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ABSTRACT The most important motivation for streamflow forecasts is flood prediction and longtime

continuous prediction in hydrological research. As for many traditional statistical models, forecasting flood

peak discharge is nearly impossible. They can only get acceptable results in normal year. On the other

hand, the numerical methods including physics mechanisms and rainfall-atmospherics could provide a

better performance when floods coming, but the minima prediction period of them is about one month

ahead, which is too short to be used in hydrological application. In this study, a deep neural network was

employed to predict the streamflow of the Hankou Hydrological Station on the Yangtze River. This method

combined the Empirical Mode Decomposition (EMD) algorithm and Encoder Decoder Long Short-Term

Memory (En-De-LSTM) architecture. Owing to the hydrological series prediction problem usually contains

several different frequency components, which will affect the precision of the longtime prediction. The

EMD technique could read and decomposes the original data into several different frequency components.

It will help the model to make longtime predictions more efficiently. The LSTM based En-De-LSTM neural

network could make the forecasting closer to the observed in peak flow value through reading, training,

remembering the valuable information and forgetting the useless data. Monthly streamflow data (from

January 1952 to December 2008) from Hankou Hydrological Station on the Yangtze River was selected to

train the model, and predictions were made in two years with catastrophic flood events and ten years rolling

forecast. Furthermore, the Root Mean Square Error (RMSE), Coefficient of Determination (R2), Willmott’s

Index of agreement (WI) and the Legates-McCabe’s Index (LMI) were used to evaluate the goodness-of-fit

and performance of this model. The results showed the reliability of this method in catastrophic flood years

and longtime continuous rolling forecasting.

INDEX TERMS Yangtze River, hydrological time series forecasting, streamflow prediction, empirical mode

decomposition, deep learning.

I. INTRODUCTION

Yangtze River is the largest river in China and the third-

longest river in the world. Providing accurate and reliable

future streamflow information plays an important role in

flood-control and disaster relief, thus developing excellent

streamflow forecastingmethods has attracted increased atten-

tion from hydrology researchers [1]. The flow of the Yangtze

River is usually affected by numerous factors, such as rainfall,

evaporation, water stage, and groundwater, etc., which are

The associate editor coordinating the review of this manuscript and

approving it for publication was X. Huang .

usually nonlinear, complex, abrupt [2] and dependent on a

large number of parameters including temporal and spatial

variations. Accuracy and skill of flow prediction models can

have a direct influence on management decisions of water

resources. Various statistical and conceptual streamflow pre-

diction models have been developed to help urban plan-

ners, administrators, and policymakers in better and informed

decision making [3]. The accurate analysis of the evolution

process of the flow at hydrological stations has received

increased attention from hydrology researchers. Hydrological

processes are driven by natural fluctuations over the physical

scale, and the resulting variance in the underlyingmodel input
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datasets [4]. The classical run-off prediction methods could

be roughly divided into two categories: numerical models and

statistical prediction methods. The former is the numerical

prediction model based on the study of atmospheric circu-

lation, the evolution of long-term weather processes, and

physical conditions [5]. The latter type of method is based on

the fitting of themeasured run-off process to establish a statis-

tical prediction model [6], [7]. Wang et al. used the Hermite

Projection Pursuit Regression combined with Social Spider

Optimization(SSO) and Least Square(LS) to make annual

maximum flood peak discharge [8] The results showed that

the SSO and LS algorithm could improve the prediction accu-

racy of peak streamflow. Sang et al. developed an Adaptive

Metropolis-Markov Chain Monte Carlo-Wavelet Regression

(AMMC-MC-WR) model to improve the accuracy in the

hydrologic time series forecasting [9]. There are also some

researchers proposed the hybrid model called Multivariate

Adaptive Regression Spline to forecast streamflow pattern in

semi-arid region [10].

However, there are disadvantages in these models. Firstly,

the effective prediction period of traditional numerical mod-

els including physical mechanism and the atmospheric-

rainfall model is about one month ahead, which is too

short to be used for the hydrological application. Secondly,

most classical statistical methods cannot forecast the flood

peak discharge precisely, which is the most important moti-

vation for streamflow prediction. Last but not least, most

research towards river flow prediction is yearly [11], [12],

seasonal [13],daily [14], [15] or even hourly [16]. However,

the flood season on the Yangtze River usually lasts 2-3

months within a year. The major purpose of the monthly

streamflow prediction is flood control and disaster relief.

What we need is an accurate monthly flow forecast, which

can help the water conservancy department to know the dras-

tic changes in the peak flow 2-3 months or even 6 months

ahead. It is very significant for hydrological disaster pre-

vention and mitigation [17]–[19]. In view of the mentioned

shortcomings, new techniques for flow forecasts need to be

introduced.

The machine learning is also a statistical method with

data-driven and self-adaptive features. Last decades, machine

learning techniques have been employed in solving predic-

tion problems in many domains [20]including hydrological

research [21], [22]. These methods, such as Support Vec-

tor Machine (SVM) [23]–[25] and Artificial Neural Net-

work (ANN) [19], [27], [28], have been widely utilized

for river flow prediction. ANNs have good performance

in dealing with nonlinear time series and there are numer-

ous ANN applications for streamflow prediction [3], [16],

[29]–[31]. They do not need the complex nature of run-

off processes and do not rely on high-precision rainfall

forecasting when dealing with the hydrological processes.

