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Abstract

In 2015, the International Association of Geodesy defined the International Height Reference System (IHRS) as the con-
ventional gravity field-related global height system. The IHRS is a geopotential reference system co-rotating with the Earth. 
Coordinates of points or objects close to or on the Earth’s surface are given by geopotential numbers C(P) referring to an 
equipotential surface defined by the conventional value W0 = 62,636,853.4 m2 s−2, and geocentric Cartesian coordinates X 
referring to the International Terrestrial Reference System (ITRS). Current efforts concentrate on an accurate, consistent, 
and well-defined realisation of the IHRS to provide an international standard for the precise determination of physical coor-
dinates worldwide. Accordingly, this study focuses on the strategy for the realisation of the IHRS; i.e. the establishment of 
the International Height Reference Frame (IHRF). Four main aspects are considered: (1) methods for the determination of 
IHRF physical coordinates; (2) standards and conventions needed to ensure consistency between the definition and the reali-
sation of the reference system; (3) criteria for the IHRF reference network design and station selection; and (4) operational 
infrastructure to guarantee a reliable and long-term sustainability of the IHRF. A highlight of this work is the evaluation of 
different approaches for the determination and accuracy assessment of IHRF coordinates based on the existing resources, 
namely (1) global gravity models of high resolution, (2) precise regional gravity field modelling, and (3) vertical datum 
unification of the local height systems into the IHRF. After a detailed discussion of the advantages, current limitations, and 
possibilities of improvement in the coordinate determination using these options, we define a strategy for the establishment 
of the IHRF including data requirements, a set of minimum standards/conventions for the determination of potential coordi-
nates, a first IHRF reference network configuration, and a proposal to create a component of the International Gravity Field 
Service (IGFS) dedicated to the maintenance and servicing of the IHRS/IHRF.

Keywords International Height Reference System (IHRS) · International Height Reference Frame (IHRF) · World height 
system · Global unified vertical reference system · Geopotential height datum · Permanent tide · Tide systems · The 
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1 Introduction

A current main objective of Geodesy is the implementa-
tion of an integrated global geodetic reference system that 
simultaneously supports the consistent determination and 
monitoring of the Earth’s geometry, rotation, and gravity 
field changes with high accuracy worldwide (IAG 2017). 
This objective is in accordance with the resolution adopted 
by the United Nations General Assembly on a Global Geo-
detic Reference Frame (GGRF-UN) for Sustainable Devel-
opment (A/RES/69/266) on February 26, 2015. During 
the last decades, a huge progress in the realisation of the 
International Celestial Reference System (ICRS, Ma and 
Feissel 1997) and the International Terrestrial Reference 
System (ITRS, Petit and Luzum 2010) has been achieved. 
The definition, realisation, and maintenance of these two 
systems guarantee a globally unified geometric reference 
frame with reliability at the centimetre level. An equiva-
lent high-precision gravity field-related global height sys-
tem is missing. Most countries today use regional or local 
height systems, which have been implemented individu-
ally, applying in general diverse procedures. At present, 
there are some hundred local and regional physical height 
systems in use. They refer to local sea surface levels, are 
usually stationary (do not consider variations in time), 
and realise different physical height types (orthometric or 
normal heights), and their combination in a global frame 
presents uncertainties at the metre level. The geodetic data 
depending on them (e.g. physical heights, gravity anoma-
lies, geoid models, digital terrain models, etc.) are usable 
in limited geographical areas only, and their global com-
bination or with satellite-based data (especially Global 
Navigation Satellite Systems’ (GNSS) positioning) shows 
discrepancies with magnitudes much higher than the accu-
racy required today.

An accurate, consistent and well-defined global vertical 
reference system that is in accordance with the increased 
precision of modern observational techniques and is capa-
ble of supporting the present needs of science and soci-
ety regarding geo-referenced data of high resolution has 
yet to be established as an international standard (IAG 
2017). The International Association of Geodesy (IAG), 
as the organisation responsible for the advancement of the 
science of Geodesy, introduced in 2015 the International 
Height Reference System (IHRS) as the conventional grav-
ity field-related global height system (see IAG Resolu-
tion No. 1 (2015) in Drewes et al. 2016). The theoretical 
foundations for the definition of the IHRS are described 
in Ihde et al. (2017). Based on this work, this study con-
centrates on the strategy for the realisation of the IHRS; 
i.e. the implementation of the International Height Refer-
ence Frame (IHRF). Given that a reference frame realises 

a reference system physically by a solid materialisation 
of points or observing instruments, and mathematically 
by the determination of coordinates referring to that ref-
erence system (Drewes 2009), this study considers four 
main aspects: (1) methods for the determination of IHRF 
physical coordinates (e.g. geopotential numbers referring 
to the conventional reference W0 value); (2) standards and 
conventions needed to ensure consistency between the 
definition and the realisation of the reference system; (3) 
station selection for the IHRF reference network; and (4) 
Operational infrastructure to guarantee a reliable and long-
term sustainability of the IHRS/IHRF.

Accordingly, Sect. 2 summarises the definition of the 
IHRS. Sections 3–5 concentrate on the determination and 
accuracy assessment of IHRF coordinates based on the 
existing resources: global gravity models of high resolu-
tion (GGM-HR in Sect. 3), regional gravity field modelling 
(Sect. 4), and existing physical height systems (Sect. 5). 
These sections also provide a description of current limi-
tations and possibilities of improvement in the coordinate 
determination using each method. The outcome of this anal-
ysis is presented in two parts: Sect. 6 proposes the standards 
and conventions identified as the minimum requirements for 
the determination of IHRF coordinates. It includes a stand-
ardised strategy for the treatment of the permanent tide in 
the determination of IHRF coordinates in the mean-tide 
system. Section 7 recommends the strategy for the imple-
mentation of the IHRF, which covers (1) the determination 
and evaluation of IHRF coordinates depending on the data 
availability; (2) improvement of the input data required for 
the determination of IHRF coordinates; (3) the criteria for 
the IHRF station selection; and (4) the usability and long-
term sustainability of the IHRF. The paper finishes with an 
outlook about the activities to be faced in the near future.

2  International height reference system: 
IHRS

The definition of the IHRS is based on the following fun-
damental conventions (see IAG Resolution No. 1 (2015) in 
Drewes et al. 2016; Ihde et al. 2017):

(a) The vertical reference level is an equipotential surface 
of the Earth’s gravity field with the geopotential value 
W0 = 62,636,853.4 m2 s−2. W0 is understood to be the 
gravity potential of the geoid or the geoidal potential 
value.

(b) The vertical potential coordinate is the difference  
−ΔW(P) between the potential W(P) of the Earth’s 
gravity field at a point P, and the geoidal potential value 
W0. This potential difference ‐ΔW(P) is also designated 
as the geopotential number C(P):



Strategy for the realisation of the International Height Reference System (IHRS)  

1 3

Page 3 of 33    33 

(c) The spatial reference of the position P for the poten-
tial W(P) = W(XP) is given by the coordinate vector 
XP = X(P) in the ITRS.

(d) Parameters, observations, and data should be related to 
the mean tidal system/mean crust.

(e) The unit of length is the metre and the unit of time is 
the second of the International System of Units (SI).

Convention (a) defines the one of the infinite number of equi-
potential surfaces to which the vertical coordinate −ΔW(P) 
or C(P) refers; i.e. it defines the global vertical datum. As 
the reference value W0 is conventionally adopted (i.e. it is 
known) and it is assumed to be stationary (Sánchez et al. 
2016), the potential value W(P) is considered as a primary 
coordinate of the IHRF. Since only potential differences can 
be measured and not the potential itself, the determination 
of absolute potential values W(P) from observational data 
is only possible after introducing adequate constraints. The 
main constraint is that the gravitational potential V must 
vanish at infinity; i.e. V∞ = 0. Consequently, this so-called 
regularity condition is also a basic convention for the defini-
tion and realisation of the IHRS.

Convention (c) W(P) = W(XP) makes evident that the 
IHRS is founded on the combination of a geometric com-
ponent given by X and a physical component given by the 
determination of W at X. Coordinates of a point attached 
to the solid surface of the Earth include station positions 
X(P), W(P) (or C(P)) and their variation with time, i.e. Ẋ(P), 
Ẇ(P) (or Ċ(P)). The station positions are regularised in the 
sense that high-frequency time variations are removed by 
conventional corrections and they represent a quasi-static 
state. The coordinate time-derivatives Ẋ(P), Ẇ(P), Ċ(P) usu-
ally describe secular (linear) changes and they are known 
as station velocities. X is to be defined in the ITRS, and it 
follows the standards, conventions, and procedures outlined 
by the International Earth Rotation and Reference Systems’ 
Service IERS (Petit and Luzum 2010) for the computation 
of the International Terrestrial Reference Frame (ITRF). 
The determination of ITRF coordinates is well described in 
the existing literature (e.g. Altamimi et al. 2016; Seitz et al. 
2016), and it is not further considered in this paper. For prac-
tical purposes, coordinates X can be converted to ellipsoidal 
coordinates latitude (φ), longitude (λ), and ellipsoidal height 
(h) and the geopotential numbers C(P) may be converted to 
a physical height (dynamic, orthometric, or normal height). 
In this paper, we use normal heights (H*) when metric units 
are needed. The reference ellipsoid is the GRS80 (Moritz 
2000). It is utilised to infer any quantity requiring ellipsoid 
parameters or a normal gravity field.

Convention (d) introduces the mean-tide system to sup-
port the geodetic monitoring of geophysical phenomena 

(1)C(P) = −ΔW(P) = W
0
− W(P) governed by fluids within the System Earth. For instance, 

the sea level change monitoring is performed in the mean-
tide system, because removing the direct or indirect effects 
of the permanent tide misrepresents the real water motion 
and does not allow a reliable quantification and modelling of 
the sea level change. This occurs not only in oceanographic 
applications, but also in hydrographic and geophysical fluid 
studies. In other words, the global change occurs in the 
mean-tide system and the IHRF should provide a consist-
ent reference in monitoring it. Convention (d) means that 
parameters, observations, and data relate to the mean tidal 
system/mean crust. However, given that gravity field mod-
elling is not possible in the mean-tide system (because the 
gravity potential would not be a harmonic function), it is 
agreed that the data processing is performed in the tide-free 
or zero-tide system, and then, at the very end of the process, 
the IHRF coordinates are converted to the mean-tide system 
(see Sect. 6.2). Input data and intermediate products should 
continue primarily referring to the tide system in which they 
are given.

According to Ihde et al. (2017), the accuracy of the IHRF 
potential numbers (Eq. 1) should ideally be at the same level 
of accuracy as the coordinates X. Currently, the target accu-
racy is ± 3 mm in the vertical station positions and ± 0.3 mm 
 a−1 in the vertical station velocities. This would correspond 
to about ± 3 × 10−2 m2 s−2 and ± 3 × 10−3 m2 s−2a−1 for the 
potential coordinates W(P) and Ẇ(P), respectively. These 
values seem to be unrealistic under the available resources 
(see next sections). Therefore, for the moment, we concen-
trate on determining static potential values (without consid-
ering time variations) and evaluating the possibility of reach-
ing an accuracy around ± 0.1 m2 s−2 (equivalent to ± 1 cm 
in height). In this study, we consider three options for the 
determination of potential differences referring to the IHRS: 
(1) using global gravity models of high resolution (GGM-
HR); (2) using regional gravity field (geoid or quasi-geoid) 
models; and (3) the unification (transformation) of the exist-
ing physical height systems into the IHRS.

3  Determination of IHRF-related potential 
di�erences using global gravity models 
of high resolution

The most pragmatic way to solve Eq. (1) would be a direct 
computation of W(P) by introducing the ITRF coordinates 
of any point into the harmonic expansion equation represent-
ing a GGM-HR. The advances in the satellite gravimetry, 
especially GRACE (Tapley et al. 2004) and GOCE (Drink-
water et al. 2003), allow accuracies of about ± 0.2 m2 s−2 
(corresponding to a vertical position accuracy of ± 2 cm) at 
long (up to degree 70) and medium (up to degree 200) grav-
ity signal wavelengths; i.e. at a maximum spatial resolution 
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of 100 km (Rummel et al. 2002). At this resolution, the 
mean global omission error of the GGMs is estimated to 
be ± 30 cm to ± 40 cm. Therefore, the GGM satellite-only 
component has necessarily to be extended or be refined with 
surface (terrestrial/marine/airborne/satellite altimetry) grav-
ity data. The Earth Gravitational Model 2008 (EGM2008) 
was the first model providing spherical harmonic degree 
and order up to 2159, and additional coefficients extend-
ing to degree 2190 and order 2159; see Pavlis et al. (2012, 
2013). This model was released before the availability of 
GOCE data and including only four years of GRACE data. 
However, it has been the basis for the computation of the 
high degrees (> 360) in recent GGM-HRs like EIGEN-6C4 
(spherical degree 2190, Förste et al. 2015), GECO (spheri-
cal degree 2190, Gilardoni et al. 2016), and SGG-UGM-1 
(spherical degree 2159, Liang et al. 2018). Current efforts 
concentrate on improving the surface gravity data set in 
order to release a new EGM (labelled as EGM2020) includ-
ing also complete sets of GRACE and GOCE data (Barnes 
2019). In addition, ongoing studies explore the combina-
tion of the usual gravity observables (satellite and surface 
gravity) with synthetic gravity data inferred from detailed 
topographic models to increase the GGM-HR resolution. 
For instance, the model XGM2019e (Zingerle et al. 2019) 
provides a resolution up to degrees 5399 and 5540 in the 
ellipsoidal and the spherical spectrum, respectively.

