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SPLIT QUATERNIONS AND ROTATIONS IN SEMI
EUCLIDEAN SPACE E}

LEVENT KuULA AND YUSUF YAYLI

ABSTRACT. We review the algebraic structure of H and show that H
has a scalar product that allows as to identify it with semi Euclidean E}.
We show that a pair ¢ and p of unit split quaternions in H determines
a rotation Rgp : H — H . Moreover, we prove that Rgp is a product of
rotations in a pair of orthogonal planes in Ef. To do that we call upon
one tool from the theory of second ordinary differential equations.

1. Introduction

Quaternion algebra, which is customarily denoted H in his honor, enun-
ciated by Hamilton, has played a significant role recently in several areas of
the physical science; namely, in differential geometry, in analysis and synthe-
sis of mechanism and machines, simulation of particle motion in molecular
physics and quaternionic formulation of equation of motion in theory of rela-
tivity. Agrawal [1] gave some algebraic properties of Hamilton operators. Also,
quaternions have been expressed in terms of 4 x 4 matrices by means of these
operators.

Inoguchi [2] reformulated the Gauss-Codazzi equations in form familiar to
the theory of integrable system in Minkowski 3-space E3. The main tool of this
reformulation was split quaternion numbers (also called Godel quaternions in
the literature).

Kula and Yayli [3] defined dual split quaternions and gave some algebraic
properties of dual split quaternions. Moreover they gave the screw motion, in
R3, using the properties of the Hamilton operators defined in that paper.

Tain [6] examined solutions of the quaternionic matrix equations and has
established a group of universal factorization equalities for quaternions.

Weiner and Wilkens [7] showed that any rotation in E* is a product of
rotation in a pair of orthogonal two-dimensional subspaces.
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In this paper, we show that there exist rotations Ry, Rs : H - H anda pair
of orthogonal planes W; and W, in H, such that the restrictions R; |w,and
R> |w, are identities on their respective planes and Ry, = Ry o Ry = Ry o Ry.
If W, is a timelike plane of index 1, then W, is also. W is a timelike plane of
index 2 if and only if W, is a spacelike plane. In this case, H = W; & W and
R4y, rotates vectors in the W, through a determined angle 6, (or hyperbolic
angle ;) and vectors in the Ws through a determined angle 8, (or hyperbolic

angle ¢1).
2. Split quaternions and semi Euclidean space ]Q
A split quaternion ¢ is an expression of the form
g =ag+ a1t + azj + ask,

where ag,a1,a2 and ag are real numbers, and i, j, k are split quaternionic
units which satisfy the non-commutative multiplication rules

i = -1, 2=k =1,
ij = —ji=k, jk=—kj=—i,
and
ki = —ik = j.

Let us denote the algebra of split quaternions by H and its natural basis by
{1, 4, j, k}. An element of H is called a split quaternion [2].
If ¢ = ap + a1t + as2j + ask and p = by + byi + bej + b3k be the two split
quaternions and let r = gp, then r is given by
T =58 +9(Ve, Vu) + SV + SV + VAV,

where

Sq =a0, Sp="bo, g(Vg,Vp) = —a1b1 + azbs + asbs,

Vo = a1i + azj + ask, Vp = byi + baj + b3k,

Vq A Vp = (a3b2 - a2b3) 1+ (a3b1 - a1b3)j + (alb2 - a2b1) k.

Definition 2.1. E* with the metric tensor

v n

{u,v) = —Zuw,- + Z uv5, w,veR', 0Kvn
i=1 Jj=v+1

is called semi Euclidean space and is denoted by E* when v is called the index

of the metric. The resulting semi Euclidean space EP reduced to E* if v = 0.

For n > 2, EY is called Minkowski n-space; if n = 4 it is the simplest example

of a relativistic space time [4].

