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S U M M A R Y
Vening Meinesz’ inverse problem in isostasy deals with solving for the Moho depth from
known Bouguer gravity anomalies and “normal” Moho depth (T0, known, e.g. from seismic
reflection data) using a flat Earth approximation. Moritz generalized the problem to the global
case by assuming a spherical approximation of the Earth’s surface, and this problem is also
treated here. We show that T0 has an exact physical meaning. The problem can be formulated
mathematically as that of solving a non-linear Fredholm integral equation of the first kind, and
we present an iterative procedure for its solution. Moreover, we prove the uniqueness of the
solution.

Second, the integral equation is modified to a more suitable form, and an iterative so-
lution is presented also for this. Also, a second-order approximate formula is derived, which
determines the Moho depth to first/linear order by an earth gravitational model (EGM), and
the remaining short-wavelength/non-linear part, of the order of 2 km, can be determined by
iteration. A direct, second-order formula, in principle accurate to the order of 25 m, combines
the first-order solution from an EGM with a second-order term, which may include terrestrial
Bouguer gravity anomalies around the computation point.

Key words: Inverse theory; Gravity anomalies and Earth structure; Crustal structure; Me-
chanics, theory, and modelling.

1 I N T RO D U C T I O N

The Mohorovicic discontinuity (or shortly Moho), discovered by the Croatian seismologist A Mohorovicic in 1931, is a well-known density
contrast between the Earth’s crust and mantle. The densities of the Earth’s crust and mantle are traditionally assumed to be of the orders of
2.67 and 3.27 g cm–3, respectively, and seismic reflection technique has revealed that the depth to the Moho is of the order of 30–100 km
beneath continents, while it reduces to the order of 8 km under ocean basins. However, it should be emphasized that the seismic Moho does
not necessarily agree with the gravimetric one, as they are based on different assumptions and hypotheses. Except for its interests among
geologists, geophysicists and geodesists, the Moho has lately also gained an interest for such a disparate issue as the implementation of
Article 76 of the United Nation’s Convention for the Law of the Sea from 1982, which is concerned with the definition and extension of the
continental shelf (e.g. Cook & Carleton 2000; ABLOS 2006).

Assuming that, at least in general, the Earth’s gravity field is isostatically compensated by the variable depth to the Moho, Vening
Meinesz (1931) formulated an inverse problem of isostasy to solve for the Moho depth from observed Bouguer gravity anomalies at the
Earth’s surface and the known density contrast at the Moho boundary. In contrast to previous studies with pure local topographic compensation,
for example, J.H. Pratt’s theory from 1854 and 1859 (Heiskanen & Moritz 1967, p. 134), Vening Meinesz approach considers a regional
isostatic compensation. As numerous later studies on this problem, for example, by Parker (1972), Oldenburg (1974) and Granser (1986),
Vening Meinesz provided a solution in planar approximation of sea level. However, in principle, the solution is related with the global gravity
field, and recent (mostly satellite derived) earth gravitational models (EGMs) should be important data sources in such solutions. The Vening
Meinesz’ problem was generalized to a global, spherical earth model by Moritz (1990, section 8.3.2), and our investigation is closely related
with this study, which we hereafter name the Vening Meinesz-Moritz (VMM) Problem of Isostasy.

2 D E R I VAT I O N O F T H E I N T E G R A L E Q UAT I O N

2.1 The basic integral equation

The VMM problem (Vening Meinesz 1931; Moritz 1990) is to determine the Moho depth T such that the compensating attraction AC(T )
totally compensates the Bouguer gravity anomaly (�gB)on the Earth’s surface (approximated by a sphere of radius R), implying that the
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isostatic anomaly (�gI) vanishes for each point on the Earth’s surface, that is,

�gI = �gB + AC(T ) = 0. (1)

It is assumed that the Moho density contrast (�ρ) is a known constant, yielding that the compensation potential at an arbitrary point P
can be written as the Newton integral

VC(P) = k

∫ ∫
σ

R−T0∫
R−T

r 2dr

lP
dσ, (2)

where k = G�ρ, G is the gravitational constant, T0 is the ‘normal’ Moho depth (to be exactly defined in Section 2.3), σ is the unit sphere
and lP =

