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Nonlinear partial di	erential equations (PDEs) modelling unsteady boundary-layer 
ows are solved by the spectral relaxation
method (SRM) and the spectral quasilinearization method (SQLM). �e SRM and SQLM are Chebyshev pseudospectral based
methods that have been successfully used to solve nonlinear boundary layer 
ow problems described by systems of ordinary
di	erential equations. In this paper application of these methods is extended, for the �rst time, to systems of nonlinear PDEs that
model unsteady boundary layer 
ow. �e new extension is tested on two problems: boundary layer 
ow caused by an impulsively
stretching plate and a coupled four-equation system that models the problem of unsteady MHD 
ow and mass transfer in a porous
space. Numerous simulation experiments are conducted to determine the accuracy and compare the computational performance
of the proposed methods against the popular Keller-box �nite di	erence scheme which is widely accepted as being one of the ideal
tools for solving nonlinear PDEs that model boundary layer 
ow problems.�e results indicate that the methods are more e�cient
in terms of computational accuracy and speed compared with the Keller-box.

1. Introduction

Partial di	erential equations (PDEs) arise in a number of
physical problems, such as 
uid 
ow, heat transfer, and
biological processes. Finding solutions of the PDEs plays
a crucial role in understanding the behaviour of these
problems. Mostly, the PDEs modelling real-life problems are
nonlinear and complex to solve exactly and hence various
analytical and numerical methods have been employed to
approximate the solutions of these problems. In recent times,
many researchers in 
uid mechanics have focused their
attention on problems involving boundary layer 
ows of an
incompressible 
uid over a stretching surface because of their
substantial applications in engineering. A large and growing
body of literature has investigated problems involving steady

ows.However, in some cases the 
ow�eld could be unsteady
due to a sudden stretching of the 
at sheet. Unsteady

ows are mostly de�ned by systems of nonlinear PDEs and
are considerably more di�cult to solve than steady 
ows
problems which are oen simpli�ed into system nonlinear
ODEs using the so-called similarity transformations.

�e problem of unsteady boundary layer 
ow due to an
impulsively stretching surface in a viscous 
uid has been
considered by a number of researchers.�ese studies include
the work of Seshadri et al. [1] who used the Keller-box
method of Cebeci and Bradshaw [2] and a perturbation series
approach for the solution of unsteady mixed convection 
ow
along a heated vertical plate.�e Keller-box method was also
used by Ali et al. [3] to solve a related problem of unsteady
boundary layer 
ow due to an impulsively stretching surface.
Nazar et al. [4, 5] solved the unsteady boundary-layer 
ow
problem due to an impulsively stretching surface in a rotating

uid by means of the Keller-box numerical method, and they
obtained a �rst order perturbation approximation of the solu-
tion. Liao [6] noted that a limiting factor of the perturbation
approach is that it gives solutions that are only valid for small
time. As an alternative approach, Liao [6] suggested the use
of the homotopy analysis method (HAM) that was meant to
address some of the limitations of the perturbation methods
by o	ering solutions that are uniformly valid for all time. In
recent years, there has been an increasing amount of literature
that has adopted Liao’s analytic approach in solving unsteady
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boundary layer 
ows. However, there are limits to how far
analytic approaches can be utilised in nonlinear systems of
PDEs involvingmany equations.Nonlinear systems involving
many coupled equations are very di�cult to solve analytically.

In this work, we apply, for the �rst time, the spectral
relaxation method (SRM) and the spectral quasilineariza-
tion method (SQLM) to solve nonlinear PDEs describing
unsteady boundary layer 
ow due to an impulsively stretch-
ing surface. �e SRM was introduced in [7] for the solution
of the nonlinear ODE system model of von Karman 
ow
of a Reiner-Rivlin 
uid. �e method has also been used in
the solution of chaotic and hyperchaotic systems [8, 9]. �e
SRM is based on simple decoupling and rearrangement of
the governing nonlinear equations in a Gauss-Seidel manner.
�e resulting sequence of equations is integrated using the
Chebyshev spectral collocation method. On the other hand,
in the SQLM, the governing nonlinear equations are lin-
earised using the Newton-Raphson based quasilinearization
method (QLM), developed by Bellman and Kalaba [10], and
are then integrated using Chebyshev spectral collocation
method. A sizeable body of literature now exists on the use
of various �nite di	erence based QLM schemes in boundary
layer 
ows described by both nonlinear ODE and PDE-based
systems [11–15]. Spectral method based quasilinearisation
schemes have also been successfully applied to a range of

uid mechanics based ODE model problems (see, e.g., [16–
18]). For problems with smooth solutions, spectral methods
are well known [19–21] to be considerably more accurate
than other traditional numerical methods such as �nite
di	erence and �nite elements. In this investigation we revisit
the one-dimensional unsteady boundary layer 
ow due to an
impulsively stretching surface that was previously discussed
by [6] using the homotopy analysis method and recently in
[3] using the Keller-box method. �e problem of unsteady
three-dimensional MHD 
ow and mass transfer in a porous
space [22] is also investigated.�emain purpose of the study
is to investigate the applicability and e	ectiveness of the new
SRM approach to systems of nonlinear PDE-based unsteady
boundary layer 
ows of varying levels of complexity. Numer-
ical simulations are conducted on the sample problems using
the SRM, SQLM, and Keller-box method.�e three methods
are compared in terms of accuracy, computational speed, and
easy implementation.

�e rest of the paper is organized as follows. In Section 2,
we discuss the development of the SRM and SQLM for the
solution of an unsteady boundary-layer 
ow caused by an
impulsively stretching plate. Section 3 presents the SRM and
SQLM implementation of an unsteady three-dimensional
MHD 
ow and mass transfer in a porous space. Section 4
contains the results and discussion, and the conclusions are
given in Section 5.

