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A b s t r a c t  

Several procedures for the statistical estimation of the region-
characteristic maximum possible earthquake magnitude, mmax , are cur-
rently available. This paper aims to introduce and compare the 12 exist-
ing procedures. For each of the procedures given, there are notes on its 
origin, assumptions made in its derivation, condition for validity, weak 
and strong points, etc. The applicability of each particular procedure is 
determined by the assumptions of the model and/or the available infor-
mation on seismicity of the area.  

Key words: mmax, earthquake magnitude distribution, maximum magni-
tude. 

1.  INTRODUCTION 
The region-characteristic, maximum possible earthquake magnitude, mmax, is 
required by the earthquake engineering community, disaster management 
agencies and the insurance industry. Although the mmax value is important, it 
is astonishing how little has been done in developing appropriate techniques 
for estimating this parameter. Presently, there is no universally accepted 
technique for estimating the value of mmax; however, the current procedures 
for mmax can be divided into two main categories: deterministic and probabil-
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istic. A presentation and discussion of deterministic techniques for the  
assessment of mmax can be found in, e.g., Wells and Coppersmith (1994), 
Wheeler (2009), and Mueller (2010). This paper focuses only on the prob-
abilistic techniques. 

The maximum regional earthquake magnitude, mmax, is defined as the 
upper limit of earthquake magnitude for a given region and is synonymous 
with the magnitude of the largest possible earthquake. This definition is used 
by earthquake engineers (EERI Committee on Seismic Risk 1984) and seis-
mologists (Hamilton 1967, Page 1968, Cosentino et al. 1977, Working 
Group on California Earthquake Probabilities (WGCEP) 1995, Stein and 
Hanks 1998, Field et al. 1999). It assumes a sharp cut-off magnitude at  
a maximum magnitude, mmax, so that, by definition, no earthquakes are to be 
expected with magnitude exceeding mmax. 

This paper presents several statistical techniques for the evaluation of 
mmax, which can be used depending on the assumptions about the statistical 
distribution model and/or the information available about past seismicity. 
Certain procedures can be applied in extreme cases when no information 
about the nature of the earthquake magnitude distribution is available. These 
procedures are capable of generating an equation for mmax, which is indepen-
dent of the assumed frequency-magnitude distribution. Some of the proce-
dures can also be used when the earthquake catalogue is incomplete, i.e., 
when only a limited number of the largest magnitudes are available.  

The described procedures are available in a MATLAB toolbox called 
MMAX. This toolbox can be obtained from the authors free of charge. 

2. THEORETICAL  BACKGROUND 
The methodology assumes that in the area of concern, within a specified 
time interval, T, all n of the main earthquakes that occurred with a magnitude 
greater than or equal to mmin, are recorded. The largest observed earthquake 
magnitude in the area is denoted as max

obsm . Next assume that the value of the 
magnitude mmin is known and is denoted as the threshold of completeness. It 
is further assumed that the magnitudes are independent, identically distrib-
uted, random values with probability density function (PDF), fM(m), and the 
cumulative distribution function (CDF), FM(m). The unknown parameter 
mmax is the upper limit of the range of magnitudes and is thus termed the 
maximum regional earthquake magnitude, maxm̂ , that is to be estimated. 

The estimation techniques are organized in three sections: 2.1 Parametric 
estimators, 2.2 Non-parametric estimators, and 2.3 Fit of CDF of earthquake 
magnitudes. 
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2.1 Parametric estimators 
Parametric estimators can be used when the parametric models of the fre-
quency-magnitude distributions are known. Five procedures are described. 
The first procedure, denoted as T-P, is based on complex mathematical con-
siderations (Tate 1959), but is computationally very straightforward and 
does not require extensive calculations. The next two, known as K-S proce-
dures, are based on the generic equation derived by Cooke (1979) and they 
differ only in numerical details. In the derivation of the first procedure, the 
exact distribution of the largest earthquake magnitude is replaced by its 
Cramér’s approximation. The second K-S procedure is based on exact solu-
tion of Cooke’s (1979) generic equation; it is therefore able to provide a bet-
ter solution, particularly when the number of observations is limited. Finally, 
the last two procedures are especially useful when only a rough knowledge 
of the functional form of earthquake magnitude distribution is available. In 
all five procedures, the largest observed earthquake magnitude, max

obsm , plays 
a crucial role.  

All the procedures presented in this section are based on the underlying 
principle that the estimated mmax value is equal to  max

obsm + Δ , where Δ is a 
positive correction factor. This principle is similar to the popular determinis-
tic procedure, where the increment Δ varies from 0.25 to 1.0 of a magnitude 
unit (Wheeler 2009). Despite this similarity, there is a fundamental differ-
ence between the two approaches. In the deterministic approach, Wheeler’s 
correction factor is a pure deterministic number, essentially just a guess; 
however, in the probabilistic approach the correction factor is determined by 
factors characterizing the seismicity of the area. The correction factor is a 
function of max

obsm  the seismic activity rate, and the ratio between the number 
of weak and strong events. The correction factor depends on seismic para-
meters supporting intuitive expectations that it is always positive and its val-
ue decreases as the time span of observation increases.  

Sections 2.1.1 to 2.1.5 provide a detailed description of the five proce-
dures introduced above. 

2.1.1  Tate–Pisarenko procedure 
This procedure is very straightforward and does not require extensive calcu-
lations. It can be shown that the procedure attempts to correct the bias of the 
classical maximum likelihood estimator (Pisarenko et al. 1996), but it fails to 
provide an estimator having a smaller mean-squared error.  