The reliability of the GGMs is usually assessed by com-
parison of geoid heights inferred from the GGMs and from 
levelling points co-located with GNSS positioning; see e.g. 
Gruber et al. (2011), Fecher et al. (2017), and Gruber and 
Willberg (2019). To account for systematic effects (biases 
or tilts) in the levelling data, the mean difference between 
both geoid data sets is removed and a planar correction 
surface is applied to the GNSS/levelling-based geoid. The 
root-mean-square (RMS) error of the remaining differences 
indicates how well the GGM-based geoid fits to the GNSS/
levelling-based geoid. These RMS values reflect a combi-
nation of levelling errors, GNSS ellipsoidal height errors, 
GGM commission error, and GGM omission error. As it 
is very difficult to separate these error components, ascer-
taining the real uncertainty of the GGM-HR seems to be 
not feasible yet. However, if the same GNSS/levelling data 
set is used for evaluating different GGMs, it is possible to 
assess the improvement of the GGMs with respect to each 
other. As an example, Gruber and Willberg (2019) demon-
strate that 80% of the differences between the EGM2008 and 
recent GGM-HRs reflect the contribution of GOCE data to 
the determination of the geoid medium wavelengths. They 
also conclude that the availability of new surface gravity 
data sets is responsible for about 20% of the differences of 
the recent GGM-HRs with respect to EGM2008 in a global 
average. Rummel et al. (2014) found that the expected accu-
racy of a GGM-HR-based geoid was about ± 4 cm to ± 6 cm 

in well-surveyed regions, and about ± 20 cm to ± 40 cm 
with extreme cases of ± 1 m in sparsely surveyed regions. 
Five years later, based on reprocessed GOCE data, longer 
GRACE data series, and GNSS/levelling data of better qual-
ity, Gruber and Willberg (2019) demonstrate that recent 
GGM-HR may reach an accuracy around ± 2 cm in well-
developed regions with smooth topography (like Germany). 
In sparsely surveyed regions or areas with strong topogra-
phy gradients, the uncertainty of about ± 20 cm to ± 40 cm 
remains (see as example the analysis for Brazil in Gruber 
and Willberg 2019).

Figure 1a–c compares the normal heights inferred from 
the models EIGEN-6C4 (degree 2190), GECO (degree 
2190), and SGG-UGM-1 (degree 2159) at a set of 162 ITRF 
stations distributed worldwide. We compute the potential 
values pointwise using the three models, we subtract the 
reference potential W0 (see item (a) in Sect. 2), and we con-
vert the potential differences to normal heights using the 
GRS80 normal gravity field. Then, we compare the normal 
height values with respect to the arithmetic mean of the three 
models. While all terrestrial and altimetry data contained 
in GECO and SGG-UGM-1 are identical to EGM2008, 
EIGEN-6C4 contains updated altimetry data over the oceans 
(DTU10 altimetry, Andersen 2010) and EGM2008 data on 
the continents. Additionally, the satellite-only component 
of SGG-UGM-1 considers exclusively GOCE data, GECO 
combines the satellite-only component of EGM2008 with 
GOCE-TIM5 (Brockmann et al. 2014), and EIGEN-6C4 
includes 10 years of GRACE data (GRGS-RL03-v2, Bruin-
sma et al. 2010), GOCE-DIR5 (Bruinsma et al. 2013), and 
25 years of satellite laser ranging observations to LAGEOS. 
As the high-degree components of the three models are 
based on the EGM2008, we could expect similar omis-
sion error values. In this way, the discrepancies shown in 
Fig. 1a–c are mainly caused by the different satellite data 
included in each model and the different strategies applied 
in the data processing and spectral combination for the esti-
mation of the harmonic coefficients. The standard devia-
tions values (STDs) vary from ± 2.8 cm to ± 3.8 cm and the 
pointwise differences reach up to 28 cm. With this experi-
ment, we cannot state which model is better or worse. We 
are only showing that depending on the model, the vertical 
coordinate at the same point can diverge up to ± 10 cm in 
North America and Europe and more than ± 30 cm in areas 
with strong topography gradients and few terrestrial gravity 
data like in the western part of South America. 

The ultra-high-resolution model XGM2019e (Zingerle 
et al. 2019) combines the satellite-only model GOCO06S 
(degree 300, Kvas et  al. 2019) with DTU13 altimetry-
derived gravity data (Andersen et al. 2015), an improved 
data set of 15′ × 15′ mean surface gravity anomalies, and 
synthetic gravity data based on the Earth2014 model (Hirt 
and Rexer 2015). The mean surface gravity anomalies are 
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Fig. 1  Comparison of the global 
gravity models (a) EIGEN-
6C4 (degree 2190), (b) GECO 
(degree 2190), and (c) SGG-
UGM-1 (degree 2159) in terms 
of normal heights with respect 
to the mean model. Potential 
values are obtained pointwise 
using the three models, the 
reference potential W0 is sub-
tracted, the potential differences 
are converted to normal heights, 
and normal height differences 
with respect to the arithmetic 
mean of the three models are 
computed
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provided by the United States National Geospatial-Intelli-
gence Agency (NGA) and contain significant improvements 
in the land gravity data distribution and quality, especially 
in South America, Africa, Asia, and Antarctica. A descrip-
tion of these data can be found in Fecher et al. (2017) or 
Pail et al. (2018). The contribution of the new surface grav-
ity data is evident in Fig. 2, which compares the normal 
heights inferred from XGM2019e up to degree 5540 with 
the arithmetic mean of the three models mentioned previ-
ously (see Fig. 1). The smallest differences (less than ± 1 cm) 
are located in those regions with well-distributed terrestrial 
gravity data sets included in EGM2008 (see Pavlis et al. 
2012, 2013), while the largest differences (from ± 20 cm 
to ± 30 cm) occur in remote islands, the Andes, and in the 
South Atlantic, close to Antarctica.

Table 1 summarises the statistics of XGM2019e (degree 
5540) compared to EGM2008 (degree 2190), EIGEN-6C4 
(degree 2190), GECO (degree 2190), SGG-UGM-1 (degree 
2159), and XGM2016 (degree 719) in terms of normal 
heights at the 162 ITRF stations used in this work. These 
differences largely reflect the advancements in the global 

gravity field modelling: higher resolution, more observa-
tions, better approaches (or models) for the removal or cor-
rection of systematic effects in the measurements, homog-
enisation of processing standards, improved combination 
and error analysis strategies, redundancy in the data analy-
sis, powerful computation facilities to handle large datasets, 
etc. A consequence of these improvements is for instance 
the frequent release of new satellite-only GGMs based on 
updated reprocessed GRACE and GOCE data combined 
with kinematic orbits of satellite missions launched for pur-
poses different from gravimetry, like satellite laser ranging 
or satellite radar altimetry. Indeed, since the launch of the 
first GRACE mission in 2002, about 70 satellite-only grav-
ity models (up to degree 300) have been released (see Ince 
et al. 2019). While new satellite measurements, standards 
and processing strategies can be assimilated very quickly to 
produce improved satellite-based gravity models, the assimi-
lation of new surface gravity data poses still a big challenge. 
A first milestone in the determination of GGMs with high 
degrees was the model EGM96 up to degree 360 (Lemoine 
et al. 1998). The following high-degree model (EGM2008) 

Fig. 2  Comparison of normal 
heights inferred from the global 
gravity model XGM2019e 
(degree 5540) with the mean 
value of the normal heights 
obtained from EIGEN-6C4 
(degree 2190), GECO (degree 
2190), and SGG-UGM-1 
(degree 2159). These differ-
ences are mainly attributable to 
the contribution of surface grav-
ity data posterior to EGM2008 
and the gravity synthetic effects 
inferred from the Earth2014 
topography model. (Mean 
value: 0.5 cm, STD: ± 8.2 cm, 
Min: − 30.5 cm, Max: 31.0 cm)
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Table 1  Statistics of XGM2019e (degree 5540) compared to EGM2008 (degree 2190), EIGEN-6C4 (degree 2190), GECO (degree 2190), SGG-
UGM-1 (degree 2159), and XGM2016 (degree 719) in terms of normal heights at 162 ITRF stations globally distributed

Differences of XGM2019e to EGM2008 EIGEN-6C4 GECO SGG-UGM-1 XGM2016

Mean (cm)  − 1.2  − 0.9  − 0.2  − 0.5 0.1
Standard deviation (cm)  ± 11.1  ± 8.9  ± 9.0  ± 8.6  ± 3.4
Min (cm)  − 37.2  − 36.1  − 28.4  − 34.9  − 24.3
Max (cm) 52.9 30.5 39.5 35.6 26.8

Range (cm) 90.1 66.6 68.0 70.5 51.1
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was released 12 years later in 2008 (Pavlis et  al. 2012, 
2013). After this, six models representing a modification of 
EGM2008 have been published that make use of improved 
satellite data from GRACE and GOCE, but include the high 
degrees of EGM2008. Quite recently, in 2017, it was pos-
sible to compute the upgraded GGM GOCO05c (degree 
720, Fecher et al. 2017), which considers NGA’s 15′ × 15′ 
mean gravity anomalies inferred from new and improved 
terrestrial gravity data posterior to EGM2008. This model 
is understood as the predecessor of XGM2016 (Pail et al. 
2018) and XGM2019e (Zingerle et al. 2019), which are 
based on exactly the same set of surface gravity anoma-
lies. The next expected GGM-HR is the EGM2020 (Barnes 
2019), which should include in addition to the latest GRACE 
and GOCE data releases, an updated and improved data set 
of 5′ × 5′ mean surface gravity anomalies.

The GGMs available at the IAG International Centre 
for Global Earth Models (ICGEM, Ince et al. 2019) make 
evident that while satellite-only GGMs are released with 
an averaged frequency of three months, the surface gravity 
dataset included in GGM-HRs can be updated more or less 
every 10 years (only three times from 1996 to 2017). The 
assimilation of surface gravity data in the computation of 
GGM-HRs is not a question of data processing abilities or 
capabilities. It is a consequence of the restricted accessibil-
ity to existing gravity databases and the high costs associ-
ated with gravimetric surveys, which are usually carried out 
over long time-consuming field campaigns with big human 
efforts, leaving large data gaps especially in areas of limited 
access like high mountains, deserts, swamps, or jungles. An 
effective alternative to increase quality and data distribu-
tion is the airborne gravity as it is being done in the USA 
within the project GRAV-D (Gravity for the Redefinition of 
the American Vertical Datum, https ://www.ngs.noaa.gov/
GRAV-D/index .shtml ). A main objective of GRAV-D is to 
increase the availability of airborne-based surface gravity 
data towards the determination of a 1-cm geoid in the US 
main land and territories. For that matter, the correspond-
ing US agencies have been performing airborne gravimetric 
surveys during the last decade systematically. The estimated 
costs reach 39 million US dollars, showing that this tech-
nique is very expensive and may not be massively applied 
in less developed regions, where terrestrial data are of very 
bad quality or not available. Exactly those regions benefit 
at maximum from the satellite gravity missions, since these 
are the only data source able to provide new gravity field 
information. This benefit may be further extended with the 
use of synthetic gravity signal inferred from topographic 
models as proposed by Zingerle et al. (2019). Nonetheless, 
the GGM-HR medium and short wavelengths (about degree 
250–2000) in such areas are fill-in data predicted from topo-
graphic models with a nominal mass density value and they 
do not necessarily represent the actual gravity signal.

One possibility of improving the reliability of the verti-
cal coordinate is the combination of GGMs with surface 
gravity data of high resolution following the remove–com-
pute–restore (RCR) procedure (Tscherning 1986; Schwarz 
et al. 1990). In the RCR procedure, the short (topography) 
and long (GGM) wavelengths are removed from the obser-
vations, then the residual quantities are used for the grav-
ity field modelling (e.g. determination of the disturbing 
potential), and at the very end of the process, the short and 
long wavelength contributions are restored again in terms 
of potential values. While the satellite-only component of 
the GGMs ensures the realisation of a common reference 
level for all regions/countries around the world, the local/
regional surface gravity measurements increase the resolu-
tion provided by the GGMs and contribute to coming closer 
to the accuracy goal in the computation of the W(P) values. 
In the following, we call this combination regional grav-
ity field modelling of high resolution and it is based on the 
procedures applied for the determination of regional geoid 
or quasi-geoid models.

4  Determination of IHRF-related potential 
di�erences based on regional gravity �eld 
modelling of high resolution

The fundamental approach for the regional gravity field 
modelling is the geodetic boundary value problem (GBVP). 
It may be formulated in different ways depending on the 
unknowns (potential and boundary surface) and the grav-
ity field observables available to specify the boundary con-
ditions. The mostly used formulations are the scalar-free 
GBVP (potential and vertical position of the boundary 
surface unknown, horizontal position of the observables 
available) and the fixed GBVP (potential unknown, bound-
ary surface known, coordinate vectors X of the observa-
bles available); see e.g. Koch and Pope (1972), Sacerdote 
and Sansò (1986), Heck (1989, 2011), Sansò (1995). The 
usual boundary condition is the magnitude of the gravity 
vector obtained from gravimetry, which is converted to grav-
ity disturbances for solving the fixed GBVP, or to gravity 
anomalies for solving the scalar-free GBVP. Nonetheless, 
additional observables like geopotential numbers, gravity 
potential gradients, or deflections of the vertical may be 
included. As the existing gravity databases mainly contain 
gravity anomalies with latitude and longitude values, the 
scalar-free GBVP is the formulation most applied presently. 
However, the intensive use of GNSS opens today the pos-
sibility of a direct application of the fixed GBVP. A main 
limitation is that, while recent gravimetric surveys provide 
gravity values with ITRF positions, big efforts are necessary 
for the reliable transformation of the historical terrestrial 
gravity anomalies to gravity disturbances due to missing 

https://www.ngs.noaa.gov/GRAV-D/index.shtml
https://www.ngs.noaa.gov/GRAV-D/index.shtml
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metadata and the use of regional/local horizontal and verti-
cal datums for geo-referencing the gravity values (see e.g. 
Grombein et al. 2015).

Given that the boundary conditions (i.e. the gravity field 
observables) depend in a nonlinear way on the unknown 
gravity potential function, the solution of any GBVP requires 
the linearisation of the observation equations. This is done 
by introducing a known reference potential field (usually the 
normal gravity field of a level ellipsoid) and by describing 
unknowns and gravity observables as relative quantities with 
respect to that reference field. Additionally, in the case of the 
scalar-free GBVP, a reference (or approximation) surface has 
to be adopted. If the Earth’s surface is assumed as bound-
ary surface, the reference surface is the telluroid (theory of 
Molodensky). If the boundary surface is an equipotential 
surface, the reference surface is a level ellipsoid (theory 
of Stokes). In this case, the equipotential surface acting as 
boundary surface is that equipotential surface with the same 
potential (W0) as the normal potential (U0) on the ellipsoid: 
W = W0 = U0. The unknown potential function is then the 
disturbing potential T = W − U. The solution of the GBVP 
in regional gravity modelling is usually given in terms of 
integral formulas. They allow a pointwise determination of 
the disturbing potential and are easily adaptable to the avail-
able surface gravity data coverage and quality. The integral 
kernels (acting as weighting functions on the boundary con-
ditions when being modified) differ depending on the for-
mulation of the GBVP; we talk about the Stokes function for 
the scalar-free GBVP, and about the Hotine or Koch function 
for the fixed GBVP (for details, see e.g. Hofmann-Wellen-
hof and Moritz 2005, Chapter 8). Alternative approaches 
to the integral formulas are the least-squares collocation 
(LSC, e.g. Forsberg and Tscherning 1981; Tscherning 1985, 
1993, 2013), and more recently, spherical radial basis func-
tions (SRBF, e.g. Schmidt et al. 2007; Bentel et al. 2013; 
Lieb et al. 2015). Independently of the approach applied to 
solve the GBVP, a common strategy is the RCR procedure 
(Tscherning, 1986; Schwarz et al. 1990).

