tokens
in O(nlog, n) time based on a binary search®@(n) time based on hash tables. Such enhancements could
be made to th@ransitionsuperclass so that they would not be a burden to the end uséhdy are not part
of the current MAIDS prototype.

Every agent must provide, strictly for debugging purpoaasgentName() method returning an iden-
tifying string. Beyond this, agents have specific requiretsas follows.

1. Required methods for data place agenfhe responsibility of a data place is to generate fresh to-
kens from whatever information is locally available. It mimplement awork() method, taking no
arguments and returningBkenBag This method will be called periodically from tHeataPlace
superclass code.

2. Required methods for transition agenfBransitions are much more complex, embodying as they do
all of the logic of the agent network. But most of the compligis hidden in superclass code. Three
additional methods must be implement&dring(] sources(), String[] tokenSpec(),

Token|| unify (Token|| sourceTokens).

Of these, only the last is nontrivial to writsources() should return an array of the labels of the places
that have arcs to this sourckenSpec() should return an array of token colors, and determines what
kind of input theunify() method will see. For instancetibkenSpec() returns the array‘blue”,

“red”} ,then wheneveunify() is called it will be given an array containing one blue toked ane red
token, in that ordewnify() is then responsible for deciding whether those tokens sharilinified. If so,
it returns a new array of tokens; otherwise it returns null.

Notably, there is no expliciestinations() method. This information is placed in the tokens them-
selves via an argument to tA@ken constructor. In the case where the token is created by a dataes
place, there is no delivery, so the source place itself isrgas a destination; in the case where a transition is
creating a new token, the destination is determined by agoing arc on the CPN.

Behind the scenes, thligansition superclass is responsible for iterating through the tokeagable
from the places given inources() , retrieving from there sets of tokens satisfying the dgsiom given in
tokenSpec, and presenting them to the agent class as anarttamify() . If it gets an array of tokens in
return, it delivers them to their designated places andeletbe source tokens; otherwise it leaves the tokens
where they were found.

5.2 Preservation of CPN Semantics

The MAIDS representation of a CPN as a network of Java obptisfies the CPN properties listed in
Section 4.1 as follows:

1. Each type is a color in sét.

2. Each instance of Blace is an elementin se®.

3. Each instance of @ransition is an element in set.
4

. Arcs A between places and transitions are encoded in the trarsifichen proceeding from place to
transition) and tokens (when proceeding from transitiopl&ze); they are finite in number and satisfy
the requirement as they are distinct from places and tiansit

15

The encoding of arcs as described above defines the noctefury.
The assignment of color in tiemken class constructor defines the color funct@n
Aunify() method implements the guard expression& ifor each transition iff".

Theunify() method also implements the arc expresdibfor each are: € A.

© ©®© N o v

A trivial initialization function/ makes each place begin with no tokens.

The implementation of transitions and places may imposéiaddl constraints not present in the CPNs so
as to obtain efficiencies for particular expected tokenmsplas long as only expected token colors exist in
the places, the CPN semantics are satisfied by the impletimmta

5.3 Algorithm For Translating CPN Design Templates to Agenimplementation

The MAIDS uses a distributed agent-based system to deteeasions. If the CPN model of intrusion detec-
tion is expanded to include multiple data source nodes (waie simply duplicated places that provide the
same token colors to transitions), and transitions arengivebility, the result is a distributed CPN (DCPN).
In our design, transitions are selected for mobility basetheir need to visit different sites in the distributed
system to collect tokens from duplicated place nodes forchiad). The places visited by the transitions
are defined dynamically through the user interface, coording to the nodes that are being monitored by
MAIDS.

The previous section examined the implementation of a CPJ&ea code. This section further details
the implementation of a CPN as agents in a distributed system

1. Node CategoriesThe IDS CPN design resembles a tree where data is obtaineellatif nodes, feeds
up through the internal nodes, and finally reaches the radé mden an intrusion is identified. Tokens
in the IDS CPN represent information that, as tokens “ribedtigh the tree, is correlated with other
information to identify intrusions.

Source places (places which have no incoming arcs) aredemesleaf places The transitions adjacent
defined to leaf places are consideteaf transitions

Sink places (places which have no outgoing arcs) are carsldeot places The Alert place is cur-
rently the single root place in the CPN IDS design.

Internal placesandinternal transitionsare the remaining places and transitions, respectivelien
CPN IDS design.

2. Leaf Places and Transitions:Raw audit data of various types and formats is obtained framitared
systems for the IDS. Data cleaning agents have been devkiopead and process the raw audit data
for use by the IDS. The data cleaning agents correspond tedfi@laces and transitions in the CPN
design.

Leaf places and transitions are duplicated at each modigygtem to manage the constant process of
data retrieval and cleaning.

The leaf places (data cleaners) are agents that remain igke $ocation to obtain raw data, such as
that available from log files. In the current MAIDS implematidn, the leaf places are instantiated sep-
arately on each host by the operator, where they will rentatiosiary for the duration of their activity.
Next generation of MAIDS would allow the console to dispatich leaf nodes to the monitored host
and allow the console to recall the agent to replace it withigaated agent or cease monitoring. The
leaf places perform minimal processing and do not place stanbal resource load on the monitored
systems.

16

Leaf places are an instance of places in the MAIDS DCPN implaation that require customized
coding to perform operating-system specific data gathenmpcleaning tasks. Nearly all other places
are generic, passive containers of tokens.