After the transformation  y = FM(m), the CDF of the largest among  
(Y1, …, Yn), that is Yn, is equal to yn, and its expected value  E(Yn) = n/(n + 1). 
One of the possibilities for obtaining the estimator of maxm̂  is to introduce 
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the condition  E(Yn) = yn , from which we obtain the following equation  
(Gibowicz and Kijko 1994): 

 max( )
1

obs
M

nF m
n

=
+

 . (1) 

Thus, the estimator of mmax becomes a function of max
obsm  and n, and is ob-

tained as a root of eq. (1). The above result is valid for any CDF of earth-
quake magnitude, FM(m), and that does not require the fulfilment of the 
truncation condition. From eq. (1), Kijko and Graham (1998) derived an al-
ternative equation, which is approximate, but which demonstrates the re-
quired value of mmax in a more explicit way (Pisarenko et al. 1996) 

 max max
max

1
( )

obs
obs

M

m m
n f m

= +  . (2) 

It should be noted that in eq. (2), the desired mmax appears on both sides: 
left, simply as mmax, and on the right side as the unknown parameter of the 
probability density function (PDF) of earthquake magnitude, fM(m). Howev-
er, from this equation an estimated value of mmax, maxm̂ , can be obtained 
through iteration.  

The estimator (2) was probably first derived by Tate (1959). If applied to 
the Gutenberg–Richter magnitude distribution with PDF (Page 1968),  
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it takes the form 
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− − −
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− −
 , (4) 

where  β = b ln(10), and b is the parameter of the frequency-magnitude  
Gutenberg–Richter relation. With small modifications, eq. (4) is equivalent 
to Tate’s (1959) estimator. It was used for the first time by Pisarenko et al. 
(1996). The solution of eq. (4) provides the estimated value of mmax, maxm̂ , and 
in this paper is referred to as the Tate–Pisarenko estimator of mmax or in short 
as T-P. The approximate variance of the T-P estimator, which contains both, 
aleatory and epistemic components, is of the form (Kijko and Graham 1998) 
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where σM denotes the standard error in the determination of the largest ob-
served magnitude, max

obsm . 

2.1.2  Kijko–Sellevoll procedure (Cramér’s approximation) 

The largest observed magnitude, mn, which is also denoted as max
obsm , has the 

cumulative distribution function (CDF) 
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After integrating by parts, the expected value of Mn, E(Mn), is 

 
max max

min min

max( ) d ( ) ( )d
n n

m m

n M M
m m

E M m F m m F m m= = −∫ ∫  . (7) 

Hence 

 [ ]
max

min

max ( ) ( ) d
m

n
n M

m

m E M F m m= + ∫  . (8) 

This expression, after replacement of the expected value of the largest ob-
served magnitude, E(Mn), by the largest magnitude already observed, pro-
vides the equation 

 [ ]
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max max ( ) d
m

obs n
M

m

m m F m m= + ∫  , (9) 

in which the desired mmax appears on both sides. An estimated value of mmax, 
maxm̂ , can be obtained through iteration. 

Cooke (1979) was probably the first to obtain the estimator of the upper 
bound of a random variable similar to eq. (9). The difference between eq. (9) 
and estimator by Cooke (1979) is that the former provides an equation in 
which the upper limit of integration is max

obsm , not mmax. Therefore, for large n, 
the two solutions are asymptotically equivalent. If Cooke’s estimator is ap-
plied to the assessment of mmax, eq. (9) states that the maximum regional 
earthquake magnitude, mmax, is equal to the largest observed magnitude, 

max
obsm , increased by an amount [ ]

max

min

( ) d .
m

n
M

m

F m mΔ = ∫  Similar to eq. (2), 
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eq. (9) is, by its nature, very general and is valid for each CDF, FM(m). The 
drawback of the formula is that it requires integration.  

For the frequency-magnitude Gutenberg–Richter relation, the respective 
CDF of magnitudes which are bounded from above by mmax, is (Page 1968) 
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Following eqs. (9) and (10), the estimator of mmax requires the calcula-
tion of the integral 
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which does not have a simple solution. Its estimate can be obtained through 
the application of Cramér’s approximation. According to Cramér (1961), for 
large n, the value of [FM(m)]n is approximately equal to  exp{–n[1 – FM(m)]}. 
Simple calculations show that after the replacement of  [FM(m)]n  by its 
Cramér approximation, integral (11) takes the form 
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where  n1 = n/{1 – exp[–β(mmax – mmin)]},  n2 = n1 exp[–β(mmax – mmin)],  and 
1( )E ⋅  denotes an exponential integral function (Abramowitz and Stegun 

1970), defined as  1( ) exp( ) / d
z

E z ζ ζ ζ
∞

= −∫ . Hence, following eq. (9), for 

the Gutenberg–Richter frequency-magnitude relation, the estimator of mmax 
is obtained as an iterative solution of the equation 

 1 2 1 1
max max min

2

( ) ( )
exp( )

exp( )
obs E n E n

m m m n
nβ

−
= + + −

−
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Numerical tests show that when  mmax – mmin ≤ 2,  and  n ≥ 100,  the pa-
rameter mmax in n1 and n2 can be replaced by max

obsm , thus providing an mmax 
estimator which can be obtained without iterations.  

