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Abstract 

The spatial heterogeneity of populations and communities plays a central role in many ecological theories, 

for instance the theories of succession, adaptation, maintenance of species diversity, community stability, 

competition, predator-prey interactions, parasitism, epidemics and other natural catastrophes, ergoclines, 

and so on. This paper will review how the spatial structure of biological populations and communities 

can be studied. We first demonstrate that many of the basic statistical methods used in ecological studies 

are impaired by autocorrelated data. Most if not all environmental data fall in this category. We will look 

briefly at ways of performing valid statistical tests in the presence of spatial autocorrelation. Methods 
now available for analysing the spatial structure of biological populations are described, and illustrated 

by vegetation data. These include various methods to test for the presence of spatial autocorrelation in 

the data: univariate methods (all-directional and two-dimensional spatial correlograms, and two- 

dimensional spectral analysis), and the multivariate Mantel test and Mantel correlogram; other descrip- 

tive methods of spatial structure: the univariate variogram, and the multivariate methods of clustering 

with spatial contiguity constraint; the partial Mantel test, presented here as a way of studying causal 

models that include space as an explanatory variable; and finally, various methods for mapping ecological 

variables and producing either univariate maps (interpolation, trend surface analysis, kriging) or maps 

of truly multivariate data (produced by constrained clustering). A table shows the methods classified in 

terms of the ecological questions they allow to resolve. Reference is made to available computer programs. 

Introduction 

In nature, living beings are distributed neither 

uniformly nor at random. Rather, they are aggre- 

gated in patches, or they form gradients or other 
kinds of spatial structures. 

The importance of spatial heterogeneity comes 

from its central role in ecological theories and its 
practical role in population sampling theory. 

Actually, several ecological theories and models 

assume that elements of an ecosystem that are 

close to one another in space or in time are more 

likely to be influenced by the same generating 

process. Such is the case, for instance, for models 
of epidemics or other catastrophes, for the 

theories of competition, succession, evolution and 
adaptations, maintenance of species diversity, 
parasitism, population genetics, population 
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growth, predator-prey interactions, and social 
behaviour. Other theories assume that dis- 

continuities between homogeneous zones are 

important for the structure of ecosystems (succes- 
sion, species-environment relationships: Allen 

etal. 1977; Allen & Starr 1982; Legendre etaL 

1985) or for ecosystem dynamics (ergoclines: 

Legendre & Demers 1985). Moreover, the impor- 

tant contribution of spatial heterogeneity to eco- 

logical stability seems well established (Huffaker 

1958; May 1974; Hassell & May 1974; Levin 

1984). This shows clearly that the spatial or 

temporal structure of ecosystems is an important 

element of most ecological theories. 
Not much has been learned up to now about 

the spatial variability of communities. Most 19th 

century quantitative ecological studies were 
assuming a uniform distribution of living organ- 

isms in their geographic distribution area (Darwin 

1881; Hensen 1884), and several ecological 

models still assume, for simplicity, that biological 

organisms and their controlling variables are dis- 

tributed in nature in a random or a uniform way 

(e.g., simple models of population dynamics, 
some models of forest or fisheries exploitation, or 

of ecosystem productivity). This assumption is 

actually quite remote from reality since the en- 

vironment is spatially structured by various energy 

inputs, resulting in patchy structures or gradients. 

In fluid environments for instance (water, in- 

habited by aquatic macrophytes and phytoplank- 

ton, and air, inhabited by terrestrial plants), 
energy inputs of thermal, mechanical, gravita- 

tional, chemical and even radioactive origins are 
found, besides light energy which lies at the basis 

of most trophic chains; the spatio-temporal 

heterogeneity of energy inputs induces convection 

and advection movements in the fluid, leading to 

the formation of spatial or temporal discontinui- 
ties (interfaces) between relatively homogeneous 

zones. In soils, heterogeneity and discontinuities 
are the result ofgeomorphologic processes. From 

there, then, the spatio-temporal structuring of the 
physical environment induces a similar organi- 

zation of living beings and of biological processes, 
spatially as well as temporally. Strong biological 
activity takes place particularly in interface zones 

(Legendre & Demers 1985). Within homogeneous 

zones, biotic processes often produce an aggre- 

gation of organisms, following various spatio- 

temporal scales, and these can be measured 

(Legendre et al. 1985). The spatial heterogeneity 

of the physical environment thus generates a 

diversity in communities of living beings, as well 

as in the biological and ecological processes that 

can be observed at various points in space. 

This paper includes methodological aspects. 

Table 1. Methods for spatial surface pattern analysis, classi- 

fied by ecological questions and objectives. 

1) Objective: Testing for the presence of spatial autocorre- 

lation. 

1.1) Establish that there is no significant spatial auto- 

correlation in the data, in order to use parametric 

statistical tests. 

1.2) Establish that there is significant spatial autocorre- 

lation and determine the kind of pattern, or shape. 

Method 1: 

Method 2: 

Method 3: 

Correlograms for a single variable, using 

Moran 's /  or Geary'sc; two-dimensional 

spectral analysis. 

Mantel test between a variable (or multi- 

dimensional matrix) mad space (geographical 

distance matrix); Mantel test between a varia- 

ble and a model. 

Mantel correlogram, for multivariate data. 

2) Objective: Description of the spatial structure. 

Method 1: Correlograms (see above), variograms. 

Method 2: Clustering and ordination with spatial or tem- 

poral constraint. 

3) Objective: 

predictor. 

Method: 

Test causal models that include space as a 

Partial Mantel test, using three dissimilarity 

matrices, A, B et C. 

4) Objectives: Estimation (interpolation) and mapping. 

Method 1: Interpolated map for a single variable: trend 

surface analysis, that provides also the regres- 

sion residuals; other interpolation methods. 

Method 2: Interpolation taking into account a spatial 

autocorrelation structure function (vario- 

gram): kriglng map, for a single variable; pro- 

grams give also the standard deviations of the 

estimations, that may help decide where to 

add sampling locations. 

Method3: Multidimensional mapping: clustering and 

ordination with spatial constraint (see above). 



We shall define fn'st what spatial autocorrelation 

is, and discuss its influence on classical statistical 

methods. Then we shall describe the univariate 

and multivariate methods that we have had ex- 

perience with for the analysis of the spatial struc- 

ture of ecological communities (list not neces- 

sarily exhaustive), and illustrate this description 

with actual plant community data. Finally, recent 

developments in spatial analysis will be presented, 

that make it possible to test simple interrelation 

models that include space as an explanatory varia- 

ble. The methods described in this paper are also 

applicable to geology, pedology, geography, the 

earth sciences, or to the study of spatial aspects 

of the genetic heterogeneity of populations. These 

sciences have in common the study of observa- 

tions positioned in geographic space; such obser- 

vations are related to one another by their geo- 

graphic distances, which are the basic relations in 

that space. This paper is organized around a 

series of questions, of increasing refinement, that 

ecologists can ask when they suspect their data to 

be structured by some underlying spatial phe- 

nomenon (Table 1). 

Classical statistics and spatial structure 

We will first try to show that the methods of 

classical statistics are not always adequate to 

study space-structured ecological phenomena. 

This will justify the use of other methods (below) 

when the very nature of the spatial structure 

(autocorrelation) is of interest. 

In classical inferential statistical analysis, one 

of the most fundamental assumptions in hypoth- 

esis testing is the independence of the observa- 

tions (objects, plots, cases, elements). The very 

existence of a spatial structure in the sample space 

implies that this fundamental assumption is not 

satisfied, because any ecological phenomenon 

located at a given sampling point may have an 

influence on other points located close by, or even 

some distance away. The spatial structures we 

find in nature are, most of the time, gradients or 

patches. In such cases, when one draws a first 

sample (A), and then another sample (B) located 
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anywhere near the first, this cannot be seen as a 

random draw of elements; the reason is that the 

value of the variable observed in (A) is now 

known, so that if the existence and the shape of 

the spatial structure are also known, one can 

foresee approximately the value of the variable in 

(B), even before the observation is made. This 

shows that observations at neighbouring points 

are not independent from one another. Random 

or systematic sampling designs have been advo- 

cated as a way of preventing this possibility of 

dependence among observations (Cochran 1977; 

Green 1979; Scherrer 1982). This was then 

believed to be a necessary and sufficient safeguard 

against violations of the assumption of inde- 

pendence of errors. It is adequate, of course, when 

one is trying for instance to estimate the parame- 

ters of a local population. In such a case, a random 

or systematic sample of points is suitable to 

achieve unbiased estimation of the parameters, 

since each point a priori has the same probability 

of being included in the sample; we know of 

course that the variance, and consequently also 

the standard error of the mean, will be larger if the 

distribution is patchy, but their estimation 

remains unbiased. On the other hand, we know 

now that despite the random or systematic allo- 

cation of samples through space, observations 

may retain some degree of spatial dependence if 

the average distance between samples is smaller 

than the zone of spatial influence of the underlying 

ecological phenomenon;  in the case of large-scale 

spatial gradients, no sampling point is far enough 

to lie outside this zone of spatial influence. 

A variable is said to be autocorrelated (or 

regionalized) when it is possible to predict the 

values of this variable at some points of space [or 

time], from the known values at other sampling 

points, whose spatial [or temporal] positions are 

also known. Spatial [or temporal] autocorrela- 

tion can be described by a mathematical function, 

called structure function; a spatial autocorrelo- 

gram and a semi-variogram (below) are examples 

of such functions. 

Autocorrelation is not the same for all distance 

classes between sampling points (Table 2). It can 

be positive or negative. Most often in ecology, 
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Table2. Examples of spatial autocorrelation in ecology 
(non-exhaustive list). Modified from Sokal (1979). 

Sign of spatial 
autocorrelation 

Significant autocorrelation for 

short large 
distances distances 

Very often: any Aggregates or other 
phenomenon that is structures (e.g., 
contagious at short furrows) repeating 
distance (if the themselves trough 
sampling step is space. 
small enough). 

Avoidance (e.g., 
regularly spaced 
plants); sampling 
step too wide. 

Spatial gradient 
(if also significantly 
positive at short 
distance). 

autocorrelation is positive (which means that the 

variable takes similar values) for short distances 

among points. In gradients, this positive auto- 

correlation at short distances is coupled with 

negative autocorrelation for long distances, as 

points located far apart take very different values. 

Similarly, an aggregated structure recurring at 

intervals will show positive autocorrelation for 

distances corresponding to the gap between patch 

centers. Negative autocorrelation for short dis- 

tances can reflect either an avoidance phenome- 

non (such as found among regularly spaced plants 

and solitary animals), or the fact that the sampling 

step (interval) is too large compared to patch size, 

so that any given patch does not contain more 

than one sample, the next sample falling in the 

interval between patches. Notice finally that if no 

spatial autocorrelation is found at a given scale of 

perception (i.e., a given intensity of sampling), it 

does not mean that autocorrelation may not be 

found at some other scale. 

In classical tests of hypotheses, statisticians 

count one degree of freedom for each independent 

observation, which allows them to choose the 

statistical distribution appropriate for testing. 

This is why it is important to take the lack of 

independence into account (that results from the 

presence of autocorrelation) when performing a 

test of statistical hypothesis. Since the value of the 

observed variable is at least partially known in 

advance, each new observation contributes but a 

fraction of a degree of freedom. The size of this 

fraction cannot be determined, however, so that 

statisticians do not know the proper reference 

distribution for the test. All we know for certain 

is that positive autocorrelation at short distance 

distorts statistical tests such as correlation, regres- 

sion, or analysis of variance, and that this distor- 

tion is on the 'liberal' side (Bivand 1980; Cliff & 

Ord 1981); this means that when positive spatial 

autocorrelation is present in the small distance 

classes, classical statistical tests determine too 

often that correlations, regression coefficients, or 

differences among groups are significant, when in 

fact they are not. Solutions to these problems 

include randomization tests, the corrected t-test 

proposed by Cliff & Ord (1981), the analysis of 

variance in the presence of spatial autocorrelation 

developed by Legendre et al. (submitted), etc. See 

Edgington (1987) for a general presentation of 

randomization tests; see also Upton & Fingleton 

(1985) as well as the other references in the 

present paper, for applications to spatial analysis. 