The practical application of the RCR procedure demands 
some modifications of the GBVP formulations in accordance 
with the available data. Essential aspects are the adaptation 
of the integral kernels (Stokes or Hotine functions) to ensure 
the appropriate spectral transfer of the residual gravity field 
signal (see a detailed discussion in e.g. Featherstone 2013; 
Hirt 2011), the method to estimate and remove the topo-
graphic effects (Forsberg 1984, 1997; Forsberg and Tschern-
ing 1997), and the selection of the most appropriate inte-
gration radius around the computation point (Forsberg and 
Featherstone 1998). This leads to a very large variety of pos-
sibilities to solve the GBVP, and each possibility produces 
different results (i.e. different disturbing potential values at 
the same computation point). However, the regional gravity 
field modelling plays a main role in the determination of 

potential values as IHRF coordinates because (1) regional/
local geoid modellers have access to surface gravity data 
sets that are not available for the determination of GGM-
HR; and (2) new regional/local gravity surveys can be easily 
assimilated for the computation of updated regional/local 
(quasi-)geoid models, leading to updated/improved potential 
values. In this way, we are convinced that national/regional 
experts on gravity field modelling should be involved in the 
establishment of the IHRF in their regions, as they have the 
best possible data for the computation of the IHRF potential 
values. The challenge is, however, to assess the consistency 
between the large variety of strategies, methods, and approx-
imations utilised in the regional (quasi-)geoid computation 
as described above. Thus, it is necessary to find a way to 
separate how much of the results depend on the method and 
how much they depend on the input data. One possibility 
would be to process all regional gravity sets using the same 
strategy, reductions, and approximations. Nevertheless, a 
centralised computation of the potential values (as the IERS 
does with the ITRF coordinates) is complicated due to the 
restricted accessibility to surface gravity data. Additionally, 
to set up a unified/standard procedure may not be suitable, 
since regions with different characteristics require particular 
approaches (e.g. modification of kernel functions, size of 
integration caps, geophysical reductions for glacial isostatic 
adjustment, etc.). The alternative is to standardise as much 
as possible to get as similar and compatible results as pos-
sible with the different methods.

To assess the repeatability of the results provided by dif-
ferent approaches utilised in the solution of the GBVP and 
to identify a set of basic standards to ensure a minimum 
consistency between them, a computation experiment based 
on the same input data and different processing strategies 
was performed over two years (2017–2019). More than 40 
colleagues grouped in fourteen computation teams sup-
ported this initiative and delivered individual solutions 
obtained following their own computation procedures and 
using their own software. This experiment was called the 
Colorado experiment (Wang et al. 2021) as the input data 
are distributed over this region. The main objectives were 
(1) the determination of geoid and quasi-geoid models and 
potential values, and (2) the comparison of the individual 
solutions among each other and with GNSS data co-located 
with terrestrial gravity and levelling of high precision. The 
comparison of the individual contributions among each 
other allows to identify discrepancies between processing 
strategies, while the comparison with the GNSS/levelling 
data permits to assess the reliability of the individual con-
tributions using independent data of high quality. For this 
experiment, the United States National Geodetic Survey 
(NGS) provided terrestrial gravity data, airborne gravity, 
and a digital terrain model covering the area between lati-
tudes 35° N–40° N and longitudes 110° W–102° W. The 
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gravity data comprise about 60,000 terrestrial gravity values 
and 48 flight lines with GRAV-D airborne data (Damiani, 
2011) for block MS05 (https ://www.ngs.noaa.gov/GRAV-
D/data_ms05.shtml ). The digital terrain model corresponds 
to a corrected version of SRTM v4.1 (Jarvis et al. 2008) 
with a spatial resolution of 3″ × 3″. In this corrected version, 
elevations were fixed for spikes and voids in the Colorado 
region (Ahlgren et al. 2018). The Colorado data were dis-
tributed together with a document summarising a minimum 
set of basic requirements (standards) for the computations 
(Sánchez et al. 2018). The GNSS, gravity, and levelling sur-
veys used for the validation of the results were performed 
under the Geoid Slope Validation Survey 2017 (GSVS17, 
VanWestrum et al. 2021). The GSVS17 profile runs from 
the East to the West along 350 km over flat areas and moun-
tain regions with strong vertical gradients. It is composed of 
223 benchmarks with a mean distance of 1.6 km. The level-
ling data were adjusted in terms of geopotential numbers 
under minimum constraint conditions with respect to the 
final benchmark 223. These geopotential numbers are fur-
ther converted to orthometric heights and normal heights for 
the evaluation of gravimetric geoid and quasi-geoid models 
(see details in VanWestrum et al. 2021). Wang et al. (2021) 
describe in detail the data provided by NGS for the Colorado 
experiment and summarise the comparison of the geoid and 
quasi-geoid models delivered by the different contributing 
groups. In this work, we concentrate on the determination 
and evaluation of the potential differences with respect to 
the IHRS  W0 reference value. This analysis is a main input 
to define the strategy for the implementation of the IHRF 
described in Sects. 6 and 7.

4.1  Recovering potential values from (quasi-)geoid 
models

The determination of station potential values W(P) is 
straightforward if the disturbing potential T(P) is known:

U(P) is the normal potential of the reference ellipsoid. 
For the realisation of the IHRS, the potential values W(P) 
must be determined at the reference stations; i.e. at the 
Earth’s surface and not at the geoid. Consequently, consist-
ency with the approach used for the estimation of the dis-
turbing potential should be ensured. By applying the fixed 
GBVP or the scalar-free GBVP following Molodensky’s 
theory, the disturbing potential is determined at the point P 
on the Earth’s surface (Fig. 3) and the estimation of W(P) is 
straightforward. When Stokes’ theory is followed, the dis-
turbing potential is determined at the point  P0 on the geoid 
(inside the Earth’s topographic masses, see Fig. 3) and an 
upward continuation is necessary to estimate W(P) on the 

(2)W(P) = U(P) + T(P).

Earth’s surface. This upward continuation must be consist-
ent with the hypotheses applied to reduce the gravity values 
from the Earth’s surface to the geoid. We prefer, therefore, 
to start from the quasi-geoid or disturbing potential at the 
Earth’s surface and then to infer the potential values W(P). If 
the preference of the regional gravity field modelling experts 
is to compute the geoid first, we recommend to transform 
geoid undulations (N) to height anomalies ( � ) and then to 
infer the potential values W(P). The transformation from N 
to � must also be consistent with the hypotheses applied for 
the geoid computation. The usual term based on the Bouguer 
anomaly (see Eqs. 8–115 in Hofmann-Wellenhof and Moritz 
2005) is not sufficiently accurate. Refined approximations 
like those proposed by Flury and Rummel (2009) or Sjӧberg 
(2010) are needed to decrease the degradation of achievable 
precision introduced by this transformation (see Sect. 4.4).

Potential values W(P) can be recovered from a solution 
of the fixed or scalar-free GBVP after Molodensky using:

or

(3)W(P) = U(P) + T(P) = U(P) +

(

T0 +

∞
∑

n=2

T
n
(P)

)

,

(4)W(P) = U(P) + �(P) ⋅ γ + ΔW
0
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U(P) and γ are the GRS80 normal potential and gravity 
value, respectively, and ζ is the height anomaly. The sum 
of terms in parenthesis in Eq. (3) represents the disturbing 
potential in a linear, spherical, and constant radius approxi-
mation, which for a point with the geocentric co-latitude θ 
and longitude λ is given by (Hofmann-Wellenhof and Moritz 
2005, Eq. 2–328):

T1(�, �) = 0 ,  s ince the f irst-degree coeff icients 
(C1 = C11 = S11 = 0) are assumed to be zero to align the 
Earth’s centre of masses with the origin of the geometric 
coordinate system (ITRS/ITRF). The zero-degree term T0 
includes the difference between the values employed by 
the GGM and reference ellipsoid for the geocentric gravi-
tational constant GM (cf. Eqs. 2–330, Hofmann-Wellenhof 
and Moritz 2005):

rp is the geocentric radial distance of the computation point 
P.

ΔW0 in Eq. (4) is the difference between the conventional 
reference potential value W0 and the potential U0 on the ref-
erence ellipsoid:

A rigorous analytical solution in closed form of any 
GBVP demands a harmonic, linear, spherical, and constant 
radius approximation of the observation equations (see 
Eq. (5)). This means: masses outside the boundary surface, 
nonlinear terms, ellipsoidal terms, and topographic terms 
in the boundary conditions are mathematically removed 
or neglected. With every level of approximation, artificial 
errors are introduced to the boundary conditions (which 
are already influenced by the observation errors) and the 
accuracy of the estimated values for the unknown poten-
tial degrades. In view of the present accuracy requirements, 
these effects cannot be neglected in precise gravity field 
modelling, and thus, they have to be considered by appro-
priate processing strategies or reductions. Consequently, it 
is expected that the disturbing potential values (Eq. 5) are at 
least corrected by atmospheric effects, topographic effects, 
and ellipsoidal effects. In a very general classification, these 
effects can be considered (1) at the observation level before 

(5)T(�, ) = T0 + T1(�, ) +

∞
∑

n=2

T
n
(�, ).

(6)

T
0
=

1

r
P

(

GM
GGM

− GM
GRS80

)

=
1

r
P

(

3.986004415 × 10
14

m
3

s
−2

− 3.98600 × 10
14

m
3

s
−2
)

(7)

ΔW0 = W0 − U0 = 62, 636, 853.4 m2 s−2

− 62, 636, 860.850 m2 s−2

= −7.45 m2 s−2.

solving the GBVP; (2) as corrections to be added to the 
estimated disturbing potential after solving the GBVP; (3) 
by modifying the integral kernels contained in the GBVP 
formulation; or (4) by the combination of (1), (2) and (3). 
The way to remove these effects is a part of the processing 
strategy and it is usually up to the gravity field modellers. A 
special case is the handling of the permanent tide effects. To 
solve the GBVP, masses outside the boundary surface have 
usually to be removed; i.e. the input data have to be given in 
the non-tidal (tide-free) or the zero-tide system. However, 
to be consistent with the IHRS definition, the IHRF geo-
potential number must be given in the mean-tide system. 
Consequently, we recommend to calculate the geopotential 
in the tide-free or zero-tide system and then to transform it 
to the mean-tide at the end of the computation procedure 
(see Sect. 6.2). This keeps the computations consistent with 
the gravity/geoid work in the tide-free or zero-tide system 
without introducing an unwanted amount of new transforma-
tions or corrections. For the particular case of the Colorado 
experiment, we use the tide-free system because the grav-
ity data, geometric coordinates, and GNSS/levelling data 
provided by NGS are in the tide-free system. If everything 
is consistent, this should not influence the comparison of 
results.

4.2  Comparison of geopotential numbers recovered 
from the (quasi-)geoid models delivered 
to the Colorado experiment

In total, fourteen working groups delivered solutions to 
the Colorado experiment (see Wang et al. 2021). From 
these fourteen solutions, thirteen include absolute poten-
tial values at the benchmarks of the GSVS17 profile. 
“Appendix  1” summarises the main characteristics of 
the processing strategies utilised in each solution and 
provides bibliography for every computation if further 
reading is desired. The individual solutions are identified 
with sequence numbers that are used for the comparisons 
described in this and the next sections. In a very general 
description, it can be mentioned that solutions 1, 2, 3, 4, 5, 
6, 7, 8, and 11 solve the scalar-free GBVP after Moloden-
sky’s theory; solutions 9 and 10 solve the fixed GBVP; 
and solutions 12 and 13 solve the scalar-free GBVP after 
Stokes’ theory. For the comparison, the geoid undulations 
of models 12 and 13 are converted to height anomalies 
applying the usual Bouguer anomaly-based term before 
estimating the potential values with Eq. (4). A refined esti-
mation of geopotential values from model 13 including 
the terrain correction to take into account the deviation 
of the topography from the Bouguer plate is presented 
in Sect. 4.4. In this study, the comparison between the 
solutions is performed in terms of IHRS-based geopoten-
tial numbers (see Eq. 1); i.e. the reference value W0 is 
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subtracted from the pointwise potentials. Afterwards, the 
individual geopotential number sets are compared with 
each other and with the potential differences obtained from 
levelling in combination with terrestrial gravimetry along 
the GSVS17 profile.

For the comparison of the solutions, mean geopotential 
numbers are computed and removed from the pointwise 
values. Here, we group the solutions according to the main 
data processing characteristics. One group covers the solu-
tions based on the scalar-free GBVP after Molodenky’s 
theory using fast Fourier transform (FFT) integration and a 
Wong–Gore (or similar) modification of the integral kernel 
(solutions 1, 2, 3, and 4; Fig. 4a). A second group considers 
the solutions based on the scalar-free GBVP after Moloden-
ky’s theory with a least-squares modification of Stokes’ 
formula with additive corrections (solutions 5, 6, 7, and 8; 
Fig. 4b). The next group comprises the solutions based on 
least-squares collocation (solutions 10 and 11) and spherical 
radial basis functions (solution 9); see Fig. 4c. It should be 
noted here that solutions 9 and 10 solve the fixed GBVP and 
solution 11 the scalar-free GBVP after Molodenky’s theory. 
The last group contains the solutions based on the scalar-free 
GBVP after Stokes’ theory (solutions 12 and 13; Fig. 4d). 
As mentioned, in this case the potential values are inferred 
after converting the geoid undulations to height anomalies. 
Table 2 shows the comparison statistics between the indi-
vidual geopotential number sets and the mean values.