Leaf transitions (data gatherers) are software mobile tagbat travel between monitored systems to
obtain tokens. Currently, single instances of each leafsttamn perform the data gathering duties,
but in the future, multiple instances of each leaf transittould cooperate to gather data in a large
distributed system.

Informally, the leaf transitions perform the first level cdte gathering and filtering in the IDS. For-
mally, the leaf transitions perform the token matching anification specified by the CPN IDS design.

3. Internal Places and Transitions: Internal places act as passive containers for tokens.nialtpiaces
are not duplicated; a single instance exists and acceptmsalkom all (possibly mobile) transitions
connected to it. Internal places currently reside at thehim&crunning the console, but they could be
given mobility if it becomes advantageous.

Internal transitions are similar to leaf transitions intttheey apply token matching and unification rules
to tokens as they are obtained from incoming places and senitgjoing places. Like internal places,
internal transitions are statically positioned at the niaehunning the console. Internal transitions
could be given mobility if advantages are found.

4. Root Place: The root of the CPN IDS design is the alert place. It acts asaiy@acontainer, but when
a token is added to the alert place, the IDS console interginettoken and displays it. Transitions are
required to set an urgency level parameter in tokens for yshebIDS console. Tokens are sorted on
the IDS console display by their urgency and then by theivartime.

5. The IPlace Interface: ThelPlace interface specifies four methodsoid storeToken(Token t),
TokenBad getTokens(), boolean lock() andvoid unlock()

All Place agents in the network, except the data source (leaf) placesnstances of final classes.
As a result, the end implementer is never responsible foradiigese methods. They are called by
transition agents, but in supercla3sgnsition) code so that they are invisible to the implementer.

Additionally, DataPlace superclass code ussetoreToken() . Thelock() andunlock()
methods allow a transition to atomically examine and eitleptace or remove tokens from several
places.

5.4 Testing CPN design

A set of use cases (positive and negative examples of intrgsi.e. set of paths in CPN leading to successful
or unsuccessful intrusion) were developed to test the sidrudetection system requirements. The CPN
design was tested using the use cases to observe the bebfathier CPN and verify correct functionality.
Equivalence classes may be used to test representativéesaingo groups of intrusions to reduce the testing
effort [49].

Since the requirements model is less detailed than the CBhay not be as expressive as a CPN model,
the CPN design further constrains the sets of events thibavitientified as intrusions. Thus, some use cases
that are identified by the requirements as intrusions willbeconsidered intrusions by the CPN model and
the intrusion detection system implementation. Each use caust be annotated to describe whether the
requirements and/or design will identify the use case astansion.

CPNs design was tested with the following methods:

1. Interactive simulation - Execute a CPN model in a way sintib interactively debugging a program.

2. Automatic simulation - Investigate functional correxda and performance of a CPN model by execut-
ing a CPN at full speed.

17

3. Creating occurrence graphs - Determine reachabilityodes in a CPN model.

4. Place invariants - Prove user-specified predicates tatisfied for all reachable system states to prove
properties such as absence of deadlock.

Place invariants in particular may be useful for the inwasiletection CPN design, as they may allow in-
variants to be derived from requirements and verified in tR&Gesign. For example, a place in an FTP
bounce attack detector of Figure 6 may have an “FTP RESPONS&N only if there exists a matching
“FTP COMMAND” token in the CPN, since a command must be issoa@ceive a response.

Interactive simulation has been performed by building CRNg simulating their execution in the De-
sign/CPN tool [11] using positive and negative examplesiofisions. Automatic simulation has been per-
formed indirectly by building an implementation of CPNs avd and executing it.

5.5 Detecting FTP Bounce Intrusion

FTP bounce detection was tested using a script to launchtthekegrom a host outside the local network.
Because real intrusion data for this attack was not readdjlable in the form of network traces, we mixed
normal and malicious sessions to simulate attack undeifisigmt network traffic conditions. An upload of

a one-line text file followed by a download of the same file wasmodel of a “normal” session, and was
chosen for its superficial similarity to an instance of an Fbance attack. The normal session scenario, like
the attack scenario, was made repeatable using our scAiRerl script invoked these scripts to run 50 ftp
sessions sequentially; the sessions numbered 2 and 49 vaéogonrs, and the rest were normal.

Two monitored hosts were attacked, one as relay and the ashtarget. A third machine served as the
host console. The relay host was running a modified versighefvu-ftp server. Changes were made to
source code filédtpcmd.y to blindly enablePORTcommands regardless of source or destination. While
this very vulnerable server was active for testing, packetiing was kept in place to discourage real attacks
from outside our laboratory’s domain. Also, the target IsdREH service was not made vulnerable; instead,
RSH service was disabled and a proxy was set up to watch périd echo its traffic to a terminal window.
By these measures, all the essential events could appeaeabkaitack, but with minimal danger of our test
systems being compromised.

When run in isolation, a scripted attack was detected tylgibatween 2 and 5 seconds of its completion.
This time disparity was to be expected because of the desantipns of the agents and the randomized delays
that were artificially inserted.

In tests of the 50-session ftp sequence, the two malicicssi@®s were reliably detectete(, no false
negatives) with no false positives.

Details of the alert tokens from one such test are shown iorEig. These text presentations appear at
the analyst’s console when a token is selected from the ledepganel and the “details” button is pressed.
The hierarchical indentation scheme reflects the historynifications that led to the creation of a token.
(Note: the recorded creation times of tR&EH_PORTndFTP_BOUNCE_ATTACtkens reflect a clock
skew between the monitored hosts, since token timestangenden the machine where unification actually
takes place.)