Another way out, when the spatial structure is 

simple (e.g., a linear gradient), is to extract the 

spatial component first and conduct the analysis 

on the residuals (see: trend surface analysis, 

below), after verifying that no spatial autocorrela- 

tion remains in the data. 

The situation described above also applies to 

classical multivariate data analysis, which has 

been used extensively by ecologists for more than 

two decades (Orl6ci 1978; Gauch 1982; Legendre 

& Legendre 1983a, 1984a; Pielou 1984). The spa- 

tial and temporal coordinates of the data points 

are usually neglected during the search for eco- 

logical structures, which aims at bringing out 

processes and relations among observations. 

Given the importance of the space and/or time 

component in ecological theory, as argued in the 

Introduction, ecologists are now beginning to 

study these important relationships. Ordination 

and clustering methods in particular are often 

used to detect and analyse spatial structures in 

vegetation analysis (e.g., Andersson 1988), even 

though these techniques were not designed specifi- 
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cally for this purpose. Methods are also being 

developed that take spatial or temporal relation- 

ships into account during multivariate data 

analysis. These include the methods of con- 

strained clustering presented below, as well as the 

methods of constrained ordination developed by 

Lee (1981), Wartenberg (1985a,b) and ter Braak 

(1986, 1987) where one may use the geographical 

coordinates of the data points as constraints. 

Spatial analysis is divided by geographers into 

point pattern analysis, which concerns the distribu- 

tion of physical points (discontinuous phe- 

nomena) in space - for instance, individual plants 

and animals; line pattern analysis, a topological 

approach to the study of networks of connections 

among points; and surface pattern analysis for the 

study of spatially continuous phenomena, where 

one or several variables are attached to the 

observation points, and each point is considered 

to represent its surrounding portion of space. 

Point pattern analysis is intended to establish 

whether the geographic distribution of data points 

is random or not, and to describe the type of 

pattern; this can then be used for inferring 

processes that might have led to the observed 

structure. Graphs of interconnections among 

points, that have been introduced by point pattern 

analysis, are now widely used also in surface pat- 

tern analysis (below), where they serve for in- 

stance as basic networks of relationships for 

constrained clustering, spatial autocorrelation 

analysis, etc. The methods of point pattern 

analysis, and in particular the quadrat-density 

and the nearest-neighbour methods, have been 

widely used in vegetation science (e.g., Galiano 

1982; Carpenter & Chaney 1983) and need not be 

expounded any further here. These methods have 

been summarized by a number of authors, includ- 

ing Pielou (1977), Getis & Boots (1978), Cicrri 

et al. (1977) and Ripley (1981, 1987). The expos6 

that follows will then concentrate on the methods 

for surface pattern analysis, that ecologists are 

presently experimenting with. 

Testing for the presence of a spatial structure 

Let us first study one variable at a time. If the map 

of a variable (see Estimation and mapping, below) 

suggests that a spatial structure is present, eco- 

logists will want to test statistically whether there 

is any significant spatial autocorrelation, and to 

establish its type unambiguously (gradient, 

patches, etc.). This can be done for two diametri- 

cally opposed purposes: either (1)one wishes to 

show that there is no spatial autocorrelation, 

because one wants to perform parametric statisti- 

cal hypothesis tests; or (2) on the contrary one 

hopes to show that there is a spatial structure in 

order to study it more thoroughly. In either case, 

a spatial autocorrelation study is conducted. 

Besides testing for the presence of a spatial struc- 

ture, the various types of correlograms, as well as 

periodograms, provide a description of the spatial 

structure, as will be seen. 

Spatial autocorrelation coefficients 

In the case of quantitative variables, spatial auto- 

correlation can be measured by either Moran's I 

(1950) or Geary's c (1954) spatial autocorrelation 

coefficients. Formulas are presented in App. 

1. Moran's I formula behaves mainly like 

Pearson's correlation coefficient since its numera- 

tor consists of a sum of cross-products of centered 

values (which is a covariance term), comparing in 

turn the values found at all pairs of points in the 

given distance class. This coefficient is sensitive 

to extreme values, just like a covariance or a 

Pearson's correlation coefficient. On the contrary, 

Geary's c coefficient is a distance-type function, 

since the numerator sums the squared differences 

between values found at the various pairs of 

points being compared. 

The statistical significance of these coefficients 

can be tested, and confidence intervals can be 

computed, that highlight the distance classes 

showing significant positive or negative autocor- 

relation, as we shall see in the following examples. 

More detailed descriptions of the ways of com- 

puting and testing these coefficients can be found 
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in Sokal & Oden (1978), Cliff & Ord (1981) or 

Legendre & Legendre (1984a). Autocorrelation 

coefficients also exist for qualitative (nominal) 

variables (Cliff & Ord 1981); they have been used 

to analyse for instance spatial patterns of sexes in 

plants (Sakai & Oden 1983; Sokal & Thomson 

1987). Special types of spatial autocorrelation 

coefficients have been developed to answer 

specific problems (e.g., Galiano 1983; Estabrook 

& Gates 1984). 

A correlogram is a graph where autocorrelation 

values are plotted in ordinate, against distances 

(d) among localities (in abscissa). When com- 

puting a spatial correlogram, one must be able to 

assume that a single 'dominant '  spatial structure 

exists over the whole area under study, or in other 

words, that the main large-scale structure is the 

same everywhere. This assumption must actually 

be made for any structure function one wishes to 

compute; other well-known functions, also used 

to characterize spatial pattems, include the vario- 

gram (below), Goodall 's (1974) paired-quadrat 

variance function, the two-dimensional correlo- 

gram and periodogram (below), the multivariate 

Mantel correlogram (below), and Ibanez' (1981) 

auto-D 2 function. 

In correlograms, the result of a test of signifi- 

cance is associated with each autocorrelation 

coefficient; the null hypothesis of this test is that 

the coefficient is not significantly different from 

zero. Before examining each significant value in 

the correlogram, however, we must first perform 

a global test, taking into account the fact that 

several tests (v) are done at the same time, for a 

given overall significance level ~. The global test 

is made by checking whether the correlogram 

contains at least one value which is significant at 

the ~' = ~/v significance level, according to the 

Bonferroni method of correcting for multiple tests 

(Cooper 1968; Miller 1977; Oden 1984). The 

analogy in time series analysis is the Portmanteau 

Q-test (Box & Jenkins 1970). Simulations in 

Oden's 1984 paper show that the power of Oden's 

Q-test, which is an extension for spatial series of 

the Portmanteau test, is not appreciably greater 

than the power of the Bonferroni procedure, 

which is computationally a lot simpler. 

Readers already familiar with the use of cor- 

relograms in time series analysis will be reassured 

to know that whenever the problem is reduced to 

one physical dimension only (time, or a physical 

transect) instead of a bi- or polydimensional 

space, calculating the coefficients for different dis- 

tance classes turns out to be equivalent to com- 

puting the autocorrelation coefficients of time 

series analysis. 

All-directional correlogram 

When a single correlogram is computed over all 

directions of the area under investigation, one 

must make the further assumption that the phe- 

nomenon is isotropic, which means that the auto- 

correlation function is the same whatever the 

direction considered. In anisotropic situations, 

structure functions can be computed in one 

direction at a time; this is the case for instance 

with two-dimensional correlograms, two-dimen- 

sional spectral analysis, and variograms, all of 

which are presented below. 

Example 1 - Correlograms are analysed mostly 

by looking at their shape, since characteristic 

shapes are associated with types of spatial struc- 

tures; determining the spatial structure can pro- 

vide information about the underlying generating 

process. Sokal (1979) has generated a number of 

spatial patterns, and published the pictures of the 

resulting correlograms. We have also done so 

here, for a variety of artificial-data structures 

similar to those commonly encountered in ecology 

(Fig. 1). Fig. la illustrates a surface made of 9 

bi-normal bumps. 100 points were sampled fol- 

lowing a regular grid of 10 x 10 points. The varia- 

ble 'height' was noted at each point and a correlo- 

gram of these values was computed, taking into 

account the geographic position of the sampled 

points. The correlogram (Fig. lb) is globally sig- 
nificant at the ~ = 5 ~  level since several indi- 

vidual values are significant at the Bonferroni- 

corrected level ~' -- 0.05/12 = 0.00417. Examin- 

ing the individual significant values, can we find 

the structure's main elements from the correlo- 
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gram? Indeed, since the alternation of positive 

and negative values is precisely an indication of 

patchiness (Table 2). The first value of spatial 

autocorrelation (distance class 1), corresponding 

to pairs of neighbouring points on the sampling 

grid, is positive and significant; this means that 

the patch size is larger than the distance between 

2 neighbouring points. The next significant posi- 

tive value is found at distance class 4: this one 

gives the approximate distance between succes- 

sive peaks. (Since the values are grouped into 12 

distance classes, class4 includes distances 

between 3.18 and 4.24, the unit being the distance 

between 2 neighbouring points of the grid; the 

actual distance between neighbours is 3.4 units). 

Negative significant values give the distance 

between peaks and troughs; the first of these 

values, found at distance class 2, corresponds 

here to the radius of the basis of the bumps. 

Notice that if the bumps were unevenly spaced, 

they could produce a correlogram with the same 

significant structure in the small distance classes, 

but with no other significant values afterwards. 

Since this correlogram was constructed with 

equal distance classes, the last autocorrelation 

coefficients cannot be interpreted, because they 

are based upon too few pairs of localities (see 

histogram, Fig. lc). 

The other artificial structures analysed in Fig. 1 

were also sampled using a 10 x 10 regular grid of 

points. They are: 

- Linear gradient (Fig. ld). The correlogram has 

an overall 5~o level significance (Bonferroni 

correction). 

- Sharp step between 2 fiat surfaces (Fig. le). 

The correlogram has an overall 5 ~o level signifi- 

cance. Comparing with Fig. ld shows that cor- 

relogram analysis cannot distinguish between 

real data presenting a sharp step and a gradient 

respectively. 

- 9 thin bumps (Fig. If); each is narrower than in 

Fig. la. Even though 2 of the autocorrelation 

coefficients are significant at the ct = 5 ~o level, 

the correlogram is not, since none of the 

coefficients is significant at the Bonferroni- 

corrected level e' = 0.00417. In other words, 2 

autocorrelation coefficients as extreme as those 

encountered here could have been found 

among 12 tests of a random structure, for an 

overall significance level ~ = 5 ~ .  100 sampling 

points are probably not sufficient to bring out 

unambiguously a geometric structure of 9 thin 

bumps, since most of the data points do fall in 

the flat area in-between the bumps. 

- Single thin bumps (Fig. lg), about the same 

size as one of the bumps in Fig. la. The correlo- 

gram has an overall 5~o level significance. 

Notice that the 'zone of influence' of this single 

bump spreads into more distance classes than 

in (b) because the phenomenon here is not 

limited by the rise of adjacent bumps. 

- Single fat bump (Fig. lh): a single bi-normal 

curve occupying the whole sampling surface. 

The correlogram has an overall 5 ~o level signifi- 

cance. The 'zone of influence' of this very large 

bump is not much larger on the correlogram 

than for the single thin bump (g). 

- 100 random numbers, drawn from a normal 

distribution, were generated and used as the 

variable to be analysed on the same regular 

geographic grid of 100 points (Fig. li). None of 

the individual values are significant at the 5 ~o 

level of significance. 

- N a r r o w  wave (Fig. lj): there are 4 steps 

between crests, so that there are 2.5 waves 

across the sampling surface. The correlogram 

has overall 5 ~ level significance. The distance 

between successive crests of the wave show up 

in the significant value at d = 4, just as in (b). 

