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Introduction

The genome is typically represented as a linear sequence, split

over multiple chromosomes, and data are linked to the genome by

occupying a range of positions on the sequence. These data fall

into two broad categories. First, there are the annotations, such as

gene models, transcription factor binding site predictions, GC

percentage, polymorphisms, and conservation scores. Such anno-

tations are highly processed and are often served by public

databases such as NCBI or EBI. Second, there are primary

experimental measurements, such as read alignments from high-

throughput sequencing. Data integration, within and between

those two categories, is made possible by treating the data as

ranges on the genome, which acts as a common scaffold. Thus,

ranges play a central role in genomic data analysis, and statistical

tools should consider ranges to be as fundamental as quantitative

and categorical data types.

For example, ranges are integral to the manipulation of gene

model annotations. Examples include deriving candidate promoter

regions, finding introns, calculating the total exonic length of a

transcript or finding the exonic regions that are unique to a

particular transcript in an alternatively spliced gene. Ranges also

play a central role in the analysis of experimental data, where they

are used to represent read alignments. In the analysis of ChIP-seq

data, it is typical to calculate the depth of alignment coverage,

which then serves as input to calling algorithms which output

peaks as ranges. These ranges are then annotated according to

their overlap with and proximity to other ranges, such as gene

structures. Similarly, for RNA-seq data, analysts measure gene

expression based on counting the alignments overlapping exons.

All these analyses depend on specialized, range-based algo-

rithms and data structures. For example, computations on gene

models involve set operations on ranges, including intersection,

union and complement. Coverage calculation is important for

detecting regions of enrichment and for producing visual

summaries. Overlap and nearest neighbor detection is fundamen-

tal to the annotation of ChIP-seq peaks, estimating expression

from RNA-seq data and many other integrative analyses.

The primary argument for storing ranges in specialized, formal

data structures is efficiency, in terms of both implementation and

language. The notion of ranges can be made explicit in the

application programming interface (API), permitting the expres-

sion of algorithms in a succinct and readable language that

illustrates concepts instead of exposing implementation details.

Another goal is interoperability: by using the same data structures,

multiple routines, spread across different packages, can operate on

the data without cumbersome conversions. Also, a data structure

can be accessed through an abstraction that hides the details of the

optimized implementation, and this results in looser coupling

between components. Together, these benefits lead to more

robust, maintainable software.

Data structures should support the storage of per-range

metadata, because genomic data is multivariate and consists of
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much more than the ranges alone. This enables the storage of gene

identifiers and other symbols with the gene ranges, and the peak

heights or confidence scores with the peak ranges. Some metadata

merit special treatment, such as the chromosome name and the

strand. Also necessary is a data structure for storing summaries

and processing results for a common set of ranges across multiple

samples. Such a structure would hold, for example, the RNA-seq

per-exon counts or a set of variant calls. Finally, there should be

support for storing hierarchies of ranges, at least for one level of

nesting, to represent, for example, the nesting of exons into

transcripts. Whether it is appropriate to treat the exons as

individual ranges or the transcript as a compound range depends

on the use case; both should be supported.

These data structures are represented as classes, through which

we communicate the formal definition of each data structure to the

programming language. One benefit is that we can defer the

regulation of data access and the tracking of data integrity to the

language. In the case of functional object-oriented languages, there

is another benefit: we can implement behaviors as methods on

generic functions. A generic function is one that dispatches to a

particular implementation, termed a method, based on the classes

of passed arguments. This means that the same API will exhibit

specialized behavior depending on the input. For example calling

start on a range data structure would return the starting

positions for the ranges, while calling the same function on a base

R time-series object would behave differently.

This paper describes the infrastructure in Bioconductor [1] for

the integrative statistical analysis of range-based genomic data.

Main features include scalable data structures for annotated

genomic ranges and genome-length vectors, and efficient algo-

rithms for overlap detection and other range operations. The

packages that form the core of the infrastructure include IRanges,

GenomicRanges and GenomicFeatures. Source code for the packages is

included in the supplement, under Software S1, S2, and S3,

respectively. The IRanges package provides the fundamental range

data structures and operations, while GenomicRanges builds upon it

to add biological semantics to the metadata, including explicit

treatment of sequence name and strand. Finally, GenomicFeatures

enables access to and manipulation of gene models and other

annotations. Together, these packages support more than 80 other

packages in Bioconductor.