The individual solutions agree within ± 0.09  m2  s−2 
and ± 0.23 m2 s−2 (equivalent to ± 0.009 m and ± 0.023 m) 
in terms of standard deviation with respect to the mean 
value. The solutions 9 and 10, based on the fixed GBVP, 
present STD values less than ± 0.10 m2 s−2 (± 0.010 m). 
Solutions 3, 4 and 5 agree at the ± 0.13 m2 s−2 (± 0.013 m) 
STD level. The overall differences range from − 0.86 m2 s−2 
(− 0.088 m) for solution 2 to + 0.77 m2 s−2 (+ 0.079 m) for 
solution 12. Figure 4a–d clearly shows that the divergences 
between the individual solutions have a high correlation with 
the topography. In general, the largest residuals occur at or 
near the highest peaks (3292.75 m at benchmark No. 86 and 
2843.33 m at benchmark No. 196). As most of the solutions 
(except solutions 9 and 10) model the terrain effects using 
SRTM v.4.1 data, it is evident that these discrepancies are 
mainly caused by the handling of the topography effects in 
the individual processing strategies. Indeed, the two most 
similar solutions (9 and 10 in Fig. 4c) apply the same strat-
egy and the same topographic models dV_ell_Earth2014 
(Rexer et al. 2016) and ERTM2160 (Hirt et al. 2014) for 
the terrain effects. The pointwise differences with respect to 
the mean value between these two models vary from − 0.21 
to + 0.09 m2 s−2 (− 0.021 m to 0.009 m). Models 2 (Fig. 4a), 
8 (Fig. 4b), 12 (Fig. 4d), and 13 (Fig. 4d) present the largest 
residuals (up to about ± 0.60 m2 s−2 or ± 0.061 m). The other 
models differ from the mean in a narrow band from − 0.30 

to + 0.30 m2 s−2 (− 0.030 m to + 0.030 m) except for a few 
spikes.

These results are in agreement with the findings of Wang 
et al. (2021), who compare 1′ × 1′ geoid and quasi-geoid 
models for the whole Colorado area and pointwise height 
anomalies and geoid undulations at the 223 GSVS17 bench-
marks. While the standard deviations of the height anomaly 
differences along the GSVS17 profile vary from ± 0.010 m 
to ± 0.034 m, the standard deviations of the geoid undula-
tion differences vary from ± 0.016 m to ± 0.036 m. By com-
paring the models over the complete area, the quasi-geoid 
differences with respect to mean model present STD values 
from ± 0.015 m to ± 0.028 m; the geoid model comparison 
presents STD between ± 0.021 m and to ± 0.056 m.

4.3  Comparison of model-based 
with levelling-based potential differences

The comparison described in Sect. 4.2 highlights the differ-
ences between the various data processing strategies applied 
within the Colorado experiment. To assess the reliability 
of the solutions, we compare their potential differences (in 
the following called model-based potentials Cmod) with the 
potential differences inferred from high-precise levelling and 
gravity corrections along the GSVS17 profile (in the follow-
ing called levelling-based potentials Clev); see details about 
the levelling data processing in VanWestrum et al. (2021). 
For the objective of this study, we compare model-based 
(Cmod) and levelling-based (Clev) potential differences in two 
ways: (1) between consecutive benchmarks:

and (2) between all possible baseline lengths (dij) of the 
GVSV17 profile:

i and j are the indexes of the GSVS17 benchmarks and dij is 
the distance in [km] along the levelling path between each 
pair of points. The dij values are grouped in 15 class intervals 
varying from 15 to 108 km. The varying length of the class 
intervals is needed to ensure that at least 2000 benchmark 
pairs are available per class. The RMS values of the ΔCij 
differences (Eq. 9) for each interval indicate the consist-
ency between the model-based and levelling-based poten-
tial values as a function of the distance. The comparisons 
in Eqs. (8) and (9) are also performed using the potential 
values inferred from the GGMs considered in Sect. 3. In 
addition to EGM2008, EIGEN-6C4, GECO, SGG-UGM-1, 
XGM2016, and XGM2019, we include the potential val-
ues obtained after combining XGM2016 up to degree 719 
with the topographic model dV_ell_Earth2014 (Rexer et al. 
2016) from degree 720 to degree 2159, and the residual 

(8)ΔC
i,i+1 =

(

Cmod,i − Cmod,i+1

)

−
(

Clev,i − Clev,i+1

)

,

(9)ΔCi,j =
(

Cmod,i − Cmod,j

)

−
(

Clev,i − Clev,j

)

;
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Fig. 4  Geopotential number 
differences with respect to the 
mean value (model-mean) at 
the 223 GSVS17 benchmarks. 
Solutions are grouped according 
to the main data processing 
approach
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(a) Solutions based on the scalar-free GBVP after Molodenky’s theory using

 FFT integration and a Wong-Gore (or similar) modification of the integral kernel

(b) Solutions based on the scalar-free GBVP after Molodenky’s theory with a

 least-squares modification of Stokes’ formula with additive corrections

(c) Solutions based on least-squares collocation (10 and 11) and spherical

 radial basis functions (9). Solution 11 is shifted +1.56 m2s−2 
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terrain model ERTM2160 (Hirt et al. 2014) from degree 
2160 to degree ~ 80000 (equivalent to a spatial resolution 
of 250 m). This combination is achieved using the same 
SRBF-based processing strategy applied in solution 9 (see 
Liu et al. 2020).

Table 3 summarises the statistics obtained from Eq. (8). 
The results for the GGM-HR are quite homogeneous; the 
RMS values are around ± 0.11 m2 s−2 (0.011 m) and the 
range of the differences vary from 0.53 m2 s−2 (0.053 m) 
for the XGM2016 + dV_ell_Earth2014 + ERTM2160 com-
bined model up to 0.76 m2 s−2 (0.076 m) for the models 
including EGM2008 data for the high-degree harmonics. 
The consecutive station differences for the regional solu-
tions vary from − 0.33 m2 s−2 (− 0.033 m) to + 0.29 m2 s−2 
(+ 0.029 m), except for the models 6, 8, 12, and 13 that 
present difference ranges from 0.86 m2 s−2 (0.088 m) to 
1.55 m2 s−2 (0.158 m). These values are larger than those 
obtained from the GGM-HR. The RMS values for the 
regional solutions are in the ± 0.07 m2 s−2 (± 0.007 m) 
to ± 0.10 m2  s−2 (± 0.010 m) range, except solutions 6 
and 8, which reach ± 0.16 m2 s−2 (± 0.016 m). It should 
be noted that the mean distance between two consecutive 
benchmarks is about 1.6 km, which is close to the grid 
spacing (about 1.5 km) of the 1′ × 1′ geoid/quasi-geoid 
solutions. In other words, these solutions do not contain 
the geopotential spatial features smaller than the grid 
spacing. Consequently, it appears that the RMS values in 
Table 3 largely reflect the combined effect of omission and 
commission errors of the regional and GGM-HR models 
for this short baseline. The regional models show slightly 
smaller scatter than the GGH-HR models due to the rela-
tively higher spatial resolution.

Figure 5 shows the standard deviation of all 13 regional 
solutions for each respective (i, i + 1) pair plotted versus the 
ellipsoidal height. The smallest standard deviation values 
(± 0.02 to ± 0.04 m2 s−2, equivalent to ± 0.002 to ± 0.004 m) 
occur where the topography is smooth (benchmarks 
110–170). They increase with the roughness of topogra-
phy, occurring the largest values (larger than ± 0.15 m2 s−2 
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(d) Solutions based on the scalar-free GBVP after Stokes’ theory and converted 

to the quasi-geoid usingthe Bouguer Anomaly-based term 

Fig. 4  (continued)

Table 2  Geopotential number differences with respect to the mean 
value (model − mean) at the 223 GSVS17 benchmarks, units  (m2 s−2)

Solution Mean STD Min Max Range

Solutions based on the scalar-free GBVP after Molodensky’s theory 
using FFT integration and a Wong–Gore modification of the 
integral kernel

1  − 0.08  ± 0.19  − 0.40 0.46 0.86
2  − 0.30  ± 0.22  − 0.86 0.10 0.96
3 0.02  ± 0.12  − 0.32 0.26 0.57
4  − 0.07  ± 0.14  − 0.50 0.28 0.78
Solutions based on the scalar-free GBVP after Molodensky’s theory 

with a least-squares modification of Stokes’ formula with additive 
corrections

5  − 0.04  ± 0.13  − 0.29 0.35 0.64
6  − 0.13  ± 0.21  − 0.46 0.46 0.92
7 0.01  ± 0.18  − 0.39 0.28 0.67
8 0.12  ± 0.21  − 0.65 0.75 1.40
Solutions based on least-squares collocation (sol. 10 and 11) and 

spherical radial basis functions (sol. 9)

9 0.01  ± 0.09  − 0.31 0.25 0.56
10 0.05  ± 0.09  − 0.24 0.25 0.49
11 1.56  ± 0.19  − 0.46 0.40 0.86
Solutions based on the scalar-free GBVP after Stokes’ theory and 

converted to the quasi-geoid using the Bouguer anomaly-based 
term

12 0.12  ± 0.16  − 0.12 0.77 0.90

13 0.28  ± 0.23  − 0.56 0.69 1.25
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or ± 0.015 m) at the strongest topographic gradients. This 
shows that the large scatter is associated with the rough 
topography where the omission error tends to be large, and 
the topography effects are treated quite differently among 
the 13 solutions. Consequently, a challenge (or limitation) 
in the determination of model-based geopotential numbers 
is a better modelling of terrain effects.

Table 4 and Fig. 6 present the RMS values obtained from 
the baseline-length depending comparison (Eq. 9). Italics 
in Table 4 highlight the smallest value at every baseline-
length interval. The RMS values for the geopotential dif-
ferences inferred from GGM-HR vary from ± 0.32 m2 s−2 
(± 0.030 m) to ± 0.93 m2 s−2 (± 0.095 m); the EGM2008 
model showing the largest ones. The improvement of the 
EIGEN-6C4, GECO, and SGG-UGM-1 RMS values in com-
parison with EGM2008 can be explained by the contribu-
tion of GOCE data to the satellite-only component of these 
models. The newer XGM2016, XGM2019, and the com-
bined XGM2016 + dV_ell_Earth2014 + ERTM2160 models 

fit in a similar way the levelling-based potential differences 
between 63 and 202 km, presenting the best RMS values at 
the 122–145 km interval. The large RMS values (around 
0.60 m2 s−2 or 0.060 m) of these models at distances between 
15 and 60 km may be a consequence of the low resolution 
(15′ × 15′) of the mean surface gravity anomalies included in 
the determination of the XGM models. These anomalies lack 
gravity information finer than 15′ × 15′, causing an omis-
sion error, which apparently cannot completely be solved 
by the synthetic gravity data inferred from topography mod-
els. Remember that EGM2008 contains 5′ × 5′ (or denser) 
mean surface gravity anomalies, and these anomalies are 
transferred to the high degrees of the models EIGEN-6C4, 
GECO, and SGG-UGM-1. The angled pattern described by 
the RMS values of XGM2016, XGM2019, and the com-
bined XGM2016 + dV_ell_Earth2014 + ERTM2160 model 
suggests that they fit the levelling-based potential differences 
at some frequencies only. For instance, the RMS values at 
the intervals 63–81 km and 122–145 km are better than the 

Table 3  Consecutive 
benchmark differences between 
the model-based  (Cmod) and the 
levelling-based geopotential 
numbers  (Clev) along the 
GSVS17 profile, units  (m2 s−2)

Solution RMS Min Max Range GGM-HR RMS Min Max Range

1  ± 0.09  − 0.33 0.25 0.58 EGM2008  ± 0.11  − 0.41 0.34 0.75
2  ± 0.09  − 0.23 0.24 0.48 EIGEN-6C4  ± 0.11  − 0.41 0.34 0.75
3  ± 0.08  − 0.22 0.27 0.49 GECO  ± 0.11  − 0.41 0.34 0.76
4  ± 0.08  − 0.21 0.28 0.49 SGG-UGM-1  ± 0.11  − 0.42 0.34 0.75
5  ± 0.08  − 0.27 0.25 0.52 XGM2016  ± 0.10  − 0.25 0.45 0.70
6  ± 0.16  − 0.65 0.49 1.14 XGM2019  ± 0.10  − 0.25 0.45 0.69
7  ± 0.07  − 0.21 0.24 0.46 XGM2016+

Earth14+
ERTM2160

 ± 0.10  − 0.21 0.32 0.53
8  ± 0.16  − 0.92 0.63 1.55

9  ± 0.08  − 0.18 0.28 0.46
10  ± 0.08  − 0.18 0.29 0.47
11  ± 0.08  − 0.21 0.24 0.45
12  ± 0.10  − 0.59 0.37 0.96

13  ± 0.10  − 0.50 0.36 0.86

Fig. 5  Discrepancies between 
the model-based (Cmod) and 
levelling-based (Clev) potential 
differences between consecu-
tive benchmarks (i, i + 1) along 
the GSVS17 profile (cf. Eq. 8). 
Standard deviation of all 13 
regional solutions is plotted 
versus the ellipsoidal height. 
The largest standard deviation 
values occur at the strongest 
topographic gradients
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values for the intervals 81–101 km and 101–122 km. This 
could be produced by un-modelled high frequencies or arte-
facts contained in the topography-based synthetic gravity 
signal. This should be investigated in the near future.

Regarding the regional solutions, the RMS values vary 
from ± 0.12 to ± 0.78 m2 s−2 (± 0.012 m to ± 0.080 m). While 
solutions 3 and 7 (with RMS values less than ± 0.30 m2 s−2 
or ± 0.030 m) fit best the levelling-based geopotential dif-
ferences up to distances of about 120 km, solution 13 shows 
a better agreement for the distances from 120 to 350 km. 
All solutions (except 1, 6, 8, and 12) agree at an RMS level 
of ± 0.20 to ± 0.40 m2 s−2 (± 0.020 m to ± 0.040 m) for dis-
tances varying between 30 and 150 km. At larger distances 
(from 150 to 350 km), the consistency between all models is 
better than ± 0.70 m2 s−2 (± 0.071 m). One could assume that 
the decrease in the RMS values with the distance is caused 
by the levelling error accumulation and that an unidentified 
tilt in the levelling line misrepresents this comparison. How-
ever, solution 13 does not present this behaviour. One possi-
bility of the difference could be the parametrisation/modifi-
cation of the integration kernels for the spectral combination 

of the different gravity data sources (global models, regional 
surface gravity, topography effects). This has to be investi-
gated in a next iteration of this study. Figure 6 shows that 
the solutions based on the high-resolution gravity modelling 
fit better the levelling-based potential differences than the 
GGM-HR models. Solutions 6 and 8 present worse RMS 
values than the other regional solutions; however, they are 
at the same RMS level of the best-fitting GGM-HRs.