- Wide wave (Fig. lk): a single wave across the 

sampling surface. The correlogram has overall 

5 ~o level significance. The correlogram is the 

same as for the single fat bump (h). This shows 

that bumps, holes and waves cannot be dis- 

tinguished using correlograms; maps are neces- 

sary. • 

Ecologists are often capable of formulating 

hypotheses as to the underlying mechanisms or 

processes that may determine the spatial phe- 

nomenon under study; they can then deduct the 

shape the spatial structure will display if these 

hypotheses are true. It is a simple matter then to 

construct an artificial model-surface correspond- 

ing to these hypotheses, as we have done in Fig. 1, 



and to analyse that surface with a correlogram. 

Although a test of significance of the difference 

between 2 correlograms is not easy to construct, 

because of the non-independence of the values in 

each correlogram, simply looking at the 2 correlo- 

grams - the one obtained from the real data, and 

that from the model data - suffices in many cases 

to find support for, or to reject the correspond- 

ence of the model-data to the real data. 

Material :  Vegetation data  - These data were 

gathered during a multidisciplinary ecological 

study of the terrestrial ecosystem of the Munici- 

palit6 R6gionale de Comt6 du Haut- S aint-Laurent 

(Bouchard et al. 1985). An area of approximately 

0.5 km 2 was sampled, in a sector a few km north 

of the Canada-USA border, in southwestern 

o 0 

o 0 

0 o 

0 0 0 o 

0 o o 

o 0 o 0 

o 0 0 0 

o 0 o 0 0 

o o o 0 0 

0 0 o 0 0 

O 0 0 0 o 

0 0 0 0 0 

o o 0 o 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 o 0 0 

0 0 0 0 o 

0 0 0 0 0 

o o 0 0 o 

0 0 0 o 0 

o 0 o 0 o 

0 0 0 o o 

0 o 0 0 o 

0 0 0 0 o 

o o 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 

0 0 

I I I I I I I 

0 700 200 300 400 500  600 

m e t r e s  

Fig. 2. Position of the 200 vegetation quadrats, systemati- 

cally sampled in Herdman (Qu6bec), during the summer of 

1983. From Fortin (1985). 
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Qurbec. A systematic sampling design was used 

to survey 200 vegetation quadrats (Fig. 2) each 10 

by 20 m in size. The quadrats were placed at 50-m 

intervals along staggered rows separated also by 

50 m. Trees with more than 5 cm diameter at 

breast height were noted and identified at species 

level. The data to be analysed here consist of the 

abundance of the 28 tree species present in this 

territory, plus geomorphological data about the 

200 sampling sites, and of course the geographical 

locations of the quadrats. This data set will be 

used as the basis for all the remaining examples 

presented in this paper. 

E x a m p l e 2  - The correlogram in Fig. 3 de- 

scribes the spatial autocorrelation (Moran's I) of 

the hemlock, Tsuga canadensis.  It is globally sig- 

nificant (Bonferroni-corrected test, ~ = 5 ~o). We 

can then proceed to examining significant in- 

dividual values: can we find the structure's main 

elements from this correlogram ? The first value of 

spatial autocorrelation (distance class 1, includ- 

ing distances from 0 to 57 m), corresponding to 

pairs of neighbouring points on the sampling grid, 

is positive and significant; this means that the 

patch size is larger than the distance between two 

neighbouring sampling points. The second peak 

of this correlogram (distance class 9, whose center 

is the 485 m distance) can be readily interpreted 

as the distance among peak centers, in the spatial 

distribution of the hemlock; see Fig. 10, where 

groups 3, 7 and 11 have high densities of hemlocks 

and have their centers located at about that 
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Fig. 3. All-directional spatial correlogram of the hemlock 

densities (Tsuga canadensis). Abscissa: distance classes; the 

width of each distance class is 57 m. Ordinate: Moran's I 

statistics. Symbols as in Fig. 1. 
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distance. The last few distance classes cannot be 

interpreted, because they each contain < 1 ~o of 
all pairs of localities. • 

Two-dimensional correlogram 

All-directional correlograms assume the phe- 

nomenon to be isotropic, as mentioned above. 
Spatial autocorrelation coefficients, computed as 

described in App. 1 for all pairs of data points, 

irrespective of the direction, produce a mean 
value of autocorrelation, smoothed over all direc- 

tions. Indeed, a spatial autocorrelation coefficient 

gives a single value for each distance class, which 

is fine when studying a transect, but may not be 

appropriate for phenomena occupying several 

geographic dimensions (typically 2). Anisotropy 

is however often encountered in ecological field 

data, because spatial patterns are often generated 
by directional geophysical phenomena. Oden & 

Sokal (1986) have proposed to compute correlo- 
grams only for object pairs oriented in pre-speci- 

fled directions, and to represent either a single, or 

several of these correlograms together, as seems 

fit for the problem at hand. Computing structure 

functions in pre-specified directions is not new, 

and has traditionally been done in variogram 

analysis (below). Fig. 4 displays a two-dimen- 

sional spatial correlogram, computed for the 

sugar-maple Acer saccharum from our test vege- 

tation data. Calculations were made with the very 

program used by Oden & Sokal (1986); the same 

information could also have been represented by 

a set of standard correlograms, each one corre- 

sponding to one of the aiming directions. In any 

case, Fig. 4 clearly shows the presence of aniso- 

tropy in the structure, which could not possibly 

have been detected in an all-directional correlo- 

gram: the north-south range of A. saccharum is 

much larger (ca 500 m) than the east-west range 
(200 m). 

Fig. 4. Two-dimensional  correlogram for the sugar-maple 

Aeer saccharum. The directions are geographic and are the 

same as in Fig. 2. The lower half  o f  the correlogram is sym- 

metric to the upper half. Each ring represents  a 100-m dis- 

tance class. Symbols are as follows: full boxes are significant 

Moran ' s  I coefficients, half-boxes are non-significant values; 

dashed  boxes are based on too few pairs and are not  con- 

sidered. Shades  of  gray represent  the values taken by 

Moran ' s  I :  from black ( + 0 . 5  to +0.2)  through hachured  

( + 0.2 to + 0.1), heavy dots ( + 0.1 to - 0.1), light dots  ( - 0.1 

to - 0.2), to white ( - 0.2 to - 0.5). 

Two-dimensional spectral analysis 

This method, described by Priestly (1964), Rayner 

(1971), Ford (1976), Ripley (1981) and Renshaw 

& Ford (1984), differs from spatial autocorre- 

lation analysis in the structure function it uses. As 
in regular time-series spectral analysis, the method 

assumes the data to be stationary (no spatial 

gradient), and made of a combination of sine 

patterns. An autocorrelation function rgh, as well 

as a periodogram with intensity I(p, q), are com- 

puted. 
Just as with Moran's /, the autocorrelation 

values are a sum of cross products of lagged data; 

in the present ease, one computes the values of the 

function rg h for all possible combinations of lags 
(g, h) along the 2 geographic sampling directions 
(App. 1); in Moran's I on the contrary, the lag d 

is the same in all geographic directions. Besides 
the autocorrelation function, one computes a 
Schuster two-dimensional periodogram, for all 
combinations of spatial frequencies (p, q) (App. 
1), as well as graphs (first proposed by 
Renshaw & Ford, 1983) called the R-spectrum 



and the ®-spectrum that summarize respectively 

the frequencies and directions of the dominant 

waves that form the spatial pattern. See App. 1 for 

computational details. 

Two-dimensional spectral analysis has recently 

been used to analyse spatial patterns in crop 

plants (McBratney & Webster 1981), in forest 

canopies (Ford 1976; Renshaw & Ford 1983; 

Newbery et  al. 1986) and in other plants (Ford & 

Renshaw 1984). The advantage of this technique 

is that it allows analysis of anisotropic data, 

which are frequent in ecology. Its main dis- 

advantage is that, like spectral analysis for time 

series, it requires a large data base; this has 

prevented the technique from being applied to a 

wider array of problems. Finally, one should 

notice that although the autocorrelogram can be 

interpreted essentially in the same way as a 

Moran's correlogram, the periodogram assumes 

on the contrary the spatial pattern to result from 

a combination of repeatable patterns; the periodo- 

gram and its R and ® spectra are very sensitive 
to repeatabilities in the data, but they do not 

detect other types of spatial patterns which do not 

involve repeatabilities. 

E x a m p l e 3  - Fig. 5a shows the two-dimen- 

sional periodogram of our vegetation data for 

A c e r s a c c h a r u m .  For the sake of this example, and 

since this method requires the data to form a 

regular, rectangular grid, we interpolated sugar- 

maple abundance data by kriging (see below) to 

obtain a rectangular data grid of 20 rows and 12 

columns. The periodogram (Fig. 5a) has an 

overall 5 Yo significance, since 4 values exceed the 

critical Bonferroni-corrected value of 6.78; these 

4 values explain together 72~o of the spatial 

variance of our variable, which is an appreciable 

amount. 

The most  prominent values are the tall blocks 

located at (p, q) = (0, 1) and (0, - 1); together, 

they represent 62~o of the spatial variance and 

they indicate that the dominant phenomenon is an 

east-west wave with a frequency of 1 (which 
means that the phenomenon occurs once in the 

east-west direction across the map). This struc- 

ture has an angle of ® = tan -1 (0/[1 or 
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Fig. 5. (a) Two-dimensional periodogram. The ordinate 

represents the intensity of the periodogram. (b) R-spectrum. 

(c) O-spectrum. Bonferroni-corrected significant values in 

the spectra are represented by dark squares, for an overall 

significance level of 5%. 

- 1]) = 0 ° and is the dominant feature of the 

O-spectrum; with its frequency 

R = x / (0z+  12)= 1, it also dominates the 

R-spectrum. This east-west wave, with its crest 
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elongated in the north-south direction, is clearly 

visible on the map of Fig. 13a. 

The next 2 values, that ought to be considered 

together, are the blocks (1, 2) and (1, 1) in the 

periodogram. The corresponding angles are 

O = 26.6 ° and 45 ° (they form the 4th and 5th 

values in the O-spectrum), for an average angle of 

about 35 o ; the R frequencies of the structure they 

represent are x / (p  2 + q2) = 2.24 and 1.41, for an 

average of 1.8. Notice that the values of p and q 

have been standardized as if the 2 geographic axes 

(the vertical and horizontal directions in Fig. 13) 

were of equal lengths, as explained in App. 1; 

these periodogram values indicate very likely the 

direction of the axis that crosses the centers of the 

2 patches of sugar-maple in the middle and 

bottom of Fig. 13a. 

Two other periodogram values are relatively 

high (5.91 and 5.54) but do not pass the 

Bonferroni-corrected test of significance, proba- 

bly because the number of blocks of data in our 

regular grid is on the low side for this method. In 

any case, the angle they correspond to is 90 ° , 

which is a significant value in the ®-spectrum. 
These periodogram values indicate obviously the 

north-south direction crossing the centers of the 

2 large patches in the upper and middle parts of 

Fig. 13a (R = 2). 

These results are consistent with the two- 

dimensional correlogram (Fig. 4) and with the 

variograms (Fig. 9), and confirm the presence of 

anisotropy in the A. saccharum data. They were 

computed using the program of Renshaw & Ford 

(1984). Ford (1976) presents examples of vege- 

tation data with clearer periodic components.  • 

The Mantel test 

Since one of the scopes of community ecology is 

the study of relationships between a number of 

biological variables - the species - on the one 

hand, and many abiotic variables describing the 

environment on the other, it is often necessary to 

deal with these problems in multivariate terms, to 

study for instance the simultaneous abundance 

fluctuations of several species. A method of carry- 

ing out such analyses is the Mantel test (1967). 

This method deals with 2 distance matrices, or 

2 similarity matrices, obtained independently, 

and describing the relationships among the same 

sampling stations (or, more generally, among the 

same objects). This type of analysis has two chief 

domains of application in community ecology. 