Other software tools provide facilities for working with genomic

ranges, e.g., bedtools [2] and cisGenome [3]. Those provide UNIX

command-line interfaces and rely on common file formats (which

are often incompletely specified) to interoperate with other tools,

leading to workflows embodied as: collections of heterogeneous

scripts, system dependencies and data files. Such workflows can be

difficult to maintain and challenging to reproduce. In contrast, the

Bioconductor infrastructure is tightly integrated with other R

packages through in-memory data structures, while still supporting

interaction with external tools. The Bioconductor package

genomeIntervals provides data structures for representing genomic

ranges and utilities, such as overlap detection, that have much in

common with the tools described here, but our tools are more

extensive and have been more widely adopted.

Design and Implementation

Working with Simple Ranges
We use the term ‘‘range’’ to denote an ordered set of

consecutive integers. A range is represented by a pair of integers

s, e satisfying sƒe. In Figure 1, s and e correspond to the start and

end columns, respectively. The ‘‘width’’ of a range is given by

e{sz1, so a range for a single integer (modeling, for example, a

single nucleotide position) has s~e.

The IRanges package, which is designed to be general and thus

avoids biology-specific considerations, introduces the IRanges class

to represent a vector of ranges. The GenomicRanges package builds

on IRanges to include biologically relevant features such as strand

and sequence (e.g., chromosome) name.

In Figure 1, we show a table of the exons of the human gene

KRAS. The tx_id column indicates the transcripts to which each

exon belongs. A single IRanges object can store those exon ranges,

and this model is appropriate for per-exon analyses.

The IRanges class supports the basic R vector API, including the

length accessor, extraction and subsetting functions like [[ and [ ,

concatenation with c, etc. This will hold true for all vector-like

objects in the range infrastructure.

Figure 1. Tabular (top) and visual (bottom) representation of the exons for the human KRAS gene, derived from the UCSC known
gene annotation. In the table, the columns seqnames, start and end locate the exons in the genome. The strand column indicates the direction of
transcription. The exons are grouped into transcripts by tx_id, and the exon IDs are given by exon_id. Virtually all genomic data sets fit this pattern:
genomic location, followed by a series of columns, often including strand and/or score, that annotate that location. In the plot, the rectangles
represent exonic regions, and the arrows represent the introns, as well as the strand.
doi:10.1371/journal.pcbi.1003118.g001

Software for Analyzing Annotations and Alignments
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The available range operations are listed in Table 1. The

IRanges object supports direct manipulation of the start, end and

width of the contained ranges. In applications, many of these

operations follow recurrent patterns, and manipulating start and

end directly can be needlessly tedious and error-prone. For this

reason, shift, resize and similar frequently useful range operations

are provided. Ranges can be simplified and summarized with

several functions, including range, reduce and disjoin. Figure 2

illustrates the latter two. It is often appropriate to conceive of an

IRanges object as a mathematical set of integers, or, in the

biological context, a set of nucleotide positions. gaps (comple-

ment), union, intersect and setdiff support this notion. For

example, taking the union of two transcripts would yield the

ranges covered by any KRAS exon. The flank function could be

used to demarcate putative promoter regions of transcripts.

A recurrent operation is overlap detection; various instances are

illustrated in Figure 3. In later sections, we apply overlap counting

for finding the percentage of ChIP-seq peaks that overlap a

promoter, counting the number of RNA-seq reads for each

transcript, and other tasks. The findOverlaps function uses an

efficient interval tree algorithm [4] to detect overlaps between two

IRanges objects, as well as the more complex range-based data

structures introduced later. The algorithm supports several types of

overlap, including those defined by Allen’s Interval Algebra [5]. The

one-time cost of constructing the interval tree is O(n log n), and

queries are performed in logarithmic time. In accordance with the

vectorized semantics of R, if multiple queries are submitted, they are

efficiently processed in batch, without restarting at the root of the

tree for each query. The language of implementation is C, which

avoids the potentially expensive iteration over the tree in R.