In many cases, machine learning can provide better per-

formance for short and intermediate-term predictions than

traditional models [32]. Demirel et al. focused on the issue

of streamflow prediction using the soil and water assessment

tool (SWAT) and ANN models [33]. The study found that

the ANN model can predict peak discharge more efficiently

than the SWATmodel. Yaseen et al. introduced the Emotional

Neural Network (ENN) to make hourly flow predictions [16].

Non-Linear Input Variable Selection Approach Integrated

With Non-Tuned Data Intelligence Model was introduced

by Hadi [34] to forecast the streamflow. Several hydrolog-

ical variables including rainfalls, temperature and evapo-

transpiration were used to build and train the model. The

performance of them was better than other machine learn-

ing models, the prediction period is too short to be used

in actual application, though. Adaptive Neuro-Fuzzy Infer-

ence System (ANFIS) is a kind of artificial neural network,

too. A method based on ANFIS- Particle Swarm Optimiza-

tion (PSO) was proposed to forecast highly stochastic river

flow in tropical environment [31]. Its main limitation is that

it does not take into account the streamflow of the basins

in the non-tropical regions just like the Yangtze River Basin

(sub-tropical zone) or The Yellow River (temperate zone).

Most of river basins in China are not in tropical zone. The

ANNmethods such as SVM, Radial Basis Function Network

(RBFN) [11], Heuristic-Regression [14], ANFIS, etc. have

the capacity of representing highly non-linear correlations

between input and output that statistical models do not have.

However, there are still some disadvantages when dealing

with nonstationary streamflow data.

In recent years, due to sufficient observational data and

increased computational power, deep neural networks have

been applied to prediction studies as a sub-field of machine

learning methods. Most deep learning architectures evolve

fromNN consisting of layers (hidden layers, input layers, and

output layers) and neurons. They can readily learn temporal

dependence and handle temporal structures on time series

data. Consequently, deep learning algorithms are effective for

analyzing non-linear data and constructing preferred predic-

tive models. Of all deep learning architectures, the Recurrent

Neural Networks (RNNs) can achieve satisfactory perfor-

mance in time series tasks. They have the ability to retain

important information in the previous time step due to the

cycle between cells. The Long Short-TermMemory (LSTM),

as a particular type of RNN, can remember information for a

long time and could forget the useless information through

the training process due to changes in the RNN internal

structure. This extending structure makes the LSTM out-

perform the other deep learning architectures in long-term

time series prediction [35]–[37]. Based on the LSTM frame-

work, an Encoder Decoder LSTM (En-De-LSTM) structure

was proposed for sequence-to-sequence long-term predic-

tion. It can reconstruct the input sequence in the encoder

part and forecast the next sequence in the decoder part.

The LSTM-based Encoder Decoder (En-De) architecture

has been adopted in many fields such as language transla-

tion [38], [39], image captioning [40], and speech recogni-

tion [41], also streamflow simulation [15]. However, a few

studies focus on analyzing data sets of streamflow indices

with the LSTM-based En-De architecture.
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Recently, the data-driven modeling approaches combined

with Empirical Model Decomposition (EMD) are being

widely used as surrogates for physically-based models.

Because they overcome some limitations associated with

physically-based approaches. Huang et al. proposed a sig-

nal decomposition method called EMD in 1998 [42]. It is

usually used to preprocess the nonlinear and nonstationary

data. In the hydrological time series prediction problems,

monthly streamflow data contains several different frequency

components. However, previous studies [23] had directly

used the original series as the input variables when they

built a prediction method, which may have led to missing

information among different frequencies. Several researchers

combined the EMD and modified-EMD with the machine

learning models to forecast the trends of streamflow data.

For instance Huang et al. [25] and Meng et al. [26] used

the modified EMD to get better results. Wang, Xu et al.

presented a model combined Ensembled EMD with SVM

which used the PSO algorithm [24] to predict the rainfall-

runoff. But these EMD-based SVMmodels have some draw-

backs, e.g. slow learning, trap related to local minimization

value and saddle points, also the over-fitting. None of them

made the longtime predictions which longer than 5 years

either. Besides, the M5model tree (M5Tree) andMultivariate

Adaptive Regression Spline (MARS) combined EEMD was

proposed to forecast the daily river flow in Iran and South

Korea [14]. However, this research is focused on daily run-off

forecasts. Its guidance towards flood control is limited.

As mentioned above, the deep neural network is rarely

used in flow prediction, especially the EMD-based long-

time monthly prediction deep learning model. In this study,

a model combining the EMD and En-De-LSTM was pro-

posed to forecast the longtime (10 year) monthly stream-

flow data from Hankou Hydrological Station on the Yangtze

River. The proposed model combines the advantages of EMD

decomposition of different frequency data and the superiority

of the LSTM neural network in processing time series data,

avoiding a series of above problems that traditional numerical

and physically-based models also ANNs may bring.

II. METHODOLOGY

A. EMPIRICAL MODE DECOMPOSITION

EMD is a data-driven algorithm working efficiently for data

with the non-linear and non-stationary features. The decom-

posed signal component length is the same as the original

signal without departing from the time domain. In this study,

EMDwas used to pre-process the original Yangtze River flow

data. Generally, the original time series can be decomposed

into a collection of Intrinsic Mode Functions (IMFs) and a

residue by EMD. Every decomposed IMF must satisfy the

following requirements:

1. The difference between the number of extreme values

and the number of zero crossings must be zero or one.

2. At any time, the average of the envelope defined by

the local maximum and the envelope defined by the local

minimum should be zero.