Let us consider a set of n sampling stations. In 

the first kind of application, we want to compare 

a matrix of ecological distances among stations 

(X) with a matrix of geographic distances (Y) 

among the same stations. The ecological dis- 

tances in matrix X can be obtained for instance by 

comparing all pairs of stations, with respect to 

their faunistic or floristic composition, using one 

of the numerous association coefficients available 

in the literature; notice that qualitative (nominal) 

data can be handled as easily as quantitative data, 

since a number of coefficients of association exist 

for this type of data, and even for mixtures of 

quantitative, semi-quantitative and qualitative 

data. These coefficients have been reviewed for 

instance by Orl6ci (1978), by Legendre & 

Legendre (1983a and 1984a), and by several 

others; see also Gower & Legendre (1986) for a 
comparison of coefficients. Matrix Y contains 

only geographic distances among pairs of 

stations, that is, their distances in m, km, or other 

units of measurement. The scope of the study is 

to determine whether the ecological distance 

increases as the samples get to be geographically 

farther apart, i.e., if there is a spatial gradient in 

the multivariate ecological data. In order to do 

this, the Mantel statistic is computed and tested 

as described in App. 2. Examples of Mantel tests 

in the context of spatial analysis are found in 

Ex. 8 in this paper, as well as in Upton & 

Fingleton's book (1985). 

The Mantel test can be used not only in spatial 

analysis, but also to check the goodness-of-fit of 

data to a model. Of course, this test is valid only 

if the model in matrix Y is obtained independently 

from the similarity measures in matrix X - either 

by ecological hypothesis, or else if it derives from 

an analysis of a different data set than the one 

used in elaborating matrix X. The Mantel test 

cannot be used to check the conformity to a 



matrix X of a model derived from the X data. 

Goodness-of-fit Mantel tests have been used 

recently in vegetation studies to investigate very 

precise hypotheses related to questions of impor- 

tance, like the concept of climax (McCune & 

Allen 1985) and the environmental control model 

(Burgman 1987). Another application can be 

found in Hudon & Lamarche (in press) who 

studied competition between lobsters and crabs. 

Example 4 - In the vegetation area under study, 

2 tree species are dominant, the sugar-maple Acer 

saccharum and the red-maple A. rubrum. One of 

these species, or both, are present in almost all of 

the 200 vegetation quadrats. In such a case, the 

hypothesis of niche segregation comes to mind. It 

can be tested by stating the null hypothesis that 

the habitat of the 2 species is the same, and the 

alternative hypothesis that there is a difference. 

We are going to test this hypothesis by comparing 

the environmental data to a model corresponding 

to the alternative hypothesis (Fig. 6), using a 

Mantel test. The environmental data were chosen 

to represent factors likely to influence the growth 

of these species. The 6 descriptors are: quality of 

drainage (7 semi-quantitative classes), stoniness 

of the soil (7 semi-quantitative classes), topo- 

graphy (11 unordered qualitative classes), 

directional exposure (the 8 sectors of the compass 

card, plus class 9 -- fiat land), texture of horizon 

1 of the soil (8 unordered qualitative classes), and 

geomorphology (6 unordered qualitative classes, 

described in Example 8 below). These data were 

X:  Environmental similarity matrix Y: Dominance model matrix 

Sugar-maple Red-maple Sugar-maple Red-maple 

Fig. 6. Comparison of environmental data (matrix X) to the 

model (matrix Y), to test the hypothesis of niche segregation 

between the sugar-maple and the red-maple. 
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used to compute an Estabrook-Rogers similarity 

coefficient among quadrats (Estabrook & Rogers 

1966; Legendre & Legendre 1983a, 1984a). The 

Estabrook & Rogers similarity coefficient makes 

it possible to assemble mixtures of quantitative, 

semi-quantitative and qualitative data into an 

overall measure of similarity; for the descriptors 

of directional exposure and soil texture, the partial 

similarities contributing to the overall coefficient 

were drawn from a set of partial similarity values 

that we established, as ecologists, to represent 

how similar are the various pairs of semi-ordered 

or unordered classes, considered from the point of 

view of tree growth. The environmental similarity 

matrix is represented as X in Fig. 6. 

The ecological hypothesis of niche segregation 

between A. saccharum and A. rubrum can be 

translated into a model-matrix of the alternative 

hypothesis as follows: each of the 200 quadrats 

was coded as having either A. saccharum or 

A. rubrum dominant. Then, a model similarity 

matrix among quadrats was constructed, contain- 

ing l's for pairs of quadrats that were dominant 

for the same species (maximum similarity), and 

O's for pairs of quadrats differing as to the domi- 

nant species (null similarity). This model matrix is 

represented as Y in Fig. 6, where it is shown as if 
all the A. saccharum-dominated quadrats came 

first, and all the A. rubrum-dominated quadrats 

came last; in practice, the order of the quadrats 

does not make any difference, insofar as it is the 

same in matrices X and Y. 

One can obtain the sampling distribution of the 

Mantel statistic by repeatedly simulating realiza- 

tions of the null hypothesis, through permutations 

of the quadrats (corresponding to the lines and 

columns) in the Y matrix, and recomputing the 

Mantel statistic between X and Y (App. 2). If 

indeed there is no relationship between matrices 

X and Y, we can expect the Mantel statistic to 

have a value located near the centre of this sam- 

pling distribution, while if such a relation does 

exist, we expect the Mantel statistic to be more 

extreme than most of the values obtained after 

random permutation of the model matrix. The 

Mantel statistic was computed and found to be 

significant at p < 0.00001, using in the present 
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case Mantel's t test, mentioned in the remarks of 

App. 2, instead of the permutation test. So, we 

must reject the null hypothesis and accept the idea 

that there is some measurable niche differentia- 

tion between A. saccharum and A. rubrum. Notice 

that the objective of this analysis is the same as 

in classical discriminant analysis. With a Mantel 

test, however, one does not have to comply with 

the restrictive assumptions of discriminant analy- 

sis, assumptions that are rarely met by ecological 

data; furthermore, one can model at will the rela- 

tionships among plants (or animals) by com- 

puting matrix X with a similarity measure appro- 

priate to the ecological data, as well as to the 

nature of the problem, instead of being imposed 

the use of an Euclidean, a Mahalanobis or a 

chi-square distance, as it is the case in most of the 

classical multivariate methods. In the present 

case, the Mantel test made it possible to use a 

mixture of semi-quantitative and qualitative varia- 

bles, in a rather elegant analysis. 

To what environmental variable(s) do these 

tree species react? This was tested by a series of 

a posteriori tests, where each of the 6 environ- 

mental variables was tested in turn against the 

model-matrix Y, after computing an Estabrook & 

Rogers similarity matrix for that environmental 

variable only. Notice that these a posteriori tests 

could have been conducted by contingency table 

analysis, since they involve a single semi-quantita- 

tive or qualitative variable at a time; they were 

done by Mantel testing here to illustrate the 

domain of application of the method. In any case, 

these a posteriori tests show that 3 of the environ- 

mental variables are significantly related to the 

model-matrix: stoniness (p < 0.00001), topogra- 

phy (p = 0.00028) and geomorphology 
(p < 0.00001); the other 3 variables were not 

significantly related to Y. So the three first varia- 

bles are likely candidates, either for studies of the 

physiological or other adaptive differences 

between these 2 maple species, or for further 

spatial analyses. One such analysis is presented 

as Ex. 8 below, for the geomorphology descrip- 

tor. • 

The Mantel correlogram 

Relying on a Mantel test between data and a 

model, Sokal (1986) and Oden & Sokal (1986) 

found an ingenious way of computing a correlo- 

gram for multivariate data; such data are often 

encountered in ecology and in population 

genetics. The principle is to express ecological 

relationships among sampling stations by means 

of an X matrix of multivariate distances, and then 

to compare X to a Y model matrix, different for 

each distance class; for distance class 1, for 

instance, neighbouring station pairs (that belong 

to the first class of geographic distances) are 

linked by l's, while the remainder of the matrix 

contains zeros only. A first normalized Mantel 

statistic (r) is calculated for this distance class. 

The process is repeated for each distance class, 

building each time a new model-matrix Y, and 

recomputing the normalized Mantel statistic. The 

graph of the values of the normalized Mantel 

statistic against distance classes gives a multi- 

variate correlogram; each value is tested for sig- 

nificance in the usual way, either by permutation, 

or using Mantel's normal approximation (remark 

in App. 2). [Notice that if the values in the X 

matrix are similarities instead of distances, or else 

if the l 's and the O's are interchanged in matrix Y, 

then the sign of each Mantel statistic is changed.] 

Just as with a univariate correlogram (above), one 

is advised to carry out a global test of significance 

of the Mantel correlogram using the Bonferroni 

method, before trying to interpret the response of 

the Mantel statistic for specific distance classes. 

Example 5 - A similarity matrix among sam- 

piing stations was computed from the 28 tree 

species abundance data, using the Steinhaus 

coefficient of similarity (also called the Odum, or 

the Bray and Curtis coefficient: Legendre & 

Legendre 1983a, 1984a), and the Mantel correlo- 

gram was computed (Fig. 7). There is overall sig- 

nificance in this correlogram, since many of the 

individual values exceed the Bonferroni-corrected 

level ~' = 0.05/20 = 0.0025. Since there is signifi- 

cant positive autocorrelation in the small distance 

classes and significant negative autocorrelation in 
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Fig. 7. Mantel correlogram for the 28-species tree com- 

munity structure. See text. Abscissa: distance classes (one 

unit of distance is 57 m); ordinate: standardized Mantel 

statistic. Dark squares represent significant values of the 

Mantel statistic (p < 0.05). 

the large distances, the overall shape of this cor- 

relogram could be attributed either to a vegetation 

gradient (Fig. ld) or to a structure with steps 

(Fig. le). In any case, the zone of positive auto- 

correlation lasts up to distance class 4, so that the 

average size of the 'zone of influence' of multi- 

variate autocorrelation (the mean size of asso- 

ciations) is about 4 distance classes, or (4 

classes × 57 m) ~ 230 m. This estimation is con- 

firmed by the maps in Fig. 10, where many of the 

associations delimited by clustering have about 

that size. • 

Detection and description of spatial structures 

As mentioned above, the different types of cor- 

relograms, outlined in the section entitled 'Testing 

for the presence of a spatial structure', do provide 

a description of spatial structures. Other methods, 

that are more exclusively descriptive, can also be 

used for this purpose. They are presented in this 

section. 

The variogram 

The semi-variogram (Matheron 1962), often 

called variogram for simplicity, is related to spa- 

tial correlograms. It is another structure function, 

allowing to study the autocorrelation phenome- 

non as a function of distance; however this 

method, on which the kriging contouring method 

is based (below), does not lend itself to any 

statistical test of hypothesis. The variogram is a 

univariate method, limited to quantitative varia- 

bles, allowing to analyse phenomena that occur in 

one, 2 or 3 geographic dimensions. Burrough 

(1987) gives an introduction to variogram analysis 

for ecologists. 

Before using the variogram, one must make 

sure that the data are stationary, which means 

that the statistical properties (mean and variance) 

of the data are the same in the various parts of the 

area under study, or at least that they follow the 

'intrinsic hypothesis', which means that the incre- 

ments between all pairs of points located a given 

distance d apart have a man zero and a finite 

variance that remains the same in the various 

parts of the area under study; this value of 

variance, for distance class d, is twice the value of 

the semi-variance function 7(d). This relaxed 

form of the stationarity assumption makes it pos- 

sible to use the variogram, or for that matter any 

other structure function (for instance spatial auto- 

correlograms), with ecological data. Of course, a 

large-scale spatial structure, if present, will neces- 

sarily be picked up by the structure function and 

may mask finer spatial structures~ large-scale 

trends, in particular, should be removed by regres- 

sion (trend surface analysis) or some other form 

of modelling before the presence of other, finer 

structures can be investigated. 