Table 1. Summary of the Ranges API.

Category Function Description

Accessors start, end, width Get or set the starts, ends and widths

names Get or set the names

elementMetadata, metadata Get or set metadata on elements or object

length Number of ranges in the vector

range Range formed from min(start) and max(end)

Ordering ,, ,=, ., .=, = =, != Compare ranges, ordering by start then width

sort, order, rank Sort by the ordering defined above

duplicated Find ranges with multiple instances

unique Find unique instances, removing duplicates

Arithmetic r+x, r-x, r * x Shrink or expand ranges r by number x

shift Move the ranges by specified amount

resize Change width, anchoring on start, end or mid

distance Separation between ranges (closest endpoints)

restrict Clamp ranges to within some start and end

flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges

intersect, union, setdiff Set operations on reduced ranges

pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]

gaps, pgap Find regions not covered by reduced ranges

disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)

precede, follow Find nearest y that x precedes or follows

x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position

Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics

Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects

Categorized listing and description of the API for range-based objects, such as IRanges, RangesList, GRanges and GRangesList.
doi:10.1371/journal.pcbi.1003118.t001
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Working with Genomic Ranges
The IRanges class encodes only the start and end of ranges but

not the chromosome, strand nor other information that is

important in genomic applications. The GenomicRanges package

adds biological semantics on top of IRanges. At its core is the

GRanges class. Each element of a GRanges instance includes a

chromosome identifier and strand designation. Each data set is

associated with a particular, versioned reference genome sequence

consisting of a discrete set of chromosomes or contigs, along with

their lengths, if known. The GRanges class thus fully represents the

data in Figure 1, and encourages best-practices (e.g., tracking

genome build) to minimize book-keeping errors.

Figure 2. Illustration of the reduce and disjoin operations on the last exon from each of the KRAS transcripts.
doi:10.1371/journal.pcbi.1003118.g002

Figure 3. Illustration of overlap (top) and adjacency (bottom) relationships. The any mode detects hits with partial or complete overlap,
while within requires that the query range represents a subregion of the subject range.
doi:10.1371/journal.pcbi.1003118.g003
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The GRanges class supports many of the same range operations

as IRanges and specializes them for genomic data. We achieved

API specialization by implementing methods for both classes on

the same generic functions. In general, we believe method

specialization is an effective practice for providing the same

interface on top of different data structures. Abstracting imple-

mentation details leads to user code that is more robust and easier

to write and maintain.

The GRanges methods give special consideration to the

chromosome and, when appropriate, the strand. For instance,

the findOverlaps generic has methods for both IRanges and

GRanges, and the GRanges method is specifically able to take

advantage of the chromosome information when detecting

overlaps. Operations that depend on a notion of direction

optionally consider strand. For example, the resize function will

resize from the start or end of the ranges in a IRanges object. For a

GRanges object, resize will take the start to be the leftmost

position for positive strand features and the rightmost position for

negative strand features.

Some types of genomic data, for example gene models or

aligned paired-end reads, have a hierarchical structure. To

represent this, multiple GRanges objects may be combined into a

GRangesList, where each GRanges is considered a compound feature.

GRangesList groups transcripts by gene, groups exons by transcript,

and represents read alignments, where each alignment consists of

multiple segments separated by gaps. For example, we group the

KRAS exons by transcript using a GRangesList. A note on

performance: although the user interface presents each element

of a GRangesList as a GRanges , internally there is only a single

GRanges, along with an assoicated partitioning that forms the list

elements.

For a GRangesList, overlap detection reports a hit at the element

level, i.e., when any range within an element overlaps a query

range. See Figure 4 for an illustration. This semantic is convenient,

for example, when counting the total number of RNA-seq read

pairs overlapping the exonic regions of each transcript. In that

case, both the reads and the transcripts are GRangesList objects.