For a given time series T (t), the main steps of EMD can be

described as follows:

1. Identifying all the local maxima max(t) and local min-

imal min(t) points of original time series data T (t), then the

mean envelope curve m1(t) can be formed by computing the

average values on the max(t) and min(t)

m1 (t) =
max (t) + min (t)

2
(1)

2. Find the average of the upper and lower envelopes to

obtain the mean envelope m1(t)

3. The mean envelope is subtracted from the original signal

T (t) to obtain the first component h1(t):

h1 (t) = T (t) − m1 (t) (2)

4. Check whether the h1(t) follows IMF conditions. If not,

replacing T (t) with h1(t) and return to Step-1 for the

second-round screening:

h2 (t) = h1 (t) − m2 (t) (3)

Repeat the above process for k times:

hk (t) = hk−1 (t) − mk (t) (4)

until hk (t) meets with IMF conditions, and the first IMF of

the T (t) is obtained:

c1 (t) = hk (t) (5)

5. Subtracting c1(t) from the original signal T (t) yields the

remaining amount r1(t):

r1 (t) = s (t) − c1 (t) (6)

6. Based on r1(t), repeat Step 1 to Step 5, up to n times

until the last IMF rn(t) becomes a monotonic function, and

rn(t) is the residue of the original time series. Finally, the

original signal T (t) can be expressed as a combination of n

IMF components (ck (t)) and a residue(rn(t)):

s (t) =

n∑

k=1

ck (t) + rn (t) (7)

The advantage of EMD is that it decomposes non-linear

and non-stationary original signals into a number of smooth

signals without losing any information.

B. LONG SHORT-TERM MEMORY

LSTM is an artificial RNN, which was proposed by

Sepp Hochreiter et al. in 1997 [43]. Compared to the tradi-

tional feed-forward neural network, where data move from

the input layer to the output layer through one or multiple

layers, the RNN with an internal hidden state (or ‘mem-

ory’) allowing data to cycle through the network is more

efficient and stable in dealing with non-linear long-range

time-varying problems than traditional methods. Extreme

The Back-Propagation Through Time (BPTT) algorithm is

used to train RNNs [44], which can unfold the network,

calculate error and update weights over each step.
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In other words, as the sequence progresses, the previ-

ously hidden layer will affect the hidden layer behind. RNNs

have demonstrated that they have advantages in supervised

sequential problems. However, when the matrix with rela-

tively small values is multiplied bymultiple matrices, this can

eventually lead to the gradient decreasing exponentially and

disappearing after a few steps. This is the problem of Van-

ishing Gradient [45], which can make RNNs miss valuable

distant information.

Owing to the aforementioned deficiency of RNNs, LSTM

was proposed to overcome the vanishing gradient issues. The

LSTM consists of the cell memory that stores the summary

of the past input sequence, and the gating mechanism by

which the information flow among the input, output, and cell

memory are controlled. Figure 1 shows the standard LSTM

structure in which neurons in the hidden layer are weighted.

FIGURE 1. The network of LSTM memory unit.

It could learn long-term dependencies by adding the input

gate, the forget gate and the output gate to the memory unit

in RNNs. Because the LSTM is inherited from the RNN,

it still maintains the connections inside the hidden layers

and enhances the quality of connections between the back

and front nodes through three gates (i.e. forget gate, input

gate, output gate). The theory of LSTM can be described as

equation (8)-(13).

ft = σ
(
Wf [Ht−1,Xt ] + bf

)
(8)

It = σ (Wi [Ht−1,Xt ] + bi) (9)

C̄t = tanh (Wc [Ht−1,Xt ] + bc) (10)

Ct = ft ∗ Ct−1 + C̄t (11)

Ot = σ (Wo [Ht−1,Xt ] + bo) (12)

Ht = Ot ∗ tanh (Ct) (13)

Equation (8) shows how the forget gate ft works. The main

function of the forget gate is to decide which data should

be discarded from one memory unit. The current input and

previous hidden state are represented by Xt andHt−1, respec-

tively. The activation is a sigmoid function which makes the

output value range from 0 to 1 in most of the LSTM neurons.

In this model, the Rectified Linear Unit (ReLU) function was

chosen as the activation function of the proposed model

Through all the activation functions in machine learning,

ReLU function has better gradient propagation. When com-

pared with the sigmoid function, it has fewer vanishing gra-

dient problem. Also, it can make computation, addition, and

multiplication more efficient than other functions. All these

features and advantages will make the prediction process

smoother and the results more robust. Thus, the input gate It
combines Xt and Ht−1 and passes them through the sigmoid

function in Equation (9). Then, in Equation (10), a hyperbolic

tangent is usually used as the activation function (also sig-

moid function or others), which creates a candidate vector C’’

and this vector can be added to the memory state. After the

above-mentioned steps, the oldmemory state Ct−1 is replaced

by a new memory state Ct, as shown in Equation (11). Even-

tually, a memory unit will calculate how much information

will be output through Equation (12) and (13). In summary,

the weight matrices areW (f, i, c, o) and bias vectors are b (f, i,

c, o) among the Equation (8)-(13), and they update iteratively

in the LSTM network by the BPTT algorithm.

C. ENCODER DECODER LSTM

In this study, a hybrid neural network model, the En-De-

LSTM, is used in long-term prediction problems. The En-De

architecture is usually used in seq2seq (sequence to sequence)

problems [46]. The Encoder part can encode a variable-length

sequence into a fixed-length vector representation, and the

Decoder part can decode the given fixed-length back into a

variable-length sequence. An En-De-LSTM architecture is

proposed and illustrated as Fig. 2.