There are two types of variograms: the experi- 

mental and the theoretical. The experimental 

variogram (semi-variogram) is computed from the 

data using the formula in App. 1. It is presented 

as a plot of 7(d) (ordinate) as a function of dis- 

tance classes (d), just like a correlogram. As 

noticed in App. 1, 7(d) is a distance-type 

function, so that it is related to Geary's c 

coefficient. The experimental variogram can be 

used as a description of the structure function of 

the spatial phenomenon and in this way it is of 

help in understanding the spatial structure. 

The variogram was originally designed by min- 

ing engineers, as a basis for the contouring method 

known as kriging (below). This is how it became 

known to ecologists, among whom its use is 

spreading (Burrough 1987). To be useful for 
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kriging, a theoretical variogram has to be fitted to 

the experimental one; the adjustment of a 

theoretical variogram to the experimental 

function provides the parameters used by the 

kriging method. The most important of these 

parameters are (1)the range of influence of the 

spatial structure, which is the distance where the 

variogram stops increasing; (2)the sill, which is 

the ordinate value of the flat portion of the vario- 

gram, where the semi-variance is no longer a 

function of direction and distance, and cor- 

responds to the variance of the samples; and 

eventually (3) the nugget effect (see below). As in 

any type of nonlinear curve fitting, the user must 

decide what type of nonlinear function is wanted 

to adjust to his experimental variogram; this step 

requires both experience, and insight into the 

ecological process under study. Several types of 

theoretic functions are often used for this adjust- 

ment. 4 of them, the most common ones, are 

described in App. 1 and illustrated in Fig. 8. Dif- 

ferences between these theoretic functions lie 

mostly in the shape of the left-hand part of the 

curves, near the origin. A linear variogram indi- 

cates a linear spatial gradient; this model has no 

sill. Gaussian, exponential and spherical variograms 

give a measure of the size of the spatial influence 

of the process (patch size, if the phenomenon is 

patchy), as well as the shape of the drop of this 

influence as one gets farther away from the center 

of the phenomenon;  the exponential model does 

not necessarily have a sill. A flat variogram, also 

called 'pure nugget effect', indicates the absence 

of a spatial structure in the data, at least at the 

scale the observations were made. The so-called 

nugget effect refers to variograms that do not go 

Fig. 8. Four of the most 

models. 

T(d)' Linear~ ~pherica, 

2 
common theoretic variogram 

through the origin of the graph, but display some 

amount of variance even at distance zero; this 

effect may be caused by some intrinsic random 

variability in the data (sampling variance), or it 

may suggest that the sampling has not been per- 

formed at the right spatial scale. Variograms have 

recently been used to measure the fractal dimen- 

sion of environmental gradients (Phillips 1985). 

Mining engineers compute separate variograms 

for different spatial directions, to determine if the 

spatial structure is isotropic or not. We have seen 

above that this procedure has now been extended 

to correlograms as well. The spatial structure is 

said to be isotropic when the variograms are the 

same regardless of the direction of measurement. 

2 different kinds of anisotropy can be detected: 

geometric anisotropy and stratified anisotropy. 

Geometric anisotropy (same sill, different ranges) 

is measured by the anisotropy ratio, which is equal 

to the range of the variogram in the direction 

producing the longest range, divided by the range 

in the direction with the smallest range. Stratified 

(or zonal) anisotropy (different sills, same range) 

refers to the fact that the sills of the variograms 

may not be the same in different directions. In the 

presence of one or the other type of anisotropy, or 

both, there are three solutions to obtain accepta- 

ble interpolated maps by kriging: one can com- 

pute compromise variogram parameters, using 

the formulas in David (1977) or in Journel & 

Huijbregts (1978); secondly, one can use a kriging 

program that makes use of the parameters of 

variograms computed separately in different 

directions of the physical space (2 or 3, depending 

on the problem); or finally, one can use 'general- 

ized intrinsic random functions of order k'  

(Matheron 1973) that allow for linear or quadratic 

trends in the data. 

Example 6 - Experimental variograms were 

computed by Fortin (1985), for A. saccharum, in 

the 45 ° and 90 ° directions (window: 22°), and in 

all directions (Fig. 9). Comparing the 45 o and 90 o 

variograms shows the presence of anisotropy, as 

was observed in Fig. 4. The range in the 45 ° 

variogram (dashed line) is about 445 m, while the 

range in the 90 ° variogram is about 685 m, so that 
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Fig. 9. Three experimental variograms computed for the 

Acer saccharum data. See text. Abscissa: distance classes. 

Ordinate: values of the semi-variance function 7(d). Dashed 

lines: ranges. Modified from Fortin (1985). 

the anisotropy ratio can be computed as 

685/445 ~ 1.5. The all-directions variogram does 

not clearly render this information. • 
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Clustering methods with spatial contiguity constraint 

Describing multivariate structures can be done by 

the methods of clustering, which are classical 

methods of multivariate data analysis, and in 

particular by clustering with spatial contiguity 

constraint. If the clustering results are represented 

on a map, the multivariate structure of the data - 

plant associations for instance - will be clearly 

described by the map. 

Clustering with spatial contiguity constraint 

has been suggested by many authors since 1966 

(e.g., Ray & Berry 1966; Webster & Burrough 

1972; Lefkovitch 1978, 1980; and others), in such 

different fields as pedology, political science, 

economy, psychometry and ecology. Starting 

from multivariate data, the common need of these 

authors was to establish geographical regions 

made of adjacent sites (i.e., a choropleth map: see 

'Estimation and mapping' below) which would be 

homogeneous with respect to certain variables. In 

order to do this, it is necessary (1) to compute a 

matrix of similarity among sites from the variables 

on which these homogeneous regions have to be 

based (of course, this step applies only to cluster- 

ing methods that are similarity-based), then 

(2) proceed with any of the usual clustering 

methods, with the difference that one constrains 

the algorithm to cluster only these sites or site 

groups that are geographically contiguous. The 

constraint is provided to the program in the form 

of a list of connections, or spatial links, among 

neighbouring localities. Connections may be 

established in a variety of ways: see App. 1. 

Adding such constraints to existing programs 

raises algorithmic problems which we will not 

discuss here. Clustering with constraint has inter- 

esting properties. On the one hand, it reduces the 

set of mathematically possible solutions to those 

that are geographically meaningful; this avoids 

the well-known problem of clustering methods, 

where different solutions may be obtained after 

applying different clustering algorithms to the 

same data set; constraining all these algorithms to 

produce results that are geographically consistent 

forces them to converge towards very similar 

solutions. On the other hand, the partitions 



124 

obtained in this way reproduce a larger fraction of 

the structure's spatial information than equivalent 

partitions obtained without constraint (Legendre 

1987). Finally, constrained agglomerative cluster- 

ing is faster with large data sets than the uncon- 

strained equivalent, because the search for 'the 

next pair to join' is limited to adjacent groups only 

(Openshaw 1974; Lebart 1978). 

Example 7 -  A vegetation map was constructed 

from our test data, as follows. (1)The same 

Steinhaus similarity matrix among stations was 

used as in Ex. 5; it is based upon the 28 tree 

species abundance data. (2) The spatial relation- 

ships among sampling quadrats were represented 

by a list of connections among close neighbours; 

the list was established in the present case by the 

Delaunay triangulation method (App. 1). The 

presence of a connection between 2 quadrats 

tells the clustering programs that these 2 locali- 

9 

4 

2 ~ 4 

Fig. 10. Map of the multivariate vegetation structure (28 

species), obtained by constrained clustering. (a) Space-con- 
strained agglomerative proportional-link linkage, at the level 

where 13 groups were obtained; the five unclustered quadrats 
are materialized by dots. (b) Optimization of the previous 

map by space-constrained k-means clustering. 

ties are located close to one another and thus may 

eventually be included in the same cluster, if their 

ecological similarity allows. (3)Agglomerative 

clustering with spatial contiguity constraint was 

conducted on the similarity matrix. The spatial 

contiguity constraint was read by the program 

from the list of connections, or 'link edges', 

described above. We used a proportional-link 

linkage agglomerative algorithm (with 50~o con- 

nectedness: Sneath 1966), that produced a series 

of maps, one for each clustering level (Legendre 

& Legendre 1984b). The map with 13 groups was 

retained as being ecologically the most meaningful 

(Fig. 10a); 5 quadrats remain unclustered at that 

level. Recognizing 13 groups implies that the 

mean area per association is 740000 m2/13 = 

56 923 m2/association, corresponding to an aver- 

age area diameter of (56923) 1/2 = 238.6 m; this 

compares very well with the average size of the 

zone of influence of our species associations 

found in the Mantel correlogram, 230 m (Ex. 5). 

Agglomerative clustering may have produced 

small distortions of the resulting map, because of 

the hierarchical nature of the classification that 

results from such sequential algorithms. So, we 

tried to render our 13 groups as homogeneous as 

possible in terms of vegetation composition, using 

a k-means algorithm (MacQueen 1967) with spa- 

tial contiguity constraint. A k-means algorithm 

uses an iterative procedure of object reallocation 

to minimize the sum of within-group dispersions. 

This type of algorithm tends to produce compact 

clusters in the variable space (here, the vegetation 

data), which is exactly what we are looking for; 

there is no reason however to expect this phe- 

nomenon to affect the shape of the clusters in 

geographic space. We provided our program with 

the list of constraining connections computed in 

step 2 above, with the 13-group classification 

obtained in step 3 to be used as the starting con- 

figuration (temporarily allocating the 5 un- 

clustered quadrats to the group that enclosed 

them geographically), and with a set of principal 

coordinates computed from the Steinhaus simi- 

larity matrix (since our k-means program com- 

putes within-group variances from raw variables, 

and not from a similarity or distance matrix). The 



map of the optimized groups is shown in Fig. 10b. 

The number of groups remained the same, of 

course, but 19 objects out of 200 changed group 

(10~o). 4 groups remained unmodified: groups 

number 1, 6, 10 and 13 in Fig. 10. 

The 2 13-group classifications were compared 

to the raw species abundance data in a series of 

contingency tables. This work was facilitated by 

dividing first each species' abundance range into 

a few classes, following the method described by 

Legendre & Legendre (1983b). Comparing the 

interpretations of the 2 classifications, the groups 

produced by the k-means classification were 

slightly easier to characterize than those produced 

by the agglomerative classification. Their main 

biotic characteristics are the following: 

- Open area, with rare A. saccharum: Group 1. 

- A. rubrum stands, Group 2. 

-Oldfield-birch stands, Betula populifolia, lo- 

cated between the A. rubrum and A. saccharum 

areas: Group 10. 

- A. saccharum stands: Groups 4 and 12. 

- Stands dominated by white pine Pinus strobus 

and aspen Populus tremuloides: Group 6. 

- Hemlock stands, Tsuga canadensis: Groups 

3, 7 and 11. 

- Species diversity is highest in the three follow- 

ing groups of stands, dominated by black ash 

Fraxinus nigra and yellow birch Betula alle- 

ghaniensis: 

- In the bottom of a kettle, with aspen Populus 

tremuloides, white cedar Thuja occidentalis 

and American elm Ulmus americana: 

Group 5. 

- With red ash Fraxinus pennsylvanica and 

basswood Tilia americana: Groups 8 and 9. 

- Fence-shaped region (formerly cleared land) 

characterized by white cedar Thuja occidentalis 

and American elm Ulmus americana but, con- 

trary to group 5, with few F. nigra and 

B. alleghaniensis: Group 13. • 

Univariate or multivariate data that form a 

transect in space, instead of covering a surface, 

often need to be summarized by identifying break- 

ing points along the series. Several authors have 

proposed to use clustering methods with con- 

tiguity constraint in a single dimension (space or 
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time). One such program was developed in P.L.'s 

lab to analyse ecological successions, with the 

explicit purpose of locating the abrupt changes 

that may occur along successional series of com- 

munity structure; before each group fusion, a 

statistical permutation test is performed, that 

translates into statistical terms the ecological 

model of the development of communities by 

abrupt structure jumps (Legendre etaL 1985). 