Accessing Gene Models
Recalling our KRAS gene model example, there are multiple

models for representing transcript structures, and the applicability

of each depends on the use case. To support the analyst in asking a

broad range of questions, there is a need for a mechanism that

draws from a data source of gene annotations and returns them in

a variety of different data models. The GenomicFeatures package fills

that role by distilling multiple data sources into a single database

schema and wrapping that database in an API that returns, for

example, the exons grouped by gene, or the bounds for every

transcript. The databases are implemented in SQLite and are thus

accessible from environments outside of R. For reproducibility, a

database may be encapsulated in a redistributable R package.

The database is represented by the TranscriptDb class and stores

the range of each exon, the coding range, the transcript ID, the

gene ID, and metadata about the source of the transcript

information. The GenomicFeatures package provides an automated

mechanism for constructing a TranscriptDb object from tracks

defined in the UCSC genome browser, Biomart, or GTF/GFF

files. Bioconductor provides pre-built packages for the most widely

adopted gene models, like the UCSC known gene annotations on

hg19. These packages follow a standard naming convention, e.g.,

TxDb.Hsapiens.UCSC.hg19.knownGene.

There are functions for performing common queries that return

the exons, coding regions, and transcript boundaries as a GRanges

object. Transcript and gene-level groupings are preserved by

GRangesList objects. The ranges in Figure 1 were derived from the

TxDb.Hsapiens.UCSC.hg19.knownGene package using the following

call to the function exons:

. library(‘‘TxDb.Hsapiens.UCSC.hg19.knownGene’’)

. library(‘‘org.Hs.eg.db’’)

. kras_gene ,- org.Hs.egSYMBOL2EG$KRAS

. kras_exons ,- exons(TxDb.Hsapiens.UCSC.hg19.

knownGene,

+ vals = list(gene_id = kras_gene),

+ columns = c(‘‘tx_id’’, ‘‘exon_id’’))

To retrieve the exons corresponding to a particular transcript,

such as transcript 48666 of KRAS, we call exonsBy, which

returns a GRangesList of exons grouped by transcript, and extract

the element corresponding to the desired transcript identifier:

. exonsByTx ,- exonsBy(TxDb.Hsapiens.UCSC.hg19.

knownGene)

. krasA ,- exonsByTx[[‘‘48666’’]]

The contents of krasA are shown in Table 2.

Figure 4. Illustration of overlap computations between two GRangesList objects. Each set of rectangles linked by solid lines represents a
compound range, i.e., an element of the list. Ranges in the query (top) are being matched against ranges in the subject (bottom). The labels between
them indicate the type of overlap (any, within, none).
doi:10.1371/journal.pcbi.1003118.g004
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Associating Annotations with Ranges
Figure 1 demonstrates how genomic data consist of both ranges

and uni- or multivariate annotations on those ranges. In that table,

the annotations are the exon ID and a variable grouping the exons

into transcripts. If we had read alignments from an RNA-seq

experiment, we might use countOverlaps to generate a read

count for each exon. Other examples of annotation would include

the reference and alternate bases for a single nucleotide variant

(SNV) or the position weight matrix (PWM) score for a putative

transcription factor binding site.

Every multi-element data structure in the IRanges suite supports

the storage of per-element metadata: data about data. In this case,

the metadata are the annotations, and the primary data are the

ranges being annotated. This includes all of the data structures for

storing ranges, such as IRanges, GRanges and GRangesList. The

metadata are stored in a DataFrame with as many rows as there are

elements in the object. We introduce a DataFrame class that

behaves similarly to the base R data.frame, but supports storage of

complex vector-like objects (e.g., a DNAStringSet, representing

DNA sequences, or a GRanges) in columns.

Working with Coverage and Similar Vectors
A common method of summarizing a genomic data set is to

calculate the coverage, i.e., the number of features in the data set

overlapping each position in the genome. This is useful in ChIP-

seq analysis, where many peak detection methods operate on the

coverage.

For this example, mouse genomic DNA was cross-linked with

DNA-binding proteins, fragmented and precipitated with an

antibody for CTCF. An antibody for GFP was used for the

control. The CTCF and GFP samples were each sequenced in a

single lane on an Illumina sequencer, which generated reads 35 nt

in length [6]. We excluded the last 11 nt of each read due to

insufficient quality, so the effective read length was 24 nt. The

reads were aligned to the mm9 build of the mouse genome using

MAQ. We parsed the MAQ output using the ShortRead package

[7], and the alignments for three chromosomes (chr10, chr11 and

chr12) were extracted for use as a demonstration data set in the

chipseq package [8].