Kijko and Sellevoll (1989) introduced eq. (13) and it has subsequently 
been used in more than 65 countries around the world. The solution is often 
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termed the Kijko–Sellevoll estimator of mmax , or, in short, K-S. The approx-
imate variance of the estimator for the frequency-magnitude Gutenberg–
Richter distribution is of the form (Kijko 2004) 
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where σM denotes the standard error in the determination of the largest ob-
served magnitude, max

obsm . 
It can be shown (Kijko and Graham 1998) that the procedure provides an 

estimator of mmax, which, in terms of mean-squared error, is substantially 
better than the respective T-P estimator described in Section 2.1.1. The 
drawback of the current procedure is that it requires integration, which for 
some distribution functions can be performed only numerically. Fortunately, 
for the frequency-magnitude Gutenberg–Richter relation, the analytical solu-
tion of the integral is available. Another limitation of the above procedure 
comes from the fact that it is based on Cramér’s approximation. Consequent-
ly, the procedure is capable of providing a correct approximation of mmax  
only for a large n. In the following section an alternative approach is pre-
sented that is based on the exact solution of the generic equation (9). The 
proposed exact solution is superior to the approximate one, since it is correct 
for any number of observations.  

2.1.3  Kijko–Sellevoll procedure (exact solution) 

It can be shown (Dwight 1961), that if n is a positive integer, the integral 
(11) can be expressed as 
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It follows from eqs. (9) and (11) that the estimator of mmax is obtained as 
a solution of the equation 
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Thus, the solution of eq. (16) provides the exact estimator of mmax, when the 
magnitudes are distributed according to the Gutenberg–Richter relation. The 
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approximate variance of the exact K-S estimator of mmax for the Gutenberg–
Richter magnitude distribution is of the form  
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A significant shortcoming of both the T-P as well as K-S procedures 
comes from the implicit assumption that: (i) seismic activity remains con-
stant in time, (ii) the selected functional form of magnitude distribution 
properly describes the observations, and (iii) the parameters of the assumed 
distribution functions are known without error. The following sections intro-
duce several alternative techniques that are free from the above limitations.  

2.1.4  Tate–Pisarenko–Bayes procedure 

As a rule, any seismogenic process is composed of temporal trends, cycles, 
oscillations and pure random fluctuations. When the variation of seismic  
activity is a random process, the formalism in which the model parameters 
are treated as random variables provides the most efficient tool in accounting 
for the uncertainties considered above (e.g., DeGroot 1970). In this section, a 
Tate–Pisarenko equation (4) for the assessment of the maximum regional 
earthquake magnitude is presented when the uncertainty of the Gutenberg–
Richter parameter b is taken into account.  

Following the assumption that the variation of the b-value in the fre-
quency-magnitude Gutenberg–Richter relation may be represented by a 
Gamma distribution with parameters p and q, the Bayesian (also known as 
compound) PDF and CDF of earthquake magnitude takes the form (Camp-
bell 1982) 
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and 
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where Cβ is a normalizing coefficient equal to  {1 – [p/(p + mmax – mmin)]q}–1, 
2/ ( )p ββ σ=   and  2( / )q ββ σ= . The symbol β  denotes the known mean 

value of the parameter β, and σβ is the known standard deviation of β. By its 
definition, the Bayesian distribution of FM(m) is the weighted average of the 
distribution of M, for all possible values of β. 

Knowledge of the Bayesian, Gutenberg–Richter PDF of the earthquake 
magnitude (18) makes it possible to construct the Bayesian version of the  
T-P estimator of mmax. Following the Tate equation (2), the Bayesian version 
of the T-P equation becomes  
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The value of mmax obtained from the iterative solution of eq. (20) will be 
termed the Tate–Pisarenko–Bayes estimator of mmax, or, in short, T-P-B. The 
approximate variance of the T-P-B estimator of mmax, for the frequency-
magnitude Gutenberg–Richter relation, is of the form  
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2.1.5  Kijko–Sellevoll–Bayes procedure 

Based on the knowledge of the Bayesian, Gutenberg–Richter CDF of earth-
quake magnitude (19), it is possible to construct the Bayesian version of the 
K-S estimator of mmax. Following the generic equation (9), the estimation of 
mmax requires calculation of the integral 

 

max

min

min

( ) 1 d

m
nq

n

m

pC m
p m mβ

⌠
⎮
⎮
⎮
⎮
⌡

⎡ ⎤⎛ ⎞
⎢ ⎥Δ = − ⎜ ⎟+ −⎢ ⎥⎝ ⎠⎣ ⎦

 , (22) 

which, after application of Cramér’s approximation, can be expressed as  
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where  r = p/(p + mmax – mmin),  c1 = exp[–n(1 – Cβ)],  δ = nCβ , and  Γ(·,·)  is the 
complementary Incomplete Gamma Function. Following eq. (9), the Bayes-
ian version of the K-S equation mmax takes the form  
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Again, as in all previous cases, eq. (24) does not provide an estimator for 
mmax since some terms on the right-hand side also contain mmax. The estima-
tor of mmax, when the uncertainty of the Gutenberg–Richter parameter b is 
taken into account, can therefore be calculated only by iteration. Equa-
tion (24) is denoted as the Kijko–Sellevoll–Bayes estimator of mmax, or, in 
short, K-S-B. An extensive comparison of the performances of K-S and  
K-S-B estimators is given by Kijko (2004). The approximate variance of the 
K-S-B estimator of mmax for the frequency-magnitude Gutenberg–Richter 
distribution is of the form 

 
21/

2
max

exp[ / (1 )ˆVar( ) ( 1/ , ) ( 1/ , ) .
q q q

q
M

nr rm q r qδσ δ δ
β
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⎣ ⎦

 (25) 