√
r 2

P + r 2 − 2rrPt . Here, rP and r are the geocentric distances to the computation point and integration point, respectively, and t is
the cosine of the geocentric angle (to be denoted ψ) between these two points. Eq. (2) can also be written

VC(P) = VC0(P) + dVC(P), (3a)

where

VC0(P) = k

∫ ∫
σ

R−T0∫
R

r 2dr

lP
dσ (3b)

is the potential contribution from the mean Moho potential (given by the normal Moho surface), and

dVC(P) = k

∫ ∫
σ

R∫
R−T

r 2

lP
drdσ (3c)

is the potential contribution from the variable Moho depth T . (At this point it deserves to be mentioned, that the potential VC0, and therefore
also the attraction AC0, that follows below, does not contribute to the isostatic compensation.) The compensation attraction at point P can thus
be decomposed into the terms

AC(P) = AC0(P) + dAC(P) (4)

with the components

AC0(P) = −∂VC0

∂rP
= k

∫ ∫
σ

R−T0∫
R

r 2(rP − r t)

l3
P

drdσ, (5)

and

dAC(P) = −∂dV (P)

∂rP
= k

∫ ∫
σ

R∫
R−T

r 2 (rP − r t)

l3
P

drdσ

= k

∫ ∫
σ

[J2(rP, t, T ) − J3(rP, t, T )]dσ, (6a)

where (see, e.g. Bois 1961)

J2(rP, t, T ) = rP

∫ R

R−T

r 2

l3
P

dr = −rP

[
rPt + (1 − 2t2)x

1 − t2

1

lPx

]x=R

x=x1=R−T

+ rP ln
R − rPt + lP0

R − T − rPt + lPx1

(6b)

and

J3(rP, t, T ) = t

R∫
R−T

r 3

l3
P

dr =
[{

x2 + 6t2 − 5

1 − t2
rpxt + (2 − 3t2)

1 − t2
r 2

P

}
t

lPx

]x=R

x=x1=R−T

+ 3rPt2 ln
R − rPt + lP0

R − T − rPt + lPx1

. (6c)

Here, we have introduced the abbreviations lP0 =
√

r 2
P + R2 − 2RrPt and lPx =

√
r 2

P + x2 − 2rPxt . In particular, for rP = R and
τ = T/R one obtains

J2(R, t, τ ) = R2

[(
1 − 2t2

)
(1 − τ ) + t

(1 − t2) lPx1

−
(
1 − 2t2

)+ t

(1 − t2) lP0

]
+ R ln � (7a)

and

J3 (R, t, τ ) = R2t

1 − t2

[{
(x/R)2 (1 − t2

)− (
5 − 6t2

) x

R
t + 2 − 3t2

} 1

lPx

]x=R

x=x1

+ 3Rt2 ln �, (7b)

where

� = 1 − t + lP0/R

1 − t − τ + lPx1/R
. (7c)
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Vening Meinesz-Moritz problem in isostasy 1529

For rP = R and introducing s = 1 − τ , we thus obtain the following global surface integral from eq. (6a):

d ÃC(P) = dAC(P)rP=R = k R

∫ ∫
σ

K (ψ, s)dσ, (8)

where the integration function can thus be written

K (ψ, s) = 1

R
[J2 (R, t, τ ) − J3 (R, t, τ )] . (9)

In eq. (16) of Section 2.2, we present K (ψ, s)as a series in Legendre’s polynomials.
Based on the above derivations the integral equation for τ = T/R = 1 − s and τ0 = T0/R becomes

�gB + ÃC(P) = 0, (10)

where ÃC(P) = AC(P)rP=R , and AC(P) was given by eqs (4)–(6a), which yields also

d ÃC(P) = −�gB − AC0(P). (11)

In eq. (11), the unknown function τ is implicitly hidden in the integral of d ÃC(P)of eq. (8), and the right-hand side is regarded as a given
function (which requires that τ0 be given). By inserting eq. (8) into eq. (11), we get the non-linear Fredholm integral equation of the first kind

R

∫ ∫
σ

K (ψ, s)dσ = f (P) , (12a)

where

f (P) = − [�gB(P) + AC0(P)] /k, (12b)

whose solution for s may not necessarily be unique or even exist. In Section 5, we will dwell upon the uniqueness of the solution.