. library(‘‘chipseq’’)

. data(‘‘cstest’’)

. ctcfReads ,- cstest$ctcf

The ctcfReads object, listed in Table 3, is a GRanges holding

the read alignments from the CTCF sample. The GRanges stores

the chromosome names, ranges, and strand for each alignment, as

well as a list of chromosome names and lengths for the mm9

genome. Tracking the chromosome information guards against

errors that could arise, for example, from mixing data across

genome assemblies.

Each read represents only 24 nt from one end of a fragment of

DNA. Since it was the fragment, but not necessarily the sequenced

region, that was cross-linked to CTCF, we need to consider the

entire fragment when predicting binding sites. We assume that the

fragment length was approximately 120 nt and call resize to

extend our read ranges to fragment-sized ranges:

. ctcfFragments ,- resize(ctcfReads, 120)

Note that the strand of the alignment was automatically taken

into account.

The coverage function calculates the coverage for a set of

ranges. We calculate the coverage on the CTCF fragments from

our ChIP-seq data set as follows:

. ctcfCoverage ,- coverage(ctcfFragments)

. ctcfCoverage10 ,- ctcfCoverage$chr10

The ctcfCoverage object is a list, with one coverage vector

per chromosome. For simplicity, we extract the element corre-

sponding to ‘‘chr10’’. The ctcfCoverage10 object is of class Rle.

Vectors along the genome tend to have many repeated values.

For the sake of compactness, we compress the data using a run-

length encoding compression scheme. Through the R class system,

we abstract this efficient implementation behind an API that

supports the features of ordinary R vectors; the complexity is

hidden from the user. The Rle class represents a run-length

encoded vector and provides features beyond those of ordinary

vectors. For example, one can use ranges to extract values from an

Rle. This integrates range-based datasets with data in chromo-

Table 2. Contents of the krasA object, representing the exons in isoform A of KRAS.

GRanges with 5 ranges and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank

[1] chr13 [106118565,
106118681]

+ | 174810 ,NA. 1

[2] chr13 [106119356,
106119490]

+ | 174811 ,NA. 2

[3] chr13 [106124887,
106125034]

+ | 174814 ,NA. 3

[4] chr13 [106142141,
106142541]

+ | 174818 ,NA. 4

[5] chr13 [106143261,
106143383]

+ | 174820 ,NA. 5

doi:10.1371/journal.pcbi.1003118.t002

Table 3. Ranges for the first three reads in the ctcfReads

object, storing the read alignments for the CTCF sample.

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand

[1] chr10 [3012936, 3012959] +

[2] chr10 [3012941, 3012964] +

[3] chr10 [3012944, 3012967] +

doi:10.1371/journal.pcbi.1003118.t003
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some-length vectors. To demonstrate, we find the position of the

maximum coverage on chr10, and, in order to display the

coverage in context, we extract a 5000 nt region centered around

that position:

. maxPos ,- which.max(ctcfCoverage10)

. roi ,- resize(IRanges(maxPos, width=1), 5000,

‘‘center’’)

. roiCoverage ,- ctcfCoverage$chr10[roi]

The roiCoverage vector is plotted in Figure 5 and shows how

the coverage relates to the gene context.

Next, we wish to find peaks in the coverage vector by slicing it at

a fixed threshold. We call the slice function and pass it a cutoff

of 8:

. ctcfPeaks ,- slice(ctcfCoverage10, lower = 8)

The resulting coverage slices are ranges and and we rely on our

data structures for managing and manipulating them. In

particular, the ctcfPeaks object is a Views object, which

combines the peak ranges with the original Rle coverage vector

(another example of integrating ranges with vectors). Views has

several utilities for summarizing the vector values within each

range. We use these to summarize the coverage values within each

peak:

. ctcfMaxs ,- viewMaxs(ctcfPeaks)

. ctcfSums ,- viewSums(ctcfPeaks)