2. Unsteady Boundary-Layer Flows Caused by
an Impulsively Stretching Plate

�e governing partial di	erential equations can be obtained
by using the standard stream function formulation in con-
junction with the transformations suggested by Williams

and Rhyne [23]. �e dimensionless governing equation is
obtained (see [1, 4, 6] for details) as

�3���3 + 12 (1 − �) ��2���2 + � [��2���2 − (����)
2]

= � (1 − �) �2����� ,
(1)

subject to the boundary conditions

� (0, �) = 0, ����








�=0 = 1, ����









�→+∞ = 0, (2)

where the primes denote di	erentiation with respect to the
similarity variable �. � is a nondimensional function that
gives the velocity and � ∈ [0, 1] is the dimensionless time-
scale de�ned as

� = 1 − �−�,  = ��, (3)

where � is a positive constant and � is the time variable. In the
analysis of boundary layer 
ow problems, a quantity that is
of physical interest in the skin friction in this model is given
[1, 4, 6], in dimensionless form, as

��Re1/2� = �−1/2��� (�, 0) , (4)

where Re� is the local Reynolds number.
�e initial unsteady solution at � = 0 ( = 0) for

the governing equation (1) is obtained as a solution of the
equation

���� + 12���� = 0, (5)

� (0, 0) = 0, �� (0, 0) = 1, �� (∞, 0) = 0, (6)

where the primes denote di	erentiation with respect to �.
Solving (5) gives

� (�, 0) = � erfc(�2) + 2√� [1 − exp(−�24 )] , (7)

where erfc(�) is the standard complementary error function
de�ned by

erfc (�) = 2√� ∫∞
�

exp (−�2) ��. (8)

�e steady state solution when � = 1, corresponding to → +∞, is obtained from

���� + ���� − (��)2 = 0,
� (0, 1) = 0, �� (0, 1) = 1, �� (∞, 1) = 0. (9)

�e solution to the above equation is

� (�, 1) = 1 − exp (�) . (10)
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2.1. Spectral Relaxation Method (SRM). In this section we
discuss the development of the spectral relaxation method
and its application to solve the partial di	erential equation
(1). It is convenient to reduce the order of (1) from three to
two. To this end, we set �� =  , so that (1) becomes

 �� + 12� (1 − �)  � + � [� � −  2] = � (1 − �) � �� ,
�� =  .

(11)

�e spectral relaxation method [7] algorithm uses the
idea of the Gauss-Seidel method to decouple the governing
systems of (11). From the decoupled equations an iteration
scheme is developed by evaluating linear terms in the current
iteration level (denoted by # + 1) and nonlinear terms in the
previous iteration level (denoted by #). Applying the SRM on
(11) gives the following linear partial di	erential equations:

 ��	+1 + $1,	 �	+1 + $2,	 = � (1 − �) � 	+1�� , (12)

 	+1 (0, �) = 1,  	+1 (∞, �) = 0, (13)

��	+1 =  	+1, �	+1 (0, �) = 0, (14)

where

$1,	 = 12� (1 − �) + ��	, $2,	 = −� 2	 . (15)

�e initial approximation for solving (12)–(14) is obtained
as the solutions at � = 0. �us �0(�, �) and  0(�, �) are given
by

�0 (�, �) = � erfc(�2) + 2√� [1 − exp(−�24 )] ,

 0 (�, �) = erfc(�2) .
(16)

Starting from given initial approximations (16), the iteration
schemes (12) can be solved iteratively for  	+1(�, �) when # =0, 1, 2, . . .. �e solution for  	+1 is used in (14) which is, in
turn, solved for �	+1. To solve (12) we discretize the equation
using the Chebyshev spectral method in the �-direction and
use an implicit �nite di	erencemethod in the �-direction. For
details of the spectral method, we refer interested readers to
[19, 21]. Before applying the spectral method, it is convenient
to transform the domain on which the governing equation is
de�ned to the interval [−1, 1] where the spectral method can
be implemented. For convenience, the semi-in�nite domain
in the space direction is approximated by the truncated
domain [0, �∞], where �∞ is a �nite number selected to be
large enough to represent the behaviour of the 
owproperties
when � is very large. We use the transformation � = �∞(% +1)/2 to map the interval [0, �∞] to [−1, 1]. �e basic idea
behind the spectral collocationmethod is the introduction of
a di	erentiation matrix & which is used to approximate the

derivatives of the unknown variables �(�) at the collocation
points (grid points) as the matrix vector product

�'�� = 
�∑
�=0

D��� (��) = D', - = 0, 1, . . . , 3�, (17)

where3�+1 is the number of collocation points,D = 2&/�∞,
and

' = [� (%0) , � (%1) , . . . , � (%
�)] (18)

is the vector function at the collocation points. Higher order
derivatives are obtained as powers ofD; that is,

'(�) = D
�', (19)

where 5 is the order of the derivative. We choose the Gauss-
Lobatto collocation points to de�ne the nodes in [−1, 1] as

%� = cos( �-3�) , - = 0, 1, . . . , 3�. (20)

�e matrix & is of size (3� + 1) × (3� + 1). �e grid points
on (�, �) are de�ned as

%� = cos
�-3� , �� = 6Δ�, - = 0, 1, . . . , 3�,

6 = 0, 1, . . . , 3�,
(21)

where 3� + 1, 3� + 1 are the total number of grid points in
the � and �-directions, respectively, and Δ� is the spacing in
the �-direction. �e �nite di	erence scheme is applied with
centering about amidpoint halfway between ��+1 and ��.�is

midpoint is de�ned as ��+(1/2) = (��+1+��)/2.�e derivatives
with respect to � are de�ned in terms of the Chebyshev

di	erentiationmatrices. Applying the centering about ��+(1/2)
to any function, say  (�, �) and its associated derivative, we
obtain

 (��, ��+(1/2)) =  �+(1/2)� =  �+1� +  ��2 ,

(� �� )
�+(1/2) =  �+1� −  ��Δ� .