2.2  Non-parametric estimators 
Many studies of seismicity show that: (i) the empirical distributions of earth-
quake magnitudes are of bi- or multi-modal character, (ii) the log-frequency-
magnitude relation has a strong non-linear component, or that (iii) the pres-
ence of “characteristic” events (Schwartz and Coppersmith 1984) is evident. 
In order to use the generic equation (9) in such cases, the analytical, para-
metric models of the frequency-magnitude distributions should be replaced 
by its non-parametric counterpart, which can be done in several ways. In this 
study, five non-parametric procedures are presented. In Section 2.2.1 the 
earthquake magnitude distribution is replaced by its approximation con-
structed as a sum of the kernel functions using sample data. In Section 2.2.2, 
the magnitude distribution is replaced by its empirical counterpart based on 
the formalism of order statistics (David 1981). Sections 2.2.3-2.2.5 describe 
more general techniques that provide an assessment of mmax without any  
assumption about the nature of the magnitude distributions or their empirical 
counterparts.  

2.2.1  Non-parametric with Gaussian kernel procedure 

In the case where the empirical distribution of earthquake magnitudes is 
complex and cannot be described by a simple analytical model, it can be re-
placed by its approximate non-parametric counterpart. Such a replacement 
can be done in several ways. In this section, the earthquake magnitude dis-
tribution is replaced by its approximation – the sum of data-based kernel 
functions. The non-parametric, kernel-based approximation of PDF is an ap-
proach that deals with the direct summation of certain types of functions  
using sample data. Given the sample data mi,  i = 1, ..., n,  and the kernel 
function K(·), the kernel estimator ˆ ( )Mf m  of an actual, and unknown PDF  
fM(m), is 
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where h is a positive smoothing factor (Parzen 1962). The kernel function 
K(·) is a PDF, symmetric about zero. The specific choice of it is not so im-
portant for the performance of the method; many unimodal distribution func-
tions ensure similar efficiencies. In this work, the Gaussian kernel function,  
K(ξ) = (2π)1/2

 exp(–ξ 2/2),  is used. However, the choice of the smoothing fac-
tor, h, is crucial as it affects the trade-off between random and systematic  
errors. Several procedures exist for the estimation of the value of this pa-
rameter, none of them being distinctly better for all varieties of real data 
(Silverman 1986). In this work, the least-squares cross-validation (Hall 
1983, Stone 1984) was used. The details of the procedure are given by Kijko 
et al. (2001). 

Following the functional form of a selected kernel and the fact that the 
data comes from a finite interval [mmin, mmax], the respective CDF of seismic 
event magnitude takes the form 
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where ( )ξΦ  denotes the standard Gaussian cumulative distribution function.  
Therefore, following the generic eq. (9), the estimator of mmax can be ob-

tained through the iterative solution of the equation 

 max max
obsm m= + Δ  , (28) 

where 
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The value of mmax will then be denoted as the non-parametric, Gaussian-
based estimator of mmax or, in short, N-P-G. Properties of the above estimator 
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are discussed in the following section, where an alternative non-parametric 
assessment of mmax is presented. The approximate variance of the N-P-G  
estimator of maxm̂  is given by 

 2 2
maxˆVar( ) Mm σ= + Δ  , (30) 

where the upper limit of integration, mmax , is replaced by its estimate, maxm̂ .  
Knowledge of the distribution of earthquake magnitudes makes it possi-

ble to construct an upper confidence limit for the desired mmax. The number 
zα must be selected in such a way that the probability  

max maxPr[ ( ; ) ]obs
MF m m zα α< = ,  where  FM(m; mmax) ≡ FM (m),  and a change of 

notation indicates that mmax remains a parameter of the CDF. Following 
eq. (6), one obtains  { }max maxPr [ ( ; )]obs n n

MF m m zα α< = ,  from which  zα = α1/n. 

Hence, after transformations, a  100 (1 – α)%  upper limit on maxm̂  is provided 
by  1 1/

max maxPr[ ( ; )] 1obs n
Mm F m α α−< = − , where 1( )MF m−  denotes inverse of 

CDF, FM(m). The above formalism can be applied to assess the upper confi-
dence limit of mmax for all the procedures discussed above. 

2.2.2  Non-parametric procedure based on order statistics 

When the analytical form of the magnitude distribution is not known, it can 
be replaced by empirical distributions and the formalism of the order statis-
tics can be employed. For n earthquake magnitudes arranged in increasing 
order, i.e., m1 ≤ m2 ≤…≤ mn-1 ≤ mn, any empirical distribution function 
ˆ ( )MF m  can be approximated as (Cooke 1979) 
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The approximate value of integral Δ is then 
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Since for large n, the value of  (1 + 1/n)n
 ≅ e , the correction factor 

1
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i
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Δ = − − ∑ , and the order statistics-based estimator of 

mmax takes the form 
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The value of mmax obtained from eq. (33) is denoted as the non-
parametric, order statistics-based estimator or, in short, N-P-OS. Assuming 
that the standard error in the determination of magnitude  m1, …, mn  is 
known and equal to σM , the approximate variance of the order statistics-
based estimator (33) is equal to 

 2 2
max 0ˆVar( ) Mm c σ= + Δ  , (34) 

where  1 2 2 1 1
0 (1 ) (1 ) / (1 ) 1.93 .c e e e e− − − −= + + − + ≅  

The confidence limits for the N-P-OS estimator (33) can be constructed 
in several ways. For most applications, the most attractive equation was de-
rived by Cooke (1979), which is simple and general. Following the assump-
tion that the number of observations n is large, the approximate  100 (1 – α)%  
upper confidence limit for maxm̂  is given by the formula 

 max 1
max maxPr 1

(1 ) 1

obs
obs nm m

m m ν α
α

−
−

⎡ ⎤−
< + ≅ −⎢ ⎥− −⎣ ⎦

 , (35) 

where the parameter ν is defined by the equation 

 1/max

0 max

1 ( )
const

1 ( )lim
M

m M

F cm m
F m m

ν

−→

− +
=

− +
 . (36) 

Equation (36) determines the shape of the upper tail of the earthquake 
magnitude distribution. If the PDF of earthquake magnitude is truncated at 
mmax, (as, e.g., Gutenberg–Richter based PDF, eq. (11)), the parameter v is 
equal to 1. 