2.2 The kernel K(ψ, s)expressed as a series

The inverse distance of eq. (2) can be expressed by the following series in Legendre’s polynomials, Pn(t):

l−1
P =

∞∑
n=0

rn

rn+1
P

Pn (t) ;t = cos ψ, for rP ≥ R ≥ r , (13)

which leads to the following expressions of the residual compensation potential and attraction of eqs (3c) and (6a), respectively:

dVC(P) = k
∞∑

n=0

∫ ∫
σ

R∫
R−T

rn+2

rn+1
P

dr Pn (t) dσ

= k
∞∑

n=0

R2

n + 3

(
R

rP

)n+1 ∫ ∫
σ

[
1 − sn+3

]
Pn (t) dσ, (14)

and

d ÃC = (dAC)rP=R = k R
∞∑

n=0

n + 1

n + 3

∫ ∫
σ

[
1 − sn+3

]
Pn (t) dσ. (15)

Comparing eqs (8) and (15), we thus obtain

K (ψ, s) =
∞∑

n=0

n + 1

n + 3

(
1 − sn+3

)
Pn(t). (16)

This formula can be rewritten in a closed form. To derive that we first rewrite the equation as

K (ψ, s) =
∞∑

n=0

(
1 − sn+3

)
Pn (t) − 2 [S (1) − S (s)] , (17a)

where

S(s) =
∞∑

n=0

1

n + 3
sn+3 Pn(t) = s

s∫
0

∞∑
n=0

xn+2 Pn (t)dx = s

s∫
0

x2

Lx
dx

= s

2

[
(x + 3t) Lx + (

3t2 − 1
)

ln (x − t + Lx )
]x=s

x=0
(17b)

with Lx = √
1 + x2 − 2xt . Inserting eq. (17b) into eq. (17a), one finally arrives at

K (ψ, s) = 1

L0
− s3

L
+ 3t(1 − s) + (

s2 + 3st
)

L − (1 + 3t) L0

+ (
3t2 − 1

) (
s ln

s − t + L

1 − t
− ln

1 − t + L0

1 − t

)
, (18)
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where we have also introduced

L−1
0 =

∞∑
n=0

Pn(t) = 1√
2(1 − t)

= 1

2 sin ψ

2

, (19a)

and

L−1 =
∞∑

n=0

sn Pn(t) = 1√
1 − 2st + s2

. (19b)

As s < 1, eq. (18) shows that K (ψ, s) is a regular function all over the sphere. Also, as s is always close to 1, the function is always
close to zero, except for t = 1. This property will be useful in solving eq. (12a).

2.3 The definition of T0

The normal Moho depth T0 will now be precisely defined from a mathematical point of view and given a physical meaning. If we assume
that the Bouguer gravity anomaly has the global average zero, that is, no zero-degree spherical harmonic, it follows from eqs (1) and (4) that

ÃC0 + 1

4π

∫ ∫
σ

d ÃCdσ = 0, (20)

where we use the notation X̃ = (X )rP=R . As the first term of this equation can be simplified to

ÃC0 = 4πk R

3

[
(1 − τ0)3 − 1

]
, (21)

it follows from eqs (5) and (15) that

4πk R

3

(
1 − T0

R

)3

− k R

3

∫ ∫
σ

(
1 − T

R

)3

dσ = 0, (22)

with the following solution for T0:

T0

R
= 1 − 3

√√√√ 1

4π

∫ ∫
σ

(1 − T/R)3 dσ , (23)

with a first-order approximation equal to the global mean Moho depth

T0 ≈ T̄ = 1

4π

∫ ∫
σ

T dσ . (24)

For the practical realization of T0, we may use Moho depths T determined from seismic data.
The physical meaning of the solution for T0 becomes obvious if we rearrange eq. (22) as follows:

4πρ0

3

[
R3 − (R − T0)3] = ρ0

∫ ∫
σ

R∫
R−T

r 2dr, (25a)

which implies that T0 should be chosen under the law of mass conservation of the compensation masses, that is, the total mass between the
undisturbed Moho with constant radius T0 and the Earth’s surface S (approximated by the sphere of radius R) is equal to the mass between
the real Moho and S.