Since then, this method has been used to segment 

spatial transects of ecological data (Galzin & 

Legendre 1988), as well as paleontological series 

(Bell & Legendre 1987). Other applications are in 

progress, including the reconstruction of climatic 

fluctuations by studying tree rings, and the seg- 

menting of pollen stratigraphic data. Other 

methods for segmenting such series, taking into 

account the spatial or temporal contiguity of 

samples, have been proposed by Fisher (1958) for 

univariate economic data, by Webster (1973) for 

soil data, by Hawkins & Merriam for univariate 

(1973) and for multivariate (1974) geologic data, 

by Gordon & Birks (1972, 1974) and by Gordon 

(1973) for pollen stratigraphic data. This work 

has been summarized by Legendre (1987). 

C a u s a l  m o d e l l i n g  

Although empirical models are used by ecologists 

and have their usefulness, modelers often prefer to 

include only the specific (ecological) hypotheses 

they may have about the factors and mechanisms 

determining the process under study. The purpose 

of modelling is then to verify that experimental or 

field data do support these hypotheses ('causes'), 

and to confirm the relational way in which they 

are assembled into the model. Given the impor- 

tance of space in our ecological theories, this 

review of spatial analysis methods would not be 

complete without mentioning how space can be 

included in the calculation of relationships among 
variables. 2 variables may appear related if 

both of them are linked to a common third one; 

space is a good candidate for creating such false 

correlations, since 2 variables may actually 

seem to be linked because they are driven by a 
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common spatial gradient. Even if correlation does 

not mean causality, the absence of correlation, 

monotonic or linear, is sufficient to abandon the 

hypothesis of a causal link between 2 variables. 

It is thus important for ecologists interested in 

causal relationships to check whether the spatial 

gradient of A could be explained, at least in part, 

by a spatially structured variable B, or if an 

apparent correlation between 2 variables is not 

to be ascribed to a common spatial structure (an 

unmeasured or untested space-structured varia- 

ble causing A and B independently). There is still 

some way to go before space can be included as 

a variable in complex ecological models, but we 

will show how it can at least be included in simple 

models. 

Partial Mante l  test 

How can a partial correlation between two varia- 

bles be calculated, controlling for a space effect? 

Smouse et al. (1986) dealt with this problem and 

suggested expressing the variations of each of the 

two variables by matrices (A and B) that contain 

the differences in values between all sampling 

station pairs. On the other hand, as in the Mantel 

test, the 'space' variable is expressed by a matrix 

of geographic distances among stations 

(matrix C). Actually, matrices A and B could as 

well be multivariate distance matrices. A partial 

Mantel statistic is calculated between A and B, 

controlling for the effect of matrix C. The Smouse 

et al. partial Mantel statistic has the same formula 

as a partial product-moment correlation 

coefficient, computed from standardized Mantel 

statistics. Actually, the computations are done as 

follows in order to test the partial Mantel statistic 

between A and B, controlling for the effect of 

matrix C: (1) compute matrix A' that contains the 

residuals of the linear regression of the values of 

A over the values of C; (2)likewise, compute 

matrix B' of the residuals of the linear regression 

of the values of B over the value~ of C; (3)com- 

pute the Mantel statistic between A' and B' 

(which is just another way of obtaining the partial 

Mantel statistic between A and B controlling for 

C, as in Pearson partial correlations). (4) Test as 

usual, either by permuting A' or B', or by Mantel's 

normal approximation. This is equivalent to what 

would be obtained by permuting all 3 matrices. 

Partial Mantel tests are not easy to interpret; 

Legendre & Troussellier (1988) have shown the 

consequences, in terms of significant Mantel and 

partial Mantel statistics, of all the possible three- 

matrices models implying space. As in the case of 

the Mantel test (App. 2), the restrictive influence 

of the linearity assumption has not been fully 

investigated yet for partial Mantel tests. 

This type of analysis has numerous applica- 

tions for studying variables distributed in space. 

Actually, 3 other forms of test of partial asso- 

ciation involving 3 distance matrices have been 

proposed. 2 of these are based upon the Mantel 

test, one by anthropologists (Dow & Cheverud 

1985), the second one in the field of psychometry 

(Hubert 1985); the third one involves multiple 

regressions on distance matrices (Manly 1986; 

Krackhardt 1988). 

E x a m p l e  8 - We will use our vegetation data to 

study the much debated question of the environ- 

mental control of vegetation structures. We will 

study in particular the relationship between vege- 

tation structure and the geomorphology of the 

sampling sites. Of course, vegetation structures 

are most often autocorrelated, and this can be due 

either to the fact that biological reproduction is a 

contagious process, or to some linkage between 

vegetation and substrate conditions, since soil 

composition, geomorphology, and so on, are 

autocorrelated. So, if we find a relationship 

between vegetation and geomorphology, we will 

ask the following additional question: do the data 

support the hypothesis of a causal link between 

vegetation structure and geomorphology, or is the 

observed correlation spurious, resulting from the 

fact that both vegetation and geomorphology fol- 

low a common spatial structure, through some 

unstudied factor that could affect both? 

Since our vegetation data are multivariate (28 

tree species), they will be represented in the com- 

putations by a matrix of multivariate Steinhaus 

ecological similarities, as in Ex. 5. Space is repre- 



Table 3. Above the diagonal: simple standardized Mantel 

statistics and associated probabilities. Below the diagonal: 

partial Mantel statistics and associated probabilities. Tests 

of significance are one-tailed. 

Mantel Vegetation 

ests structure 

Vegetation 

structure 

Geomorphology 0.09397 

p = 0.000 

Space 0.12384 0.36449 

p = 0.000 p = 0.000 

Geomor- Space 

phology 

0.15054 0.17053 

p = 0.000 p = 0.000 

- 0.38073 

p = 0.000 

sented by a matrix of geographic distances among 

quadrats. The geomorphology variable (6 un- 

ordered qualitative classes: moraine ridge, strati- 

fied till ridge, reworked till, kettle, relict channel, 

Champlain sea deposits) was used to compute a 

simple matching similarity coefficient. Similarities 

were transformed into distances (D = 1 -  S) 

before computing the Mantel tests. 

The results of the simple and partial Mantel 

tests are presented in Table 3. The 3 simple 

Mantel tests (above the diagonal) show that both 

the vegetation structure and the geomorphology 

are autocorrelated, as expected, and also that 

there exists a significant relation between vege- 

tation and geomorphology. Notice that the 

Mantel statistic values do not behave like pro- 

duct-moment correlation coefficients, and do not 

have to be large in absolute value to be significant. 

All 3 partial Mantel tests (Smouse et  al. 1986) are 

significant at the Bonferroni-corrected level 

c~' = 0.05/3 --- 0.01667. Of special interest to us is 

the unique influence of geomorphology on the 

vegetation structure, compared to the influence of 

space. To decide among the various possible 

models of interrelations among these 3 groups 

of variables, we have to consider in turn all 3 

possible competing models, and proceed by elimi- 

nation, as follows. (1) The first model states that 

the vegetation spatial structure is caused by the 

spatial structure of geomorphology [ Space 
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Geomorphology-~ Vegetation structure]. If this 

model were supported by the data, then we would 

expect the partial Mantel statistic (Space. 

Vegetation), controlling for the effect of 

Geomorphology, not to be significantly different 

from zero; this condition is not met in Table 3. 

(2) The second model states that there is a spatial 

component in the vegetation data, which is inde- 

pendent from the spatial structure in geomor- 

phology [Geomorphology .-- Space ~ Vegetation 

structure]. If this model were supported by the 

data, we would expect the partial Mantel statistic 

(Geomorphology • Vegetation), controlling for the 

effect of Space, not to differ significantly from 

zero, a condition that is not met in Table 3. 

(3) The third possible model (Fig. 11) claims that 

the spatial structure in the vegetation data is 

partly determined by the spatial gradient in the 

geomorphology, and partly by other factors not 

explicitly identified in the model. According to 

this model, all 3 simple and all 3 partial Mantel 

tests should be significantly different from zero. 

This is indeed what we find in Table 3. 

Although this decomposition of the correlation 

would best be accomplished by computing stand- 

ard partial regression-type coefficients (as in path 

analysis), we can draw some conclusions by 

looking at the partial Mantel statistics. They show 

that the Mantel statistic describing the influence 

of geomorphology on vegetation structure is 

reduced from 0.15 to 0.09 when controlling for the 

effect of space. The proper influence of 

geomorphology on vegetation is then 0.09, while 

the difference (0.06) is the part of the influence of 

geomorphology on vegetation that corresponds to 

the spatial component of geomorphology 

(0.15 × 0.38 = 0.06). On the other hand, the par- 

tial Mantel statistic describing the spatial determi- 

I Space  I ~ [  G e o m o r p h o l o g y  ] 

Fig. I 1. Diagram of interrelationships between vegetation 

structure, geomorphology and space. 
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nation of the vegetation structure not accounted 

for by geomorphology is still large (0.12) and sig- 

nificant; this shows that other space-related fac- 

tors do influence the vegetation structure, which 

is then not entirely spatially determined by 

geomorphology. Work is in progress on other 

hypotheses to fill the gap. • 

Estimation and mapping 

Any quantitative study of spatially structured 

phenomena usually starts with mapping the varia- 

bles. Ecologists, like geographers, usually satisfy 

themselves with rather unsophisticated kinds 

of map representations. The 2 most common 

kinds are (1) divisions of the study area into non- 

overlapping regions, since 'many areal phe- 

nomena studied by geographers [and ecologists] 

can be represented in 2 dimensions as a set of 

contiguous, nonoverlapping, space-exhaustive 

polygons' (Boots 1977), and (2)isoline maps, or 

contoured maps, used for instance by geographers 

to represent altitudes on topographic maps, where 

the nested isolines represent different intensities 

of some continuous variable. Both types can be 

produced by computer software. Before attempt- 

ing to produce a map, especially by computer, 

ecologists must make sure that they satisfy the 

following assumption: all parts of the 'active' 

study area must have a non-null probability of 

being found in one of the states of the variable to 

be mapped. For instance, in a study of terrestrial 

plants, the 'active' area of the map must be defined 

in such a way as to exclude water masses, roads, 

large rocky outcrops, and the like. 

Since the map derives in most cases from 

samples obtained from a surface, intermediate 

values have to be est imated by interpolation; or, 

in the case of a regular sampling grid, one can map 

the surface as a juxtaposition of regular tiles 

whose values are given by the points in the center 

of the tiles. One should notice that interpolated 

maps can only represent one variable at a time; 

thus these methods are not multivariate, although 

it is possible in some cases to superpose two or 

three maps. When it does not seem desirable or 

practicable to map each variable or each species 

separately, it remains then possible to map, 

instead, synthetic environmental variables such 

as species diversity, or else the first few principal 

axes from a principal components or a corre- 

spondence analysis, for instance. 

Several methods exist for interpolated map- 

ping. These include trend surface analysis, local 

weighted averaging, Fourier series modelling, 

spline, moving average, kriging, kernel estimators, 

and interpolation by drawing boundaries (in 

which case the resulting maps may be called 

'choropleth maps' or 'tessellations'). They have 

been reviewed by several authors, including Tapia 

& Thompson (1978), Ripley (1981, ch. 4), Lam 

(1983), Bennett etal .  (1984), Burrough (1986, 

ch. 8), Davis (1986) and Silverman (1986). Com- 

puter programs can provide an estimate of the 

variable at all points of the surface considered; 

the density of reconstructed points is either 

selected by the user or set by the program. 

Contouring algorithms are used to draw maps 

from the fine grid of interpolated points. 