FIGURE 2. The architecture of En-De-LSTM.

It is composed of two Stacked LSTM (four-layers LSTM):

Encoder stacked LSTM and Decoder stacked LSTM. When

compared to the Vanilla LSTM, the structure of the network
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was too simple to learn valuable information. And the per-

formance of results was too far from the actual observa-

tions. Besides, the other LSTMs like bidirectional LSTM,

CNN-LSTM, and Conv-LSTM were too complicated for

this sequence prediction problem. Although they can get

more precise value in normal year than the other structures,

when facing the extremely high value, the model would

treat the extremum as the abnormal value and forget them.

The complexity becomes a limitation for extremum fore-

casting. Predictions of extremum is an indispensable part

in this study Above all, the encoder part and decoder part

chose the stacked LSTM structure. The encoder LSTM could

automatically extract the features from input sequential data

and transforms them into a fixed-length internal state, which

provides the context for the decoder sub-model. Then in the

decoder stacked LSTM, which consists of the decoder part,

the internal state has interpreted the data to a fully connected

layer then generates the final sequential data prediction.

D. EMD-ENCODER DECODER-LSTM MODEL

The original hydrological time series are non-linear and

non-stationary. They were used to make forecasts which

recurrently led to some missing features of different resolu-

tions. EMD is based on the theory of local scale separation.

When compared to the other data decomposition technique,

EMD does not need any predetermined basis functions. It is a

fully self-adaptive algorithm. It is usually used to decompose

the nonlinear and nonstationary data just like streamflow

data. The original flow data usually contains several different

frequency components. If original data is used in predic-

tion problem directly, some important data may lose. After

the training and validation process inside En-De-LSTM,

all of IMFs could be reconstructed to the primary data with-

out any loss. This is also the major advantage of EMD.

In this study, the original data was decomposed into a set

of IMFs and a residue, respectively. The whole procedure

of EMD-Encoder Decoder LSTM (EMD-En-De-LSTM) was

illustrated in Figure 3. As is mentioned above, the LSTM

could predict the time series data efficiently. Because it could

remember the important information in the training process

and forget the useless data simultaneously. These two features

of LSTM could improve the accuracy. En-De module is a

powerful function in the seq2seq problem, it can make the

prediction more efficient. When the decomposed process

completed, several IMFs that belong to several different fre-

quencies were imported into the En-De-LSTM structure. The

combination of EMD and En-De-LSTM will give full play to

their strengths and make the predictions more accurate.

Initially, the original streamflow time series was decom-

posed into a set of IMFs and a residue by EMD. The IMFs

are normalized to a scale between 0.0 and 1.0. Furthermore,

all the components are input to the En-De-LSTM model

for training. The most important step of training model is

the hyperparameter optimization. Grid search method was

chosen to determine the hyperparameters of the model. Grid

Search is an exhaustive searching through a manually speci-

FIGURE 3. The flowchart of the proposed model.

fied subset of the hyperparameter space of a machine learning

algorithm [47]. It could find the optimal hyperparameter val-

ues by checking all parameter combinations based on a given

model. In most cases, it’s useful and powerful because it’s

exhaustive and leaves no stone unturned. Finally, the forecast-

ing values are normalized to original values, plus, the final

prediction values can be obtained through linear addition of

all denormalized values.

• The input sequential data is decomposed into a set of

IMFs and a residue with the EMD technique. Then,

the decomposed components are normalized to the scale

between 0.0 and 1.0.

• Transforming the normalized data to the object charac-

terized by features and the label, which can be input to

the En-De-LSTM model.

• Determining initial values of hyper-parameters of the

En-De-LSTM model with Grid Search method.

• Training and building separated predictive models to

perform forecasts for each IMF and one residue.

Then, the predicted values are renormalized to the original

scales. Finally, the forecasting results can be obtained by

linear addition of all renormalized predicted values.

III. EXPERIMENT

A. STUDY AREA AND DATA

This study focuses on the streamflow data at the Han-

kou Hydrological Station. The data used in this study

is the monthly streamflow data at the station from Jan-

uary 1952 to December 2018 collected by the Yangtze River
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FIGURE 4. The location of the Yangtze River basin and Hankou Hydrological Station in Wuhan.

Water Resources Commission. The Hankou Hydrological

Station located in Wuhan is the boundary of the middle and

lower basin of the Yangtze River, as shown in Figure 4.

Wuhan, located in the east of the Jianghan Plain, is the

largest city in central China and one of the biggest cities

in the Yangtze River basin. It is also where the Hanjiang

River, the largest tributary of the Yangtze River, flows into

the Yangtze river system. About 70% of floods in China

occur in the Yangtze River Basin [48]. According to the

data from China Meteorological Administration, the floods

of the river mostly occur during the monsoon season from

June to September, and devastating floods also occurred in

some years (e.g. 1931, 1954, 1998, and 2016). Due to the

location of Wuhan, the catastrophic floods inundated the city

nearly every time. In 1998, the strongest subtropical highs

led to strong precipitation lasting several weeks and resulted

in more than three times the flow in the Yangtze River basin

than during the flood season. Ultimately, it was the biggest

flood that occurred in the Yangtze River basin over the past

50 years. From June to August in 2016, southern China

suffered from severe weather, such as heavy rainfall, thunder-

storms, and hail, which triggered many deadly flood peaks.