Alternatively, eq. (25a) can be written in the form

�ρ0

∫ ∫
σ

R−T∫
R−T0

r 2drdσ = 0, (25b)

which means that normal Moho at depth T0 is defined such that the total mass anomalies caused by the true Moho above and below this
surface are the same.

3 A S O LU T I O N T O T H E O R I G I NA L I N T E G R A L E Q UAT I O N F O R τ

In this section, we look for a solution procedure to the non-linear integral equation of the first kind, eq. (12a). According to Chambers (1976,
p. 148) ‘finding a solution’ (of such an equation) ‘is entirely a matter of luck, trial and error’. First, we will derive a (approximate) solution
for τ , which can serve as an initial value for the iterative solution that follows.

C© 2009 The Author, GJI, 179, 1527–1536

Journal compilation C© 2009 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/179/3/1527/777638 by guest on 20 August 2022



Vening Meinesz-Moritz problem in isostasy 1531

3.1 An approximate solution for τ

Considering that τ is only of the order of 0.01, eq. (15) can be approximated to first order by

d ÃC(P) ≈ k R
∞∑

n=0

n + 1

n + 3

∫ ∫
σ

{1 − [1 − (n + 3) τ ]} Pn(t)dσ ≈ 2πk R(τP + τ0), (26)

where we have used Dirac’s delta function on the sphere

δ(t) =
∞∑

n=0

(2n + 1)Pn(t)/ (4π ),

with the property∫ ∫
σ

δ
(
cos ψPQ

)
hQdσQ = hP (27)

for any continuous function hQ on the sphere, and τ0 = T0/R. Hence, eqs (26), (1), (4) and (21) yield

τP ≈ −�gB + ÃC0

2πk R
≈ − �gB

2πk R
+ τ0. (28)

Eq. (28) thus suggests that τ can be uniquely estimated from �gB provided that τ0 is known.

3.2 Successive approximations

A tentative iteration procedure for eq. (12a) can be written

τ i+1(P) = τ i (P) + c

[
f (P)/R −

∫ ∫
σ

K
(
ψ, si

)
dσ

]
;i= 0, 1, 2, . . . , (29a)

or, for T i = Rτ i ,

T i+1 = T i + c∗

⎡
⎣ f (P) − R

∫ ∫
σ

K (ψ, si )dσ

⎤
⎦ ; i = 0, 1, 2, . . . (29b)

where c is a suitably selected constant and c∗ = cR. Once si = s, it implies that eqs (29a) and (29b) have converged to the unique solution
of eq. (12a). Unfortunately, there is no safe way to choose the constant c (not even its sign) to warrant convergence of the equations, but only
trials remain. (In some numerical tests we found c = 0.35 appropriate.)

4 A M O D I F I E D I N T E G R A L E Q UAT I O N

As discussed above, the iterative solutions to the original integral equation, eq. (12a), do not necessarily lead to convergence. Here, we will
reformulate the basic equation and present new iterative solutions from it. The results will be based on the following proposition.

Proposition 1 : 2 f (P) − MQ

[
H
(
ψPQ

)
f (Q)

] = 4πRMQ

[
B
(
ψPQ, sQ

)]
, (30a)

where

MQ [ ] = 1

4π

∫ ∫
σ

[ ]dσQ, (30b)

H (ψ) =
∞∑

n=0

2n + 1

n + 1
Pn (cos ψ) (30c)

and

B (ψ, s) =
∞∑

n=0

2n + 1

n + 3

(
1 − sn+3

)
Pn (cos ψ) . (30e)

Proof: First, we consider the orthogonality of Legendre’s polynomials when integrated over the sphere:

MQ′
[
Pn(cos ψPQ′ )Pk

(
cos ψQ′Q

)] =

⎧⎪⎨
⎪⎩

Pn

(
cos ψPQ

)
2n + 1

, if n = k

0 otherwise.