Although both attacks were correctly identified out of theiged ftp sessions, the later attack took
significantly longer to detect. Studying the contents oftthe tokens, it is apparent that the bottleneck is in
the creation of th&TP port & retr token, which is the job of the complex transition that wasated
as a result of node reduction. After the first attack, i@ port & retr token appears at 20:26:24, 4
seconds after all four contributing tokens are availablet iB the second attack this disparity is larger: the
contributing tokens are available by 20:29:14 and are nifieghinto aFTP port & retr token until 19
seconds later, at 20:29:33. The difference in performas@ecounted for by the fact that each of the 48
intervening normal ftp sessions produdefiP_PORT_OKFTP_RETR andFTP_RETR_OKokens, all of
which had to be processed by th€PB_relay MT agentin every possible combination.

The test conditions are such that tR€PB_relay_MT transition unifies inO(n?) time, wheren is
the maximum number of tokens of any color. It would seem thamall n is required to prevent the

18

--- Token: [urgency 9] [type FTP BOUNCE ATTACK] ---
FTP BOUNCE ATTACK [0] Mon Apr 02 20:28:27 CDT 2001
FTP port & retr [0] Mon Apr 02 20:26:24 CDT 2001

> 986261179000 986261180000
FTP_PORT [585] Mon Apr 02 20:26:19 CDT 2001

> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT r equested
FTP_PORT_OK [586] Mon Apr 02 20:26:19 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT s ucceeded
FTP_RETR [587] Mon Apr 02 20:26:19 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR r equested
FTP_RETR_OK [588] Mon Apr 02 20:26:20 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR s ucceeded
RSH_PORT [0] Mon Apr 02 20:28:21 CDT 2001
> tcp://judge.cs.iastate.edu:8000/tcp monitor: rsh conn ection from ftp

--- Token: [urgency 9] [type FTP BOUNCE ATTACK] (1) ---
FTP BOUNCE ATTACK [1] Mon Apr 02 20:31:37 CDT 2001
FTP port & retr [2] Mon Apr 02 20:29:33 CDT 2001

> 986261354000 986261354000
FTP_PORT [816] Mon Apr 02 20:29:14 CDT 2001

> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT r equested
FTP_PORT_OK [817] Mon Apr 02 20:29:14 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT s ucceeded
FTP_RETR [818] Mon Apr 02 20:29:14 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR r equested
FTP_RETR_OK [819] Mon Apr 02 20:29:14 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR s ucceeded
RSH_PORT [7] Mon Apr 02 20:31:15 CDT 2001
> tcp://judge.cs.iastate.edu:8000/tcp monitor: rsh conn ection from ftp

Figure 7:Alert tokens from node-reduced test

FTPB_relay MT transition from wasting a great deal of the local host's Cirhkt even if the observed
total detection times of under 30 seconds were otherwisedd@acceptable.

To correct this, the first impulse might be to test an agertesydased on the original CPN before node
reduction. But to facilitate component reuse it is desigablkeep thé=TP port & retr token intact.
Therefore the unreduced CPN is rearranged as in Figure 8 $ecand test with the same 50-session ftp
script.

As in the previous test, both attacks were detected and there no false positives. The attack token
details are shown in Figure 9.

The first attack is detected more slowly than before, butéceisd more quickly (compare creation times
of the FTP_RETR_OKandFTP port & retr tokens, to witness that the bottleneck is relieved). Total
detection times from these tests, calculated from recetfdhe attack egg to creation of final alert token,
are summarized in Figure 10.

We see that node reduction, in addition to simplifying thgola of the agent system, decreases the
constant agent communication and migration overhead,@pdrformance improves under light-traffic con-
ditions. But when large numbers of tokens accumulate in & gleoiod of time, complex transitions perform
poorly and overall performance suffers.

This performance analysis is by no means exhaustive bus givgeneral indication of the effect of node
reduction.

6 Other intrusion scenarios

FTP Bounce attack example demonstrates all developmeatsstd intrusion detection system (from specifi-
cation of intrusion to design and implementation of theusion detection agents) and the final result of this
process - actual detection of an attack. In addition to thtisision, we have also tested several other attack
scenarios in wired and wireless settings. For brevity wg ordlude the descriptions of those scenarios.

19

(FTP_PORT, seq1) h’\/‘IEWY:)fk
onitor:
(FTP_PORT_OK, seq2) TP

FTP_PORT &

seql + 1 =seq2
[seq a2 FTP_PORT_OK

(FTP_RETR_OK, seq5, time5)

(FTP_RETR, seq3, time3

Network
Monitor:
TCP

[seq2 + 1 = seq3]

FTP_RETR

[seqd +1= FTP_RETR_OK

"FTP bounce suspicion”
place, holds tokens of color
FTP port & retr

(FTP_RSH_CONN, time4)

FTP_RSH_CONN

[time3 < time4 && time4 < time5]