Accessing Read Alignments
Read alignments may be loaded from a BAM file as a

GappedAlignments or GappedAlignmentPairs object, depending on

whether the reads should be treated as paired. Both data

structures store short read alignment results in terms of the

position, chromosome, strand, CIGAR string (a compact repre-

sentation of the gaps) and other information. Both also support

some of the range operations and can be coerced to GRanges and

GRangesList. The GRanges representation holds the ungapped

extents of the read alignments, whereas the GRangesList represents

the alignments as ranges with gaps, including the inter-read gap of

a pair and the skipped regions in the reference (e.g., introns). The

choice of data structure depends on, for example, whether one

wants to count the overlapping pairs, reads, or aligned segments

separated by gaps.

A frequent goal of RNA-seq experiments is to estimate the levels

of gene expression. For this demonstration, we will simply count

the number of read alignments overlapping the exonic regions of

each transcript. We begin by loading a BAM file of read

alignments from an RNA-seq experiment in yeast [9]. There are

four samples, two of which are wildtype and two of which are RLP

mutants. The leeBamViews package provides the alignments on

chromosome XIII from positions 800000 to 900000.

. bams ,- getBamsFromLeeBamViews()

. ga ,- readGappedAlignments(bams[1])

. reads ,- grglist(ga)

The readGappedAlignments function loads the BAM file as a

GappedAlignments object, which is then coerced to a GRangesList , where

each read consists of one or more ranges, separated by intronic gaps.

In the next step, we obtain the transcript annotations for yeast.

Bioconductor provides a TranscriptDb object for the UCSC

sacCer2 assembly, and we extract from it a GRangesList represent-

ing the transcripts, by calling exonsBy. In order to detect overlaps,

the alignments and gene annotations need to have the same

chromosome names; we correct for that with the calls to

keepSeqlevels and renameSeqlevels.

.library(‘‘TxDb.Scerevisiae.UCSC.sacCer2.sgdGene’’)

. tx ,- exonsBy(TxDb.Scerevisiae.UCSC.sacCer2.

sgdGene)

. tx ,- renameSeqlevels(keepSeqlevels(tx,

‘‘chrXIII’’),

+ c(chrXIII = ‘‘Scchr13’’))

Now that the data and annotations have been loaded, we count

the number of read alignments in each genomic feature:

. counts ,- countOverlaps(tx, reads, ignore.strand

= TRUE)

More complex counting algorithms are available via the

summarizeOverlaps function, which counts over multiple

samples and returns the results as a SummarizedExperiment object.

Unlike the call to countOverlaps above, reads that map to

multiple features are discarded.

Figure 5. Visualization of the coverage of bases by GFP- and CTCF-bound fragments (top) in the context of part of the gene model
for Rrp1, Entrez gene 18114 (bottom).
doi:10.1371/journal.pcbi.1003118.g005
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Summarized Experiments
The typical workflow in a genomic data analysis is to reduce a

complex raw data set, such as a set of RNA-seq read alignments,

to a set of summaries, such as the number of reads aligned over

each transcript or exon. Analogously, an exome-seq experiment

yields variant calls at particular genomic ranges. It is often

appropriate and convenient to store these summaries as a matrix,

where the rows correspond to genes or some other genomic

feature and the columns to samples. The SummarizedExperiment

class is designed to hold such values, along with annotations on

the genomic regions, the samples and the experiment as a whole.

Its design follows the same pattern as the ExpressionSet in the

Bioconductor microarray infrastructure; the primary difference is

that SummarizedExperiment is based on IRanges data structures. A

SummarizedExperiment may be constructed directly or generated by

a function that executes a high-level workflow. For example, for a

list of BAM files, the summarizeOverlaps function counts the

overlaps between the read alignments and a database of

transcripts.

Results

In this section we describe range-based integrative computations

related to the genetics of protein-DNA binding, and conclude with

a topically organized list of Bioconductor packages that make

essential use of the ranges infrastructure.