Definition 2.2. Let E} be a semi Euclidean space furnished with a metric
tensor { , ). A vector w € E? is called

spacelike if (w,w) >0 or w =0, nullif (w,w)=0and w #0,
timelike if {(w,w) < 0.
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The norm ||w}| of a vector w € E? is |(w,w)|%, two vectors wy and ws in E}
are said to be orthogonal, if {wy,w2) =0 [4].

Theorem 2.1. Let B3 be a Minkowski 3-space furnished with a metric tensor
1
g (u,v) = —ugvy + ugvs + uzvs, u,v € B3, Then we have the following:
(i) Every orthonormal set of three vectors is a basis for E; .

(ii) Fvery orthonormal basis has two spacelike vectors and one timelike
vector.

(iii) For every orthonormal pair {u, v} of vectors,
{u, v, u Av = (ugv2 — uovs, usvL — UIV3, U1V2 — U2U1)}

is an orthonormal basis.
(iv) For every unit spacelike or unit timelike vector v, there is an orthonor-
mal basis containing v [5].

Definition 2.3. Let V be a 2-dimensional vector subspace of Ej. Then V is
said to be

(i) timelike plane of index 1 if and only if V' have timelike and spacelike
vectors.

(ii) timelike plane of index 2 if and only if every nonzero vector in V is
timelike.
(iii) spacelike plane if and only if every vector in V is spacelike.

Hereafter we identify H with the semi Euclidean space Ej, where
E; = {q = (ao,a1,a2,a3) €R* : {g,q) = ——ag —af +a3 +a§}.

3. Exponential maps for a unit split quaternion
Let ¢ = agp+ayi+azj+ask is a unit split quaternion, N, = a2 +a? —a}—a3 =
1. Then there is a real number 6 and a pure split quaternion
a1t + azj + ask
U= —————

2~ o2 _ o2
ay —a; — a3

such that ¢ = cos@ + usin8 if g(V;,V;) = —a? + a3 + a2 < 0. Since u? = —1,
the power series expansion of ! leads to

uf __ — (ua)n
¢ _Z n!
n=0

providing equivalent representation for a unit split quaternion

= cosf + usiné,

g =agp+ayt +asj + ask = cos@ +usinf = e“?.

Since each component of % is a differentiable function of 6, it is not difficult
to verify that
i eue —

de

6’:u0

—sinf 4 ucosf = ue e“’u.
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If g(?q, 7‘,) = —a?+a2+a? > 0, then there is a real number ¢ and a pure split

quaternion
_ a1t + azj + ask

V=

V—a2 + a2 + a?

such that ¢ = cosh ¢ + v sinh . Because v% = 1, we get
_ = ()"
e’ = Z L' = cosh ¢ + v sinh ¢.
n!
n=0
In this case, the other representation for the unit split quaternion
g = coshyp + vsinh p = e"%.

The differential of €% is
d
—e"? =sinh p + vcoshp = ve’ = e%v.

dp
4. Rotations in E3

We introduce the R-linear transformations representing left and right mul-
tiplication in H . Let q be a split quaternion. Then L, : H — H and
R, : H — H are defined as follows:

Ly(x)=gqx, Ry(z)=zq, z€H.
If g is a unit split quaternion, then both L, and R, are semi orthogonal trans-

formations of H . Therefore, for unit split quaternions q and p, the mapping
Ryp:H — H defined by

Ry =LsoR,=RpolL,
is also a semi orthogonal transformation of H .
If q is a split quaternion, then transformations L and R are, respectively,
defined as
ag —a; Qa3 as
ax %) az —as

(4.1) ®(q) =

as as ap —a

asz —az2 ag
and

ayg —ai [¢5)] asg

a ag —az ag
(4.2) ¥(q) =

a —asz ap @

a3 a2z —aip ap

Lemma 4.1. If g and p are split quaternions and X is a real number and L and
R are operators as defined in equations (4.1) and (4.2), respectively, then the
following identities hold:

() g=ped(g)=2(p) & () =¥ ().
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(i) 2(g+p) =2 () +2 (), Y(g+p) =T (q) + ¥ (p).
(iii) @ (Ag) = A®(g), ¥ (Ag) = AV (g).
(iv) qp=2(q)p, ap="(p)q, ®(q) ¥ (p) =¥ (p)®(q)
(v) @(gp) = ®(q)®(p), ¥(gp) =T (p) ¥ (g
() 2@ == (@) e, ¥@ =c(@@) ec=| P ]
(vii) @ (¢71) =@ (), ¥ (¢g7') =T (g), N, #0
(viii) det[® (q)] = (Ny)* = (g,9)°, det [¥ (¢)] = (N,)? = (g,0)°
1 00 0
) 8@=C@@ c,c=|0 & 5ol
0 0 0 1

cl=cT=C,C?=1, 3]

Proposition 4.1. If ¢ = e*’ and u?> = —1, then Ry : B — E} defined by
Rz (z) = qx7 is a rotation in the plane orthogonal to timelike vector U through
an angle 26.

Proof. Since R, is a semi orthogonal transformation of H and also preserve
the pure split quaternion u, R,z fixes the one-dimensional subspace K spanned
by timelike vector ¥, hence fixes its orthogonal complement K+ in the pure
split quaternions as well. Let v = ¥ be a spacelike split vector such that v? =1
in K*. From Theorem 2.1, a =uwv = ¢ AV isa spacelike split vector. Notice
that uv = —vu, since u and v are orthogonal. This implies that ve ™%’ = e*¥y.
Accordingly, ‘

Rz (v) = e¥ve ™ = 20y = cos (20) ¥ +sin (20) &.

Thus R,z (u) yield a finite rotation about the timelike vector @ with the angle
260 in Minkowski 3-space. d

Proposition 4.2. If ¢ = ¢* and v2 = 1, then Ry : B} — E} defined by
Ryz (x) = qxq is a rotation in the plane orthogonal to spacelike vector g through
a hyperbolic angle 2.

Proof. Here, R4z fixes the one- dimensional subspace N spanned by spacelike
vector ¥. Let w = @ be a timelike (spacelike) split vector in its orthogonal
complement N1 such that w? = —1 (w? = 1). Thus from Theorem 2.1,

=vw =T AW is a spacelike (timelike) split vector. Since w and v are
orthogonal, vw = —wv. Hence, we~*? = ¢*’w. Consequently,

Ry (w) = e®®we="" = ¢*”w = cosh (2¢) & + sinh (2p) 7.

Thus R,z (w) yield a finite rotation about the timelike vector ¥ with the hy-
perbolic angle 2¢ in Minkowski 3-space. O



1318 LEVENT KULA AND YUSUF YAYLI

5. How to solve linear equation over H
In this section, we examine the general solution the following linear equation
qgr —zp=0
over H .

Definition 5.1. Two split quaternions ¢ and p are said to be similar if there
exists a split quaternion a, N, # 0, such that a~'ga = p; this is written
as ¢ ~ p. Obviously, the similar quaternions have the same norm. ~ is an
equivalence relation on the split quaternions.

Proposition 5.1. Let ¢ = ag + a4 + azj + ask be a split quaternion with
9 (Vq, V) < 0. Then there ezist another quaternion a such that a~‘qa = £ + ni
is a complez number with n > 0.

Proof. Consider the equation of split quaternions
(5.1) gz =z (ao +v/(@1)? - (@)% — (as)? l) .
It is easy to verify that
T = <a1 + \/(a1)2 — (ag)® - (a3)2> —agj + axk

is a solution to equation (5.1), if (a2)® + (a3)® # 0. For the case ¢ is a complex
number, j71¢j = 7. O

Proposition 5.2. Let ¢ = ag + a1i + azj + ask be a split quaternion with
9(Vy,Vy) > 0. Then there exist another quaternion ¢, N. # 0, such that
¢ lge =€+ (j is a hyperbolic number with ¢ > 0.