Streamflow at the Hankou Station reached the historical

extreme value after the flood in 1998. Therefore, predicting

the river flows effectively at the Hankou Hydrological Station

is inevitable to the economic development, water allocation,

flood-control, and disaster relief of the middle and lower

basin of the Yangtze River. In this study, the streamflow data

from Hankou Hydrological Station in 1998 and 2016 (the

two most catastrophic flood years) were chosen to perform

the forecasting. And a ten-year continuous rolling prediction

from January 2009 to December 2018 was made to verify the

longtime prediction ability.

B. NORMALIZATION

The original streamflow data at Hankou Hydrological Station

from January 1952 to December 2018 were decomposed

by EMD. Normalization is conducted before all the IMFs

are analyzed by the En-De-LSTM model. The decomposed

components are scaled to a range between 0 and 1.0:

Zi =
Xi − min (X)

max (X) − min (X)
(14)

where Zi is a normalized value at time i, and Xi is the value

of decomposed components.

C. LSTM NETWORK CONSTRUCTION

After the normalization of the original signal, the next step

is to build an LSTM neural network and determine how

to train the network by selecting model hyper-parameters.

90074 VOLUME 8, 2020



D. Liu et al.: Streamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze River

A grid search technology is applied to achieve high precision

by automatically searching for hyper-parameters. A num-

ber of subsets with all the possible combinations of the

hyper-parameter values are defined in the grid constructed.

Models can be built for each combination, and the model with

the highest score among all the validation data is considered

to be the best performance. Also, this set of hyper-parameter

values is the optimal value. Furthermore, for the streamflow

prediction problem, the different minimum prediction periods

will get quite divergent results. In this study, the 6m-min-pd

(6-month-minimum-period), 12m-min-pd, 18m-min-pd and

24m-min-pd were tried to get the best performance.

D. PERFORMANCE EVALUATION

When completing the prediction of each IMF and residue, all

the prediction values ranging from 0-1 need to be denormal-

ized to the scale of original values based on Equation (15):

Xi = Zi × [max (X) − min (X)] + min (X) (15)

The final prediction results can be obtained by the linear

addition of all the renormalized values without any data loss.

In order to measure the performance of the results,

we introduced the following statistical criteria:

The Root Mean Square Error (RMSE) was described as

Equation (16).

RMSE =

√√√√1

n

n∑

i=1

(yi − ŷi)2 (16)

RMSE represents the square root of the second sampling

moment of the difference between the predicted value and

the observed value or the quadratic mean of these differ-

ences. When performing calculations on data samples used

for estimation, these deviations are called residuals, and the

deviations outside the calculated samples are called errors

(or prediction errors) RMSE is used to aggregate the size of

prediction errors at different times into a single prediction

capability metric. For the time series prediction problem

in this article, RMSE can measure the error of the overall

prediction result. It could provide information for the model’s

forecasting skill and quantify the goodness-of-fit relevant to

high river flow values [49].

The coefficient of determination (R2) was defined as

Equation (17).

R2 = 1 −

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − yi)2
(17)

Coefficient of determination (R2) is often interpreted as

the proportion of response variation ‘‘explained’’ by the

regressors in the model. It will give some information about

goodness-of-fit of a model. This measurement is very useful

when evaluated a specific model. It provides a measure of

how well observed outcomes are replicated by the model,

based on the proportion of total variation of outcomes

explained by the model [50]. Thus, R2 = 1 indicates that

the fitted model explains all variability in y, while R2 = 0

indicates no ’linear’ relationship (for straight line regression,

this means that the straight line model is a constant line

Willmott’s Index of agreement (WI) is formed as the

Equation (18)

WI = 1 − [

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(|ŷi − yi| + |yi − yi|)2
] (18)

The WI is popular criteria in hydrology which calculates

the ratio of Mean Square Error (MSE) and can provide an

advantage over RMSE [51]. It is proposed by Nash and

Sutcliffe in 1970, Watterson in 1996 and refined by Willmot

in 2011 [52]. It also is dimensionless, bounded by −1.0 and

1.0 and, in general, more rationally related to model accuracy

than are other existing indices. It also is quite flexible, making

it applicable to a wide range of model-performance problems.

It can be used to measure the differences in the real and

predicted means and variances [52].

And Legates-McCabe’s Index (LMI) is written as the

Equation (19).

LMI = 1 − [

n∑
i=1

|ŷi − yi|

n∑
i=1

|yi − yi|

] (19)

The LMI criterion considers absolute values for compu-

tation and gives errors and differences in the appropriate

weights [53]. This measurement varies from zero to one, and

higher the LMI, better of the goodness-of-fit of the hydro-

logical model [54]. Legates and McCabe’s measure is most

similar to WI. It is used to show the covariation and differ-

ences between the various indices, as well as their relative

efficacies. Among all the equations, where n represents the

number of data pairs, yi is the observed values, ŷi represents

the forecasted value and yi represents the mean of observed

values.

IV. RESULTS

A. THE ORIGINAL SERIES DECOMPOSED

The whole results of the EMD decomposed were shown as

Figure 5. The original streamflow data from January 1952 to

December 2018 was transformed to a set of IMFs and a

residue.

B. THE TEN-YEAR ROLLING PREDICTIONS

After the decomposition of EMD, all of IMFs and residue are

separated into two parts: the training set from January 1952 to

December 2008 which was used to train the EMD-En-

De-LSTM model with 6-month-minimum-prediction-period

(6m-Min-Pd). The comparison and discussion about the

arguments and models will be made in part V, including

the validation sets from January 2009 to December 2018.
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FIGURE 5. The original streamflow data and its IMFs (residue).