(22)
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Before applying the �nite di	erences, we apply the spec-
tral method on (12) and (14) to obtain

[D2 + a1,	D]8	+1 + a2,	 = � (1 − �) �8	+1�� , (23)

 	+1 (�0, �) = 0,  	+1 (�
� , �) = 1, (24)

 	+1 (��, 0) = erfc(��2 ) , - = 0, 1, 2, . . . , 3�, (25)

D'	+1 = 8	+1, �	+1 (�
� , �) = 0, (26)

8	+1 =
[[[[[[[
[

 	+1 (�0, �) 	+1 (�1, �)
... 	+1 (�
�−1, �) 	+1 (�
� , �)

]]]]]]]
]
, '	+1 =

[[[[[[[
[

�	+1 (�0, �)�	+1 (�1, �)
...�	+1 (�
�−1, �)�	+1 (�
� , �)

]]]]]]]
]
,

(27)

a2,	 =
[[[[[[[
[

$2,	 (�0, �)$2,	 (�1, �)
...$2,	 (�
�−1, �)$2,	 (�
� , �)

]]]]]]]
]
, (28)

a1,	 =
[[[[[
[

$1,	 (�0, �) $1,	 (�2, �)
d

d $1,	 (�
� , �)

]]]]]
]
. (29)

Next, we apply the �nite di	erence scheme on (23) in

the �-direction with centering about the midpoint ��+(1/2) to
obtain

A8�+1	+1 = B8�	+1 + K, (30)

subject to the following boundary and initial conditions:

 	+1 (�0, ��) = 0,  	+1 (�
� , ��) = 1,
6 = 0, 1, 2, . . . , 3�,

 	+1 (��, 0) = erfc(��2 ) , - = 0, 1, 2, . . . , 3�,
(31)

where

A = −12 (D2 + a
�+(1/2)
1,	 D) + ��+(1/2) (1 − ��+(1/2))

Δ� I,

B = 12 (D2 + a
�+(1/2)
1,	 D) + ��+(1/2) (1 − ��+(1/2))

Δ� I,
K = a

�+(1/2)
2,	 ,

(32)

where I is an (3� + 1) × (3� + 1).

Starting from the initial condition 80	+1, given by (16),
(30) can be solved iteratively to give approximate solutions
for  	+1(�, �), # = 0, 1, 2, . . ., until a solution that converges to
within a given accuracy level is obtained. �e solution  	+1 is
used in (26) which is, in turn, solved for �	+1.
2.2. Spectral Quasilinearization Method (SQLM). In this
section we present the spectral quasilinearization method
(SQLM) for solving the partial di	erential equation (1).
�e quasilinearization technique is essentially a generalized
Newton-Raphson Method that was originally used by Bell-
man andKalaba [10] for solving functional equations.We�rst
set �� =  , so that (1) becomes

 �� + 12� (1 − �)  � + � [� � −  2] = � (1 − �) � �� . (33)

Applying the QLM on (33) the nonlinear partial di	er-
ential equation reduces to the following iterative sequence of
linear partial di	erential equations:

 ��	+1 + $1,	 �	+1 + $2,	 	+1 + $3,	�	+1 + $4,	
= � (1 − �) � 	+1�� , (34)

 	+1 (0, �) = 1,  	+1 (∞, �) = 0, (35)

��	+1 =  	+1, �	+1 (0, �) = 0, (36)

where

$1,	 = 12� (1 − �) + ��	, $2,	 = −2� 	,
$3,	 = � �	 $4,	 = −��	 �	 + � 2	 .

(37)

�e indices # and # + 1 denote the previous and current
iteration levels, respectively.

Starting from given initial approximations, denoted by�0(�, �) and  0(�, �), (34)–(36) can be solved iteratively for 	+1(�, �) and �	+1(�, �) (# = 0, 1, 2, . . .). We discretize (34)
and (36) using the Chebyshev spectral method in the �-
direction and we use the implicit �nite di	erence method in
the �-direction to discretize (34) as described in the previous
section. Applying the spectral method and �nite di	erences
on (34) and (36) as described previously, we obtain

[A1,1 A1,2
A2,1 A2,2

][
[
8�+1	+1
'�+1	+1 ]]

= [B1,1 B1,2
O O

][
[
8�	+1'�	+1]]

+ [K1
K2

] (38)
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subject to the boundary and initial conditions (31), where

A1,1 = 12 (D2 + a
�+(1/2)
1,	 D + a

�+(1/2)
2,	 )

− ��+(1/2) (1 − ��+(1/2))
Δ� I,

A1,2 = 12a�+(1/2)3,	 ,
A2,1 = −I, A2,2 = −D,

B1,1 = −12 (D2 + a
�+(1/2)
1,	 D + a

�+(1/2)
2,	 )

− ��+(1/2) (1 − ��+(1/2))
Δ� I,

B1,2 = −12a�+(1/2)3,	 ,
K1 = a

�+(1/2)
4,	 , K2 = B,

(39)

where I is an (3� + 1) × (3� + 1) identity matrix, O is an(3� + 1) × (3� + 1) zero matrix, andB is an (3� + 1) × 1 zero
vector. Starting from the initial condition 80	+1, (38) can be
solved iteratively to give approximate solutions for  	+1(�, �)
and �	+1(�, �), # = 0, 1, 2, . . ., until a solution that converges
to within a given accuracy level is obtained.