Figure 8:FTP bounce CPN, rearranged for later component reuse

20

--- Token: [urgency 9] [type FTP BOUNCE ATTACK] (2) ---
FTP BOUNCE ATTACK [2] Mon Apr 02 22:31:43 CDT 2001
FTP port & retr [1161] Mon Apr 02 22:35:44 CDT 2001
> 986268932000 986268932000
col 2 [1160] Mon Apr 02 22:35:37 CDT 2001
> 986268932000
col 1 [1159] Mon Apr 02 22:35:35 CDT 2001
FTP_PORT [1158] Mon Apr 02 22:35:32 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT r
FTP_PORT_OK [1159] Mon Apr 02 22:35:32 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT s
FTP_RETR [1160] Mon Apr 02 22:35:32 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR r
FTP_RETR_OK [1161] Mon Apr 02 22:35:32 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR s
RSH_PORT [35] Mon Apr 02 22:31:30 CDT 2001
> tcp://judge.cs.iastate.edu:8000/tcp monitor: rsh conn

equested
ucceeded
equested
ucceeded

ection from ftp

--- Token: [urgency 9] [type FTP BOUNCE ATTACK] (3) ---
FTP BOUNCE ATTACK [3] Mon Apr 02 22:34:25 CDT 2001
FTP port & retr [1394] Mon Apr 02 22:38:23 CDT 2001
> 986269090000 986269091000
col 2 [1393] Mon Apr 02 22:38:17 CDT 2001
> 986269090000
col 1 [1392] Mon Apr 02 22:38:13 CDT 2001
FTP_PORT [1391] Mon Apr 02 22:38:10 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT r
FTP_PORT_OK [1392] Mon Apr 02 22:38:10 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp PORT s
FTP_RETR [1393] Mon Apr 02 22:38:10 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR r
FTP_RETR_OK [1394] Mon Apr 02 22:38:11 CDT 2001
> tcp://luke.cs.iastate.edu:8000/ftp monitor: ftp RETR s
RSH_PORT [40] Mon Apr 02 22:34:09 CDT 2001
> tcp://judge.cs.iastate.edu:8000/tcp monitor: rsh conn

equested
ucceeded
equested
ucceeded

ection from ftp

Figure 9:Alert tokens from test without node reduction

low-traffic attack | high-traffic attack
With node reduction 6 22
Without node reductior 13 16

Figure 10:Detection times (in seconds) from Figures 7 and 9

21

6.1 Denial-of-service attack (DoS)

Denial-of-service attack is an off-line attack that wasgaded from [1]. The goal of this scenario is to ensure
MAIDS agents can gather and correlate data from multipleéshwsfind intrusions. It uses pre-conditions
and post-conditions to link events. As alerts are genetayeah IDS, they are compared against rules in a
database to determine if a correlation can be made. If onadena hyper-alert is generated to represent the
alerts involved.

Test data for this scenario was taken from [1] and arbitraitided between multiple files in such a way
that each file is similar in length, and no two of these filesshdata from the same line in the original file. The
new files are then placed on different hosts in the networkagent, created to visit each node in the network,
collects alert data from these files, and attempts to link&svesing pre-conditions and post-conditions.

The correlation is done in a decentralized fashion. Usimgqandition and post-condition rules (stored
in arrays in the agent code), the events collected by thetagesach host are compared against the rules to
determine if a correlation can be made. If a correlation islena hyper-alert is generated to represent the
alerts involved. Once the agent has visited all hosts in #teark, it writes all hyper-alerts to the console
machine for analysis by an administrator.

6.2 Nmap scan

The second considered attack is a distributed Nmap scar{lbéqp is a program that is capable of scanning
large networks in order to determine which hosts are up arat gdrvices are available on those hosts. Nmap
scan is considered as an attack as it is likely to be a firstisteprrying out an intrusion. As such, hosts
suspected of executing these scans are often disconneatethfe network.

The attack is performed by sending SYN packets to targetetshBST packet received from the target,
instead of an ACK packet, is an indication that the port isawiive and cannot be used in a later intrusion
attempt. To reduce the chance of being detected, the attaakescan the target machines at random time
intervals and using pseudo-random port numbers while alsédamizing the hosts.

In this scenario, the agent travels between three hosts. aftaeker, on a third machine, performs a
randomized port scan on ports 20 to 150 on the other two hbkésjob of the agent is to detect what appears
to be completely random (and few in number) port activity actehost, and to correlate the aggregated
results to decide if an Nmap port scan is being carried ouheméetwork.

For this experiment, the agent correlated the events iflairalert patterns are found on all hosts with
the same source address as seen earlier. If enough of trexds eve correlated, the agent takes a predefined
action. In this scenario, once 100 unique ports have beeowised coming from the same host, the agent
raises its alert level and prints a message to the screerclhesst it visits to alert users of the scan.

6.3 Distributed real-time attack

The third attack demonstrates a distributed attack reguiti a compromised system. It was tested on the
network of four hosts. Host A and T are the attacker and ttgeetanachine respectively. C1 and C2 are
nodes which have been compromised by an attacker and arécusady out the attack on T.

The first step of this attack is to perform a port scan from Cihentarget machine. Following the port
scan, the attacker attempts to obtain information abouséineices running on the open ports of the target
and launches a more intrusive attack from C2 against it. Mtresive attack that was implemented is the
Nachi worm [2]. This worm starts by sending an ICMP ping tovfwim machine, and if reply is received it
attempts to propagate.

In this scenario, agent is looking for three things: a poains@ machine trying to obtain banner infor-
mation from a service, and the virus signature. The port scaetected by the same method as described
in Scenario 6.2. When the agent detects a machine tryingterobanner information from a local service
on the current host, the agent checks the service port dgamsgously scanned ports. If the port has been
previously scanned, the agent correlates those two events.

22

As the agent moves from host to host, it also carries withigaagure for the Nachi worm. This signature
is a pattern for detecting traffic from the worm. When the gratis found in the log file, agent also checks
previously scanned ports for the signature. If there is &mdhe events are correlated. Once the worm has
been detected, the agent raises its alert level status amsd thre alert, along with the correlated events, to the
screen of each host.