Exploring Genetics of CTCF Binding
In the murine ChIP-seq example discussed previously, the

ranges infrastructure was used to compute and display variation

in read coverage over the mouse genome. In this example, we use

tools based on the ranges infrastructure to examine both coverage

and content of reads from a larger ChIP-seq experiment on

human cell lines. Our basic intent is to show how the

infrastructure can be used to evaluate the roles of genotype and

genetic diversity in the genomic sequences where CTCF is

reported to bind, with an understanding that ultimate inferences

on protein binding locations and on base-call distributions over

heterozygous loci will need to directly incorporate risks of base

calling and read mapping errors, and will need to be followed up

with wet-lab validation.

For an investigation of the prevalence of allele-specific

protein-DNA binding [10], BAM files on 22 ChIP-seq

experiments addressing CTCF binding to DNA from immor-

talized B-cells were collected from the ENCODE project portal.

Exclusion of files with aberrant quality score distributions left 16

BAM files corresponding to 12 distinct individuals; two

technical replicates were available for each of four individuals.

Furthermore, different base-call quality score scales were used

for two batches of samples; by subtracting 31 from the reported

mean quality scores for one set of samples, approximately

identical medians and interquartile ranges were established for

mean quality scores for all retained samples. Base calls for reads

bound at all genomic locations with positive coverage were

tabulated using the VariantTools tallyVariants function, and

reduced to locations exhibiting statistical evidence of allele-

dependent CTCF binding using the callVariants function.

Each of these variant assessment tools makes use of infrastruc-

ture derived from GSNAP [11] with key results materialized as

GRanges instances. Table 4 depicts an excerpt from a callVariants

output.

The genome-wide searches for allele-dependent CTCF binding

events employed default settings for variant calling by VariantTools

callVariants, which include criteria on minimum coverage,

minimum diversity of read cycles at which base is found, and

limitation of risk of strand bias. This process yielded a total of

19655 locations with evidence of allele-dependent CTCF

binding, corresponding to 50750 events over the 12 individuals.

We obtained GRanges representations of dbSNP build 137 with

the scanVcf function of the VariantAnnotation. This facilitated

distributed computation for partitioning allele-dependent CTCF

binding events into 12691 coincident with known polymorphisms

and 6964 at locations where no SNP has been reported in

dbSNP.

Allelic imbalance in CTCF binding corresponds to departure

of the alternate nucleotide proportion (ANP) at a CTCF

binding site from 50%. The upper panels of Figure 6 show the

distributions of ANP stratified by coincidence of allele-

dependent CTCF binding locations with locations of known

SNP. The lower panels show identically stratified associations

between ANP and mean base-call qualities for pileups over the

allele-dependent binding locations. While the off-SNP locations

show a proponderance of ANP below 20%, there is also an

indication that base-call quality for such binding events is

relatively low, implying that these findings would be unlikely to

replicate. For example, among on-SNP allele-dependent

Table 4. Partial output of countVariants applied to a BAM file from an ENCODE CTCF ChIP-seq experiment.

GRanges with 8 ranges and 5 metadata columns:

seqnames ranges strand | ref alt ncycles count count.ref

NA06990_2 chr1 [11391, 11391] + | T A 7 19 5

NA06990_2 chr1 [793522, 793522] + | T A 1 4 10

NA06990_2 chr1 [825860, 825860] + | G A 1 4 5

NA06990_2 chr1 [968600, 968600] + | A C 2 5 6

NA06990_2 chr1 [1057713, 1057713] + | A C 3 4 19

NA06990_2 chr1 [1376423, 1376423] + | G C 5 5 53

NA06990_2 chr1 [1376430, 1376430] + | T C 4 4 51

NA06990_2 chr1 [1610542, 1610542] + | A C 4 4 28

The GRanges instance includes location-specific information on 24 attributes of each call, including information on sequencer cycle, base call quality distribution, and
other features of BAM-based variant calling as performed by GSNAP [11].
doi:10.1371/journal.pcbi.1003118.t004
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binding calls with ANP below 20%, 5% had mean quality less

than 5; the corresponding frequency for low-quality on-SNP

allele-dependent binding locations calls was 41%.