The estimator N-P-OS (eq. (33)) is very useful since it can be used when 
both the functional form of the PDF of earthquake magnitude, fM(m), and the 
value of v, describing the behavior of its upper tail are not known. In addi-
tion, it does not require the assumption that the upper bound of the magni-
tude distribution is obtained as a result of truncation. Also, for large n, the 
knowledge of the functional form of the magnitude distribution is not impor-
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tant: the estimator with the distribution of magnitudes approximated by order 
statistics is as good as the estimator where the exact functional form of the 
magnitude distribution is applied.  

Both of the non-parametric estimators, eqs. (28)-(29) and (33), are very 
useful. The great attraction of the non-parametric approach is that it does not 
require one to specify the functional form for the magnitude distribution 
FM(m). Therefore, by its nature, it is able to deal with cases with empirical 
distributions of any complexity: distributions which considerably violate 
log-linearity, multimodality, and/or account for presence of the “characteris-
tic” earthquakes. The drawback of the estimators is that formally they re-
quire knowledge of all events with magnitude above the specified level of 
completeness mmin, though, in practice, this can reduce to the knowledge of a 
few (e.g., 5) largest events. Such a reduction is possible since the contribu-
tion of weak events to the correction factor Δ is insignificant. 

2.2.3  Procedure based on a few largest earthquakes 

In this section, a simple formula for estimation of the maximum regional 
magnitude is given which can be applied in the case when no information on 
analytical form of the magnitude distribution is available and only several 
largest earthquake magnitudes are available. 

In the language of mathematical statistics, the case when a known num-
ber of observations are missing from the end of the distribution is known as 
(single) data censoring (David 1981). The problem of estimating the bounds 
of random variables when only the m largest (or smallest) observations are 
available, has been discussed by Cooke (1980). Theoretical results expressed 
in terms of the problem of determining the maximum regional earthquake 
magnitude can be summarized as follows.  

Suppose that in the area of concern, within a specified time interval, T, 
from n main seismic events, which occurred with magnitudes  mi ≥ mmin (i = 
1, …, n), only the n0 largest magnitudes are known. Following Gnedenko’s 
condition (Gnedenko 1943), which suggests that for a very broad class of 
cumulative distribution functions, FM(m), when m is near to its upper end-
point and FM(m) is linear in m, it can be assumed that the estimator of mmax 
can be expressed as linear functions of the order statistics 

 
0

max 1
1

ˆ
n

i n i
i

m a m − +
=

= ∑  , (37) 

where  ai (i = 1,…, n0)  are the coefficients to be determined; namely the dis-
tribution of earthquake magnitudes is truncated from the top. Cooke (1980) 
has found that for truncated distributions the minimization of the mean 
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squared error of estimator (37) can be obtained when  a1 = 1 + 1/n0 , 

02 1... 0na a −= = = , and  
0 01 /na n= − , that is, ( )0max 1 0

obs
n nm m n− +Δ = − , and 

 ( )0max max max 1
0

1ˆ obs obs
n nm m m m

n − += + −  . (38) 

The greatest attraction of the estimator (38) is most likely the fact that it 
relies on its simplicity and that even for a small number of observations n0 
the estimator is nearly optimal (in terms of its mean squared errors). This is a 
result of the fact that for large n, the few largest observations carry most of 
the information about its endpoint. It is interesting to note that the value of 
mmax, estimated according to eq. (38), is based only on two observations: the 
n0

th largest magnitude, 
0 1n nm − + , and the largest observed magnitude, max

obsm . 
A better estimator of mmax can therefore be obtained by including the remain-
ing  n0 – 2  largest observations. This can be done by the application of the 
Quenouille’s technique, originally developed for the averaging of the bias of 
an estimator (Quenouille 1956). An averaging correcting factor, 

( )max 1 0
obs

n im m n− +Δ = − , over the  n0 – 1  possible choices of i, produces 
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and the estimator of mmax equal to 
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Assuming that the standard errors in the determination of the n0 largest 
earthquake magnitudes are the same and are equal to σM, the approximate va-
riance of the estimator (40) is 

 2 2
max 0ˆVar( ) Mm c σ= + Δ  , (41) 

where  2
0 0 0 0 0( 1) [ ( 1)].c n n n n= + − −  The greatest attraction of estimator (40) 

lies in its simplicity and that it requires knowledge of the magnitudes of only 
a few largest events.  