3. Unsteady Three-Dimensional MHD Flow
and Mass Transfer in a Porous Space

We consider the unsteady and three-dimensional 
ow of a
viscous 
uid over a stretching surface investigated by Hayat
et al. [22]. �e 
uid is electrically conducting in the presence
of a constant appliedmagnetic �eldC0.�e inducedmagnetic
�eld is neglected under the assumption of a small magnetic
Reynolds number.�e 
ow is governed by the following four
dimensionless partial di	erential equations:

���� + (1 − �) (�2��� − ������ )
+ � [(� + E)��� − (��)2 −F2�� − G���] = 0,

(40)

E��� + (1 − �) (�2E�� − ��E��� )
+ � [(� + E) E�� − (E�)2 −F2E� − GE��] = 0,

(41)

I�� + Pr (1 − �) (�2I� − ��I��)
+ Pr� (� + E) I� = 0,

(42)

J�� + Sc (1 − �) (�2J� − ��J�� )
+ Sc� (� + E) J� − KSc�J = 0

(43)

with the following boundary conditions:

� (�, 0) = E (�, 0) = 0,
�� (�, 0) = I (�, 0) = J (�, 0) = 1,

�� (�,∞) = E� (�,∞) = I (�,∞) = J (�,∞) = 0,
E� (�, 0) = L.

(44)

In the above equations prime denotes the derivative with
respect to � and L the stretching parameter is a positive
constant.F is the local Hartman number, G the local porosity
parameter, Sc the Schmidt number, Pr the Prandtl number,
and K the chemical reaction parameter. �e initial unsteady
solution can be found exactly by setting � = 0 in the above
equations and solving the resulting equations. �e closed
form analytical solutions are given by

� (0, �) = � erfc(�2) + 2√� [1 − exp(−�24 )] ,
E (0, �) = L(� erfc(�2) + 2√� [1 − exp(−�24 )]) ,

I (0, �) = erfc(√M#�2 ) ,
J (0, �) = erfc(√NL�2 ) .

(45)

Quantities of physical interest in this problems are the
skin friction coe�cients ��� and ��� in O- and P-directions,
local Nusselt number Nu, and local Sherwood number Sh
which are given in [22] in dimensionless form as

Re1/2� �1/2��� = −��� (0, �) ,Re1/2� �1/2���
= −E�� (0, �) ,NuRe−1/2� �1/2
= −I� (0, �) , ShRe−1/2� �1/2
= −J� (0, �) ,

(46)

where Re� and Re� are the local Reynolds numbers, ���(0, �)
and E��(0, �) are the surface shear stresses in O- and P-
directions, I�(0, �) is the surface heat transfer parameter, andJ�(0, �) is the surface mass transfer parameter.

3.1. Spectral Relaxation Method Solution. In this section we
discuss the development of the spectral relaxation method to
solve the system of partial di	erential equations (40)–(43).
First, we set �� =  and E� = V, so that (40) and (41) become

 �� + (1 − �) (�2 � − �� �� )
+ � [(� + E)  � −  2 −F2 − G ] = 0,

V
�� + (1 − �) (�2V� − ��V��)

+ � [(� + E) V� − V
2 −F2V − GV] = 0.

(47)
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Applying the SRM on the resulting system of nonlinear
partial di	erential equations gives the following linear partial
di	erential equations:

 ��	+1 + $1,	 �	+1 + $2,	 	+1 + $3,	 = � (1 − �) � 	+1�� , (48)

��	+1 =  	+1, (49)

V
��
	+1 + �1,	V�	+1 + �2,	V	+1 + �3,	 = � (1 − �) �V	+1�� , (50)

E�	+1 = V	+1, (51)

I��	+1 + L1,	I�	+1 = � (1 − �) �I	+1�� , (52)

J��	+1 + �1,	J�	+1 + �2,	 	+1 = � (1 − �) �J	+1�� , (53)

 	+1 (0, �) = I	+1 (0, �) = J	+1 (0, �) = 1,
�	+1 (0, �) = E	+1 (0, �) = 0, V	+1 (0, �) = L,
 	+1 (∞, �) = V	+1 (∞, �) = I	+1 (∞, �) = 0,

J	+1 (∞, �) = 0,
(54)

where

$1,	 = 12� (1 − �) + � (�	 + E	) ,
$2,	 = −� (F2 + G) ,

$3,	 = −� 2	 , �1,	 = $1,	,
�2,	 = $2,	, �3,	 = −�V2	 ,

L1,	 = Pr(12� (1 − �) + � (�	 + E	)) ,
�1,	 = Sc(12� (1 − �) + � (�	 + E	)) ,

�2,	 = −KSc�.

(55)

Starting from given initial approximations, denoted by 0(�, �), �0(�, �), V0(�, �), E0(�, �), I0(�, �), and J0(�, �), (48)–
(53) can be solved iteratively for the unknown functions. To
solve the above decoupled system of di	erential equations
we apply Chebyshev spectral collocation method on the
space variable and �nite di	erences in the time variable
as described previously and obtain the following system of
decoupled equations:

A18�+1	+1 = B18�	+1 + Q1,
D'�+1	+1 = 8�+1	+1 ,

A2R�+1	+1 = B2R�	+1 + Q2,
DS�+1	+1 = R�+1	+1 ,

A3Θ�+1	+1 = B3Θ�	+1 + Q2,
A4Φ�+1	+1 = B4Φ�	+1 + Q4,

 	+1 (�0, ��) = I	+1 (�0, ��) = J	+1 (�0, ��) = 1,
V	+1 (�0, ��) = L,

�	+1 (�0, ��) = E	+1 (�0, ��) = 0,
 	+1 (�∞, ��) = V	+1 (�∞, ��) = I	+1 (�∞, ��) = 0,

J	+1 (�∞, ��) = 0,
�	+1 (��, 0) = � erfc(��2 ) + 2√� [1 − exp(−�2�4 )] ,

E	+1 (��, 0) = L(� erfc(��2 ) + 2√� [1 − exp(−�2�4 )]) ,

I	+1 (��, 0) = erfc(√Pr��2 ) ,

J	+1 (��, 0) = erfc(√Sc��2 ) , - = 0, 1, 2, . . . , 3O,
(56)

where the matrices above are de�ned as

A1 = 12 (D2 + a
�+(1/2)
1,	 D + a2,	) − ��+(1/2) (1 − ��+(1/2))

Δ� I,

A2 = 12 (D2 + b
�+(1/2)
1,	 D + b2,	) − ��+(1/2) (1 − ��+(1/2))

Δ� I,

A3 = 12 (D2 + c
�+(1/2)
1,	 D) − Pr��+(1/2) (1 − ��+(1/2))

Δ� I,

A4 = 12 (D2 + d
�+(1/2)
1,	 D + d2,	) − Sc��+(1/2) (1 − ��+(1/2))

Δ� I,

B1 = −12 (D2 + a
�+(1/2)
1,	 D + a2,	) − ��+(1/2) (1 − ��+(1/2))

Δ� I,

B2 = −12 (D2 + b
�+(1/2)
1,	 D + b2,	) − ��+(1/2) (1 − ��+(1/2))

Δ� I,

B3 = −12 (D2 + c
�+(1/2)
1,	 D) − Pr��+(1/2) (1 − ��+(1/2))

Δ� I,

B4 = −12 (D2 + d
�+(1/2)
1,	 D + d2,	) − Sc��+(1/2) (1 − ��+(1/2))

Δ� I,
K1 = a

�+(1/2)
3,	 , K2 = b

�+(1/2)
3,	 ,

K3 = B, K4 = B.
(57)
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Above,8, ', R, S,Θ, andΦ are the vectors of the functions , �, V, E, I, and J, respectively, when evaluated at the grid
points �� (- = 0, 1, . . . , 3�).

3.2. Spectral Quasilinearization Method. In this section we
discuss the development of the spectral quasilinearization
method to solve the system of partial di	erential equations
(40)–(43). First, we set �� =  and E� = V, so that equations
(40) and (41) become

 �� + (1 − �) (�2 � − �� �� )
+ � [(� + E)  � −  2 −F2 − G ] = 0,

V
�� + (1 − �) (�2V� − ��V��)

+ � [(� + E) V� − V
2 −F2V − GV] = 0.

(58)

Applying the SQLM on the resulting system of nonlinear
partial di	erential equations gives the following linear partial
di	erential equations:

 ��	+1 + $1,	 �	+1 + $2,	 	+1 + $3,	�	+1
+ $4,	E	+1 + $5,	 = � (1 − �) � 	+1�� , (59)

��	+1 =  	+1, (60)

V
��
	+1 + �1,	V�	+1 + �2,	V	+1 + �3,	�	+1

+ �4,	E	+1 + �5,	 = � (1 − �) �V	+1�� , (61)

E�	+1 = V	+1, (62)

I��	+1 + L1,	I�	+1 + L2,	�	+1 + L3,	E	+1 + L4,	
= � (1 − �) �I	+1�� , (63)

J��	+1 + �1,	J�	+1 + �2,	 	+1 + �3,	�	+1 + �4,	E	+1 + �5,	
= � (1 − �) �J	+1�� , (64)

 	+1 (0, �) = I	+1 (0, �) = J	+1 (0, �) = 1,
�	+1 (0, �) = E	+1 (0, �) = 0, V	+1 (0, �) = L,
 	+1 (∞, �) = V	+1 (∞, �) = I	+1 (∞, �) = 0,

J	+1 (∞, �) = 0,
(65)

where

$1,	 = 12� (1 − �) + � (�	 + E	) ,
$2,	 = −� (2 	 +F2 + G) ,

$3,	 = $4,	 = � �	,
$5,	 = � ( 2	 − (�	 + E	)  �	) , �1,	 = $1,	,

�2,	 = −� (2V	 +F2 + G) , �3,	 = �4,	 = �V�	,
�5,	 = � (V2	 − (�	 + E	) V�	) ,

L1,	 = Pr(12� (1 − �) + � (�	 + E	)) ,
L2,	 = L3,	 = �PrI�	,

L4,	 = �Pr (�	 + E	) I�	,
�1,	 = Sc(12� (1 − �) + � (�	 + E	)) ,
�2,	 = −KSc�, �3,	 = �4,	 = �ScJ�	,

�5,	 = �Sc (�	 + E	) J�	.

(66)

Starting from given initial approximations, denoted by 0(�, �), �0(�, �), V0(�, �), E0(�, �), I0(�, �), and J0(�, �), equa-
tions (59)–(64) can be solved iteratively for the unknown
functions. To solve the above decoupled system of di	erential
equations we apply Chebyshev spectral collocation method
on the space variable and�nite di	erences in the time variable
as described previously.