Besides simple linear interpolation between 

closest neighbours, trend surface analysis is per- 

haps the oldest form of spatial interpolation used 

by ecologists (Gittins 1968; Curtis & Bignal 

1985). It consists in fitting to the data, by regres- 

sion, a polynomial equation of the x and y coordi- 

nates of the sampling localities. The order of the 

polynomial is determined by the user; increasing 

the order increases the number of parameters to 

be fitted and so it produces a better-fitting map, 

with the inconvenient that these parameters 

become more and more difficult to interpret eco- 

logically. For instance, the commonly used 

equation of degree one is written: 

~. = b o + b l x  + bzy  (1) 

where $ is the estimated value of the response 

variable z (the one that was measured and is to be 

mapped), while the b's are the three regression 

parameters. A second-degree polynomial model 

is: 

= b o + bax + b2y + b3x 2 + b4xy + b s y  2 (2) 
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Fig. 1 2 .  ( a )  Trend surface map o f A c e r  saccharum, sixth order polynomial. The observation points are identified by numbers. 

Shades of  gray and numbers form a scale that represents the estimated frequencies of  sugar-maples. (b) Map of the regression 

residuals. From Fortin ( 1 9 8 5 ) .  

Besides the map of the fitted values @), trend 

surface analysis programs usually provide also a 

map of residuals (z - ~), representing the varia- 

tion left undescribed by the interpolated map. 

Fig. 12a illustrates the map of the 6th order poly- 

nomial adjusted to the A. saccharum data. Com- 

pared to Fig. 13 (kriged map) the contouring 

obtained is still crude, although 28 parameters 

have been adjusted. Fig. 12b is the map of regres- 

sion residuals, showing the variations in A. sac- 

charum frequencies not expressed by the trend 

surface map. Burrough (1987) presents an exam- 

ple of trend surface analysis of soil data. Since 

trend surface analysis computes a single poly- 

nomial regression equation for the whole surface, 

the resulting map cannot have the precision that, 

more local criteria can provide. For that reason, 

it is used in ecology mostly to compute and 

remove large-scale trends, using the first degree 

equation in most cases, prior to further spatial 

analyses that can be conducted on the residual 

values. Trends can also be detected and modelled 

by autoregressive methods (e.g., Edwards & 

Coull 1987). Another valid use of trend surface 

analysis is the predictive modelling of spatial dis- 

tributions of organisms, using geographic coordi- 

nates alone as predictors; or, one can use other 

predictive variables to build such a model, alone 
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Fig. 13. (a) Map ofAcer saccharum obtained by kriging, and (b) map of the standard deviations of the estimations. From Fortin 
(1985). 

or in conjunction with geographic coordinates, 

using multiple regression or some other form of 

modelling. 

Kriging, developed by mining engineers and 

named after Krige (1966) to estimate mineral 

resources, usually produces a more detailed map 

than ordinary interpolation. Contrary to trend 

surface analysis, kriging uses a local estimator 

that takes into account only data points located 

in the vicinity of the point to be estimated, as well 

as the autocorrelation structure of the phenome- 

non; this information can be provided either by 

the variogram (see above), or by generalized 

intrinsic random functions of order k (Matheron 

1973) that allow to make valid interpolation in 

the case of non-stationary variables (Journel & 

Huijbregts 1978). The variogram is used as fol- 

lows during kriging: the kriging interpolation 

method estimates a point by considering all the 

other data points located in the observation cone 

of the variogram (given by the direction and 

window aperture angles), and weighs them using 

the values read on the adjusted theoretic vario- 

gram at the appropriate distances; furthermore, 

kriging splits this weight among neighbouring 

points, so that the result does not depend upon 

the local density of points. Kriging programs pro- 

duce not only a map of resource estimates but also 

one of the standard deviations of these esti- 

mations (David 1977; Journel & Huijbregts 

1978); this map may help identify the regions 

where sampling should be intensified, the map 

being often obtained from a much smaller number 

of samples than in Fig. 13. 

The problem of mapping multivariate phe- 

nomena is all the more acute because cartography 

seems essential to reach an understanding of the 

structures brought to light for instance by correlo- 

gram analysis. What could be done in the multi- 

variate case? How could one combine the varia- 

bility of a large number of variables into a single, 

simple and understandable map? Since 



Table 4. The following programs are available to compute 

the various methods of spatial analysis described in this 

paper. This list of programs is not exhaustive. 

Package Methods of spatial analysis 

BLUEPACK 

CANOCO 

CORR2D 

GEOSTAT 

Kellogg's 

NTSYS-PC 

'R' 

SAAP 

SASP 

SYMAP 

UNIMAP 

Variogram, kriging. 

Constained ordinations: canonical 

correspondence analysis, redundancy 

analysis. 

Two-dimensional correlogram. 

Variogram, kriging. 

Variogram, kriging. 

Simple Mantel test. 

Spatial autocorrelation (quantitative 

and nominal data), simple Mantel 

test, partial Mantel tests, Mantel cor- 

relogram, clustering with spatial con- 

tiguity constraint, clustering with time 

constraint. A variety of connecting 

networks. 

Spatial autocorrelograms (Moran's/ 

and Geary's c). 

Two-dimensional spectal analysis. 

Trend surface analysis; other inter- 

polation methods. 

Variogram, kriging; other interpolation 

methods. 

- The BLUEPACK package is available from: Centre de 

grostatistique et de morphologie mathrmatique, 35 rue 

Saint-Honorr, F-77305 Fontainebleau Cedex, France. 

- The CANOCO program is available from Cajo J.F. ter 

Braak, Agricultural Mathematics Group, TNO Institute 

for Applied Computer Science, Box 100, NL-6700 AC 

Wageningen, The Netherlands. 

- The CORR2D program written by Geoffrey M. Jacquez is 

available from Applied Biostatistics Inc., 100 North 

Country Road, Bldg. B, Setauket, New York 11733, USA. 

- The GEOSTAT package is available from: Geostat Sys- 

tems International Inc., 4385 rue Saint-Hubert, Suite 1, 

Montrral, Qurbec, Canada H2J 2X1. 

- The Kellogg's programs are available from the Computer 

Laboratory, W.K. Kellogg Biological Station, Michigan 

State University, Hickory Corners, Michigan 49060, USA. 

- The NTSYS package, developed by F. James Rohlf, is 

available in PC version from Applied Biostatistics Inc., 100 

North Country Road, Bldg. B, Setauket, New York 11733, 

USA. 

- 'The R package for multivariate data analysis', developed 

by Alain Vaudor (P. Legendre's lab.: see title page), is 
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constrained clustering, explained in some detail 

above, produces groups that can be mapped - and 

indeed constrained clustering programs can be 

made to draw these maps directly (Fig. 10) - we 

have here a way of producing heuristic maps out 
of multivariate data. The methods of constrained 

ordination developed by Lee (1981), by 

Wartenberg (1985a, b) and by ter Braak (1986, 

1987) are other ways of accomplishing this. They 

differ from the simple mapping of principal com- 

ponents or correspondence analysis scores, 

mentioned at the beginning of this section, in that 

they take into account the spatial relationships 
among samples; they resemble them in that it may 

be necessary to draw several maps in order to 

represent the variability extracted by all the 

important but orthogonal axes. MacDonald & 

Waters (1988) give examples of palynological 

maps obtained using Lee's Most Predictable Sur- 

face Analysis (MPS); other examples are found in 

Wartenberg (1985a,b). These methods should 

find ample use among community ecologists, who 

study essentially multivariate (multi-species) phe- 
nomena. 

Conclusion 

Where should ecologists stand? As we have seen, 

the physical environment is not homogeneous, 

and most ecological theories are based on precise 

available for Macintosh microcomputers, VAX, and IBM 

mainframes. English and French speaking versions. 

- The SAAP package is a set of FORTRAN programs 

available from Daniel Wartenberg, Department of 

Environmental and Community Medicine, Robert Wood 

Johnson Medical School, 675 Hoes Lane, Piscataway, 

New Jersey 08854, USA. 

- The SASP program is available from E. Renshaw, Depart- 

ment of Statistics, University of Edinburgh, King's 

Buildings, Mayfield Road, Edinburgh EH9 3JZ, United 

Kingdom. 

- SYMAP is not distributed any longer by Laboratory for 

Computer Graphics and Spatial Analysis, Harvard Uni- 

versity, USA. It is however still available at many com- 

puting centers. 

- UNIMAP is available from: European Software Contrac- 

tors A/S, Narregade, DK-2800 Lyngby, Denmark. 
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assumptions about the spatial structure of popu- 

lations and communities. If we rely upon models 

that assume, as many still do for simplicity, that 

biological populations are distributed uniformly 

or at random in space, chances of obtaining valid 

predictions are small since the ecological reality is 

quite different. So, in the descriptive or hypothe- 

sis-generating phase of a research, ecologists who 

sample spatial distributions of organisms should 

consider a priori that their data are structured in 

space (i.e., are autocorrelated); they should then 

test for the presence of spatial autocorrelation, 

and describe the spatial structure using maps and 

spatial structure functions. In some cases, it may 

be adequate to remove large-scale spatial struc- 

tures by regression or model-fitting in order to 

carry out classical statistical analyses on residu- 

als, but in doing so, one must be careful not to 

remove one of the important determinants of the 

processes under study, since heterogeneity is 

functional in ecosystems. In the hypothesis-testing 

(model-testing) phase of a research, when two 

variables or groups of variables linked by a causal 

hypothesis are both autocorrelated, one should 

test whether their correlation, if significant, could 

be spurious and due to a similar spatial structure 

present in both. This in turn could give clues as 

to the identity of some other spatially autocorre- 

lated causal variable that may have given them 

their common autocorrelated structure. In a 

world where spatial structuring is the rule rather 

than the exception, this precaution can prevent 

one from reaching unwarranted conclusions. 

Statistical methods of spatial analysis (descrip- 

tive or inferential) are currently under develop- 

ment, and already they offer a way of answering 

many relevant questions about populations and 

communities (Table 1): demonstration of the 

existence of spatial or temporal structures, de- 

scription of these structures, univariate or multi- 

variate mapping, comparison with models, analy- 

sis of the influence of spatial structures on 

assumed causal links between variables, statisti- 

cal analyses which do not assume the inde- 

pendence of the observations. Programs available 

for spatial analysis are becoming widely available. 

Some are listed in Table 4; this list is not exhaus- 

tive. 

We can expect the spatial approach to ecologi- 

cal problems to bring about a quantic jump for 

ecologists and population geneticists who had 

learned a type of statistics where one had to hide 

space or time structures. It is now possible to 

use these structures and to integrate them into our 

analyses as fully-fledged controlled variables. 
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Appendix 1 

Formulas and technical points 

Spatial autocorrelation analysis 

Ho: there is no spatial autocorrelation. The values of the 
variable are spatially independent. Each value of the ! 
coefficient is equal to E(1) = -(n - 1)- 1 ~ 0, where E(1) is 



the expectation o f / a n d  n is the number of data points; each 

value of the c coefficient equals E(c) = 1. 

H~: there is significant spatial autocorrelation. The values 

of the variable are spatially dependent. The value of the I 

coefficient is significantly different from 

E(1) = - (n - 1)- ~ ~ 0; the value of c is significantly dif- 

ferent from E(c) = 1. 

l (d)  = [n ~ ~ wo(y i - y ) ( y j -  Y)] / [WY~(y i -  y)2] (1) 

c(d) = [(n - 1) ~ ~ wo(y , - yj)Z]/[2W ~ (Yi - y)2] (2) 

These coefficients are computed for each distance class d. 