4.4  Comparison of potential differences inferred 
from different approximations to convert 
the geoid to the quasi-geoid

In Sect. 4.1, we mentioned that when the potential values W(P) 
are to be inferred from a geoid model, an upward continuation 
from the point P0 on the geoid to the point P on the Earth’s 
surface is necessary (see Fig. 3 for the position of P0 and P). 
We also emphasised that the upward continuation should be 
consistent with the hypotheses applied for the geoid computa-
tion. To explore the influence of this conversion on the potential 
values, we applied two different approximations to recover the 

Table 4  RMS values obtained of the baseline-length depending comparison between model-based (Cmod) and levelling-based (Clev) potential dif-
ferences (see Eq. (9)), units  (m2 s−2)

Italics highlight the smallest value at every baseline-length interval

Baseline length (km) 0–15 15–30 30–46 46–63 63–81 81–101 101–122 122–145 145–172 172–202 202–242 242–350

Number of pairs 2048 2043 2080 2080 2082 2162 2080 2003 2072 2001 2038 2064
Regional models including surface (terrestrial + airborne) gravity data

1 0.18 0.27 0.36 0.44 0.52 0.56 0.56 0.47 0.36 0.29 0.40 0.61
2 0.16 0.27 0.32 0.36 0.37 0.37 0.42 0.49 0.57 0.58 0.55 0.44
3 0.13 0.17 0.21 0.24 0.28 0.29 0.31 0.34 0.38 0.44 0.46 0.41
4 0.17 0.22 0.27 0.27 0.29 0.35 0.38 0.38 0.40 0.42 0.41 0.43
5 0.18 0.28 0.33 0.37 0.42 0.44 0.45 0.43 0.42 0.44 0.54 0.67
6 0.24 0.36 0.48 0.57 0.63 0.67 0.65 0.55 0.42 0.44 0.49 0.60
7 0.12 0.17 0.21 0.24 0.26 0.28 0.32 0.39 0.45 0.50 0.58 0.68
8 0.29 0.37 0.44 0.49 0.53 0.54 0.56 0.58 0.60 0.68 0.65 0.55
9 0.15 0.22 0.30 0.34 0.38 0.41 0.40 0.41 0.46 0.49 0.50 0.55
10 0.14 0.20 0.28 0.33 0.37 0.40 0.42 0.45 0.48 0.48 0.49 0.59
11 0.16 0.26 0.33 0.34 0.37 0.42 0.49 0.53 0.59 0.64 0.66 0.78
12 0.20 0.29 0.36 0.42 0.47 0.52 0.51 0.43 0.31 0.29 0.37 0.53
13 0.21 0.27 0.30 0.34 0.34 0.34 0.30 0.28 0.29 0.29 0.22 0.22

Global gravity models of high resolution

EGM2008 0.38 0.46 0.47 0.54 0.61 0.72 0.80 0.90 0.93 0.88 0.78 0.60
EIGEN-6C4 0.37 0.43 0.42 0.45 0.47 0.51 0.55 0.57 0.58 0.52 0.46 0.38
GECO 0.37 0.44 0.44 0.50 0.54 0.61 0.66 0.67 0.66 0.57 0.44 0.32

SGG-UGM-1 0.38 0.44 0.43 0.47 0.50 0.57 0.62 0.65 0.65 0.58 0.49 0.37
XGM2016 0.32 0.58 0.65 0.57 0.52 0.62 0.54 0.49 0.60 0.51 0.77 0.73
XGM2019 0.32 0.59 0.66 0.56 0.53 0.65 0.56 0.49 0.62 0.50 0.74 0.73
XGM2016+ 0.33 0.60 0.69 0.60 0.55 0.64 0.56 0.52 0.61 0.51 0.78 0.72
Earth14+

ERTM2160
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potential values W(P) from the geoid undulations delivered by 
solution 13 (Huang and Véronneau 2013). The first approxima-
tion (Eq. 10) corresponds to the usual Bouguer anomaly-based 
term for the conversion between N and ζ, which is consistent 
with the Helmert orthometric heights (cf. Hofmann-Wellenhof 
and Moritz 2005, Eq. (4–33)). This approximation is used for 
the comparisons described in the previous sections. The second 
approximation (Eq. 11) takes into account the deviation of the 
topography from the Bouguer plate around P:

(10)

W(P) = W
0
− (h − N) ⋅ g with g = g(P)

+ 0.424 × 10
−6

⋅ (h − N)
[

m
2

s
−2
]

W0 = 62,636,853.4  m2s–2. h is the ellipsoidal height 
(provided by NGS). N is the geoid undulation interpolated 
from the 1′ × 1′ geoid model at the GSVS17 benchmarks. 
g(P) is the gravity value at each benchmark (this value is 
interpolated from the terrestrial gravity data set provided 
by NGS). The factor 0.424 × 10–6 refers to an average 
density of topographic masses of ρ = 2,670 kg m−3 (see 
e.g. Hofmann-Wellenhof and Moritz 2005, Eq. (4–31)). 
TC stands for the terrain correction, and it is estimated 

(11)

W(P) = W
0
− (h − N) ⋅ g with g = g(P)

+ 0.424 × 10
−6

⋅ (h − N) + TC
[

m
2

s
−2
]

Fig. 6  Baseline-length depend-
ing comparison between 
model-based (Cmod) and 
levelling-based (Clev) poten-
tial differences (see Eq. (9)). 
a Comparison of the regional 
solutions; b comparison of the 
GGM-HRs
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following Sects. 3.4 and 4.3 of Hofmann-Wellenhof and 
Moritz (2005) and using the SRTM v.4.1 model evenly at 
seven points between the geoid and topography. The poten-
tial differences between both approximations present a 
mean value of − 0.16  m2  s–2 (corresponding to − 0.016 m) 
and vary from − 0.60  m2  s–2 (–0.060 m) to + 0.27  m2  s–2 
(+ 0.027 m). Figure 7 displays these differences together 
with the topographic profile of the GSVS17 test points. It 
should be noted that the peaks in the comparison of solu-
tion 13 with the mean geopotential numbers (see Fig. 4d) 
are similar to the peaks of the differences between the two 
sets of solution 13 geopotential values but with opposite 
signs. When comparing these two approximations with the 
levelling-based potential differences (Clev) using Eq. (9), 
it is evident that considering the topographic correction 
makes the estimation of the potential differences between 

the geoid and topography more accurate, thus increasing 
the agreement between the model-based and the levelling-
based potential differences (see Fig. 8). A further analysis 
is needed to compare different approaches for the conver-
sion between N and �.

5  Vertical datum uni�cation of existing 
physical height systems into the IHRS

The existing physical height reference frames have been 
established by means of precise levelling referring to local 
vertical datums W0l, usually realised by the mean sea level 
determined at arbitrarily selected tide gauges. The local geo-
potential numbers Cl(P)

Fig. 7  Differences after recover-
ing potential values from a 
geoid model using different 
approximations for the upward 
continuation of the potential 
from the geoid surface to the 
Earth’s surface
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Fig. 8  Baseline-length depend-
ing comparison between 
model-based (Cmod) and 
levelling-based (Clev) potential 
differences (see Eq. 9). Col-
oured lines represent the model-
based potential values recovered 
from solution 13 after using 
different approximations for 
the upward continuation of the 
potential from the geoid surface 
to the Earth’s surface. The light 
blue lines represent the other 12 
solutions (cf. Fig. 6a)
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can be converted to IHRF geopotential numbers CIHRF(P), 
if the difference δW0l between the local W0l and the global 
W0 reference levels is known:

An estimation of δW0l is possible by adding it to the 
observation equations of a GBVP. In this case, the scalar-
free GBVP is preferred because the gravity anomalies 
depend on the level difference between P and Q (for the 
Molodensky approach) or between P0 and Q0 (for the Stokes 
approach); see Fig. 3. Thus, the level W0l is implicit in the 
boundary conditions and it can be handled as an additional 
unknown. As the number of unknowns increases, additional 
observations are required. In this case, ellipsoidal heights h 
determined with GNSS at the levelling points with physical 
(orthometric H or normal H*) heights are used to constrain 
the values of δW0l to the discrepancies between ([h − H]− N) 
or ([h − H*]− ζ). For details about the formulation of the 
extended GBVP equation observations, please refer to e.g. 
Rummel and Teunissen (1988), Heck and Rummel (1990), 
Xu and Rummel (1991), Gatti et al. (2012) and Sideris 
(2014). Empirical examples can be found in e.g. Rummel 
et al. (2014), Willberg et al. (2017), Vergos et al. (2018); or 
Sánchez and Sideris (2017). In the first three examples, the 
contribution of GOCE data to the height system unification 
is evaluated. In the latter, the vertical datum unification of 
the North American and South American height systems 
into the IHRS is discussed.

It is clear that the estimation of δW0i depends on the 
combination of levelling-based physical heights, ellipsoi-
dal heights, and high-resolution gravity field modelling 
(regional geoid or quasi-geoid models). Therefore, accord-
ing to Sánchez and Sideris (2017), to get δW0i values as 
reliable as possible, the numerical evaluation of the extended 
GBVP must be performed at geodetic stations of highest 
quality that refer to the same ITRF and are connected to the 
local vertical datum by means of first-order precise levelling 
(in combination with gravity). The scalar-free GBVP after 
Molodensky’s theory is preferred to minimise uncertainties 
caused by discrepancies between the hypotheses introduced 
to compute gravity anomalies at the geoid. Additionally, the 
input data should be standardised; for instance, geometric 
and physical heights should refer to the same epoch and 
be given in the same tide system used in the determina-
tion of the regional (quasi-)geoid. However, the reliability 
of the vertical datum unification depends on the limitations 
of the regional gravity field modelling (see the evaluation 
of the Colorado experiment results in Sect. 4 or in Wang 

(12)C
l(P) = W

0l
− W(P)

(13)

C
IHRF(P) =

(

W
0
− W

0l

)

+ C
l(P)

= �W
0l
+ C

l(P) with �W
0l
= W

0
− W

0l
.

et al. (2021)); and the characteristics of the existing height 
systems (see, e.g.; Sánchez 2012; Angermann et al. 2016, 
Chapter 4.6), in particular the long-distance accumulation 
of systematic errors in levelling. A possibility to improve 
the results is an iterative approach: once a first estimation of 
δW0i is available, the height-related observables (geopoten-
tial numbers, terrestrial gravity anomalies) are re-computed 
and used to iterate the GBVP solution. This loop should be 
repeated until sub-mm differences are obtained between con-
secutive iterations. With the final values of δW0i, the local 
geopotential numbers can be referred to the global IHRS 
W0 using Eq. (13). It should be noted that in the usual prac-
tice, the δW0i values are added to the local (quasi-)geoid 
models to support the so-called GNSS/levelling technique 
at national or regional scales. For the transformation of the 
local height systems to the IHRF, the δW0i have to be added 
to the local physical heights (or geopotential numbers). The 
relative accuracy between the IHRF geopotential numbers 
at levelling points will depend on the accuracy of the level-
ling itself; it would be very high between consecutive points 
and may suffer from the accumulation of systematic errors 
over long distances. The absolute accuracy of the IHRF 
geopotential numbers based on the vertical datum unifica-
tion will depend on the accuracy of the input data consid-
ered for the determination of the δW0i values. According to 
Rummel et al. (2014) or Sánchez and Sideris (2017), this 
accuracy may reach mean values from around ± 0.5 m2 s−2 
(± 5 cm) in well-surveyed regions up to some decimetres 
(± 4.0 m2 s−2, equivalent to 40 cm) in sparsely surveyed 
regions. To improve the reliability of the vertical datum uni-
fication, it is very important to increase the accuracy and 
quality of the input data needed for the determination of 
δW0i (see Sánchez and Sideris 2017). As the vertical datum 
unification is largely discussed in the existing literature, no 
further details are presented here.

6  Standards and conventions 
for the determination of IHRF coordinates

6.1  Basic standards

One key objective of the Colorado experiment is the iden-
tification of standards and conventions to ensure consist-
ency between different computation methods as far as 
possible. Although some standardisation issues are still 
open (see Sect. 7.1), we have identified the following set of 
basic standards and conventions (cf. Sánchez et al. 2018):
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6.1.1  Degree‑zero

As long as IAG does not release a new geodetic reference 
system (GRS), GRS80 should be used for the regional 
(quasi-)geoid computation; i.e. for the computation of grav-
ity anomalies, disturbing potential, ellipsoidal coordinates, 
geoid heights, height anomalies, etc. A zero-degree correc-
tion has then to be added to get to the latest GM value and 
to the conventional reference value W0 (IAG Resolution 1, 
2015). The zero-degree term for the disturbing potential is 
given by Eq. (6). Accordingly, the zero-degree term for the 
geoid and the quasi-geoid is:

Please see Fig. 3 for the position of P, Q, P0 and Q0, and 
Eq. (7) for the value of ΔW0. In this way, to compute the 
geoid or the quasi-geoid, the GBVP should be solved start-
ing with degree two and then Eq. (14) or Eq. (15) should be 
added. In the Colorado experiment, the degree-zero term 
and the use of the WGS84 ellipsoid caused large differences 
among the first-iteration of geoid and quasi-geoid solutions. 
These discrepancies were reduced at the second iteration, 
when the computation groups adopted these conventions 
(Wang et al. 2021).

6.1.2  Mass centre convention

As mentioned in Eq.  (5), the first-degree coefficients 
(C1 = C11 = S11 = 0) are assumed to be zero to align the 
Earth’s centre of masses with the origin of the geometric 
coordinate system (ITRS/ITRF). The misalignment between 
the geocentre and the ITRF origin can be considered at 
the millimetre level according to the transformation from 
ITRF2014 to ITRF2008 at epoch 2010.0 (see Table 4 in 
Altamimi et al. 2016). The secular ITRF origin variation rate 
with respect to the geocentre is believed less than 1 mm  a−1. 
Thus, this assumption meets the sub-centimetre requirement.