4. Results and Discussion

In this section we present the SRM and SQLM results for
the two examples described above. Numerical simulations
were carried out to obtain approximate numerical values
of the quantities of physical interest, namely, the surface
shear stresses, surface heat transfer, and the surface mass
transfer parameter. In all the spectral method based numer-
ical simulations a �nite computational domain of extent�∞ = 20 was chosen in the �-direction. �rough numerical
experimentation, this value was found to give accurate results
for all the selected governing physical parameters used in
the generation of results. Increasing the value of � did not
change the results to a signi�cant extent. �e number of
collocation points used in the spectral method discretization
was 3� = 60 in all cases. We remark that both the SRM
and SQLM algorithms are based on the computation of

the value of some quantity, say '�+1	+1 , at each time step.
�is is achieved by iterating using the relaxation method or
the quasilinearization method using a known value at the
previous time step 6 as initial approximation. �e iteration
calculations are carried until some desired tolerance level, \,
is attained. In this study, the tolerance level was set to be \ =10−8. �e tolerance level is de�ned as the maximum values of
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the in�nity norm of the di	erence between the values of the
calculated quantities and its �rst two derivatives at successive
iterations. For example, in calculating'�+1	+1 , the tolerance level
and convergence criteria are de�ned as

max {_____'�+1	+1 − '�+1	 _____∞, _____8�+1	+1 − 8�+1	 _____∞,_____`�+1	+1 −`�+1	 _____∞} < \, (67)

where 8 = '� and ` = '��. �e accuracy of the computed
SRM and SQLM approximate results was con�rmed against
numerical results obtained by using the popular Keller-box
implicit �nite di	erence method as described by [2]. �e
Keller-box method has been reported in literature to be
accurate, fast, and easier to program for boundary layer

ow problems. �e algorithm begins with the reduction of
the governing nonlinear PDEs into a system of �rst order
equations that are discretized using central di	erences. �e
nonlinear algebraic di	erence equations are linearised using
Newton’s method and written in matrix-vector form. �e
linear matrix systems are solved in an e�cient manner using
block-tridiagonal-elimination technique. �e grid spacing
in both the �-direction and �-direction is carefully selected
to ensure that the Keller-box computations yield consistent
results for the governing velocity and temperature distribu-

tions to a convergence level of at least 10−8.
Tables 1 and 2 give the approximate numerical values of

the skin friction ���(0, �) for various step sizes Δ�, computed
using the SRM and SQLM, respectively, for Example 1. �e
tables also give the total computational time for the integra-
tion in the whole time domain to be completed. We remark
that the results were computed using the same number of
collocation points3� and the same �∞. Reducing the step sizeΔ� improves the accuracy of the results until the results are
consistent towithin eight decimal digits.�e results displayed
in the tables are quite revealing in several ways. First, it is
clear from the comparison of the computational run times
that the SRM takes less computer time than the SQLM. �e
results also indicate that the SRM converges more rapidly
than the SQLM results when the step size Δ� is reduced. Full
convergence to within eight decimal digits is reached whenΔ� is at least 0.0005 in the SRM compared to Δ� = 0.0001 in
the case of the SQLM. �is means that the SRM converges
faster than the SQLM with a decrease in the step size Δ�.
Furthermore, there is good agreement between the two sets of
results when Δ� is very small for all values of �. �e apparent
superiority of the SRM in terms of computational e�ciency
and accuracy when compared to the SQLMmay be explained
by the fact that the SRM algorithm reduced a coupled system
of equations into smaller sequences of decoupled equations
which are solved one aer the other. Smaller sized matrices
are less susceptible to round-o	 errors and ill-conditioning
and take less computer time to invert.

Table 3 gives a comparison of the amount of time it takes
for each method to generate numerical solutions that have

converged to within 10−8 at selected time levels. As can be
seen from Table 3, the SRM is much faster compared to the
SQLM in computing the numerical solutions. For very small
time steps the SRM appears to be at least twice as fast as the
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Figure 1: Variation of the SRM iterations with time � in Example 1.
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Figure 2: Variation of the SQLM iterations with time � in Example
1.

SQLM. �e results from Tables 1, 2, and 3 indicate that the
SRM is much more computationally e�cient and gives more
accurate results than the SQLM under the same conditions.

Figures 1 and 2 display the number of iterations required

to yield converged results to within the tolerance level of 10−8
against the time for the SRM and SQLM, respectively. �e
results are given for di	erent values of the number of grid
points 3�. It can be seen from Figure 1 that more iterations
are required to give the converged results when the number
of grid points is small. For larger values of 3�, between four
and six iterations are required in the range 0 ≤ 0.9. For �
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Table 1: Skin friction ���(0, �) for various values of � computed using SRM.

� Δ�
0.01 0.001 0.0005 0.0002 0.0001

0.1 −0.61046835 −0.61046762 −0.61046761 −0.61046761 −0.61046761
0.3 −0.70126751 −0.70126681 −0.70126680 −0.70126680 −0.70126680
0.5 −0.78982903 −0.78982837 −0.78982837 −0.78982837 −0.78982837
0.7 −0.87626715 −0.87626654 −0.87626653 −0.87626653 −0.87626653
0.9 −0.96053875 −0.96053800 −0.96053800 −0.96053800 −0.96053800
Time 0.66 3.01 5.68 12.54 23.83

Table 2: Skin friction ���(0, �) for various values of � computed using SQLM.

� Δ�
0.01 0.001 0.0005 0.0002 0.0001

0.1 −0.61045544 −0.61046674 −0.61046742 −0.61046758 −0.61046761
0.3 −0.70126943 −0.70126664 −0.70126676 −0.70126679 −0.70126680
0.5 −0.78981759 −0.78982831 −0.78982835 −0.78982836 −0.78982837
0.7 −0.87625663 −0.87626652 −0.87626653 −0.87626653 −0.87626653
0.9 −0.96053069 −0.96053800 −0.96053800 −0.96053800 −0.96053800
Time 0.60 3.29 6.62 20.37 53.92

Table 3: SRM and SQLM computational times for Example 1.