Proof. Consider the equation of split quaternions

(52) =1 (a0+ v/~ (@) + (@) + (o) i)

Then y = a;—azj+ (a2 - \/— (@) + (a2)® + (a3)2) k is a solution to equation
(5.2), if a3 < 0. If @y > 0 then /

y= ( /= (@) + (a)* + (@)") + osi + sk

is a solution to equation (5.2). For the case q is a hyperbolic number, i~ 1qi =
g. O

Now we consider the following linear equation
(5.3) gr—zp=0, ¢pzecH
over H . According to Lemma 4.1, the equation (5.3) is equivalent to
[®(9) — ¥ (p)]z =0,
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which is a simple system of linear equations over H . In order to symbolically
solve it, we need to examine some operation properties on the matrix & (¢) —

¥ (p).

Proposition 5.3. Let ¢ = ag + a1t + azj + azk, p=bo + bii + bej + bsk € H
be given, and denote © (q,p) = ® (¢) — ¥ (p). Then
(i) If ¢ and p are two split quaternion with g (Vy,Vy) < 0, g(V,, V) < 0
(or g (V4,Vy) <0, g(V,,Vp) <0). Then the determinant of © (g,p) is
1© (q,p)]

= [s2+(\/—g(Vq,Vq)—\/_g(Vp:V) }

x [s +(\/ gV, Vo) + /=9 (Vp, V) )2}

- st — 252 [(gl)(%"/:l))+(9(VP7VP))]+[(9(anVq))“(g(Vp’Vp))]z
where s = ag — bg.

(ii) If ap # bo, or g(Vy,Vy) # g(V,,V,), then © (q,p) is reqular and its
inverse can be expressed
0~ ' (g,p) =@ (¢ —2bog + Ny) (2 (q) — ¥ (D))
=87 (2(ao — bo) g+ Np —~ Ng) (2 (a) — ¥ (D))

and
01 (g,p) =T (p® —2a0p+ N,) (2 (@) — ¥ (p))
=01 (2(bo —a0) p+ Ny — Np) (2(7) — T ().

(iii) If ap = bo, and g (V,Vy) = g(V,, V), then © (q,p) is singular and has
a generalized inverse as follows

“(g,p) = 50 (¢,p)

1
4(V,) YA

Proof. Let ¢ and p be two split quaternion with g (V,, V) <0, ¢(V,, V) < 0.
Then ¢ and p are similar to complex numbers z; and 2o, respectively. From
Proposition 5.1, there are a, b € H such that

g=aza"l, p= bzob~!, N, #£0, Ny #0
Now applying Lemma 4.1 (v) to both them we obtain
()= 2 () D (2)® (™), U(p) =T (b)) T (2) V().
Therefore the determinant of O (g, p) is

1© (g, p)| =I<I> (@)@ (1)@ (a7) ~ ¥ (b~ 1)‘1’ 2) b)l
=|®(a)||® (21) = ® (a™!) ¥ (b71) ¥ (22) ¥ (b) @ (a)] |® (a™?)]
= <I>(z1) ‘I'(b‘)‘I’( )‘I’()I
=2 (7)) [T (0) @ (1) ¥ (b7") — ¥ (22)] ¥ (0)]

1@ (21) — ¥ (22)].

From this equation, the determinant can be calculated easily.



1320 LEVENT KULA AND YUSUF YAYLI

If ¢ and p are two split quaternion with g (V,,V,) > 0, g(V,,V,) > 0. Then
g and p are similar to hyperbolic numbers w; and ws, respectively. From
Proposition 5.2, there are ¢, d € H such that

q= cwlc—l, b= ded_l Nc ;é 07 Ny :lé 0.
Similarly, we have

©(g,p)] =|2(c)@(w1) ®(c™") ~ ¥ (d") ¥ (w2) ¥ (d)
= |® (w1) — ¥ (w2)].