2.2.4  Robson–Whitlock procedure 

As with the previous three cases, let us assume that the analytical form of the 
magnitude distribution is not known and we wish to estimate the right end 
point of the distribution, namely the maximum earthquake magnitude, mmax. 
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One of the methods to solve this problem is to apply the classic Quenouille 
(1956) technique of successive bias reduction, modified to fit the factorial 
series rather than the power series in 1/n. Robson and Whitlock (1964) 
showed that, under very general conditions, and when the data are arranged 
in ascending order of magnitude, namely  1 2 1 max... obs

nm m m m−≤ ≤ ≤ ≤ , Que-
nouille’s approach leads to the following rule in estimation of mmax: 

 max max max 1ˆ ( )obs obs
nm m m m −= + −  . (42) 

Equation (42) was probably first derived by Robson and Whitlock 
(1964), and is often called the Robson and Whitlock (R-W) estimator. It can 
be shown that the above estimator is mean-unbiased to order n–2 and asymp-
totically median-unbiased.  

The simplicity of eq. (42) makes it very attractive. It can be applied in 
cases of limited and/or doubtful seismic data, when quick results, without 
going into sophisticated analysis, is required. Unfortunately, the reduction of 
bias of the R-W estimator can be achieved only at the expense of a high val-
ue of its mean squared error. In fact, Robson and Whitlock (1964) derived 
a general formula for an unbiased estimator of truncation point 

 max
0

1
ˆ ( 1)

1

k
j

n j
j

k
m m

j −
=

+⎛ ⎞
= − ⎜ ⎟+⎝ ⎠
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where  k = 1, ..., n – 1. Regrettably, this formula does not provide a guarantee 
that the estimated magnitude, maxm̂ , is equal to, or exceeds, the observed 
maximum magnitude, max

obsm . The approximate variance of the R-W estimator 
of mmax for the frequency-magnitude Gutenberg–Richter distribution is of the 
form  

 2 2
max max 1ˆVar( ) 5 ( )obs

M nm m mσ −= + −  , (44) 

where σM denotes standard error in the determination of the two largest  
observed magnitudes, max

obsm  and -1nm .  
In their seminal work Robson and Whitlock (1964) also derived a formu-

la for an approximate  100 (1 – α)%  upper confidence limit for mmax, which 
is given as 

 max max max 1
1Pr ( ) 1obs obs

nm m m mα α
α −

−⎡ ⎤< + − ≅ −⎢ ⎥⎣ ⎦
 . (45) 

Robson and Whitlock (1964) proved that the approximation (45)  
becomes exact solution when fM(m) is uniform. If fM(m) is an increasing  
(decreasing) function then the true confidence level is greater (less) than 1 – α, 
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but for any PDF which is continuous and positive at  m = mmax  the asymptot-
ic confidence level is exactly  1 – α.  

It is interesting to note that making a comparison of the non-parametric 
estimators N-P-OS and R-W, Cooke (1979) showed that for small values of 
v, the asymptotical efficiency of the estimator N-P-OS is only slightly lower 
than the corresponding solution R-W. However, for values of v close to 1, 
asymptotical efficiency of the estimator N-P-OS is significantly (43%) higher. 

The R-W estimator (42) was derived on the basis that nothing is known 
about the magnitude distribution. If the shape of the tail of the PDF, fM(m), is 
known, even though the functional form of the distribution is unknown, 
a significantly better estimator can be obtained using the methodology con-
sidered in the following section. 

2.2.5  Robson–Whitlock–Cooke procedure 

Cooke (1979) showed that reduction of the mean squared error of the R-W 
estimator is possible when some information about the shape of the upper 
tail of the probability distribution function fM(m) is known. Assuming that 
the observed magnitudes are sampled from a distribution with a known value 
of parameter v, eq. (36), the improved version of the R-W estimator (42) is  

 1
max max max 1ˆ (2 ) ( )obs obs

nm m m mν −
−= + −  . (46) 

The estimator derived in eq. (46) will be called the Robson–Whitlock–
Cooke estimator, or in short, R-W-C. Therefore, for certain earthquake mag-
nitude distributions, the estimator R-W-C can perform better than its coun-
terpart R-W. This situation seems likely to occur if, for instance, the 
magnitudes are sampled from distributions with a known parameter v, or 
when the distribution is truncated at mmax (as is the Gutenberg–Richter-based 
PDF – eq. (10)), so that v equals to 1. For truncated magnitude distribution, 
the improved R-W estimator (46) takes the form 

 max max max 1ˆ 0.5( )obs obs
nm m m m −= + −  , (47) 

and its variance is 

 2 2
max max 1ˆVar( ) 0.5 [3 0.5( ) ]obs

M nm m mσ −= + − . (48) 

2.3  Fit of CDF of earthquake magnitudes 
The next two procedures (Sections 2.3.1 and 2.3.2) have one characteristic in 
common: they are based on the fit of a CDF for earthquake magnitudes. The 
first procedure, based on L1-norm regression analysis, is especially useful 
when the data are unreliable, contain significant outliers, come from differ-
ent sources and are a mixture of uncertain historic and recent instrumental 
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observations. In these cases, the L1-norm regression analysis is superior to 
any alternative norm such as L2, which is equivalent to the classic least-
squares procedure. It can be shown (Gentle 1977, Anderson 1982) that the 
applied L1 norm is robust in the sense that the estimated parameters are  
insensitive to large outliers that may be present in the input data.  

The second procedure is based on the L2-norm regression analysis which 
is equivalent to the popular, classical least-squares procedure. Important 
facts to remember are that the use of the least-squares regression automati-
cally assumes that the distribution of CDF residuals is of Gaussian (normal) 
nature, and that the application of the least squares regression, when the  
residuals are not normally distributed, leads to incorrect estimation of the re-
quired parameters (Kijko 1994). 