� \ Δ� 0.01 0.001 0.0005 0.0002 0.0001

Spectral relaxation method

0.1 0.07 0.22 0.43 0.95 1.93

0.3 0.13 0.65 1.38 3.18 6.01

0.5 0.20 1.14 2.26 5.48 10.69

0.7 0.27 1.72 3.14 7.70 15.08

0.9 0.35 2.30 4.25 10.05 19.57

Spectral qausilinearisation method

0.1 0.03 0.41 0.76 2.27 4.72

0.3 0.11 1.26 2.28 6.78 14.67

0.5 0.20 2.20 3.92 11.01 24.19

0.7 0.29 3.14 5.47 15.25 33.29

0.9 0.39 4.09 7.09 20.11 42.65

near 1, the number of iterations required increases.�e trends
in the results for SQLM, as seen in Figure 2, are similar to
those for the SRM. However, in the case of the SQLM, full
convergence is achieved with only four iterations in a wider
range of � and for smaller values of 3� than the SRM. �is
observation indicates that the actual convergence rates (with
an increase in iterations) of the SQLM are greater than those
of the SRM.

Tables 4 and 5 give a comparison of the SRM and SQLM
approximate numerical solutions, respectively, against the
Keller-box results for the skin frictions, surface heat transfer
parameter, and surface mass transfer parameters. We remark
that the results reported in Tables 4 and 5 were generated
using a tolerance level of 10−7 in the SRM, SQLM, and Keller-
box implementations. It can be noted from Tables 4 and 5
that both the SRM and SQLM converge to the Keller-box

Table 4: Comparison between the SRM and Keller-Box approxi-
mate numerical values for ���(0, �), E��(0, �), I�(0, �), and J�(0, �)
when G = 0.5,F = 2, L = 0.5, Sc = K = 1, and Pr = 1.5 in Example 2.

Spectral relaxation method Keller-box� \ Δ� 0.01 0.002 0.001 0.0005 0.0005���(0, �)
0.1 −0.851309 −0.851259 −0.851258 −0.851257 −0.851257
0.3 −1.316738 −1.316706 −1.316705 −1.316705 −1.316705
0.5 −1.685327 −1.685307 −1.685306 −1.685306 −1.685306
0.7 −1.992622 −1.992609 −1.992608 −1.992608 −1.992608
0.9 −2.259344 −2.259335 −2.259335 −2.259335 −2.259335E��(0, �)
0.1 −0.417173 −0.417151 −0.417151 −0.417150 −0.417150
0.3 −0.639617 −0.639603 −0.639602 −0.639602 −0.639602
0.5 −0.817659 −0.817649 −0.817649 −0.817649 −0.817649
0.7 −0.966610 −0.966604 −0.966603 −0.966603 −0.966604
0.9 −1.095987 −1.095983 −1.095983 −1.095983 −1.095983I�(0, �)
0.1 −0.710885 −0.710882 −0.710882 −0.710882 −0.710882
0.3 −0.742845 −0.742842 −0.742842 −0.742842 −0.742843
0.5 −0.765247 −0.765244 −0.765244 −0.765244 −0.765244
0.7 −0.777274 −0.777270 −0.777270 −0.777270 −0.777270
0.9 −0.770819 −0.770807 −0.770807 −0.770807 −0.770807J�(0, �)
0.1 −0.634447 −0.634443 −0.634443 −0.634443 −0.634444
0.3 −0.766870 −0.766867 −0.766867 −0.766867 −0.766867
0.5 −0.891209 −0.891207 −0.891207 −0.891207 −0.891207
0.7 −1.010046 −1.010045 −1.010045 −1.010045 −1.010045
0.9 −1.125550 −1.125549 −1.125549 −1.125549 −1.125549

results when Δ� is su�ciently small. �e convergence to six-
decimal-digit accurate results is more or less the same for
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Table 5: Comparison between the SRM and Keller-Box approxi-
mate numerical values for ���(0, �), E��(0, �), I�(0, �), and J�(0, �)
when G = 0.5,F = 2, L = 0.5, Sc = K = 1, and Pr = 1.5 in Example
2.

Spectral quasilinearisation method Keller-Box� \ Δ� 0.01 0.002 0.001 0.0005 0.0005���(0, �)
0.1 −0.851309 −0.851259 −0.851258 −0.851257 −0.851257
0.3 −1.316738 −1.316706 −1.316705 −1.316705 −1.316705
0.5 −1.685327 −1.685307 −1.685306 −1.685306 −1.685306
0.7 −1.992622 −1.992609 −1.992608 −1.992608 −1.992608
0.9 −2.259344 −2.259335 −2.259335 −2.259335 −2.259335E��(0, �)
0.1 −0.417173 −0.417151 −0.417151 −0.417150 −0.417150
0.3 −0.639617 −0.639603 −0.639602 −0.639602 −0.639602
0.5 −0.817659 −0.817649 −0.817649 −0.817649 −0.817649
0.7 −0.966610 −0.966604 −0.966603 −0.966603 −0.966604
0.9 −1.095987 −1.095983 −1.095983 −1.095983 −1.095983I�(0, �)
0.1 −0.710885 −0.710882 −0.710882 −0.710882 −0.710882
0.3 −0.742845 −0.742842 −0.742842 −0.742842 −0.742843
0.5 −0.765247 −0.765244 −0.765244 −0.765244 −0.765244
0.7 −0.777274 −0.777270 −0.777270 −0.777270 −0.777270
0.9 −0.770819 −0.770807 −0.770807 −0.770807 −0.770807J�(0, �)
0.1 −0.634447 −0.634443 −0.634443 −0.634443 −0.634444
0.3 −0.766870 −0.766867 −0.766867 −0.766867 −0.766867
0.5 −0.891209 −0.891207 −0.891207 −0.891207 −0.891207
0.7 −1.010046 −1.010045 −1.010045 −1.010045 −1.010045
0.9 −1.125550 −1.125549 −1.125549 −1.125549 −1.125549