Thus the determinant can be calculated easily.
The results in (ii). come from the following two equalities

[®(q) — ¥ ()] O (g,p) =" (7 — 2bog + N),

[®(@) - ¥ (»)]O(g,p) =¥ (p* —2ap+ N,) .
For ap = bp and g(V,, V) = g (V;,, V),

0% (q,p) = 4(V,)* O (q,p),
that is,

O (q,p)

@9 (q,p)] ©(g,p) =©(q,p)-

So we have (iii). 0
Theorem 5.4. Letq € H and q ¢ R, Then the general solution of the equation
(5.4) qT = xq

is
1
z=a+ ——=(V)a(Vy),

(Va)
where a € H is arbitrary, or equivalently,
(55) z = A1 + Aag,

where A1, A2 € R are arbitrary.

Proof. According to Lemma 4.1, the equation (5.4) is equivalent to © (gq,q) z
=0, and the general solution of this equation can be expressed as

2=2[L,-07(2,9)0(q,9)] a,
where a is an arbitrary split quaternion. From Proposition 5.3(iii), we have

z =2|I4— 4(‘2)2@2 (‘LQ)] a
1
(5.6) =21 - W (2 (Vo) Is — 28 (V,) ¥ (V:;))] a
1
=L+ W‘i’(vq) ‘I’(Vq)J a
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Next let a = (V)b in (5.6), where b € I is arbitrary. Then equation (5.6)
becomes
z =(V)b+b(Vy)

= A1+ AV,
where A;, A € R, which is equivalent to (5.5). O
Theorem 5.5. Let g, p € H be given. If
(5.7) ao =bo, g(Vg,Vy) =g (Vp,Vp) #0
then the general solution of linear equation
(5.8) qz = xp
]

1

5.9 z=a+——= V,)a(V,),
(5.9) W (V) a(Vp)

where a € H- is arbitrary; in particular, if ¢ # D, D = by — byi — baj — b3k, i.e.,
Ve +Vp # 0, then the general solution of (5.8) can be written as

(5.10) 2= (V+ V) + e [ (V) (%) + (V)]

where )\1,)\2 c R

Proof. According Lemma 4.1, the equation (5.8) is equivalent to

[®(9) - ¥ (p)]z=0O(g,p)z =0,
and this equation has a nonzero solution if and only if |© (g, p)| = 0, which is
equivalent, by Proposition 5.3(i), to (5.7). In that case, the general solution of
this equation can be expressed as

=2 [I4 - 9_ (qap) @ (qap)] a,

where a is an arbitrary real vector. Now substituting ©~ (g, q) in Proposition
5.3(iii) in it, we get

T =2 14—4(Vq)2®2(q,p)]a
1 2
=2 I“W(Z(V") L -20(V,) ¥ (V)| e

1
= |+ W‘P(VQ)‘P(Vp)

Returning it to quaternion form by Lemma 4.1, we have (5.9). If ¢ # P in (5.9),
then we set a = V, and a = (V,)” in (5.9), respectively, and (5.9) becomes

Ty = ‘/q + Vp, Ty = (Vg)z + qup

Thus (5.10) is also a solution to (5.8) under (5.7). The independence of z; and
z2 can be seen from two simple facts that S,, = 0 and S,, # 0. Therefore

a.
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(5.10) is exactly the general solution to (5.8), since the rank of © (g, p) is two
under (5.7). O

6. Semi orthogonal transformations of Ej

In this section, we seek two-dimensional invariant subspace for the mapping
Ryp.

Proposition 6.1. Let T : R — R* satisfy a 2th-order linear homogeneous
differential equation. Then the image of T lies in a 2-dimensional subspace of
RY.
~ ¢ dT s i L .