(31)

Inserting the right-hand side of eq. (12a) into the left member (LM) of eq.(30a), and considering eq. (31), we obtain

LM = 8πR
∞∑

n=0

MQ

[
n + 1

n + 3

(
1 − sn+3

)
Pn

(
cos ψPQ

)]− 4πR
∞∑

n=0

MQ

[
1 − sn+3

n + 3
Pn

(
cos ψPQ

)]
, (32)

which equals the right member of the proposition.
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1532 L. E. Sjöberg

The kernel function H (ψ), presented in eq. (30c) and frequently denoted Hotine’s function in the honour of late M. Hotine, can be
written in the closed form

H (ψ) = 2

L0
− ln

(
1 − t − L0

1 − t

)
. (33a)

or

H (ψ) = cos ec (ψ/2) + ln [1 + cos ec (ψ/2)] . (33b)

Similarly, the function B becomes in a closed form:

B(ψ, s) = 2

L0
− 2

s2

L
+ 5S(s) − 5S(1), (34)

where L0 and L were defined below eq. (8b), and S(s) was defined in eq. (17b).
Below we consider two solutions to eq. (30a).

4.1 Successive approximations

With reference to Proposition 1, it is obvious that the global integral of the kernelB(ψ, s) is very much dominated by the value of the kernel
around point P, while the contribution from other points on the sphere is small. Considering also that

MQ{B (ψ, sP)} = 1

3

[
1 − (1 − τP)3] , (35)

we easily obtain from the proposition above:

τP = F(P)/R + τ 2
P − τ 3

P /3 + MQ {B (ψ, sP) − B(ψ, s)} , (36a)

or

TP = F(P) + T 2
P

R
− T 3

P

3R2
+ RMQ {B (ψ, sP) − B (ψ, s)} , (36b)

where

F(P) = [2 f (P) − MQ

{
H (ψPQ) f (Q)

}
]/(4π ). (36c)

The modified integral eq. (36b) leads to the iterative process

τ k+1
P = F(P)/R + (τ k

P )2 −
(
τ k

P

)3

3
+ MQ

{
B
(
ψ, sk

P

)− B
(
ψ, sk

)}
,k= 1, 2, . . . (37)

with τ 0(Q) = RF(Q).
Using eq. (30e) with the binomial series

sn+3 = (1 − τ )n+3 = 1 − (n + 3) τ + (n + 3) (n + 2) τ 2/2 − ... (38)

and

sn+3
P = (

1 − τP

)n+3 = 1 − (n + 3) τP + (n + 3) (n + 2) τ 2
P /2 − ... (39)

we can see that the integral of eq. (36a) is of order τ 2 ≈ 10−4, whileF(P)/R is of order 10−2. We also expect the Moho to be a rather smooth
surface. Hence, the process should converge well for all practical applications (in the sense that the resolution is small but finite).

4.2 A solution to order τ 2

We now expand B(ψ, s) of eq. (30e) to order τ 2 (and we neglect higher order terms). The result for its global average is

MQ[B (ψ, s)] =
∞∑

n=0

(2n + 1)MQ

[(
τ − n + 2

2
τ 2

)
Pn (cos ψ)

]

= τ − τ 2 − MQ

[
W (ψ)τ 2

]
, (40)

where (cf. Heiskanen & Moritz 1967, p. 39)

MQ

[
W (ψ) τ 2

] = 1

2

∞∑
n=0

(2n + 1)nMQ

[
τ 2 Pn(cos ψ)

] = −1

8
MQ

[
τ 2 − τ 2

P

sin3 (ψ/2)

]
. (41)

Inserting eqs (40) and (41) into eq. (30a), one arrives at the (non-linear) Fredholm equation:

τP = τ 2
P + F(P)/R − 1

8
MQ

[
τ 2 − τ 2

P

sin3 ψ

2

]
, (42a)

or

TP = F(P) + T 2
P

R
− 1

8R
MQ

[
T 2 − T 2

P

sin3(ψ/2)

]
, (42b)
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Vening Meinesz-Moritz problem in isostasy 1533

which lends itself to iteration. The third term needs some special care to compute, as it has a strong singularity at the computation point.
Hence, for the near-zone (within the cap size ψ0) we may use a plane approximation to the integral (I), that is,