6.1.3  Correction of uncertainties caused 

by the approximations needed to solve GBVP

As mentioned in Sect. 4, it is expected that the disturb-
ing potential values obtained after solving the GBVP in a 
harmonic, linear, spherical, and constant radius approxi-
mation (see Eq. 5) are corrected by the effects removed 
before the computation. This means, at least, atmospheric 

(14)N
0
=

(

GMGGM − GMGRS80

)

rP
0
⋅ γQ

0

−
ΔW

0

γQ
0

(15)�
0
=

(

GMGGM − GMGRS80

)

rP ⋅ γQ

−
ΔW

0

γQ

effects, topographic effects, and ellipsoidal effects should 
be restored. Until now, there was lack of a convention on 
considering atmospheric effects while the topographic and 
ellipsoidal effects are generally taken into account.

6.2  Treatment of the permanent tide 
in the realisation of the IHRS

The GBVP can be solved with gravity field observables in 
the tide-free (non-tidal) or zero-tide system. Mean-tide grav-
ity cannot be used as it includes the time average of the 
tide-generating potential generated by masses outside the 
boundary surface. These masses must be removed; other-
wise, the disturbing potential T would not be a harmonic 
function. According to the IAG Resolution No. 16, 1983 
(Tscherning 1984), the zero-tide system is to be used for the 
Earth’s gravity field and crust modelling. (For the crust, the 
zero-tide and the mean-tide systems are the same.) However, 
both systems, the tide-free and the zero-tide, are presently 
in use for gravity and crust. For the determination of IHRF 
geopotential numbers, we recommend to perform the com-
putations in the zero-tide system and, afterwards, to convert 
the zero-tide potential coordinates to the mean-tide system.

In agreement with the IERS Conventions (e.g. Luzum 
and Petit, 2010), the time average WT of the tide-generating 
potential is adopted to be:

wi th  A = −2.9166 m
2

s
−2  ,  A

�

=
2

3
A = −1.9444 m

2
s
−2  , 

A
��
=

A
�

√

5
= −0.86956 m2 s−2 . P

2
(⋅) is the second-degree 

Legendre polynomial. 
−

P
2
(⋅) is the second-degree fully nor-

malised Legendre polynomial. The scaling parameter 
a = 6,378,137m is the GRS80 semi-major axis. r and � are 
the geocentric radius and latitude, respectively. According 
to Ihde et al. (2008) and Mäkinen (2021), the factor A in 
Eq. (16) differs less than 0.0001 m2 s−2 from the correspond-
ing term (known as  M0S0) in the most recent time-harmonic 
expansions of the tide-generating potential by Hartmann and 
Wenzel (1995), Roosbeek (1996) and Kudryavtsev (2004, 
2007).

W
T
(r, �) can be written as a function of geodetic latitude 

φ and ellipsoidal height h over the GRS80 ellipsoid (Ihde 
et al. 2008; Sacher et al. 2009; Mäkinen, 2021):
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This formula is valid at all points of the terrestrial topog-
raphy. The maximum contribution (e.g. at the highest moun-
tains) of the coefficient 2h

a
= 0.31 × 10

−6
m

−1
⋅ h to Eq. (17) 

is on the topography of the Earth less than 0.003  m2s–2 
(equivalent to 0.3 mm in height).

Geopotential numbers in the zero-tide system CZT are 
defined by

where WZT is the zero-tide potential. The generic definition 
of mean-tide geopotential numbers is

In Eq. (19), the height dependence of WT (first term in 
Eq. (17)), though small, would cause practical and the-
oretical difficulties if it were actually incorporated in a 
height system (Mäkinen 2017, 2019, 2021). Therefore, in 
the definition of the IHRF geopotential numbers CIHRF , the 
height dependent WT is conventionally replaced by WT0, 
the value of WT at the mean-tide geoid. Thus,

Since the distance between the geoid and the ellipsoid 
is maximally around 100 m, WT0 in Eq. (20) can be calcu-
lated from WT at the GRS80 ellipsoid

In this manner, CIHRF is obtained from CZT using the 
datum-surface type transformation of Eq.  (20) and the 
definition of CIHRF is similar to the mean-tide geopoten-
tial numbers used in national and continental levelling 
networks (Mäkinen 2017, 2019, 2021).

Equations  (19) and (20) mean that the strategy to 
determine IHRF geopotential numbers CIHRF is to solve 
the GBVP in the zero-tide system to obtain the zero-tide 
potential WZT, then to calculate the zero-tide geopotential 
number CZT with Eq. (18), and finally, to get CIHRF from 
the zero-tide geopotential number using Eqs.  (20) and 
(21). Since the height dependence of WT has been elimi-
nated in the definition of the IHRF geopotential numbers 
in Eq. (20), standard methods apply in the calculation of 
orthometric heights, normal heights and dynamic heights 
from CIHRF (see, e.g.; Hofmann-Wellenhof and Moritz 
2005, Chapter 4).

For the solution of the GBVP in the zero-tide system, 
the GGM should be given in the zero-tide system and be 
evaluated at mean-tide = zero-tide coordinates (XMT). 
As the ITRF coordinates are given in the conventional 
tide-free system (XNT), the mean-tide positions have to 
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.

be restored. The IERS Conventions provide correction 
formulas to be added to the 3-D Cartesian coordinates 
(see Eq. (7.14a) and Eq. (7.14b), Sect. 7.1.1.2 in Petit and 
Luzum 2010). They are given with a precision of 0.1 mm. 
Ihde et al. (2008) added a decimal to give the precision 
0.01 mm. The radial component (positive outwards) is

and the transverse component (positive northwards) is

Equations (22) and (23) are the components of the vector 
Δr⃗ to be added to the ITRF tide-free positions (XNT) to get 
mean-tide = zero-tide positions (XMT).

Regarding the GGM, the coefficient of second-degree C20 
dominates the tidal system and defines in which tide system 
the potential is obtained. Some GGMs provide the coeffi-
cient C20 in the tide-free (non-tidal) system 

(

C
NT

20

)

 ; other 
GGMs provide it in the zero-tide system 

(

C
ZT

20

)

 . Their rela-
tionship is given by

where k20 is the conventional Love number (k20 = 0.30190, 
see Petit and Luzum 2010), GM is the geocentric gravita-
tional constant, and r0 is the distance scaling factor used in 
the generation of the tide-free GGM. The parameters A’ and 

a refer to Eq. (16). In practice, we can assume 
(

r
0

a

)2

≈ 1 

with sufficient accuracy.
As mentioned above, we recommend to transform tide-

free input quantities (GGM and coordinates) to the zero-tide 
and to solve the GBVP in the zero-tide system. However, 
many analysts prefer to solve the GBVP in the tide-free 
system. For the purposes of the IHRF, the tide-free GBVP 
results are considered intermediate computation products 
(Wprov) only. They do not have a conventional IHRF status, 
already because they depend on the specific tide-free reduc-
tions contained in the input quantities. Corrections must be 
added to Wprov to obtain the zero-tide potential WZT. If eve-
rything is done correctly, the obtained WZT will be the same 
as in an originally zero-tide computation.

If the potential is calculated with a tide-free GGM, the 
correction ΔW

GGM should be added to obtain the zero-tide 
potential. In spherical coordinates, this correction is given by:

where we can again assume 
(

r
0

a

)2

≈ 1 . In ellipsoidal coor-

dinates (with r0 = 6,378,136.55 m, IERS Conventions 2010), 
this correction corresponds to:
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If the position of the computation point is given in ITRF 
tide-free coordinates, the correction ΔW

ITRF must be added 
to obtain the potential at the mean-tide = zero-tide position:

γ0 is the normal gravity at the ellipsoid surface and hT(φ) is 
the projection of the vector Δr⃗ (see Eq. 22 and Eq. 23) on 
the ellipsoidal normal (see Ihde et al. 2008; Mäkinen 2021):

Equation (27) is accurate only to 0.01 m2 s−2, but it can 
be rescaled using (g/γ0) pointwise to have an accuracy of 
0.0001 m2 s−2 (Mäkinen 2021). g is the actual gravity at 
the computation point. In spherical coordinates, ΔW

ITRF can 
be obtained as a correction surface simply by computing 
the difference between the evaluation of the GGM at the 
mean-tide station positions (XMT) [i.e. corrected by Eqs. (22) 
and (23)] and at the original tide-free positions (XNT); see 
Mäkinen (2021).

The zero-tide geopotential is then obtained by summing 
the corrections of Eqs. (26) and (27):

Wprov is the intermediate potential product without the 
corrections. Depending on the computation scheme used to 

(26)
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(29)WZT = Wprov + ΔW ITRF
+ Δ

−

W
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solve the GBVP (see Fig. 9), none or only one of the cor-
rections in Eq. (29) may be required. If both corrections are 
needed, they can be combined setting h = 0 and k20 = 0.30190 
(IERS Conventions 2010) in Eq. (26):

Finally, the zero-tide geopotential number (Eq. 18) is 
computed using W

ZT
 from Eq. (29) and the IHRF mean-

tide geopotential number CIHRF is obtained with Eq. (20).
More information about the formulas in this section 

and their background can be found in Mäkinen (2021). 
Reviews about the treatment of the permanent tide in 
Geodesy are provided by Ekman (1989, 1996), and Mäki-
nen and Ihde (2009), among others.

7  A �rst strategy for the establishment 
of the IHRF

The establishment of the IHRF demands a reference net-
work and the determination of IHRF geopotential values 
at the stations belonging to that reference network. In this 
section, we concentrate on the action plans needed for the 
computation of suitable IHRF coordinates based on the 
analysis described in Sects. 3–5; the basic criteria for the 
IHRF station selection; and a proposal about the organi-
sational and operational infrastructure required to ensure 
the long-term sustainability, availability, and reliability of 
the IHRF.
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Fig. 9  Scheme for the deter-
mination of IHRF geopotential 
values after solving the GBVP 
in the zero-tide system or in 
the tide-free (non-tidal) system. 
C

ZT

20
 : GGM coefficient of second 

degree in the zero-tide system; 
C

NT

20
 : GGM coefficient of second 

degree in the tide-free system; 
XNT: ITRF position in the 
conventional tide-free system, 
XMT: ITRF position in the 
mean-tide = zero-tide system, 
Wprov: intermediate potential 
value; WZT: zero-tide potential; 
CZT: geopotential value in the 
zero-tide system; CIHRF : IHRF 
geopotential number (in the 

mean-tide system); Δ
−

W

GGM

 
and ΔW

ITRF : corrections to the 
intermediate potential values 
to obtain the zero-tide potential 
(see Eqs. 26, 27, and 30)
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7.1  Strategy for the determination and evaluation 
of IHRF coordinates depending on the data 
availability

In Sect. 2, we mentioned that the overall target accuracy 
for the stationary IHRF physical coordinates (geopoten-
tial numbers referring to the conventional  W0 value) 
is ± 3 × 10−2 m2  s−2 (about ± 0.003 m). However, as this 
accuracy is very optimistic, we concentrate for the moment 
on evaluating the possibility of reaching an accuracy at 
the ± 0.1 m2 s−2 (± 0.010 m) level. According to the experi-
mental results in this study and other related studies, we can 
classify the determination of potential values in three main 
scenarios:

(a) Regions without (or with very few) surface gravity 
data,

(b) Regions with some surface gravity data, but with poor 
data coverage or unknown data quality,

(c) Regions with good surface gravity data coverage and 
quality.

The only option to determine potential values in regions 
with poor or inexistent surface gravity data (scenario (a)) 
is the use of GGM-HRs. We can expect mean accuracy val-
ues around the ± 4 m2 s−2 (± 0.4 m) level as this accuracy 
is guaranteed by the satellite component of the GGM. In 
comparison with EGM2008, it is possible to increase the 
accuracy about 30%, if the GGM-HRs consider GRACE and 
GOCE data, as well as new surface data or synthetic grav-
ity signals inferred from topographic models (see Table 4 
and Fig. 6). Since the new model EGM2020 will include 
much more new surface gravity data than the GGMs con-
sidered in this study, it is expected that the gravity signal 
in previous poorly covered regions would be better repre-
sented, reaching an accuracy level around ± 1 m2 s−2 (± 0.1 
m). However, this depends on the distribution of the new 
gravity data sets included in EGM2020, as they contribute 
to improve the GGM accuracy only in the covered regions; 
i.e. new gravity data sets over Europe or the USA will hardly 
contribute to improving the gravity signal in Africa. For this 
improvement, it would be necessary to collect and to include 
in the EGM2020 new gravity data sets in Africa. In any 
way, it should be clear that, if no regional gravity data are 
available to be included in a GGM-HR or to determine a 
regional gravity field model, the best possible accuracy for 
the IHRF coordinates will be around ± 4 m2 s−2 (± 0.4 m), 
or even worse in regions with strong topography gradients. 
So far, this is what we can get. However, to avoid multiple 
potential values provided by different GGM-HRs at the same 
point (see Sect. 3), it is necessary to select one GGM-HR 
as reference model for the computation of the IHRF coor-
dinates at stations located in regions belonging to scenario 

(a). Improved GGM-HR can be taken into consideration, 
when a new solution for the IHRF is released (see Sect. 7.3).

In regions belonging to scenarios (b) and (c), the IHRF 
coordinates are to be determined using the high-resolution 
regional gravity field modelling; i.e. the solution of a GBVP 
based on the combination of satellite gravity data (GGM), 
surface gravity data, and topographic effects. The essential 
difference between these two scenarios is the gravity data 
distribution and quality. While in scenario (c) it is possible to 
infer the potential values from precise (quasi-)geoid regional 
models (like in the Colorado experiment), in scenario (b) 
the reliability of the existing (quasi-)geoid models is poor 
and additional gravity surveys around the IHRF reference 
stations may be performed to increase the accuracy of the 
geopotential numbers computed at those specific stations. 
This is like a pointwise improvement of the regional gravity 
field modelling. The recommendation is to perform gravity 
surveys around the IHRF station(s) with a spatial resolution 
between 2 and 4 km (depending on the relief) and within a 
radius between 100 and 200 km. These data are then used 
to solve a GBVP estimating the disturbing potential at the 
IHRF station(s). This recommendation is just to improve the 
accuracy of the potential coordinates at the IHRF stations. 
If a (quasi-)geoid model of high resolution is needed; e.g. 
for practical GNSS/levelling, then the gravity data distribu-
tion and coverage should be extended to the complete area 
of interest and not only around the IHRF stations. In the 
pointwise determination of potential values, possible trunca-
tion errors caused by the omission of the gravity field signal 
outside the 100 km to 200 km radius around the IHRF sta-
tion should be minimised by employing a GGM to model 
the long wavelengths of the gravity field. Similarly, special 
care should be given to possible low frequency errors rising 
from poorly modelled terrain effects; therefore, these effects 
should be estimated using a topography model extended by 
at least 40% to 50% of the area covered by the gravity data 
in all directions. To detect and assess the magnitude of these 
possible errors, it is necessary to have supplementary, inde-
pendent data for the evaluation of the potential differences, 
the best option here being the levelling with gravity reduc-
tions co-located with GNSS positioning. This evaluation 
may be done in an absolute and in a relative way. The evalua-
tion of (quasi-)geoid models is based on the discrepancies of 
absolute heights [h − H − N]. Hence, we call it absolute way 
of comparison. The absolute comparison is influenced by 
the different reference levels of the existing height systems 
and the accumulation of systematic errors in levelling over 
a long distance, which demand some data manipulations 
to obtain reliable comparison results. One way to reduce 
this is the comparison of potential differences inferred from 
the GBVP-based (or GGM-based) potential values with the 
potential differences obtained from levelling (corrected by 
gravity effects) at various lengths of baselines; see Tables 3 
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and 4 and Figs. 5 and 6. In the Colorado experiment, we use 
a 350-km-long levelling line, which seems to be appropriate 
to identify systematic biases of low degree. However, the 
extension of the levelling line(s) for the evaluation of the 
gravity field models may be shorter (or longer) in regions 
with smoother (or stronger) topography. Of course, if gravity 
surveys are possible and GNSS/levelling co-location points 
are available, IHRF stations belonging to scenario (a) can 
be handled as scenario (b) stations.