Proof. Let 2y = 2 (0) and z, = s (0) be the initial position and initial velocity
for the given curve Z. Additionally, suppose that Z satisfies the second-order
linear homogenous differential equation

d*z dz

+ asy + Bz =0,

where a and § are differentiable real valued functions of ¢. From standard
ODE theory, we know that when two solution of this differential equation have
the same initial position and the same initial velocity, the two solution are
identical.

Now suppose that f; (i = 0,1) are real valued functions that satisfy the
differential equation f* + af + Af = 0 and, in addition, f, (0) =1, f(’) (0) =0,
f1(0)=0, f; (0) = 1. Then z(¢) = fo (t) 2o + f1 (t) z, satisfies the same ODE
as T and has the same initial position and initial velocity. Thus the curve
T = fo(t)zo + f1 () zg, S0 we see that the image of 7 lies in the subspace of

R* spanned by z and z; [7). a
Proposition 6.2. Suppose that 7 : R — H satisfies the differential equation
&’z 5.
Tz + sz =0,
where s > 0 is a constant, and that initial position vector T (0) and the initial
e
velocity vector d—': (0) satisfy the conditions
dz dz
) =s1= z(0),—(0))=0.
Fol=|Z 0. (F0.20)=0

Then % (1) = R(%(0)), where R is a rotation in the plane of the image of &

through an angle s in the direction that turns 7 (0) toward s‘ld—f (0).

Proof. Following the construction in the proof of Proposition 6.1, we choose
fo (t) = cos (st) and f; (t) = s~ sin (st). Then

Z(t) = Z (0) cos (st) + 8_1% (0)sin (st),
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which show that

z(1) =z (0)cos(s) + s+ (—g (0)sin (s).

~ dz
That the rotation R exists follows from the assumptions that Z (0) and s‘l—gt- (0)
are orthogonal vectors and have the same length.
Proposition 6.3. Suppose that iy : R — H' satisfies the differential equotion
&y
ae Y=o
where v > 0 is a constant, and that initial position vector § (0) and the initial

. d . ..
velocity vector j‘% (0) satisfy the conditions
dy

- dy
—(0) ) =0.
To| (o.F0)
Then g (1) = R(y(0)), where R is a rotation in the plane of the image of 7

17 (0)]| =r~"

d
through an angle r in the direction that turns i (0) toward r~? d—i{ (0).

Proof. Similarly, we choose f, (t) = cosh (rt) and f1 (t) = r~'sinh (rt). Then

7 (t) =7 (0)cosh (rt) + r~* Z—?z (0) sinh (rt) ,

which show that

7 (1) =y (0)cosh (r) + r_li% (0) sinh (r) .

~ dy
That the rotation R exists follows from the assumptions that g {0) and T‘ld—z (0)
are orthogonal vectors and have the same length.

6.1. Representation of a rotation in E} by means of timelike split
vectors

First, notice that Rflp does make sense; in fact, for any real ¢, let R;p be
defined by

(61) R;p (.'II) — eu101tmeu292t; (U1)2 — _1’ (U2)2 = 1.

To each quaternion x we associate a curve  : R — H defined by Z(t) =

R}, (x). We will compute two derivative of Z . As the first derivative of T we
obtain

dr ~ ~
(6.2) d—‘: (t) = u e 1t geuatal 4 enibitpeualbely 0, = 4, 60,7 (t) + I (t) usba.
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Differentiating the left hand and right hand sides of (6.2), at the same time
using (6.2) to eliminate first order derivatives of Z (), we have

(63) %\(t) = — [(01)2 + (02)2] E(t) + 20102“1:’5(75) Ug.
Now if it happened that
(6.4) wZ () us = A@R)Z (),

where ) is a real valued function, then Z would satisfy a linear homogeneous
second order ordinary differential equation with real coefficients. By Proposi-
tion 6.1, the image of T would lie in a two dimensional subspace and necessarily
the span of z=Z (0) and Z (1) would be an invariant subspace. Note however
that |Ju:1Z (t) ua]l = ||Z (¢)]|, because u; and ug are unit split vectors. Thus
if equation (6.4) were to hold, then A would have to be either the constant
function 1 or the constant function —1. In fact, we can simplify the condition
of equation (6.4) with A = =+1.