The disadvantage of both procedures is that they cannot be used if the 
functional form of FM(m) is unknown. 

2.3.1  Procedure based on L1-norm fit of CDF of earthquake magnitudes 
The L1-norm regression analysis, as applied to the problem of mmax determi-
nation, is defined as follows: Given the sample of main earthquake magni-
tudes mi ,  i = 1, ..., n,  all magnitudes are greater than or equal to mmin , where 
the value of the magnitude mmin is known as the threshold of completeness. 
The assumption is made that the magnitudes mi are independent, identically 
distributed, random values with a known functional form of CDF, FM(m). 
A second assumption is that magnitudes are arranged in increasing order, 
that is,  m1 ≤ m2 ≤ … ≤ mn–1 ≤ mn. Let θ denote a vector of the unknown pa-
rameters of the CDF FM(m), where one of the parameters is the maximum 
regional earthquake magnitude, mmax. If, for example, the classical fre-
quency-magnitude Gutenberg–Richter relation is used (eq. (10)), the vector 
is defined as  max( , )mβ=θ . The aim is to find the solution vector, θ, de-
noted as θ̂ , that minimizes the misfit function Φ(θ), 

 
1

ˆ( ) | ( ) ( ) |
n

M i M i
i

F m F m
=

Φ = −∑θ  , (49) 

where | |⋅  denotes the absolute value, and ˆ ( )M iF m  is the empirical distribu-
tion function equal to  i/(n + 1). The misfit criterion (49) is less sensitive to 
the outlying observations than the classical least-squares procedure and tends 
to decrease the effect of large differences between the theoretical FM(mi) and 
the empirical ˆ ( )M iF m  distribution functions. In the MMAX Toolbox, the 
minimization of the misfit function (49) is accomplished by a derivative-free 
Nelder–Mead simplex-based procedure (Press et al. 1994). 
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2.3.2  Procedure based on L2-norm fit of CDF of earthquake magnitudes 

Conceptually this procedure is the same as the previous one, except that the 
absolute values of CDF residuals, eq. (49), are replaced by respective residu-
als taken to the power 2. Therefore, the respective misfit function is of the 
form 

 2

1

ˆ( ) [ ( ) ( )]
n

M i M i
i

F m F m
=

Φ = −∑θ  , (50) 

which is equivalent to the classical least-squares procedure. The use of the 
least-squares technique is equivalent to the assumption that the distribution 
of the CDF residuals is of Gaussian nature.  

3. EXAMPLE  OF  APPLICATION:  ESTIMATION  OF  THE  mmax   
IN  THE  VICINITY  OF  CAPE  TOWN,  SOUTH  AFRICA 

The city of Cape Town is located in the Western Cape Province, and is con-
sidered one of the regions with the highest level of seismic activity of tec-
tonic origin in South Africa. The city is located only some few kilometers 
from the epicenter of the Tulbagh–Ceres event, the most destructive earth-
quake in the modern history of South Africa. The earthquake occurred on  
29 September 1969, had a local magnitude, ML, of 6.3, caused nine deaths 
and the damage to buildings in the epicentral area was estimated at that time 
at US $24 million (Kijko et al. 2002). 

The location of this city was selected in order to illustrate how the 
MMAX toolbox could be used. It was assumed that only earthquakes occur-
ring within a radius of 300 km of the epicenter of the Milnerton earthquake 
contribute to the information on the maximum possible earthquake magni-
tude, mmax, of the area (the Milnerton earthquake of magnitude ML 6.3  
occurred in 1809 and is probably one of the largest earthquakes in the history 
of the region where ground surface rupture and liquefaction features were 
observed in the epicentral region). Therefore, only earthquakes that occurred 
within a radius of 300 km circle with canter coordinates 33.916°S and 
18.427°E were used. Seismic events are selected from catalogue of earth-
quakes in South Africa that occurred between AD 1620 and 2006. The data 
used in this study were compiled from the three sources: Brandt et al. 
(2005), Seismological Bulletins published annually by the Council for Geos-
cience, Pretoria, and catalogues provided by the International Seismological 
Centre in the United Kingdom. 

The compiled seismic event catalogue was divided into an incomplete 
part (historic) and three complete parts, each with a different level of com-
pleteness. All earthquake magnitudes were unified and expressed in units of 
local Richter magnitudes, ML. The incomplete part of the catalogue spans the 
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period from 1 January 1801 to 31 December 1970, containing 11 of the larg-
est seismic events that occurred during this period. It was assumed that for 
all of these events, the standard error in magnitude determination was 0.3. 
Events prior to 1 January 1801 were not used in the calculations, since they 
cannot be considered as a reliable source of information for the area. The 
first complete part of the catalogue, complete from magnitude level 3.8, cov-
ers the time interval from 1 January 1971 to 31 December 1990. The second 
part, with a level of completeness of 3.5, covers the time interval from 
1 January 1991 to 31 December 1995. The last part of complete catalogue, 
complete from magnitude 3.0, spans from 1 January 1996 to 30 September 
2006. The standard deviations of magnitude determination of the three com-
plete parts were assumed to be 0.3, 0.2, and 0.1, respectively.  

The compiled catalogue was then used as input to the Toolbox, to esti-
mate the value of mmax according to the 12 procedures discussed above. The 
results are shown in Table 1. 