both SRM and SQLM schemes. We remark that the Keller-
box results given in Tables 4 and 5 were calculated using
nonuniform step size in the �-direction and a uniform step
size Δ� = 0.0005 in the �-direction. Using a nonuniform
grid size signi�cantly improves the computation time of the
Keller-box method.�us, to speed up the computation times
for the Keller-box method, computations were carried out
with an initial step size of Δ�0 = 0.001. �is was gradually
increased by the variable grid parameter (VGP) factor of
1.005 between successive grid points in accordance with the
formula �� = ��−1 + VGP × Δ��−1 for - = 1, 2, . . . , g (where g
is the number of grid points in the � direction). �e value of�∞ was �xed at �∞ = 10 for the Keller-box implementation.

A comparison of the computational times between the
SRM, SQLM, and Keller-box method is given in Table 6 for
the computation of results that converge towithin six decimal
digits. It can be seen from the table that there is a substantial
di	erence in the computation times of the threemethodswith
the SRM being at least four times faster than the SQLM and
the Keller-box being the slowest method. �e demonstrated
speed of the spectral method based methods is primarily due
to the intrinsic property of the spectral collocation method
to be able to give accurate approximate results using only
a few grid points. Only 60 collocation points were used to
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Figure 3: Variation of the SRM iterations with time � in Example 2.

generate results that converge to at least six decimal digits of
accuracy. On the other hand, the Keller-box required a lot
more grid points in the � direction to give the same amount of
accuracy.�e apparent computational speed of the SRM over
the SQLM is in accord with the observation made earlier in
the case of the one-equation system.As can be seen in Table 6,
the superiority in computational e�ciency of the SRM over
the SQLM is much more pronounced in the current example
that involves a system of four coupled equations. �us, the
SRM is a better alternative method that can be used to obtain
numerical solutions of systems of PDEs arising in boundary
layer 
ow problems.

Figures 3 and 4 show the variation of the SRM and SQLM
iterations, respectively, over time for di	erent values of 3�.
�e indicated number of iterations is the total number of
iterations required to obtain results that are consistent to
within a tolerance level of 10−6. It can be noted from Figure 3
that the total number of iterations required for the SRM is
between 4 and 9 with the total iterations increasing as � tends
to 1. In contrast, the range of the required number of iterations
is 3 to 5 in the case of the SQLM. �us the convergence rate
of the SQLM in terms of iterations is higher than that of the
SRM.

5. Conclusion

In this paper, we investigated the application of the spectral
relaxation method (SRM) and spectral quasilinearisation
method (SQLM) in the solution of unsteady boundary layer

ows that are described by systems of coupled nonlinear par-
tial di	erential equations.We considered themodel problems
of unsteady boundary layer 
ow caused by an impulsively
stretching sheet and the unsteady MHD 
ow and mass
transfer in a porous space. �e purpose of this study was
to establish the applicability of the SRM, for the �rst time,
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Figure 4: Variation of the SQLM iterations with time � in Example
2.

Table 6: SRM and SQLM computational times for Example 2.

� \ Δ� 0.01 0.001 0.0005 0.0002 0.0001

Spectral relaxation method

0.1 0.13 0.91 1.52 3.92 8.52

0.3 0.37 3.02 5.68 12.07 26.13

0.5 0.62 5.24 10.09 21.32 43.58

0.7 0.91 7.40 14.54 32.06 62.84

0.9 1.20 9.97 18.90 42.86 87.48

Spectral qausilinearisation method

0.1 0.57 4.53 8.76 21.19 43.05

0.3 1.50 14.18 27.28 69.15 140.01

0.5 2.43 23.33 45.72 119.98 235.45

0.7 3.39 32.57 64.30 168.09 326.96

0.9 4.66 41.87 83.24 216.00 418.40

Keller-box method

0.1 5.30 47.67 100.59

0.3 17.62 143.90 294.22

0.5 30.27 241.03 486.32

0.7 42.94 337.97 677.87

0.9 55.68 464.56 900.30

to systems of PDEs that model unsteady boundary layer

ows.�e investigation also sought to assess the accuracy and
e�ciency of the SRM compared to the SQLM and Keller-box
method.

�e most obvious �nding to emerge from this study is
that the SRM is signi�cantly more computationally e�cient
than the SQLM which, in turn, is faster than the Keller-
box method. For su�ciently small step-sizes, all the three
methods yield results that are consistent to within a given
tolerance level. �e SRM was observed to convergence faster
than the SQLM with a reduction of the step size. It is

this feature that makes the SRM computationally e�cient
as accurate results are obtained using fewer grid points in
the time direction. In addition, the SRM algorithm involves
the solution of a sequence of smaller sized matrix equations
compared to the SQLM. �e numerical results presented
in this study clearly demonstrate the potential of the SRM
scheme for the simulation of numerical solutions of the class
of unsteady boundary layer 
ows equations related to the
model equations discussed in this study. �e evidence of the
accuracy and e�ciency of the SRM from this study suggests
that the method can be used as a more practical tool for
solving unsteady boundary layer 
ows and for validating
the results generated using other numerical methods in the
solution of similar boundary layer 
ow equations. �e pre-
sented SRM approach adds to a growing body of literature on
practical numerical methods for solving complex nonlinear
PDEs in some 
uid mechanics applications.
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