On the other hand

w % (t) ue = *z.

Proposition 6.4. For z in H , uizus = +z if and only if wZ (t)ue = tz
holds for all t.

Proof. Assume that u1Z (t) ug = %2 for all t. Since =% (0), wazus = *z. If
u1xue = +x, then

ﬂ:Rfm (x) = Rflp (urzug) = €191ty puge¥2%2t = ulR;p (z) us.

This completes the proof. O

First we look for those z in H that satisfy one the linear equations uyx +
zus = 0. To do this we introduce a basis for H . A natural choose is the set
consisting of 1, u1, us, and uijus. Of course, this is not a basis if uy = tu;. We
first consider the case where us = 4-u; and look for solutions to u;z £+ zu; = 0.
From Theorem 5.4, 1 and u; are solutions to w2 — zu; = 0. Moreover, the
solutions to u;z + xu; = 0 are the pure quaternions z that are orthogonal
to u1. Thus the solution spaces to the two equations uyx + zu; = 0 give a
decomposition of H into the sum of two 2-dimensional orthogonal subspaces.
In this case uy # Fus, from Theorem 5.5, (u; + us) and (uyugy — 1) are solutions
to w1z — zug = 0. Using (6.2), we see that for z = u; + uz

.
d-:: (0) = w18y (uy +uz) + (uy + up) uaby = (61 + 62) (uyuz — 1).

Therefore = (0) = uy + ua is orthogonal to ' (0) and thus to ujus — 1. Fur-
thermore, we can show that us — u; and ujus + 1 are orthogonal solution of
u1z+zus = 0. Finally, it is easy to check that each pair of vectors is orthogonal
to the other pair. Thus the vectors u; + uz, uius — 1, us — u; and wjuy + 1
constitute an orthogonal basis for H .
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Assume that u; # —us, let £ = u; + u2, and recall that this z satisfy
wz — zuz = 0 (or equivalently u;zus = —z). For this z, (6.3) becomes

dt?
dz ~ ~ dz .
I (0)|| = 1|z (0)|] and ( Z(0), e (0) ) = 0. The same kind

of results hold in the remaining cases when u; # us.
We consolidate what we have learned into our theorem:

(t) + (61 + 62)° E (£) = 0.

Hence |6 + 65|

Theorem 6.5. Let ¢ = e“1% and p = e*2%, where (u;)° = —1, (u)® = —1.
The semi orthogonal transformation wa of H is a product of two rotations in
orthogonal planes. If uy # tus, then RZp rotates the plane spanned by uy + ug
and uyug — 1 through the angle |61 + 02| and the plane spanned by us — uy and
uiug + 1 through the angle |64 — 6>|. If uy = *usq, then the invariant planes
are the span of 1,u; and its orthogonal complement.

Proposition 6.6. Let (ul)2 =-1, (uQ)2 = -1, and uy # tus.

(i) If {u1,u2) > 1, then the subspace spanned by {ui + ug, urug — 1} is
spacelike plane and the subspace spanned by {us — u1, urus + 1}is time-
like plane of index 2.

(ii) If (uy,us) < —1, then the subspace spanned by {u + ug, uug — 1} is
timelike plane of index 2 and the subspace spanned by {us—u1, uius+1}
is spacelike plane.

6.2. Representation of a rotation in E} by means of spacelike split
vectors

Now we consider another representation of Rf,. Let R, be defined by
(65) RZP (y) = evltpltyevzgazt, (U1)2 =1, (’1)2)2 =1,
such that v1 Avs is a non-null vector. To each quaternion y we associate a curve
y:R — H defined by §(t) = R, (y). As the first derivative of § we obtain
dy ~ ~
(6.6) d_?; (t) = vy e P1tyetzPat 4 e1ityevavatyy by = uy 017 (£) + § (£) v2pa.