7 Related Models

An early intrusion detection approaches proposing deteaif intrusions through anomalous user behavior
were introduced by Anderson [6] and Denning [14]. Since thgpstantial amount of research attention has
been directed into intrusion detection area [5, 7, 8, 12348,0ne of these intrusion detection techniques is
misuse detection approach, although widely employed fteatien of known attack patterns, also shown to
have potential of recognizing unknown intrusions [40].

In the past two decades a number of misuse techniques hanghmsosed. Among these are methods
based on rule-based expert systems [17, 18, 28, 55] and gttapgh-based approaches [34, 35, 39, 56, 58].
Several works have focused on languages for specifyingkasignatures [15, 33, 41, 50] and state-transition
analysis of anomalous system behavior [13, 25, 26],

An example of such system is STAT approach [26] that grafiificaodels intrusions as transitions in
a state machine. Each state in the state machine represemapshot of the monitored system as a set of
assertions about the elements of the system. Each transktmwvs actions that move the system closer to the
compromised state.

STAT can be considered as a high-level specification antairréspect, compares with our SFT approach
to modeling intrusions. A detailed representation of STAdtes machine could be used as a design for an
IDS or executed as an IDS, and in this respect, corresponttetose of CPNs and agents in our system.
However, the separate tools (SFTs, CPNs, and agents) ustn fdifferent concerns (requirements, design,
and implementation) in our approach provide a clearerrdistn between the development activities than
it is done in an approach that uses state machines throutiteodevelopment lifecycle. Additionally, SFTs
tend to be more understandable as a high-level specificiitionstate machines.

As our work is based on integration of SFT and CPN for intrngletection we will primarily focus on
the graph-based approaches.

One of the earlier misuse detection modéfgrusion Detection In Our Time (IDIOT)was developed
by Kumar and Spafford [34, 35]. The system employs Colored Rets to represent intrusion signatures,
patterns Although, as authors suggested, CPN is the most suitabimitgue for conditional matching of
patterns, several modifications of CPN were made (elinonadf concurrency, removal of local condition
variables at transitions, addition of start and final stateg to make IDIOT model generic and applicable to
any well defined input.

Our proposed IDS is also based on Colored Petri Nets, hovtiegaroncept is applied to design specifi-
cation rather than a direct execution of a CPN to allow thd@mgnter to improve performance. In addition,
we define a transformation from the CPNs to the implementaifahe software agent intrusion detection
system that preserves the CPN semantics. Another benefit aiadel is its ability to operate in a distributed
environment using an agent-based approach.

Another graph-based approach to misuse intrusion detectalled GrIDSthe Graph-Based Intrusion
Detection Systeljb8] was designed for distributed attacks against netwoitkdynamically builds activity
graphs describing network traffic by applying user-defindds to audit data. Nodes in the graphs represent
hosts or aggregations of hosts while edges represent redetivity. Rather than building a single graph
including all system activities, individual graphs are mained by rule sets. Each rule set matches certain
events from the network audit trail and either builds a nempgror adjusts an existing graph.

The model also allows intuitive aggregation of nodes andesdgto reduced graphs which provides
higher level of analysis and data sharing, resulting in dabba design. Although, this system is built to
detect security policy violations, it should be possiblextend the model to analyze for anomalies based on

23

selected objects and events.

While GrIDS considers only communication patterns betwessis, our modeling technique applies to all
events in the monitored system. Also, rather than direciggithe graphical model, a mobile agent intrusion
detection system is developed using the CPN model as thgrdgsecification to improve performance and
allow flexibility in implementation.

Similar to GrIDS approachthe Adaptable Real-time Misuse Detection system (ARMesents mis-
uses as directed acyclic graphs (DAGSs) [39]. Abstract evard represented by nodes in a graph and edges
show the ordering of inter-event rules satisfied by the no@llkes intra-event rules determine the nodes chosen
for the graph. The inter- and intra-event rules togethenéafiisuse signatures (named MuSigs). If a graph
is built such that a sink node has an edge to it, an intrusidetiscted.

Unlike the model used by GrIDS or by our approach that allcevsafjgregation through unification of
tokens, MuSig graphs are not amenable to aggregation. Hadge8luSig graph only mean that a predicate
has been satisfied and they have no values or attributesghdiecaggregated. At the same time, nodes in
a MusSig graph correspond to specific events, which can bethaadgregate in the absence of structured
methods to aggregate the attributes associated with thtseve

Finally, MuSig graphs can not be used for anomaly deteciiocesby definition a MuSig graph detects
a misuse intrusion. Thus, the GrIDS-style object/eventehedems to be more powerful for general misuse
and anomaly intrusion modeling. While our proposed apgr@dows for anomaly detection, it has another
advantage of not requiring matching of graphs, as CPN graphsainly used for the design specification.

In recent years, several methods have been proposed taseapiatrusion signatures through attack
graphs which can be constructed from the alerts reportechioysion detection system [42, 43, 45, 56].
These graphs precisely model attack paths in the netwaskigirnodes representing host vulnerabilities and
edges showing connectivity between these hosts [56]. Véliisek graphs are exhaustive and precise, their
manual construction is tedious and often error-prone. ®Régeseveral projects have focused on automatic
generation of such graphs [56, 59]. Another concern reltdeattack graphs is their scalability. While
it became possible to build attack graphs for large netwasisg automatic tools, it is still quite difficult
to manage their complexity. Several visualization techagjhave been proposed to cope with this problem
[43, 44]. Our approach also employs attack graphs, howgkegwh representation of intrusion is only required
for design of the IDS rather than actual intrusion detection

8 Discussion and Conclusions

This paper details the procedure by which a distributedpagased IDS was implemented from a SFT-based
requirements and a CPN-based design. Intrusions are diinitie temporal components which are modeled
using SFT. Constraint nodes, specifying trust, temporad, @ntextual relationships, are used to augment
SFTs and restrict the combinations of events which definesiins. Algorithmic approaches are used to
create CPN templates from augmented SFT and agent implatizers from the CPN templates. The result
is an intrusion detection system to detect intrusions whiele specified by the original requirements.