Figure 6 was constructed using the packages and features

described above with very little programming effort needed to

specialize the computations to this example. Most computational

biologists and other interested investigators could easily carry out

these steps. We can conclude that allelic imbalance in CTCF

binding events is frequently detectable but, for the data

considered, the apparent imbalances observed are likely a mix

of real biology and technical artifacts originating from, e.g.,

sequencing and read mapping errors. Careful analysis of

metadata collected in the variant-calling process may help to

disentangle the key factors contributing to allele-dependent

CTCF binding.

Software Based on the Infrastructure
There is a growing ecosystem of packages based on this

infrastructure. By current count, more than 80 packages depend

directly on the packages presented here. This includes packages for

input and output of ranges ( rtracklayer , Rsamtools ) [12,13], quality

assessment ( ShortRead ) [7], sequence analysis ( Biostrings ) [14],

variant calling ( VariantTools ) [15], and other tasks. To summarize

the different use cases addressed by dependent packages, Table 5

tabulates the descriptive labels chosen from a controlled vocab-

ulary by the package authors.

Availability and Future Directions

All of the packages described, including IRanges, GenomicRanges

and GenomicFeatures, form the core infrastructure for sequence

analysis in Bioconductor and are available from the project

Figure 6. Top panels: distributions of alternate nucleotide proportions for on- and off-SNP allele-dependent CTCF binding events. Bottom panels:
relationships between average call quality values and alternate nucleotide proportions are depicted using a 2D density estimate (darker regions
correspond to higher density.).
doi:10.1371/journal.pcbi.1003118.g006
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website: http://bioconductor.org (see also Software S1-

S3). We aim to continue to support scientists in their drive to

further science by asking increasingly complex and integrative

questions about increasingly complex and heterogeneous data. For

example, we are working towards better support for detecting

alternative and novel splicing, measuring isoform-specific expres-

sion, annotating sequence variants, mapping between genome,

transcript and protein coordinate spaces, and integrating tran-

script annotations with gene-level metadata. There is also an

unmet need in the visualization of genomic ranges. In particular,

we need better visualizations for relating RNA-seq coverage and

junction counts to transcript structures, and for diagnosing read

alignments in the context of variant calling. Finally, as datasets

continue to expand in size, we continue to seek more efficient

algorithms and data structures, and we are vigilant for opportu-

nities to leverage parallel computing.

Supporting Information

Software S1 The IRanges package. The IRanges package

provides efficient low-level and reusable S4 classes for storing and

manipulating ranges of integers and compressed, genome-length

vectors.

(GZ)

Software S2 The GenomicRanges package. The Genomi-

cRanges package defines general purpose containers for storing

genomic ranges as well as more specialized containers for storing

alignments against a reference genome.

(GZ)

Software S3 The GenomicFeatures package. The Geno-

micFeatures package is a set of tools and methods for making and

manipulating transcript-centric annotations.

(GZ)
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Table 5. Selected packages based on the Ranges
infrastructure.

Term Count Example packages

Genetics 16 NarrowPeaks, nucleR, GenomicFeatures,
mosaics

Preprocessing 11 MEDIPS, biovizBase, TSSi, HMMcopy

Infrastructure 9 Genominator, nnotationDbi, ggbio,
dInfoBuilder

GeneExpression 8 GGtools, easyRNASeq, Repitools, TransView

Sequencing 5 girafe, triform, seqbias, rSFFreader

Microarray 4 methyAnalysis, Gviz, MinimumDistance,
charm

Clustering 4 chroGPS, methVisual, DirichletMultinomial,
PICS

GenomicSequence 3 rGADEM, MotifDb, MotIV

QualityControl 3 ShortRead, R453Plus1Toolbox, htSeqTools

Statistics 2 oneChannelGUI, PING

OneChannel 2 xmapcore, annmap

DataRepresentation 2 genoset, FunciSNP

GeneticVariability 2 VanillaICE, SNPchip

Bioinformatics 2 DiffBind, segmentSeq

ChIPseq 2 chipseq, BayesPeak

Other 10 ChromHeatMap, gwascat, ChIPpeakAnno,
OTUbase

Categories are biocViews terms. Up to 4 packages were randomly sampled from
Bioconductor packages that explicitly declare a dependence on IRanges,
GenomicRanges, or GenomicFeatures packages.
doi:10.1371/journal.pcbi.1003118.t005
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