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Abstract

The development of integrated circuits requires powerful numerical
simulation programs. Of course, there is no method that treats all the
different kinds of circuits successfully. The numerical simulation tools pro-
vide reliable results only if the circuit model meets the assumptions that
guarantee the successful application of the integration software. Because
of the large dimension of many circuits (about 107 circuit elements) it
is often difficult to find the circuit configurations that lead to numerical
difficulties. In this paper, we analyze electric circuits with respect to their
structural properties in order to give circuit designers some help for fixing
modelling problems if the numerical simulation fails. We consider one of
the most frequently used modelling technique, the modified nodal anal-
ysis (MNA), and discuss the index of the differential algebraic equations
(DAEs) obtained by this kind of modelling.

Key words: Circuit simulation; differential-algebraic equation; DAE; index;
modified nodal analysis; MNA; structural properties; modelling.

AMS Subject Classification: 94C05, 65L05.

1 Structural analysis

In the following we discuss lumped electric circuits containing nonlinear and pos-
sibly time-variant resistances, capacitances, inductances, voltage sources and
current sources. Usually circuit simulation tools are based on these kinds of
network elements. For two-terminal (one-port) lumped elements, the current
through the element and the voltage across it are well-defined quantities. For
lumped elements with more than two terminals, the current entering any ter-
minal and the voltage across any pair of terminals are well defined at all times
(cf. [3]). Hence, general n-terminal elements are completely described by (n—1)
currents entering the (n — 1) terminals and the (n — 1) branch voltages across
each of these (n — 1) terminals and the reference terminal n.
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Figure 1.1: n-terminal circuit element

In particular, n-terminal resistances can be modeled by an equation system of
the form

Je=r5(ug, .., up_1,t) for k=1,.,n—-1

if ji represents the current entering the terminal k and u; describes the voltage
across the pair of terminals {I,n} (for k,l = 1,...,n—1). The Kirchhoff’s Current
Law implies the current entering the terminal n to be given by j, = — Ez;ll Jk-
The conductance matrix G¢(uq, ..., un—1,t) is then defined by the Jacobian

ory or]
aul e aun_1
e —
G (ul,...,un,l,t) = : :
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The index e shall specify the correlation to a special element of a circuit. Later
on we will introduce the conductance matrix G(u,t) describing all resistances
of a circuit. Correspondingly, the capacitance matrix C¢(vy,...,v,—1,t) of a
general n-terminal capacitance is given by

0q7 0q7
aul e aun_1
e R
C (ul,...,un,l,t) = . :
045 _1 005, _1
E)ul tre aun71

if the voltage-current relation is defined by means of charges by
d
e = qu(ul,...,un,l,t) for k=1,..,n—1.

In order to illustrate what the matrices C¢ may look like, let us consider a
MOSFET-model as an example of a common n-terminal element.
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Figure 1.2: MOSFET-model



Choosing the source node S as the reference node, we have the reference voltages
uas, ups, and upg. For the currents we obtain

ja = Cgsugs + Capltas —ups),
jp = —Cgpligs —ups) — Cep(ips — ups)
+d(ups —ups) + g(ugs,ups,uBs),

jB = Cpstps+ Cep(ips —ups) —d(ups) —d(ups — ups).
Note that jg is given by the formula js = —jg — jp — jB due to Kirchoff’s
Current Law. Now it is easy to verify that

Cas + Cap —Cap 0
C®(ugs,ups,ups) = —Cap Cop +Cap —Cgp
0 —Cgp Cgs +Csp

for the MOSFET-model from [14].
Inductances can be modeled by means of fluxes by

d
up = Egzﬁi(jl, vy Jn—1,t) for k=1,...,n—1.

Then, the inductance matrix L¢(ji,...,jn—1,t) of a general n-terminal induc-
tance is given by the Jacobian
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A commonly used method for network analysis in circuit simulation packages
like TITAN ! and SPICE is the Modified Nodal Analysis (MNA).

It represents a systematic treatment of general circuits and is important when
computers perform the analysis of networks automatically. The scheme to set
up the MNA equations is:

1. Write node equations by applying KCL (Kirchhoff’s Current Law) to each
node except for the datum node:

Aj =0. (L.1)

The vector j represents the branch current vector. The matrix A is
called the (reduced) incidence matrix and describes the network graph,
the branch-node relations.