I = 1

32π R

2π∫
α=0

ψ0∫
ψ=0

T 2 − T 2
P

sin3 ψ

2

sin ψdψdα ≈ 1

4π

2π∫
α=0

D0∫
D=0

T 2 − T 2
P

D2
dDdα, (43)

where we have assumed that R sin ψ ≈ 2R sin ψ

2 ≈ Rψ ≈ D and R2dσ ≈ DdDdα, and D is the surface distance between computation and
integration point. Furthermore, by assuming that T varies by the polynomial

T = TP + D
(
Tx cos α + Ty sin α

)+ D2

2

(
Txx cos2 α + Txy sin 2α + Tyy sin2 α

)
, (44)

where all Ti and Tij are horizontal derivatives in the x- and y-directions of T , it follows from eq. (43) that

I ≈ D0

8

[
TP

(
Txx + Tyy

)+ 2
(
T 2

x + T 2
y

)]
. (45)

The horizontal derivatives of T can be regarded as unknown coefficients in the surface polynomial representation of eq. (44), and they can
thus be determined by least squares from the (approximately) known values of T of the grid around the computation point.

Let us take a closer look at the first-order approximation of eq. (42b):

T (P) ≈ F(P) = [2 f (P) − MQ

{
H
(
ψPQ

)
f (Q)

}
]/(4π ). (46)

Inserting eq. (12b) with k = G�ρ, we arrive at

T (P) ≈ R

4πϒ

∫ ∫
σ

H (ψ)�gBdσ − R
(2�gB + Ac0)P

ϒ
≈ T0 − 2R�gB

ϒ
+ R

4πϒ

∫ ∫
σ

H (ψ)�gBdσ , (47)

where

ϒ = 4πG R�ρ ≈ 2011 Gal for R = 6371 km and �ρ = 0.6 g cm −3.

For comparison, the geoid height N can be determined from gravity disturbances δg by Hotine’s formula

N = R

4πγ

∫ ∫
σ

H (ψ)δgdσ, (48)

where γ is normal gravity at sea level of the order of 981 Gal. The similarities of eqs (46) and (45) are obvious. (Note that eq. 48 could also
include a zero-degree term, corresponding to the first two terms of eq. 47).

4.3 A solution including spherical harmonics

The function f (P) of eq. (12b) is, except for the constant, proportional to the Bouguer anomaly. Considering the expansion of f (P) in a
series of fully normalized spherical harmonics, Ynm(θ, λ), that is,

f (P) =
∞∑

n=0

n∑
m=−n

fnmYnm (θ, λ) , (49a)

where

fnm = 1

4π

∫ ∫
σ

f Ynmdσ, (49b)

as well as the series expansion of H (ψ) of eq. (30c), it follows that F(P) defined in eq. (36c) can be expanded as an approximation to the
Moho depth

T ≈ T1 = F(P) = 1

4π

[
2 f (P) −

∞∑
n=0

1

n + 1

n∑
m=−n

fnmYnm(θ, λ)

]

= 1

4π

[ ∞∑
n=0

(
2 − 1

n + 1

) n∑
m=−n

fnmYnm(θ, λ)

]
. (50)

Hence, a first-order approximation of T can be directly computed from a global set of spherical harmonics of the Bouguer gravity anomaly, fnm ,
where the upper limit of eq. (50) thus is finite. In practice, the free-air gravity anomaly (�g) is directly available from an EGM, for example,
EGM2008 complete to degree and order 2160. With access to a corresponding spherical harmonic representation Hnm of the solid Earth rock
equivalent topographic height H (with negative heights in oceanic areas) and assuming constant topographic density, it is straightforward to
generate the set of spherical harmonics of the Bouguer anomaly, simply by subtraction the coefficients 2πμHnm from the free-air anomaly
coefficients (Gnm). However, a better solution would require that the lateral density variations of topographic density be considered. In the
latter case the result is

fnm =
{

[2π (μH )00 − AC0]/(4πk), if n = 0[
2π (μH )nm − Gnm

]
/(4πk) otherwise

, (51)
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1534 L. E. Sjöberg

where we have assumed that the zero-degree harmonic of the free-air gravity anomaly, G00, is zero. The solid Earth rock equivalent topographic
series is given by the formula