According to the aforementioned part III-C, the Min-Pd is

an important argument for the proposed model. The different

Min-Pd indicates the different minimum input variables and

output variables while training. In this study, no matter which

min-period was used, the validation set was set to multiples

of 12, in other words, the data of a whole year, which could

make the prediction of flood season more precise. The fore-

casts are iteratively made using the streamflow values of the

past 6 months to predict streamflow values in the following

6months. The parameters of the predictive model are updated

by the difference between predicted values and the target

values.

Fig. 6 and Fig. 7 showed the results and errors in the rolling

prediction. The RMSE was 1171.9 m3, and the R2 was near

to 1, which means the results were acceptable. The peak dis-

charge in 2010, 2012, and 2016 reach the local maxima across

10 years. However, the predicted values in these years are

close or higher to the observations. Moreover, the predictions

from the other normal years also reached a high performance,

which can be concluded from the value of WI and LMI. The

whole results of the rolling forecasting verify the ability of

long-term prediction of the proposed model perfectly.

C. THE CATASTROPHIC FLOOD EVENT YEAR PREDICTION

The most significant application for the streamflow predic-

tion is the forecasting of the flood. As part III-A mentioned,

Wuhan was the city most affected by the flood of the Yangtze

River. In this section, the data from January 1952 to Decem-

ber 1997 (2015) was used to train themodel, and the complete

12-month runoff data in 1998 (2016) was the validation set

whichmeasures the performance of themodel. Fig. 8, showed

the whole predictions of 1998 and 2016.

In the flood season of 1998, the Yangtze River basin

experienced a catastrophic flood. The peak streamflow at the

Hankou Station reached the 70000 m3 which was 45% higher

than the flow in the normal year. The prediction of flood peak

values during the flood season is very close to the actual

value, but the prediction of the extreme value is one month

ahead of the actual.

FIGURE 6. Observed and predicted data of ten years rolling prediction from 2009/1 to 2018/12.
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FIGURE 7. Validation scatter plot of the rolling prediction.

For the results in 2016, the prediction from January to

August is extremely precise, especially in flood season,

the prediction of the flood season are nearly the same as the

actual ones. The R2 of both two years are higher than 0.8 and

the LMIs are close to 0.65. Figure 9 is the validation scatter

plots for the predictions. The blue area is the confidence

interval and the red line is the centerline which formed y = x

(observed = predicted). Also, the prediction in 2016 is more

precise than forecasting in 1998, From figure 8 we can see

that the observed peak discharge in 1998 is higher about

40% than prediction in 2016. In figure 9-A, the confidence

interval in 1998 predictions is larger than the 2016 predic-

tions, owing to the historical peak value. From the part B-ten

years rolling prediction, we can conclude the forecasting in

normal year is closer to the actual value than the prediction

in abnormal flood year. Thus, abnormal maxima like peak

discharge in 1998 is hard to predict for the current prediction

model. Nearly all of the points are close to the regression line,

which means the power of flood forecasting of the proposed

model is acceptable.

V. COMPARISONS AND ANALYSIS

The structure of the proposed model combines EMD and

En-De-LSTM with 6-month Min-Pd. In order to get the

model with the best performance and effectiveness, the com-

parisons among the different models and different months

with Min-Pd were made by the 12-month streamflow data

in 2018. Firstly, the proposed approach is compared between

the Vanilla LSTM, Stacked LSTM, En-De-LSTM, and

these models combined with EMD. From Vanilla LSTM to

En-De-LSTM, the structure of the neural network become

more and more complex. The amounts of the layers gradually

increase.Making comparisons among these different LSTMs,

the influence of the number of layers could be concluded

from the results. The structure with the best performance

can be found by this process. Besides, the reliability and

the robustness of the final model can be strengthened. Then,

the comparisons of different months-Min-Pd with the above

models were made. The different minimum prediction period

influenced the way of training dataset on how to be trained

Through all training process, for the first time, the neural

network read the first-round data and predict the next round

data recurrently. The 6m-Min-Pd, 12m-Min-Pd, 18m-Min-

Pd, and 24m-Min-Pd were chosen to find the best Min-Pd.

The 12m-Min-Pd use the data of last year to predict the data

in the next year. In this model the complete annual flood

fluctuation process can be kept and could learn the trends

of flood more efficiently. Similarly, the 6m-Min-Pd, 18m-

Min-Pd and 24m-Min-Pd learn the flood trends every half

year, every 18 months and every two year separately. As for

the other possible alternatives, the period of them is too long,

which will make the major trends less intuitive and make the

training process shorter and less accurate. All of choices used

in the paper, they have retained the complete annual flood

fluctuation process, or a single fluctuation process.

(1) Figure 10 shows the predictions among different

LSTM structures with the 6m-Min-Pd. For each model,

FIGURE 8. Forecasted and Actual streamflow in 1998 and 2016.
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FIGURE 9. The validation scatter plot of 1998 and 2016.

FIGURE 10. The comparison among the different LSTM model with 6m-Min-Pd.

the first 6-month streamflow data is the input and the

following 6-month data is the output, as mentioned

in part IV-B. The validation set was the complete

12-month dataset in 2018. We can see that the predic-

tions in the second half-year of 2018 are better than the

forecasting results in the first half-year of 2018. As the

layers adding from the Vanilla LSTM (a-layer LSTM)

to the Stacked LSTM (multi-layer LSTM) and finally

to the En-De-LSTM, the goodness-of-fit is increasing

gradually.