Dividing components of intrusions into temporal stagesvedl the development of CPNs that detect in-
dividual attackd. Composition of the CPNs into a hierarchy models the catiorieof individual attacks
to detect complete intrusions. Future work may investig@i® attacks may fit together into complete in-
trusions and determine how to further compose CPNs. For pbeanfi detectors for individual attacks are
developed, data mining techniques such as frequent ei$86emay discover groups of attacks that occur
in combination. A detector for the group of attacks could kedmby composing the individual detectors
together.

Constraint nodes were added to enable augmented SFT to teat@ral, contextual, and trust relation-
ships between events. Such information is necessary tioglissh actual intrusions from events that bear

3A number of highly-effective intrusions (e.g., CodeRedritlaNimda) are simple, scripted attacks that do not followdfsginct
temporal stages. Simpler intrusion detection systemsrtiaath single events, such as SNORT [51], tend to be effeatidetecting
these intrusions.

24

similarity to intrusions and improve the false-positivéeraf the implemented system.

An algorithm is used to convert augmented SFT intrusionifipations into CPN detector design tem-
plates. This conserves the relational constraints of tlggnamted SFT and preserves the logic of the SFT.
Likewise, an algorithm is used to convert CPNs into agenti@megntation templates. The implementation
preserves the properties of the CPN design while providigmes for use as a distributed intrusion detection
system.

The augmented SFT, conversion from augmented SFT to CPNa&mnpnd the implementation of the
IDS using the CPN design templates act together to predeewatrectness from requirements to implemen-
tation. The requirements engineer must refine the initighaented SFT by adding constraints to specify the
temporal, contextual, and trust relationships betweentsubat take place as part of the intrusions. The de-
signer must complete the CPN design by adding places togedokens to the CPN and refining the tokens
so that they unify to satisfy the contextual constraints.

Our use of SFT with trust, temporal, and contextual constsaio model intrusions for a requirement
specification has assisted the development of CPNs forsioindetection. The use of CPNs to model intru-
sion detection system is novel. Likewise, agents can be tas@dplement intrusion detection systems. Our
requirements to use augmented SFT, CPNs, and intrusioatidet@gents structures the development of an
intrusion detection system into a repeatable and verifiatmeess.

Agents in our prototype intrusion detection system functis CPN places and transitions. Places are
generally static agents which either act as a source ofrimtion or hold information until a transition
requests it. Transition agents are the active componerithwalccept tokens from places, act on or unify the
information in the tokens, and pass the resulting tokendtierglaces. Viewing MAIDS agents and data
as an implementation of a CPN has conveniently generallzedystem and enabled further development.
Transition agents are given a set of places to visit by theingerface. Future enhancement will enable the
transition agents to self-direct their travels. Such cdjpain an agent could allow evasion of an attacker or
faster response to important events.

We have implemented a prototype FTP bounce attack deteasedoon the CPNs detailed in this paper
using agent technology based on our MAIDS implementation.

Future work will include investigation of the length of tinkekens that should be kept in places. Since
performance of the IDS degrades significantly as meaniagéens accumulate, the current policy allows an
uncollected token to expire after a fixed timeout. One pdssiktension is to allow a timeout to be specified
in the Token constructor, making it possible to script delayo an attack to evade detection. This complicates
the CPN model by adding work for the system designer (who dvbale to specify token lifetimes as part
of the SFT). Furthermore, the development of an algorithnidken garbage collection should be explored
to address the underlying issue of token lifetime managémen

The augmented SFT and CPNs presented in this paper modaamigtusion detection. Ongoing work
is investigating the application of these techniques tonzalg intrusion detection. One of our first steps
was modeling rules learned by a data mining algorithm foinaaly intrusion detection with CPNs [23]. We
have created an algorithm to transform the learned rulesarf@PN. Further work is required to develop an
augmented SFT that describes this data mining techniqueted techniques for anomaly detection, and
then leads to a CPN model of anomaly detection.

Acknowledgement

We would like to thank Professor Robyn Lutz for her contribns to Section 3.

References

[1] In Proc. Of the 9th ACM Conf. on Comp. and Comm. Seql2idp?2.

25

[2] Network Associates. Nachi worm. Online, march 208#p://vil.nai.com/vil/content/
v_100559.htm

[3] J. F. Allen and G. Ferguson. Actions and events in intetemporal logic. Journal of Logic and
Computation4(5):531-579, 1994.

[4] E. Amoroso.Intrusion Detection Intrusion.Net Books, Sparta, NJ, USA, 1999.

[5] D. Anderson, T. F. Lunt, H. Javitz, A. Tamaru, and A. VaddBetecting unusual program behavior using
the statistical component of the next-generation intnusietection expert system (NIDES). Technical
Report SRI-CSL-95-06, Stanford Research Institute Coardsitience Laboratory, May 1995.

[6] J. P. Anderson. Computer security threat monitoring sundeillance. Technical report, Fort Washing-
ton, 1980.