(μH )nm = 1

4π

∫ ∫
σ

(μH )reqYnmdσ, (52a)

where the rock equivalent column of mass/unit area is

(μH )req =
{

μH, if H ≥ 0

(μw − μ) H if H < 0.
(52b)

Here, μw is the density of water. In principle, to reach a higher resolution in the estimation of T1, the term f (P)of eq. (50) can be determined
from the local gravity anomaly, while the remaining sum, that tapers off with the degree, is advantageously estimated by an EGM.

Note. In the global approach the simple Bouguer anomaly is related with a Bouguer shell rather than a Bouguer plate. The shell yields
the factor 4π rather than 2π in eq. (51). However, the Bouguer shell is related with a much bigger terrain effect (not considered in eq. 51)
than the Bouguer plate, and this fact made us choose the factor 2π for the topographic correction to achieve a simple Bouguer anomaly.

By combining eqs (50) and (42b), we thus obtain a second-order iterative solution to T :

TP = T1 + T 2
P

R
− 1

8R
MQ

(
T 2 − T 2

P

sin3 (ψ/2)

)
, (53a)

or, to the same order of precision, a direct formula:

TP = (T1)P + (T1)2
P

R
− 1

8R
MQ

((
T 2

1

)
Q

− (
T 2

1

)
P

sin3 (ψ/2)

)
. (53b)

Here, the integral should be significant only in a small region around the computation point. As eqs (53a) and (53b) include all terms of
second order and T ≤ 100 km, the approximation error is of the order of 1003/63712 km ≈25 m, which should be sufficiently small for most
practical applications.

5 G E N E R A L I Z AT I O N O F T H E E Q UAT I O N A N D U N I Q U E N E S S O F T H E S O LU T I O N

5.1 Generalization

Our basic integral equation of eq. (12a) was limited to the case with rP = R, that is, all the observations f (P) were given on the sphere (S)
of radius R. However, we can easily generalize this equation to f (P) located at an arbitrary point P with rP ≥ R (on or outside the sphere).
From eqs (1) and (4), we thus obtain

dAC(P) = −[�gB(P) + AC0(P)], (54)

or, after inserting eq. (6a) and using the surface element dS = R2dσ for the sphere:

1

R

∫ ∫
σ

K (rP, ψ, τ )dS = f (P), (55a)

where

K (rP, ψ, τ ) =
∞∑

n=0

n + 1

n + 3

(
R

rP

)n+2

(1 − sn+3)Pn(t) (55b)

and f (P), given in eq. (12b), is generalized to any point P in the exterior of S. From eq. (9), we also obtain the closed form of eq. (55b):

K (rP, ψ, τ ) = [J2(rP, cos ψ, Rτ ) − J3(rP, cos ψ, Rτ )] , (56)

where J2 and J3 were given in eqs (6b) and (6c).

5.2 Uniqueness of the solution

We will now prove that eqs (55a) and (55b) have a unique solution for τ . First, we notice that for any degree n it holds that r−n−1
P Pn(t) is a

harmonic function in the exterior of the sphere S. Hence, this applies also to the function U = rP K (rP, ψ, τ ). Let us assume that eq. (55a)
is satisfied by two solutions τ1 and τ2. Let us also introduce the notations U1 = rP K (rP, ψ, τ1), U2 = rP K (rP, ψ, τ2) and their difference
W = U1 − U2. By inserting W into Green’s first identity (e.g. Heiskanen & Moritz 1967, p. 11), we obtain∫ ∫

υ

∫
[W�W + gradW • gradW ]dυ =

∫ ∫
S

W
∂W

∂ R
dS = 1

2

∂

∂ R

∫ ∫
S

W 2dS. (57)
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Vening Meinesz-Moritz problem in isostasy 1535

Here, the volume υ is the exterior of S, � is the Laplace operator and • denotes scalar product of vectors. As W = �W = 0 and gradW = 0
in υ, we arrive at the equation

∂

∂ R

∫ ∫
S

W 2dS = 0, (58)

which can be integrated to∫ ∫
S

W 2dS = C, (59)

where C is the integration constant. As U1, U2 and W are all regular at infinity, C takes on the value 0. Hence, the only solution of eq. (59) is
W = 0 for each point on S, that is, U1 = U2 implying τ1 = τ2. Thus, we have proved that the integral equation (55a) has a unique solution
for τ . This implies, that with respect to a fixed normal Moho depth T0 and a known, constant density contrast �ρat the Moho, the VMM
hypothesis, expressed mathematically by eqs (55a) and (55b), has a unique solution for the Moho.