Fig. 11 and Table 1 show the validation scatter plots and

statistical criteria of the different LSTM models separately.

The En-De-LSTM model has the best performance among

three models. The RMSE decreased by 30%, and the LMI

improved by nearly 20%. Also, the regression line is the

closest to the center as the model complexifies.

(2) Figure 12 shows the predictions among the differ-

ent LSTM model with 12m-Min-Pd. Figure 13 and

Table 2 showed the validation scatter plots and criteria

among the three models. For each model, the first
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FIGURE 11. Validation scatter plots for different LSTM models with 6m-Min-Pd.

FIGURE 12. The comparison among the different LSTM model with 12m-Min-Pd.

TABLE 1. Comparison of criteria in different LSTM model with 6m-Min-Pd.

12-month streamflow data is the input and the next

12-month data is the output. Subsequently, the forecasts

are recurrently made, and the validation set is still

the streamflow of 12-month in 2018. As the number

of layers of LSTM and the En-De part were added,

the accuracy of themodel improved as discussed above.

The overall accuracy is still relatively high, and the

forecast accuracy in the first half of the year is higher

than in the second half. Compared with the accu-

racy of data from August to December has slightly

decreased. The best ofWI is the En-De-LSTM, the best

of LMI is stacked LSTM and the best of the R2 is

also the En-De-LSTM. It can be concluded that the

12m-Min-Pd has some shortage when compared to the

6m-Min-Pd.

(3) Figure 14-15 depict the comparisons among the differ-

ent LSTMmodels with 18m-Min-Pd and the validation

scatter plots of these methods. Table 3 contains the

values of error among them. In this section, the input

is the 18-month streamflow data and output is the

next 18-month data, and these models will be trained

recurrently. Finally, the output is the last 18-month data

from June 2017 to December 2018. We took the whole

data of 2018 to validate the model. The 18m-Min-Pd

predictions are obviously less accurate than the two sit-

uations above. From figure 14, the best of these models
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FIGURE 13. Validation scatter plots for different LSTM models with 12m-Min-Pd.

FIGURE 14. The comparison among the different LSTM model with 18m-Min-Pd.

TABLE 2. Comparison of criteria in different LSTM model with
12m-Min-Pd.

still cannot reach high performance. Only the data fore-

casted in January, June, September, and December are

close to the observed data. In the flow prediction study,

what we considered is not the standalone values, but

the whole trends of the predictions. Hence, LMIs only

reach nearly 0.5. The R2 values are lower than all of

the above models, and the best WIs are lower than

0.9. Also, the data points on the validation plot show

more scattered spread. It can be concluded from the

criteria and the scatter plot that the 18m-Min-Pd is not

a suitable choice for the streamflow predictions. The

main reason for this is because the whole flood season

from June to September is separated while splitting the

dataset. The neural network cannot learn the effective

trends of the advent and leaving from the data during

the model building and training.

(4) Figure 16-17 illustrates the results and scatter plots

for three different LSTM models with 24m-Min-Pd,

and Table 4 shows the statistical criteria among these

approaches. Similar to the 18m-Min-Pd, the Min-Pd of

90080 VOLUME 8, 2020



D. Liu et al.: Streamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze River

FIGURE 15. Validation scatter plots for different LSTM models with 18m-Min-Pd.

FIGURE 16. The comparison among the different LSTM model with 24m-Min-Pd.

TABLE 3. Comparison of criteria in different LSTM model with
18m-Min-Pd.

the input and output is set to 24-months and the model

was trained subsequently. From Figure 16, all three

predicted flood peak values are higher than the actual

values. However, their trends are somewhat similar

to the observed trends except for the Vanilla LSTM.

One-third of the points are far from the regression line

and the R2 value is lower than 0.7. All criteria are

smaller than 12m-Min-Pd and 6m-Min-Pd, especially

the LMIs are less than 0.5. and the minima R2 and LMI

are less than 0.1.

Among all the above-mentioned circumstances (Table 1-4)

we can simply conclude that the En-De-LSTM has the best

performance It has the lowest RMSE= 2789.2669m3 and the

highestWI= 0.9773, LMI= 0.6838 and R2= 0.8948.While

the 12m-Min-Pd has the closest value of whichWI= 0.9755,

LMI = 0.5661, RMSE = 3018.47 m3 and R2 = 0.8767.

In other words, this model can predict the streamflow pre-

cisely. Furthermore, we still need to determine which value

of months-Min-Pd is the best between the 6m-Min-Pd and

12m-Min-Pd.

The first two models were compared to the last sev-

eral models. The first model is the En-De-LSTM which
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FIGURE 17. Validation scatter plots for different LSTM models 24m-Min-Pd.

FIGURE 18. The comparison between 6m-Min-Pd and 12m-Min-Pd in EMD-En-De-LSTM.

TABLE 4. Comparison of criteria in different LSTM model with
24m-Min-Pd.

combines EMD with 6m-Min-Pd. The second model is the

En-De-LSTM with 12m-Min-Pd which combines EMD and.

EMD combines all other LSTM models in order to be com-

pared with the first two models mentioned. The comparison

of the first two models (6m-Min-Pd and 12m-Min-Pd) is nec-

essary to choose the best performance model. The following

comparison of the two models with the other several LSTM

models is necessary in order to enhance the reliability of the

study.