[7] J. Balasubramaniyan, J. O. Garcia-Fernandez, D. I§a€oH. Spafford, and D. Zamboni. An archi-
tecture for intrusion detection using autonomous agergshiical Report COAST TR 98-05, Purdue
University Department of Computer Sciences, 1998.

[8] T. Bowen, D. Chee, M. Segal, R. Sekar, T. Shanbhag, angpuluri. Building survivable systems:
An integrated approach based on intrusion detection ancdhigarmontainment. IRroceedings, IEEE
DARPA Information Survivability Conference and ExpositipISCEX 1) 2000.

[9] J. M. Bradshaw, editorAn Introduction to Software AgentMIT Press, Cambridge, MA, USA, 1997.

[10] P. Cabena, P. Hadjinian, R. Stadler, J. Verhees, andAaZi.Discovering Data Mining: From Concept
to ImplementationPrentice-Hall PTR, Upper Saddle River, NJ, 1998.

[11] CPN group at University of Aarhus, Denmark. Design/Cé&Nine. Online, 2000.http://www.
daimi.au.dk/designCPN/

[12] M. Crosbie and G. Spafford. Defending a computer sysieimg autonomous agents. Technical Report
95-022, COAST Laboratory, Department of Computer Scigrieesdue University, Apr. 1994,

[13] B. J. d’Auriol and K. Surapaneni. A state transition nabdase study for intrusion detection systems.
In Proc. of the 2004 International Conference on Security arshidfjement (SAM’04pages 186-192,
2004.

[14] D. E. Denning. An intrusion-detection modelEEE Transactions on Software Engineerirge-
13(2):222-232, Feb. 1987.

[15] B. V. Eric Totel and L. Mé. A language driven intrusionteetion system for events and alerts correla-
tion. In Proceedings ot the 19th IFIP International Information 8ety Conference2004.

[16] “Fyodor” <fyodor@dhp.com> . Nmap stealth port scanner for network security auditinglir@,
1999. http://www.insecure.org/nmap/

[17] T. Garvey and T. Lunt. Model-based intrusion detectiorProceedings of the 14th National Computer
Security Conferengd.991.

[18] N. Habra, B. L. Charlier, A. Mouniji, and I. Mathieu. ASAXSoftware architecture and rule- based
language for universal audit trail analysis. BEaropean Symposium on Research in Computer Security
(ESORICS)pages 435-450, 1992.

[19] G. Helmer. Intelligent multi-agent system for intrusion detectiordazountermeasuresPhD thesis,
lowa State University, Ames, IA, USA, Dec. 2000.

26

[20] G. Helmer, J. Wong, V. Honavar, and L. Miller. Automatgidcovery of concise predictive rules for
intrusion detectionJournal of Systems and Softwaé®(3):165—-175, Mar. 2002.

[21] G. Helmer, J. Wong, V. Honavar, and L. Miller. Lightwéigagents for intrusion detectiodournal of
Systems and Softwa@7(1), 2003.

[22] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller,@R. Lutz. A software fault tree approach to
requirements analysis of an intrusion detection systenPrameedings, Symposium on Requirements
Engineering for Information Securityolume 7, pages 207—-220. Springer, 2002.

[23] G. Helmer, J. S. K. Wong, V. Honavar, and L. Miller. Idigént agents for intrusion detection. In
Proceedings, IEEE Information Technology Conferemuges 121-124, Syracuse, NY, USA, Sept.
1998.

[24] IKV++ GmbH Informations und Kommunikationssystemegrin, Germany. Grasshopper User’s
Guide, Release 2,2001.http://www.grasshopper.de/index.html

[25] K. llgun. Ustat: A real-time intrusion detection systéor unix. InSP '93: Proceedings of the 1993
IEEE Symposium on Security and Privapgge 16, 1993.

[26] K. llgun, R. A. Kemmerer, and P. A. Porras. State traosianalysis: A rule-based intrusion detection
approachlEEE Transactions on Software Engineerii2d.(3):181-199, Mar. 1995.

[27] W. Jansen, P. Mell, T. Karygiannis, and D. Marks. Apptyimobile agents to intrusion detection and
response. Technical Report Interim Report - 6416, Natibrsditute of Standards and Technology, Oct.
1999.

[28] M. D. Jean-Philippe Pouzol. Formal specification ofuision signatures and detection rules.Piioc.
15th IEEE Computer Security Foundations Workshop (CSFYVAID2.

[29] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods arattieal Use volume 1.
Springer-Verlag, Berlin, Germany / Heidelberg, Germangndon, UK / etc., 1992,

[30] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods arattal Use volume 3.
Springer-Verlag, Berlin, Germany / Heidelberg, Germangndon, UK / etc., 1997.

[31] S. P. Joglekar and S. R. Tate. Protomon: Embedded merfito cryptographic protocol intrusion
detection and preventiod. UCS 11(1):83-103, 2005.

[32] D. M. Kienzle and W. A. Wulf. A practical approach to seityiassessment. IRroceedings of the 1997
workshop on New security paradignmages 5-16, Langdale, Cumbria, United Kingdom, 1998.

[33] C.Kruegeland T. Toth. Distributed pattern detectioniftrusion detection. INetwork and Distributed
System Security Symposium Conference Proceedings; 2002.

[34] S. Kumar. Classification and Detection of Computer IntrusiorhD thesis, Purdue University, West
Lafayette, IN, USA, Aug. 1995.