Scenario (c) represents the regions with very good con-
ditions like those evaluated in the Colorado experiment. 
Here, not only the input data are of high quality, but also 
the colleagues processing the data have large experience in 
the regional gravity field modelling. Therefore, the results 
delivered by 13 different processing procedures present a 
quite good agreement, and they suggest that the ± 0.1 m2 s−2 
(± 0.010 m) accuracy level could be reachable in the next 
future. From the analysis described in Sect. 4, we identify 
the spectral combination of the input gravity data and the 
modelling of terrain effects as the main sources of discrep-
ancy between the Colorado solutions. In this frame, we pre-
sent in the following some considerations aiming at reducing 
possible differences caused by these two aspects.

Regarding the spectral combination, when surface gravity 
data are to be combined with a GGM, the very accurate long 
wavelength gravity signal provided by satellite gravimetry 
(GRACE, GOCE) should be retained, and the surface gravity 
data should mainly contribute to the shorter wavelengths. To 
achieve spectral consistency, the integral kernels needed to 
solve the GBVP have to be accordingly modified to optimise 
the spectral transition from the satellite-only GGM to the 
surface gravity anomalies. Otherwise, the results (e.g. the 
disturbing potential) will present long wavelength distor-
tions. In the Colorado experiment, different strategies are 
applied to modify the Stokes function, and they deliver dif-
ferent results for the same points (see Fig. 4). For instance, 
solutions based on a Wong–Gore kernel modification present 
pointwise discrepancies up to 1.2 m2 s−2 (0.12 m); solu-
tions based on a least-squares modification with additive 
corrections present discrepancies up to 1 m2 s−2 (0.1 m). A 
standardisation of the spectral transition would definitely 
improve the agreement between different regional gravity 
field models. However, this seems to be inappropriate as 
the choice of the spectral transition depends on the quality 
of the surface gravity data in the area of study. With sur-
face gravity data of low precision, the satellite-only GGM 
should be utilised up to higher degrees, and vice versa. Thus, 
the spectral transition should be tuned to the regional/local 
situation, and this aspect is lost with a fixed standardisa-
tion. On the other hand, to select one kernel modification as 
standard (for instance, the Wong–Gore modification) would 
close the door for other methods like stochastic kernel modi-
fications (spectral modification, least-squares modification) 

and to LSC and SRBF approaches, which, according to the 
Colorado experiment results, have proved to be suitable for 
the precise regional gravity field modelling. Taking these 
arguments into account, a standard in this regard could be 
expressed in such a way that the satellite-only GGM should 
be fully trusted up to certain degree (for instance, 180), 
and it should not be trusted at all (approximately) above 
another higher degree (for instance, 250). Complementary, 
there should be a gradual transition in between. However, 
the selection of low and high modification degrees may vary 
from region to region depending not only on the surface 
gravity data quality and coverage, but also on the GNSS/
levelling data used for the evaluation of the different kernel 
modifications. Thus, a standardisation in this regard seems 
to be also unfeasible. Here we mention the use of a satellite-
only GGM to avoid uncertainties produced by possible long-
wavelength systematic biases contained in the surface grav-
ity data employed for the determination of GGM of higher 
degree. However, a combined GGM could be also used, if 
the GGM constrains the low-degree components and the 
maximum kernel modification degree is chosen so that the 
satellite signal dominates the disturbing potential below the 
chosen limit. A significant advantage of using a combined 
GGM is reducing edge effects and truncation errors.

Ihde et al. (2017) propose to select a certain (conven-
tional) satellite-only GGM together with a specified maxi-
mum degree for the IHRS realisation. The main argument 
for this is of course that the resulting regional models will 
become more consistent. An argument against is the fact 
that satellite-only GGMs are frequently updated (more for 
data reprocessing matters than for availability of new data, 
see Sect. 3), and regional/national gravity field models will 
almost certainly be computed using the best model avail-
able at the time of computation. An alternative could be to 
update the specified IHRS satellite-only GGM with specified 
maximum degree every now and then. This can be done for 
every new IHRF release (see Sect. 7.3).

Regarding the handling of topographic effects, the most 
applied procedure is the residual terrain model (RTM) 
reduction (see e.g. Forsberg 1984; Forsberg and Tscherning 
1981, 1997). It has the advantage that the effects of the short 
gravity field wavelengths are to be evaluated up to some 
distance from the computation point, as the effects for zones 
at larger distances are assumed to be negligibly small. The 
effects of the masses between the topographic surface and a 
smooth reference elevation surface are usually determined 
using a prism integration of either positive or negative mass 
density, normally 2,670 kg m−3 as agreed in the Colorado 
experiment. Other mass density values can be also region-
ally taken into account (see e.g.Denker 2013), especially if 
synthetic gravity data are used to improve the gravity sig-
nal. The results, however, depend on the resolution of the 
topography model (for the selection of the prism size), the 
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resolution of the reference elevation surface, the distance 
between the computation point and the prisms, and the so-
called harmonic correction. This correction is necessary for 
those points below the reference elevation surface (inside 
the masses), where the potential is not harmonic. Although 
some approximations exist to estimate this harmonic cor-
rection, it is still a critical aspect of the RTM procedure 
and has to be further studied (e.g. Forsberg and Tscherning 
1997; Omang et al. 2012; Rexer et al. 2018). In the Colo-
rado experiment, different elevation models (SRTM V4.1 
and Earth2014) and different parameters (prism size, refer-
ence topography resolution, harmonic corrections, integra-
tion radii, computation approach) have been applied, and for 
the moment, we are not able to conclude how much these 
differences are responsible for the discrepancies between 
the results provided by the contributing solutions. Thus, the 
handling (and results) of the topographic effects within the 
Colorado experiment has to be further analysed. We suspect 
that the large variety of options to be considered in the RTM 
computation will surely prevent us from introducing a stand-
ardisation in this regard. Consequently, our recommendation 
is to identify the best RTM configuration by contrasting the 
results with supplementary, independent data, being precise 
levelling co-located with GNSS the best option.

7.2  Strategy to improve the input data required 
for the determination of IHRF coordinates

To achieve everywhere similar accuracy in the determina-
tion of IHRF geopotential numbers as that obtained in the 
Colorado experiment, it is necessary to reproduce as much 
as possible the data distribution and quality available for 
that experiment. It is clear that the GGMs cover the com-
plete Earth and are usable worldwide. To assess their reli-
ability, commission errors may be inferred from the covari-
ance matrix usually published with the GGM coefficients 
(see Ince et al. 2019), and omission errors can be predicted 
using the variance model of Tscherning and Rapp (1974) or 
Kaula (1966). However, as these error estimations are very 
optimistic, it is recommended to perform some comparisons 
with levelling of high precision co-located with GNSS.

For the surface gravity data and terrain models, it is nec-
essary to follow the same criteria applied for the determina-
tion of (quasi-)geoid models of high resolution. The main 
general requirements are:

(a) The most important aspect is to fill gravity data gaps, 
initially around of the sites selected to be IHRF ref-
erence stations, and ideally over the complete region/
country requiring a precise (quasi-)geoid model.

(b) The required resolution for the surface gravity data is 
around 2–4 km depending on the relief (in mountain 
areas the gravity observations have to be closer than 

in flat areas). A good possibility to increase the data 
coverage (especially on the top of the mountains or in 
remote areas like jungles or deserts) is airborne gravim-
etry; however, this technique is very expensive and it 
may not be available everywhere. On the other hand, 
relative terrestrial gravimetry is very time-consuming, 
and thus, also expensive.

(c) Homogeneously distributed gravity points around the 
IHRF reference stations up to 100–200 km (~ 1°–2°) 
are desired. These gravity data may exist or have to be 
observed. If old gravity data sets are used, they should 
be checked, especially for systematic errors and quality 
of the height. Considering that the elevation models 
used to estimate the topographic effects are given in 
the ITRF, the quality of the gravity points’ horizontal 
coordinates also plays an important role in areas with 
strong topographic gradients. In many cases, the old 
gravity values refer to local geodetic datums, which 
present displacements up to 500 m with respect to the 
ITRF. This may represent a vertical dislocation of sev-
eral hundred metres between gravity points and terrain 
model (e.g. the Andes or the Himalaya) and the RTM 
corrections may be misrepresented by large systematic 
effects. According to Denker (2013), the minimum 
required accuracies for gravity values and coordinates 
should be about ± 0.15 mGal for gravity, 0.3 m for 
heights, and 1.0 m for the horizontal coordinates. To 
minimise systematic errors of low degree in the gravity 
data sets, the gravity reference network underlying the 
regional gravimetry should include or be connected to 
absolute gravity reference stations.

(d) The best and most expensive alternative is of course to 
make new gravity measurements, which should be well 
connected to a reliable modern gravity reference frame, 
preferably to the new International Gravity Reference 
Frame (IGRF, Wziontek et al. 2021). The positions of 
the new gravity data should be determined with GNSS.

(e) For the modelling of terrain effects, topographic mod-
els should have spatial resolutions of about 100 m (or 
better) in mountainous areas and about 1000 m (or bet-
ter) in flat areas. In this regard, if national or regional 
topography models of high resolution are not avail-
able, global models of public domain like SRTM or 
Earth2014 may be used. However, some evaluations 
are required to fill data gaps and to check gross errors 
in the same way that Ahlgren et al. (2018) did for the 
Colorado area.

7.3  Strategy for the IHRF station selection

According to Ihde et al. (2017), the reference frame realising 
the IHRS should be based on a worldwide homogeneously 
distributed set of reference stations including a core network 
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and regional/national densifications. The core network has to 
be well materialised and maintained to ensure sustainability 
and long-term stability of the reference frame. The regional 
and national densifications are to provide local accessibility 
to the global frame. The IHRF reference network should be.

(a) co-located with fundamental geodetic observatories 
(Appleby et al. 2015) and reference stations of the 
IGRF (Wziontek et al. 2021) to support the connection 
between geometrical (geocentric Cartesian coordinates 
X) and physical (potential W and gravity g) reference 
systems, as well as with the time realisation (reference 
clocks);

(b) materialised by GNSS continuously operating reference 
stations to monitor and detect deformations of the refer-
ence frame; in this case, stations belonging to the ITRF 
and the regional reference frames like SIRGAS, EPN, 
APREF, etc., are preferred;

(c) connected with the existing vertical reference frames to 
facilitate the vertical datum unification into the IHRF;

(d) well surveyed with availability of surface gravity data 
around the IHRF reference stations for high-resolution 
gravity field modelling (i.e. precise estimation of W).

Based on these criteria, a preliminary station selection for 
the IHRF was performed including primarily the core sta-
tions of the Global Geodetic Observing System (GGOS; 
Appleby et al. 2015), ITRF sites with at least two co-located 

space techniques (VLBI, SLR, DORIS and GNSS), and 
GNSS stations belonging to the fiducial network of the 
International GNSS Service (IGS, Johnston et al. 2017). 
Afterwards, regional and national experts were asked to 
evaluate whether the preliminary selected sites are suit-
able to be included in the IHRF (mainly if gravity data are 
available or if there are possibilities to survey them), and 
to propose additional geodetic sites to improve the density 
and distribution of the IHRF stations in their regions/coun-
tries. After the feedback from the regional/national experts, 
the first approximation to the IHRF reference network is 
based on about 170 stations (Fig. 10; Sánchez and Barzaghi 
2020). Currently, this station selection is regularly refined 
in agreement with changes/updates of other geodetic refer-
ence frames (ITRF and IGRF and their densifications). This 
network is the basis for the determination of a preliminary 
IHRF solution as next step in the implementation of the 
IHRS. Afterwards, regular updates of the IHRF, probably 
synchronised with the release of new ITRF solutions, should 
be implemented to take account for new stations, coordinate 
changes with time (Ẋ, Ẇ), and improvements in the estima-
tion of X and W (new observations, better standards, better 
models, better computation algorithms, etc.).

Regional and national densifications of the global IHRF 
reference network may be established in accordance with 
the particular local needs and the distribution of the GNSS 
reference stations. Main requirement is however the avail-
ability of surface gravity data of high quality. If regional 
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(quasi-)geoid models of high resolution are available, an 
IHRF reference station may be installed every 50 km or 
100 km. If the region is not well surveyed and additional 
efforts are necessary to collect surface gravity data, the 
mean distance between IHRF stations may be increased up 
to 500 km. According to Sect. 7.1, the IHRF physical coordi-
nates should be based on the gravity field modelling of high 
resolution. If it is not possible, the adopted GGM-HR may 
be used. For higher resolutions and applications requiring 
accuracies at the millimetre level, high-precise levelling is 
recommended. In the case, the nearest IHRF station (or sta-
tions) should be used as fiducial point to process the level-
ling data. In this way, levelling would be utilisable at short 
distances (up to about 100 km), where the accumulation of 
systematic errors is not a critical issue. Large levelling net-
works covering entire countries would not continue being 
necessary. This option is of course a decision of the national 
agencies responsible for the geodetic reference frame mat-
ters. The regional and national IHRF densifications would 
refer to a specific IHRF release, including station positions 
referring to a certain epoch and station position variations 
with time. This is the same procedure used for the release of 
updated versions of the ITRF.