Differentiating the left hand and right hand sides of (6.6), at the same time
using (6.6) to eliminate first order derivatives of § (¢), we have

d*y 2 2] ~ ~
(6.7) T = [0 + (2’| §(0) + 20007 (1) 2.
Now if it happened that
(6.8) v (Hve =p )y (@),

where p is a real valued function, then § would satisfy a linear homogeneous
second order ordinary differential equation with real coefficients. By Proposi-
tion 6.1, the image of § would lie in a two dimensional subspace and necessarily



1326 LEVENT KULA AND YUSUF YAYLI

the span of y=%(0) and 7 (1) would be an invariant subspace. Note however
that ||v17 (t) v2|| = |7 (¢)]], because v; and vy are unit split vectors. Thus if
equation (6.8) were to hold, then y would have to be either the constant func-
tion 1 or the constant function —1. In fact, we can simplify the condition of
equation (6.8) with p = +1.

Proposition 6.7. Fory in H , viyvs = +y if and only if V17 (t) va = y holds
for all t.

Proof. Similarly to Proposition 6.4, it can be proofed. O

Now we look for those y in H that satisfy one the linear equations viy£yv, =
0 such that v; A v3 is a non-null vector. To do this we introduce a basis for
H . A natural choose is the set consisting of 1, v, va, and vivs. Of course,
this is not a basis if v; = +wv,. We first consider the case where v = vy
and look for solutions to v;y — yv; = 0. From Theorem 5.4, 1 and v; are
solutions to v1y — yv; = 0. Moreover, the solutions to v,y + yv; = 0 are the
pure quaternions y that are orthogonal to v;. Thus the solution spaces to the
two equations v1y + yv; = 0 give a decomposition of H into the sum of two
2-dimensional orthogonal subspaces.
In this case vy # wvs, from Theorem 5.5, (v; + v2) and (vyvs + 1) are solutions
to v1y — yv2 = 0. Using (6.6), we see that for y = v; + v

d
d_zi (0) = vipr (01 + v2) + (v1 +v2) V22 = (1 + 2) (V102 + 1).

Therefore §(0) = v; + v, is orthogonal to 3 (0) and thus to v;v, + 1. Fur-
thermore, we can show that vy — v; and vjus — 1 are orthogonal solution of
v1y+yvz = 0. Finally, it is easy to check that each pair of vectors is orthogonal
to the other pair. Thus the vectors u; + w2, uius + 1, us — u; and ujus — 1
constitute an orthogonal basis for H .

Assume that vy # ~wvs, let y = v;+vs, and recall that this y satisfy v;y—yves = 0
(or equivalently v1yv, = y). For this y, (6.7) becomes

T ) - (o1 + 9275 =0.
Hence & .
o+l |5 O = 1501 (70,9 ©) =0

The same kind of results hold in the remaining cases when v; # vs.
We consolidate what we have learned into our theorem:

Theorem 6.8. Let ¢ = ¢*'%! and p = €"2%2, where (v;)> = 1, (v2)* = 1 and
v1 A vz is a non-null vector. The semi orthogonal transformation Rzp of H s
a product of two rotations in orthogonal planes. If v, # +v,, then Rflp rotates
the plane spanned by vy +v2 and viva + 1 through the angle le1 + @2| and the
plane spanned by vy —v; and vivy — 1 through the angle lo1 — @a|. Ifvy = Luy,
then the invariant planes are the span of 1, v; and its orthogonal complement.
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Proposition 6.9. Let (1)1)2 =1, (1)2)2 =1, and v1 Avs is a non-null vector.
Then the subspace spanned by {vy + va, v1vs + 1} is the timelike plane of index
1 and the subspace spanned by {vs — vy, v1v2 — 1} is timelike plane of index 1.
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