(5) Figure 18 illustrates the predictions of En-De-LSTM

with 6m-Min-Pd and 12m-Min-Pd. Figure 19 depicts

the validation scatter plot for the above two models.

FromFigure 18, thewhole trend of the 6m-Min-Pd is closer

than the 12m-Min-Pd. In Figure 19, the points in 6m-Min-Pd

are more gathered and closer to the centerline while the points

in 12m-Min-Pd are more scattered and several points are out

of the confidence interval. It can be drawn from the figures

that the EMD-En-De-LSTM with 6m-Min-Pd has the best

performance throughout all of the models in this study.
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FIGURE 19. Validation scatter plots for EMD-En-De-LSTM with 6m-Min-Pd and 12m-Min-Pd.

FIGURE 20. The comparison among Vanilla, Stacked and En-De LSTM combined with EMD.

(6) Comparisons among the EMD-En-De-LSTM, vanilla

LSTM and stacked LSTM combine EMD with 6m-

Min-Pd. These comparisons are depicted in Figure 20,

and the validation scatter plot of EMD-vanilla

LSTM and EMD-Stacked LSTM are illustrated in

Figure 20-21. Plus, Table 5 represents the statistical

criteria in different EMD-LSTM structures.

According to the Tables 1-5 and Figures 20-21, it can be

concluded that EMD-En-De-LSTM with 6m-Min-Pd model

has the best performance across all models. After being

combined with the EMD model, the results of the Vanilla

LSTM and Stacked LSTM models also improved greatly.

Their RMSE values are close to 3000 m3 and the LMIs

are close to 0.65. This reflects to an extent that EMD’s

optimization of the LSTM model is very successful. For the

EMD-En-De-LSTM model, the LMI is the only one higher

than 0.75 and its RMSE is the only one near to 2000 m3,

which indicates the perfect goodness-of-fit of this model.

When compared with other 6m-Min-Pd methods, it contains

more gathered and closer points. Nearly half of the points
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FIGURE 21. Validation scatter plots for EMD-Vanilla LSTM and Stacked LSTM with 6m-Min-Pd.

TABLE 5. Accuracy evaluation of different LSTM models combines with
EMD.

are out of the confidence interval in the scatter plot for

EMD-Vanilla-LSTM and EMD-Stacked-LSTM.

VI. CONCLUSION

In this paper, a novel hybrid Encoder Decoder LSTM model

based on EMDwith 6m-Min-Pd was proposed to forecast the

monthly streamflow for the Yangtze River. Two predictions

were made from two aspects.

One is the flood prediction, in other words, the flood season

prediction. In this part, the whole data in 1998 and 2016 was

used to validate the performance of the model. The study area

was suffered from floods in these two years. Final results

of the flood prediction were acceptable, R2 values in both

years were higher than 0.8, and the values of LMI were close

to 0.65, which means the models could be used in flood

forecasting, and the accuracy will reach the 70% at least.

The other prediction is long-term forecasting. In this paper,

the most recent 10-year (from 2009 to 2018) prediction was

made. WI LMI and R2 values of this experiment showed

perfect reliability and goodness-of-fit. Moreover, the RMSE

was only 1171.9 m3. More importantly, the local maxima

in each year, which also is the flood peak discharge, were

very precise to the observed value or higher. This will make

accurate yearly water allocation, timely flood disaster relief,

and economic development possible.

To improve the reliability and accuracy, several compar-

isons were made from the different LSTMmodels and differ-

ent month Min-Pd parameters. It can be concluded that:

1. The added layers of LSTM could improve performance

(comparison between the Vanilla LSTM and Stacked LSTM).

When adding the Encoder Decoder technique, the results can

be further enhanced.

2. Combining the EMD algorithm with the LSTM

model can produce a better result (comparison between the

EMD-LSTM model and single LSTM model).

3. The 6-month-Min-Pd has the best performance through

all other months-Min-Pd parameters.

The 18-Min-Pd and 24m-Min-Pd will split the complete

period of flooding, which could make the deep neural net-

work unable to learn valuable and useful information. The

12m-Min-Pd predictions contain a whole process of flood

from the minima to the maxima then back to the minima.

These courses of events and the results indicate that the deep

learning model has some difficulties and drawbacks in such

a period.

For the decision makers in water resource management,

the major motivation of this paper is to provide a continuous

longtime prediction and large flood forecast. When deep

neural networks used in time series forecasting, we should

concentrate more on the longtime trends. This is meaningful

for hydrology applications like water allocation. Besides,

the forecasting ability of large floods in this article is reflected

by the accurate prediction of historical large floods. However,

in the real world, we don’t know whether the flood will

occur in the next year or not. If the peak discharge prediction

from the model is much higher than any other recent years’

and the confidence interval of this prediction is about 80%,
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this will be a warning for water resource management. This

model is not giving a simple binary flood prediction, but just

some prediction about the streamflow in the next few years.

The catastrophic flood may come or not, but there is no harm

in taking preventive measures in advance.

There is still some limitation of this study. Only one

hydrological station dataset was used, the streamflow data

from several hydrological stations on the Yangtze River could

be processed with the spatial homogeneity of stations and

considered the influence of other physical conditions to tune

the model. Also, the model did not include the other hydro-

logical variables including rainfalls, temperature, and evapo-

transpiration data, they could be used to build and train the

model in future research. As for the deep neural network,

the random search method could be used to search the best

hyperparameter and make comparisons with the grid search

method.
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