7.4  Strategy to ensure the usability and long-term 
sustainability of the IHRF

In scientific applications, the ITRF is the best available plat-
form for the determination of geometric coordinates (posi-
tions, trajectories, velocities). It is well accepted and widely 
used. In practical and non-geodetic applications, the ITRF 
is automatically accepted and used by everyone employing 
GNSS techniques and ITRF-based satellite orbits. Regional 
and national densifications of the ITRF have been neces-
sarily established, because GNSS is today the primary 
technique applied for the establishment of geometric refer-
ence frames. Discussions about a gravity field-based world 
height system or global vertical reference system like the 
IHRS started 30 years ago, but its realisation became pos-
sible for the first time after GRACE and GOCE. However, 
the accuracy of physical coordinates (geopotential numbers) 
based on the gravity field modelling (GGM or solution of 
the GBVP) is one to two levels worse than in the ITRF. 
In applications requiring high accuracy, geodetic levelling 
continues being the appropriate technique. Consequently, to 
achieve a wide acceptance of the IHRS/IHRF, the accuracy 
of IHRF physical coordinates has to be drastically improved. 
In the best case, the IHRF will be involuntarily accepted 
and used by everyone using GNSS in combination with a 
consistent gravity field (geopotential) model of high resolu-
tion. Nevertheless, the existing physical height systems will 
most probably continue in daily use, while the IHRS/IHRF 
will be utilisable in global change studies and transnational/

transregional applications requiring the consistent connec-
tion of the local height systems.

To ensure the maintenance and availability of the IHRF 
on a long-term basis, it is necessary to install an operational 
and organisational infrastructure, being the IGFS the self-
evident hosting organisation. For instance, one of the main 
lessons learned of the Colorado experiment is the necessity 
of assessing the reliability of the IHRF geopotential numbers 
estimated by national/regional experts contributing to the 
establishment of the IHRS. This assessment may be per-
formed in different ways (see green boxes in Fig. 11):

(a) By installing auxiliary stations close to the core IHRF 
stations connected by levelling of high precision to 
have independent data to compare the potential differ-
ences obtained with the GBVP solution, in a similar 
way like the GSVS2017 profile (see Sect. 4.3).

(b) By ensuring redundancy in the computation of IHRF 
geopotential numbers. For this purpose, the IGFS could 
install IHRF analysis centres or associates that are able 
to determine geopotential numbers using input data 
provided by the national/regional computation centres, 
and then, IGFS and local results can be compared.

(c) By calibration of the computation methods used 
by national/regional experts. For this purpose, the 
national/regional experts determine potential values 
using a certain set of input data and their results are 
compared with results obtained by other processing 
approaches (like in the Colorado experiment). In this 
case, test input data and results should be managed by 
the IGFS.

In addition to the evaluation of the IHRF coordinates, the 
operational infrastructure for the IHRS/IHRF has to take 
care of (cf. Fig. 11):

(a) Maintenance of the IHRF reference network in accord-
ance with the GGOS Bureau of Networks and Observa-
tions (GGOS-BNO), which keeps the updated GGOS 
core site catalogue, and the coordinators of the refer-
ence networks for the ITRF, IGRF, and their regional 
densifications, usually kept by the IAG regional sub-
commissions for reference frames and gravity field 
modelling. This activity should be faced by the IHRF 
reference network coordination (see blue boxes in 
Fig. 11).

(b) Maintenance of a catalogue with the conventions and 
standards needed for the IHRF. This should consider 
a harmonisation with the conventions and standards 
kept by the GGOS Bureau of Products and Standards 
(GGOS-BPO), the IERS Conventions (for the deter-
mination of the ITRF), and the standards applied in 
the IGRF and the global gravity field modelling. This 
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task should be carried out by the IHRF conventions’ 
coordination (see pink boxes in Fig. 11).

(c) The national/regional agencies/entities contributing 
to the realisation of the IHRF in their regions may be 
declared as IHRF national/regional computation cen-
tres (dark blue box in Fig. 11). The input data would 
then be provided by existing IAG gravity field services 
and local data centres; e.g. GGM are provided by 
ICGEM and surface gravity data are provided by the 
Bureau Gravimétrique International (BGI) and refined/
complemented with gravity data available at local data 
centres. In a similar way, one can proceed with digital 
elevation models (see violet box in Fig. 11).

(d) In an ideal data flow scheme, the national/regional 
IHRF computation centres would provide the IGFS 
with the following products (cyan box in Fig. 11): 
potential values at the IHRF reference stations; ver-
tical datum unification parameters (to transform the 
existing local height systems to the IHRF); mean grav-
ity anomalies or disturbances (without violating data 
confidentiality but contributing to the determination 
of improved GGMs); and regional (quasi-)geoid mod-
els of high resolution. The mean gravity anomalies (or 
disturbances) and the (quasi-)geoid models would be 
then managed by BGI and the International Service 
for the Geoid (ISG), respectively. For the combination 
of the regional/national solutions, validation, storage, 
management, and servicing of potential values at IHRF 
stations and vertical datum parameters, the IGFS would 
have to establish a new element, which could be called 
IHRF product centre (see magenta boxes in Fig. 11).

8  Closing remarks

On the basis of this paper, we realise that the implementa-
tion of a global reference system for physical heights as the 
IHRS is a big challenge and requires the support of a wide 
scientific community. Thus, the installation of the IHRS/
IHRF is only possible within a global and well-structured 
organisation like the IAG. A lot of work is required. A 
source of inspiration is the ITRF. If we compare the initial 
version of the ITRF (ITRF0; Boucher and Altamimi 1989) 
with the most recent one (ITRF2014; Altamimi et al. 2016), 
the huge improvement is evident. The ITRF0 included sta-
tion positions only (station velocities were taken from a 
geological-geophysical plate tectonic model), there were as 
many coordinate sets for each station as unsolicited analy-
sis centres processing that station, the conversion to ellip-
soidal coordinates used arbitrary values for the ellipsoid 
constants (the GRS80 was not always considered), station 
positions presented a precision from ± 11 to ± 60 mm, etc. 
The ITRF2014 is totally different: standardised computa-
tion, various processing and combination centres, station 
positions, and motions with accuracy at the millimetre level. 
Following this example, we are confident that once we have 
implemented a first approximation to the IHRF, it can be 
improved by considering more and more details that at the 
beginning may represent unsolvable obstacles.

In the near future, we aim at comparing the Colorado 
results at different stages of the computation. In this study, 
we compare the potential values inferred from the very 
final (quasi-)geoid models. In the next iteration, we have to 
examine in detail the treatment of input data and especially, 
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the processing of the airborne gravity data, the handling 
of terrain effects, and the relative weighting of GGM, ter-
restrial gravity data, and airborne gravity data. We need to 
quantify how much of the discrepancies between the solu-
tions is related to the treatment of the data, and how much is 
related to the different approaches. The latter is of particular 
importance if we go for a worldwide distributed process-
ing of potential data (i.e. national/regional processing cen-
tres computing IHRF physical coordinates). This should be 
complemented with appropriate strategies for error analy-
sis and validation to infer reliable accuracy values for the 
potential coordinates. Simultaneously, we will compute an 
initial quasi-stationary solution for the IHRF reference net-
work shown in Fig. 10 following the strategy described in 
Sect. 7.1. Once this quasi-stationary solution is available, 
we have to identify a suitable methodology for the deter-
mination and modelling of the potential coordinate changes 
with time.

Appendix 1. Processing strategies utilised 
in the Colorado experiment

In the following, we provide the main characteristics of the 
(quasi-)geoid models contributing to the Colorado experi-
ment (cf. Wang et al. 2021, Appendix 2). They are identified 
with sequence numbers that are used in the comparisons 
presented in Sect. 4.

Solution 1: Computed at the School of Earth and Plan-
etary Sciences, Curtin University (Curtin), Perth, Aus-
tralia. Processing details in Claessens and Filmer (2020). 
Scalar-free GBVP after Molodenky’s Theory using 
1D-FFT Stokes integration with deterministically modi-
fied integral kernel based on GNSS/levelling data. RCR 
procedure with the GGM xGEOID17B (Wang et  al. 
2017), terrestrial and airborne gravity and topography 
reductions based on the SRTM v.4.1 model.
Solution 2: Computed at the Technical University of 
Denmark (DTU), Copenhagen, Denmark. Processing 
details in Forsberg and Tscherning (1981), Forsberg 
(1987), and Forsberg and Featherstone (1998). Scalar-free 
GBVP after Molodenky’s Theory using spherical FFT 
with a Wong–Gore modified Stokes function for a low-
wavelength cut-off transition band at harmonic degrees 
180–190. RCR procedure with the GGM XGM2016 (up 
to degree 360), terrestrial and airborne gravity, and RTM 
terrain reductions from an averaged 9″ SRTM digital 
elevation model.
Solution 3: Computed at the National Geodetic Sur-
vey (NGS), Silver Spring, MD, USA. Processing 
details in Wang et al. (2020). Scalar-free GBVP after 
Molodensky’s Theory with a Wong–Gore modifica-

tion of the Stokes function. RCR procedure with the 
GGM xGEOID17B, terrestrial and airborne gravity, and 
topography reductions based on the SRTM v.4.1 model.
Solution 4: Computed at the Laboratory of Gravity 
Field Research and Applications, Department of Geod-
esy and Surveying, Aristotle University of Thessaloniki 
(AUTh), Greece. Processing details in Grigoriadis et al. 
(2021). Scalar-free GBVP after Molodensky’s Theory 
with a 1D-FFT Stokes integration using a Wong–Gore 
kernel modification based on GNSS/levelling data. RCR 
procedure with the GGM XGM2016 (up to degree 719), 
terrestrial and airborne gravity, and RTM terrain reduc-
tions from the model SRTM v.4.1 using the spectral 
approach proposed in Rexer et al. (2016).
Solution 5: Computed at the Chinese Academy of Sur-
veying and Mapping (CASM), Beijing, China. Process-
ing details in Jiang and Wang (2016). Scalar-free GBVP 
after Molodensky’s Theory using a least-squares modi-
fication of Stokes’ formula with additive corrections 
(LSMSA) algorithm (Sjöberg 2003, 2005). RCR pro-
cedure using the GGM GOCO05S (Mayer-Gürr et al. 
2015) and terrestrial and airborne gravity.
Solution 6: Computed at the Istanbul Technical Uni-
versity, Gravity Research Group (ITU), Istanbul, Tur-
key. Processing details in Işık et al. (2021). Scalar-free 
GBVP after Molodensky’s Theory using an unbiased 
version of least-squares modification of Stokes’ formula 
with additive corrections (LSMSA) algorithm (Sjöberg 
2003). RCR procedure using the GGM XGM2016 (up 
to degree 719) and terrestrial and airborne gravity.
Solution 7: Computed at the University of Gävle, Lant-
mäteriet (Swedish mapping, cadastral and land registra-
tion authority) and Royal Institute of Stockholm (KTH), 
Sweden. Processing details in Ågren et al. (2009). Sca-
lar-free GBVP after Molodensky’s Theory with a least-
squares modification of Stokes’ formula with additive 
corrections (LSMSA). RCR procedure using the GGM 
GOCO05S (up to degree 240) and terrestrial and air-
borne gravity.
Solution 8: Computed at the New Technologies for the 
Information Society, University of West Bohemia, Pilsen, 
Czech Republic and the Faculty of Geodesy, University 
of Zagreb, Zagreb, Republic of Croatia (NTIS-GEOF). 
Processing details in Varga et  al. (2021). Scalar-free 
GBVP after Molodensky’s Theory with a least-squares 
modification of Stokes’ formula with additive corrections 
(LSMSA). RCR procedure using the GGM XGM2016 
(up to degree 500) and terrestrial and airborne gravity.
Solution 9: Computed at the Deutsches Geodätisches 
Forschungsinstitut, Technical University of Munich 
(DGFI-TUM), Germany. Processing details in Liu et al. 
(2020). Fixed GBVP with spherical radial basis functions 
(SRBF). RCR with the GGM XGM2016, terrestrial and 
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airborne gravity, and topography effects from the models 
dV_ELL_Earth2014 and ERTM2160.
Solution 10: Computed at the Institute of Astronomi-
cal and Physical Geodesy (IAPG), Technical University 
Munich, Germany. Processing details in Willberg et al. 
(2019, 2020). Fixed GBVP with a one-step residual least-
squares collocation, including full covariance informa-
tion from the GGM. RCR procedure using XGM2018 (a 
slightly modified version of XGM2016), terrestrial and 
airborne gravity, and the models dV_ELL_Earth2014 and 
ERTM2160 for the topographic induced gravity.
Solution 11: Computed at the Politecnico di Milano 
(Polimi), Italy. Processing details in Grigoriadis et al. 
(2021). Scalar-free GBVP after Molodensky’s Theory 
using LSC. RCR procedure with the GGM XGM2016 (up 
to degree 719), terrestrial and airborne gravity, and RTM 
terrain reductions from the model SRTM v.4.1 using the 
spectral approach proposed in Rexer et al. (2016).
Solution 12: Computed at the Geospatial Information 
Authority of Japan (GSI), Tsukuba, Japan. Processing 
details in Matsuo and Forsberg (2021). Scalar-free GBVP 
after Stokes’ Theory using Helmert’s second method of 
condensation of the topography and the hybrid Meissl-
Molodensky modified spheroidal Stokes kernel. RCR 
procedure with the GGM XGM2016 (up to degree 719), 
terrestrial and airborne gravity, and a RTM correction 
based on the SRTM v.4.1 model. Transformation from N 
to � using the Bouguer anomaly-based term.
Solution 13: Computed at the Canadian Geodetic Sur-
vey (CGS), Nature Resources Canada, Ottawa, Canada. 
Processing details in Huang and Véronneau (2013). 
Scalar-free GBVP after Stokes’ Theory with a modified 
degree-banded Stokes kernel. Spectral combination of 
the GGM xGEOID17B (up to degree 150 from where 
it goes into transition with the surface gravity data up to 
degree 210) and terrestrial and airborne gravity (between 
degrees 210 and 790 with smooth transition at each end) 
with SRTM v4.1 model (to complete the geoid frequen-
cies up to degree 10,800). Transformation from N to � 
applying the usual the Bouguer anomaly-based term and 
a refined approximation including the terrain correction 
to the Bouguer plate (see Sect. 4.4).
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