Note. A mathematical problem is called an improperly posed problem if either or both conditions on uniqueness and stability of the
solution is/are violated. The solution of the VMM problem belongs to this class, as its solution is unique but ill-conditioned.

6 P L A NA R A P P ROX I M AT I O N S

If we assume that the radius R is infinite, the surface element changes according to R2dσ → dD = δdδdα, where dD is the surface element
on the plane with radial distance δ and azimuth α. Also, from eq. (18)

K (ψ, s)

R
→ 1

δ
− 1√

δ2 + T 2
, (60)

so that an iterative form of eq. (29b) can be written

T i+1
P = −�gB + AC0(P)

4πk�ρ
+ c

4π

∫ ∫
D

(
1√

d2 + (T i )2
− 1√

d2 + (T i
P )2

)
dD, (61)

where D is the infinite integration area of the plane.
Moreover, as

H (ψ)

R
→ 2

δ
and

B(ψ, s)

R
→ 2

δ
− 2√

δ2 + T 2
, (62)

eq. (30a) becomes

f (P) =
∫ ∫

D

(
1

δ
− 1√

δ2 + T 2

)
dD, (63)

which is the same as the generating equation for the iterative solution of eq. (61).

7 C O N C LU D I N G R E M A R K S

We have formulated the Vening Meinesz- Moritz inverse problem for the Moho depth by a global, non-linear integral equation similar to
Moritz (1990). However, our treatment of the problem differs from Moritz approach in a number of ways. First, Moritz approximated the
function K (ψ, s) of eq. (18) by 1/L0 − 1/L . Second, he solved the integral equation by first expanding the term sn+3 = (1 − τ )n+3of eq.
(16) as a binomial series and then developing each term of this series as a Laplace harmonic series. Although the binomial series converges,
this is not likely for the Laplace harmonic series of higher order terms of the binomial series. The convergence behaviour seems to be similar
to that of the Molodensky series, well known in physical geodesy: although the series may not be convergent in a mathematical sense, it is
probably “practically convergent” in the sense that the first few terms give a good approximation provided that the data are suitably smoothed
(Moritz 1990, p. 262). Admittedly, although we have shown that the original integral eq. (9a) has a unique solution (and therefore also that of
Proposition 1), this convergence problem occurs also in the solution to the integral equations.

If we limit the solution to second order, yielding an approximation of the order of 25 m (Section 4.2), the solution will be stable, provided
that the infinite series of eq. (41) is convergent. Considering that Moho is a smooth surface, this convergence is likely. A linear/first-order
solution to the problem can conveniently be obtained from an EGM, like EGM2008 to a resolution of about 5′. The remaining non-linear/short-
wavelength contribution, which we suggest to be determined by an iterative process with the linear solution as its initial value, should not
exceed 2 km.

Finally, it should be emphasized that the Earth’s gravity field is generated by various sources, and the variable Moho topography is only
one of them. In particular, the long-wavelength contribution to the gravity field is mainly due to deep mantle density variations, for example,
related with mantle convection and postglacial rebound, as well as core–mantle topography variations. This implies that the long wavelengths
of gravity, say to degree and order 10, will lead to systematic errors of the computed Moho topography. This problem could be reduced by
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1536 L. E. Sjöberg

excluding the long-wavelength harmonics from the integral equations, both for the Bouguer anomaly and the kernel functions K (ψ, s)and
B(ψ, s), respectively.

The theory developed in this paper will be used in several applications in estimating the Moho depth and density contrast, one of which
is Sjöberg & Baherbandi (submitted).
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