Table 1  
Summary of mmax estimation by application of 12 different procedures 

Procedure Equation describing 
the applied procedure 

Estimated 
maxm̂ SD±  

T-P (4) 7.26 ± 0.61 
K-S (Cramér’s approximation) (13) 6.89 ± 0.31 
K-S (exact solution) (16) 6.89 ± 0.31 
T-P-B (20) 6.84 ± 0.28 
K-S-B (24) 6.81 ± 0.27 
N-P-G (28)-(29) 6.82 ± 0.28 
N-P-OS (33) 6.76 ± 0.35 
Based on a few largest observations (40) 6.76 ± 0.31 
R-W (42) 6.80 ± 0.57 
R-W-C (46) 6.75 ± 0.40 
Minimization of L1 norm (49) 6.82 ± 0.28 
Minimization of L2 norm (50) 7.74 ± 1.07 
 
The format of the catalogue used for the input is simply a column of 

magnitudes. The output of the code consists of an ASCII text file and five 
figures. The output file contains information on the input data, the estimated 
mmax values and their standard deviations. If possible, the confidence limits 
of the estimated mmax are also provided. Figures 1, 2, and 3 show the values 
of mmax and their confidence limits,  calculated according to the K-S,  K-S-B, 
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Fig. 1. Graphical output from the MMAX Toolbox, showing the estimated value of 
mmax (dashed line) and its confidence limits (solid line), calculated according to the 
K-S procedure for the city of Cape Town, South Africa.  

Fig. 2. Graphical output from the MMAX Toolbox, showing the estimated value of 
mmax (dashed line) and its confidence limits (solid line), calculated according to the 
K-S-B procedure for the city of Cape Town, South Africa.  

and N-P-G procedures, respectively. Figures 4 and 5 show the L1- and L2- 
norm fit of the Gutenberg–Richter CDF, eq. (10), and corresponding esti-
mates of mmax.  
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Fig. 3. Graphical output from the MMAX Toolbox, showing the estimated value of 
mmax (dashed line) and its confidence limits (solid line), calculated according to the 
N-P-G procedure for the city of Cape Town, South Africa.  

Fig. 4. Graphical output from the MMAX Toolbox showing the L1-norm fit of the 
Gutenberg–Richter CDF, eq. (10), to selected data in the vicinity of the city of Cape 
Town, South Africa. 
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Fig. 5. Graphical output from the MMAX Toolbox showing the L2-norm (least-
squares) fit of the Gutenberg–Richter CDF, eq. (10), to selected data in the vicinity 
of the city of Cape Town, South Africa. 

The Toolbox can also be used when the seismic event catalogue is not 
available. In such a case, the input data are: the b-value of Gutenberg–
Richter and its uncertainty, the mean activity rate, λ, and its uncertainty,  
respective levels of completeness, mmin , time span of the catalogue, T, the 
maximum observed earthquake magnitude in the area, max

obsm , and its standard 
error. Optionally, the second largest observed earthquake magnitude, mn–1 , is 
required. If this information is available, the maximum possible earthquake 
magnitude is estimated by procedures T-P, K-S (Cramér’s approximation), 
K-S (exact solution), T-P-B, K-S-B, R-B, and R-W-C. 

4. DISCUSSION  AND  CONCLUSIONS 
The paper presents 12 statistical procedures for estimation of the region-
characteristic, maximum possible earthquake magnitude, mmax. All proce-
dures are implemented into the MATLAB program, MMAX, which can be 
obtained from the authors free of charge. For each of the procedures given, 
there are notes on its origin, assumptions made in its derivation, condition 
for validity, weak and strong points, etc. The applicability of the particular 
procedure is determined by the assumptions of the model and/or the avail-
able information on the seismicity of the area. It includes cases where: 
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 earthquake magnitudes are distributed according to the truncated 
frequency-magnitude Gutenberg–Richter relation; 

 the empirical magnitude distribution deviates moderately from the 
Gutenberg–Richter model; 

 when no specific model of the magnitude distribution is assumed; 
some procedures can also be used when the earthquake catalogue is incom-
plete and uncertain; 

 when only a few of the largest magnitudes are available.  
All presented procedures, by the nature, are statistical and are driven by 

seismicity. Therefore, they have certain limitations. Often, statistical proce-
dures provide underestimated mmax values, especially in the case of small 
seismicity samples and/or if applied to areas of low seismic activity (e.g., 
Chinnery 1979, Bender 1988). It follows that the best approach for evalua-
tion of mmax would be to combine all available information on the area-
characteristic mmax value, i.e.: seismicity, seismic activity rate, local geologi-
cal features, similarities in local and regional tectonic features, constraints 
based on physical principles, and crustal Lg coda Q attenuation value (Jin 
and Aki 1988). From a mathematical point of view, the best procedure that 
allows incorporation of all available information is a Bayesian-based estima-
tion technique (DeGroot 1970). It is interesting to note that the Bayesian-
based procedure for mmax evaluation is known and occasionally applied in 
seismic hazard assessment (Wheeler 2009). The foundation of the procedure 
has been given by Cornell (1994), and details of construction of a priori dis-
tribution of mmax are described in detail by Coppersmith (1994). Unfortunate-
ly, the procedure as applied has a mathematical flaw in that it provides 
values of mmax that are systematically underestimated. The underestimation 
of mmax can reach the value of 0.5 magnitude unit (Kijko et al. 2009).  

While this work presents a spectrum of statistical procedures that can be 
used for assessment of the area-characteristic maximum possible earthquake 
magnitude, mmax , in different circumstances, it does not provide an answer as 
to which of the procedures are the best. A systematic investigation of which 
procedure performs best can be done by means of a Monte-Carlo simulation 
and will be presented as Part II of this work.  
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