The values of the variable are the y's. All summations are for 

i and j varying from 1 to n, the number of data points, but 

exclude the cases where i = j. The w0's take the value I when 

the pair ( i , j )  pertains to distance class d (the one for which 

the coefficient is computed), and 0 otherwise. W is the sum 

of the wo's, or in other words the number of pairs (in the 

whole square matrix of distances among points) taken into 

account when computing the coefficients for the given dis- 

tance class. Moran's coefficient varies generally from - 1 to 

1, but sometimes it can exceed - 1 or + 1 (Fig. ld, h, k); 

positive values of Moran's I correspond to positive auto- 

correlation. Geary's coefficient varies from 0 to some indeter- 

minate positive value which rarely exceeds 3 in real cases; 

values of c smaller than 1 correspond to positive auto- 

correlation. These coefficients can be tested for significance; 

formulas for computing the standard error of the estimated 

statistics can be found in Cliff & Ord (1981), S okal & Oden 

(1978) and Legendre & Legendre (1984a). A special form of 

spatial autocorrelation coefficient for nominal (qualitative) 

data is described by Cliff & Ord (1981) and by Sokal & Oden 

(1978). 

Technical points: 

- Spatial autocorrelation analysis should not be performed 

with fewer than ca. 30 localities, because the number of 

pairs of localities in each distance class then becomes too 

small to produce significant results. 

- There are two ways of dividing distances into classes: 

either by forming equal distance classes, or classes with 

equal frequencies. This last solution makes it possible to 

compute valid coefficients even in the right-hand part of 

the correlogram (Sokal 1983); with equal distance classes 

on the contrary, the number of pairs of points becomes too 

small for valid testing in the large distance classes (Fig. lc). 

- Spatial autocorrelation analysis cannot be performed with 

a data set that contains a lot of double zeros, because the 

degree of autocorrelation would then be overestimated 

and would reflect the fact that the localities share their 

absence for that variable, which is not what is intended in 

most applications. 

- Euclidean distances between pairs of localities may not be 

the best way of expressing geographic relationships when 
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analysing ecological data. Instead, one could use 1/d or 

1/d 2 (Mantel 1967; Jumars et al. 1977), or some other 

appropriate transformation (Estabrook & Gates 1984). 

- In cases where the Euclidean distance is felt to be meaning- 

less, one can use instead some topological network of 

connections between localities (see: Connecting networks, 

below) and compute distances in terms of number of edges 

along this network. 

Two-dimensional spectral analysis 

The spatial autocorrelation matrix contains all pairs of 

sample autocorrelation values rgh, corresponding to all possi- 

ble lags (g, h) where g is the lag along the x geographic axis 

of sampling and h is the lag along the y axis. Each value rgh 

is the ratio of the sample autocovariance at lag (g, h) to the 

sample variance of the yo's. The sample autocovariance Sg h 

is computed as 

m - - g  

sg h = (1~ran) ~ ~ (Yc,.J)- fi)(Y¢i+g.j+h) - Y) (3) 
i = l  j 

where 0 < g < m and - n < h < n; m and n are respectively 

the number of rows and columns of the geographic sampling 

grid. The second summation is taken over j = 1 . . . . .  n - h if 

h > 0 and over j = Jh[ + 1 . . . .  , n i fh  < 0. There is no need 

to compute the whole autocorrelation surface ( - m < g < m) 

since the surface is a reverse image of itself round either of 

the zero lag axes. 

The Schuster periodogram can also be computed, again 

for all possible combinations of lags (g, h). The periodogram 

is a more compact description of the spatial pattern than the 

full two-dimensional correlogram. Periodograms and power 

spectra are often expressed as functions of frequencies 

instead of periods (frequency = 1/period). For convenience, 

frequencies are here multiplied by the size of the series 

(m or n) so that a wave that occupies the whole length 

(m or n) of a side of the sampling area has a frequency 

(p or q) of 1. The range of frequencies considered is then 

p = 0 . . . . .  (m/2) and q = ( - n/2) . . . . .  ((n/2) - 1) where (m/2) 

and (n/2) are respectively the Nyquist frequencies (highest 

frequency in the observation window) in directions x and y 

of the sampling surface. The sign of q gives the direction of 

travel of the sine wave under study. As in time series analysis, 

the intensity of the periodogram I(p,  q), for each frequency 

combination, measures the amount of variance of variable y 

that is explained by the given combination of frequencies 

(p, q), after fitting to the data, by least squares, a Fourier 

series (sum of sines and cosines) with the given combination 

of frequencies. See formulas in Renshaw & Ford (1984), for 

instance. The periodogram is presented as a three-dimen- 

sional plot, with frequencies (p, q) along the axes of the 

controlling plane, and the intensity of the periodogram 

I(p,  q) as the response variable. 

The polar spectrum of the data aims at measuring the 

frequencies and angular directions of the dominant wave pat- 
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terns present in the data. 2 graphs, first proposed by 

Renshaw & Ford (1983), are produced. The first one, called 

the R-spectrum, measures the frequencies of the waves form- 

ing the spatial pattern. The R-spectrum is a graph of the 

average response I(p,  q) of all the elements in the periodo- 

gram that have approximately the same frequency magnitude 

R = x/(p 2 + q2). The second one, called the O-spectrum, 

measures the directions (angles) of the waves. It is presented 

as a graph of the average response I(p,  q) of all the elements 

in the periodogram that have approximately the same angle 

O = tan-~(p/q) (0 ° < O <  180°). In these graphs, the 

values along the abscissa (that is, the various R and O values) 

are first divided into a manageable number of classes before 

the graphs are drawn. 

The I(p,  q) values have been scaled to have an average 

value of 1, so that a data set with no spatial structure should 

produce an R-spectrum and a O-spectrum with values close 

to 1. Since the individual values of l (p ,  q) in the periodogram 

are approximately distributed as (lO0/mn)z~2), then they can 

be tested for significance against a critical value of 

(lO0/mn)z~,. 2). In the same way, particular values in the 

graphs of the R- and O-spectra that correspond to intervals 

containing, say, k individual values of I, can be tested for 

significance against a critical value o f / =  [l/(2k)] Z~,, 2k)' AS 

in all cases of multiple testing, one should apply the usual 

Bonferroni correction and use the corrected significance level 

• ' = ~/v where v is the number of tests performed simultane- 

ously; this point had not been emphasized by the above- 

mentioned authors. Actual use of two-dimensional spectral 

analysis shows that the spectra are the most useful instru- 

ments for interpreting the spatial structure; the periodogram 

has more of a descriptive value. 

Variogram 

The experimental semi-variogram (often called the vario- 

gram) is a plot of the values of semi-variance as a function 

of distance. The estimator of the semi-variance function is 

7(d) = [1/(2ha)] ~ [Y(i+d)- Y(O) 2] (4) 

where n d is the number of pairs of points located at distance 

d from one another. The summation is for i varying from 1 

to nd. Just like Geary's c autocorrelation coefficient (above), 

this structure function is a distance-type function; the dif- 

ference lies mainly in the denominator of the function. 

Some of the most often used theoretic variogram models 

are the following (Fig. 8). Other models are proposed by 

Journel & Huijbregts (1978). 

Linear model: 7(d) = Co + bd where b is the slope and Co is 

the intercept (nugget effect). 

Exponential model: 7(d) = Co + C [1 - exp ( -  Idl/a)] 

where Co is the nugget effect and C = sill - Co; a is the range. 

Sphericaimodel: 7(d) = Co + C [(3d/2a) - (d3/2a3)] ifd < a, 

while 7(d) = Co + C if d > a. 

Gaussian model: 7(d) = Co + C [1 - exp( -  dZ/a2)]. 

Technical points: 

- As in correlograms, variograms are computed for distance 

classes, which implies that the number of pairs of points 

used in the computation decreases as distance increases 

(Fig. lc). Thus, only about the first two-thirds of a vario- 

gram should be taken into account when describing the 

spatial structure. 

- With ecological data, the stationarity property is rare and 

the data often contain some overall trend, called 'drift' in 

the kriging jargon; drift can affect significantly the accuracy 

of kriging. Thus in the presence of non-stationarity and 

drift, the use of 'generalized intrinsic random functions of 

order k' is recommended, instead of a variogram, to esti- 

mate the autocorrelation structure. 

Connecting networks 

Graphs of interconnections among points are used to 

describe spatial interrelations for such data analysis methods 

as constrained clustering, spatial autocorrelation analysis, 

and other methods that require information about 

neighbouring localities. In the case of a regular square grid 

of sampling locations, the solution is simple, since one can 

connect each point to its neighbours in all 4 directions 

('rook's move'), or else in all 8 directions ('queen's move') if 

he so chooses. If the regular sampling design has the form of 

staggered rows, as in Fig. 2 for instance, connections (also 

called 'link edges') may be established with neighbours in all 

6 directions. If the sampling localities are irregular tiles that 

touch one another and cover the whole surface under study, 

a natural choice is to connect localities that have a border in 

common. 

It often happens, however, that the sampling localities do 

not form a regular pattern. In such cases, one should wonder 

first if the ecological problem under study would not provide 

a natural way of deciding what the close neighbours are. If 

no such ecological criterion can be found, then one can rely 

on the more arbitrary geometric criteria. The most commonly 

used graph-theoretic criteria are the minimum spanning tree 

(Gower & Ross 1969), the Gabriel graph (Gabriel & Sokal 

1969), or the Delaunay triangulation which is simply an 

algorithmic method of dividing a plane into triangles that 

obey some precise set of rules (Miles 1970; Ripley 1981; 

Watson 1981). It is interesting to note that the minimum 

spanning tree is a subset of the Gabriel graph, which in turn 

is a subset of the Delaunay triangulation. 



Appendix 2 

Theory of the Mantel test 

Hypo~es~ 

Ho: Distances among points in matrix X are not linearly 

related to the corresponding distances in matrix Y. When ¥ 

represents geographic distances, H o reads as follows: the 

variable (or the multivariate data) in X is not autocorrelated 

as a gradient. 

Hi:Distances among points in matrix X are correlated to 

the corresponding distances in matrix Y. 

Statistics 

- Mantel (1967) statistic: 

z = ~ ~ x~yij (5) 
i j 

for i :~ j ,  where i and j are row and column indices. 

- Normalized Mantel statistic: 

r = [1/(n - 1)] ~. ~ [(x U - YOIsxl [(Yu - Y)lsy] (6) 
i j 

for i ~: j ,  where i and j are row and column indices, and n 

is the number of distances in one of the matrices (diagonal 

excluded). 

Distribution of the auxiliary variable 

- According to H o, the values observed at any one point 

could have been obtained at any other point. 

- H o is thus realized by permuting the points, holding with 

them their vectors of values for the observed variables. 

- An equivalent result is obtained by permuting at random 

the rows of matrix X as well as the corresponding columns. 

- Either X or Y can be permuted at random, with the same 

net effect. 

- Repeating this operation, the different permutations pro- 

duce a set of values of the Mantel statistic, z or r, obtained 

under H o. These values represent the sampling distribu- 

tion of z or r under H o. 

Z or  r 
Statistical decision 

As in any other statistical test, the decision is made by 

comparing the actual value of the auxiliary variable (z or r) 
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to the reference distribution obtained under H 0. If the actual 

value of the Mantel statistic is one likely to have been 

obtained under the null hypothesis (no relation between X 

and Y), then H 0 is accepted; if it is too extreme to be con- 

sidered a likely result under Ho, then H o is rejected. 

Remarks 

The z or the r statistics can be transformed into another 

statistic, called t by Mantel (1967), which can be tested by 

referring to a table of the standard normal distribution. This 

test gives a good approximation of the probability when the 

number of objects is large. 

Like Pearson's correlation coefficient, the Mantel statistic 

formula is a linear model, that brings out the linear com- 

ponent of the relationship between the values in the two 

distance matrices. Strong non-linearity can probably prevent 

relationships from expressing themselves through the Mantel 

test; this led Dietz (1983) to suggest the use of a non- 

parametric correlation formula. The influence of lack of 

linearity, and of transformations in one or both of the dis- 

tance matrices, has not yet been fully investigated. 
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