[35] S. Kumar and E. H. Spafford. A pattern matching modehfdiguse intrusion detection. Proceedings
of the 17th National Computer Security Conferemuages 11-21, Baltimore, MD, USA, Oct. 1994,

[36] W. Lee, S. Stolfo, and K. Mok. Algorithms for Mining Sysh Audit Data Data Retrieval and Data
Mining. Kluwer Academic Publishers, Boston, MA, USA, 1999. T. Ynland N. Cercone, eds.

[37] N. G. LevesonSafeware: System Safety and Computdddison-Wesley, Reading, MA, USA, 1995.
[38] N. G. Leveson and J. L. Stolzy. Safety analysis usingipeits. IEEE Transactions on Software
Engineering SE-13(3):386-397, Mar. 1987.

27

[39] J.-L.Lin, X. S. Wang, and S. Jajodia. Abstraction-lthsgsuse detection: High-level specifications and
adaptable strategies. Rroceedings, IEEE Computer Security Foundations Workspages 190-201,
Rockport, MA, USA, June 1998.

[40] U. Lindqvist and P. A. Porras. Detecting computer antivoek misuse through the production-based
expert system toolset (p-BEST). IBEE Symposium on Security and Privapgges 146-161, 1999.

[41] C. Michel and L. Me. ADeLe: an attack description langedor knowledge-based intrustion detec-
tion. In Sec '01: Proceedings of the 16th international conferencénformation security: Trusted
information pages 353-368, 2001.

[42] P. Ning, D. Xu, C. G. Healey, and R. A. S. Amant. Buildintgagk scenarios through integration of
complementary alert correlation methods.Pimceedings of the 11th Annual Network and Distributed
System Security Symposium (NDSS ;@8ges 97-111, 2004.

[43] S. Noel, M. Jacobs, P. Kalapa, and S. Jajodia. Multiplerdinated views for network attack graphs. In
Proceedings of the Workshop on Visualization for Compugeusty, 2005.

[44] S. Noel and S. Jajodia. Managing attack graph complékibugh visual hierarchical aggregation. In
VizSEC/DMSEC '04: Proceedings of the 2004 ACM workshop snallzation and data mining for
computer securitypages 109-118, 2004.

[45] S. Noel, E. Robertson, and S. Jajodia. Correlatingigitm events and building attack scenarios through
attack graph distances. Rroceedings of the 20th Annual Computer Security AppbecatiConference
2004.

[46] ObjectSpace, Inc., Dallas, TXbjectSpace Voyager Core Technology User Gui®89. Version 3.0.0.

[47] C. Phillips and L. P. Swiler. Proceedings of the 1998 ketiop on new security paradigms. MNew
Security Paradigms Workshppages 71-79, Charlottesville, Virginia, United Stat€98.

[48] P. Porras, D. Schnackenberg, S. Staniford-Chen, Mintth, and F. Wu. The common intru-
sion detection framework architecture. Online, 199%ttp://www.gidos.org/drafts/
architecture.txt

[49] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and ROfsson. A methodology for testing
intrusion detection systemHzEE Transactions on Software Engineeri2@(10):719-729, Oct. 1996.

[50] M. F. Raihan and M. Zulkernine. Detecting intrusionseaified in a software specification language. In
COMPSAC (1)pages 143-148, 2005.

[51] M. Roesch. Snort: Lightweight intrusion detection fogtworks. InProceedings of the Thirteenth
Systems Administration Conference (LISA S3attle, WA, USA, Nov. 1999. USENIX.

[52] J. Rushby. Critical system properties: Survey andtaxay. Reliability Engineering and System Safety
43(2):189-219, 1994,

[53] S. Russell and P. Norvidhrtificial Intelligence: A Modern ApproachPrentice-Hall, Englewood Cliffs,
NJ, USA, 1995.

[54] B. SchneierSecrets and Lies: Digital Security in a Networked Worddhn Wiley & Sons, New York,
2000.

[55] M. Sebring, E. Shellhouse, M. Hanna, and R. WhitehuEgpert systems in intrusion detection: A case
study. InProceedings of the 11th National Computer Security Confazel 988.

28

[56] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wikgtomated generation and analysis of
attack graphs. I8P '02: Proceedings of the 2002 IEEE Symposium on Securityaracy, 2002.

[57] M. Slagell. The design and implementation of MAIDS (nilebagent intrusion detection system).
Technical Report TR01-07, lowa State University DeparthoéifComputer Science, Ames, 1A, USA,
2001.

[58] S. Staniford-Chen, S. Cheung, R. Crawford, M. DilgeErank, J. Hoagland, K. Levitt, C. Wee, R. Yip,
and D. Zerkle. GrIDS-a graph based intrusion detectioresyg$br large networks. 119th National
Information Systems Security Conference Proceedpagpes 361-370, Oct. 1996.

[59] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian.r@puter-attack graph generation tool DISCEXI|
Proceedings, DARPA's Information Survivability Conferemnd Exposition2001.

[60] A. S. TanenbaumDistributed Operating SystemPBrentice-Hall, Englewood Cliffs, NJ, USA, 1995.

[61] Y. Wang, S. R. Behera, W. Johnny, G. Helmer, V. HonavaMlller, R. Lutz, and M. Slagell. Towards
the automatic generation of mobile agents for distributgdusion detection systemsAccepted by
Journal of Systems and Software in August 2004, availatdeiahcedirect.com

[62] J. Wong, G. Helmer, V. Naganathan, S. Polavarapu, V.a@dan and L. Miller. SMART mobile agent
facility. Journal of Systems and Softwas&(1):9-22, 2001.

29