2. Replace the currents j; of voltage-controlled elements by the voltage-
current relations of these elements in equation (1.1).

3. Add the current-voltage relations for all current-controlled elements.
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Note that, in case of multi-terminal elements with n terminals, we speak of
branches if they represent a pair of terminals {{,n} with 1 <1 <n —1.

In general, the MNA leads to a coupled system of implicit differential equations
and nonlinear equations, i.e., to a differential-algebraic equation (DAE)

f(i'(t),l’(t),t) =0, (12)

where the partial derivative f}(&(t),2(t),t) is singular. The analytical and nu-
merical solutions of (1.2) depend strongly on its structure and index. For a
detailed discussion of this fact we refer to [7], [9], [12], and [13]. Let us note
that numerical methods can fail in higher index cases, particularly if the index
is greater than 2. Therefore, we are looking for conditions (depending on the
network topology) that guarantee a lower index (< 2).

In order to obtain more detailed information about the structure of (1.2) we split
the (reduced) incidence matrix A into the element-related incidence matrices

A= (Ac,AL, AR, Av, Ar),

where A¢, Ap, Ar, Ay, and A describe the branch-current relations for ca-
pacitive branches, inductive branches, resistive branches, branches of voltage
sources and branches of current sources, respectively. Denote by e the node
potentials (excepting the datum node) and by j; and jy the current vectors of
inductances and voltage sources. Defining the vector of functions for current
and voltage sources by ¢ and v, respectively, we obtain the following quasi-linear
DAE-system from the MNA:

dg(ALe,t . .
Aciq( di ) + Agrr(Afe,t) + ALjL + Avijv
dq(ALe,t
+A1i(AT67%7jL7jV7t) = 07 (13)
do(jr,t) 7
—A = 1.4
dt Le 07 ( )
dg(ALe,t) . .
Aae—U(AT67%7]L7]V7t) = 0. (15)

Note that the vectors ALe, ATe, ATe and AT e describe the branch voltages for
the capacitive, inductive, resistive and voltage source branches, respectively.

Remark: Due to the fact that the currents through resistances are functions
of the branch potentials, we do not include them separately as controlling func-
tions. Of course, if the network does not contain controlled sources, then the
source functions reduce to functions i(t) and v(¢) which depend on time only.

Nowadays circuit simulation packages use two different approaches for solving
(1.3)-(1.5), the conventional and the charge-oriented one.

The conventional MNA

For the conventional MNA the vector of unknowns consists of all node voltages
and all branch currents of current-controlled elements.



Defining

Clust) = 20, gty = P00 1ty = P00 g0y = 2
we obtain
AcC(ALe, t)Ag% + Acqi(ALe,t) + Arr(ALe, t)
+Apjr + Avjv + Ari(ATe, C(Ale, t)AE%,jL,jw t) = 0, (16)
LG9 4 (1.t - ATe = 0, (1D
Ale - v(ATe,C’(Agat)Ag%,jL,jwt) = 0. (18)

Later on we will also need

G(u,t) = ———=

The charge-oriented MINA

In comparison with the conventional MNA, the vector of unknowns consists
additionally of the charge of capacitances and the flux of inductances. Moreover,
the original voltage-charge and current-flux equations are added to the system.
The resulting system is then of the form (cf. [8])

d
Ac—q + Apr(Afe,t) + Apjr + Aviv

dt
+Azi(ATe,%,jL,jv,t) = 0, (1.9)
%—Afe = 0 (1.10)
A@@—U(ATe,%,jL,jv,t) = 0 (1.11)
¢ —qo(Abe,t) = 0, (1.12)
¢—or(jr,t) = 0. (1.13)

Topological characterization of the splitted incidence ma-
trix
The splitting of the incidence matrix A = (A¢, AL, Ar, Ay, A;) correspond-

ing to certain branches leads to the following useful structural information for
lumped circuits:

Theorem 1.1 Given a lumped circuit with capacitances, inductances, resis-
tances, voltage sources and current sources. Then, the following relations are
satisfied for the (reduced) incidence matriz A = (Ac AL ArAv Ar).

1. Then matriz (Ac AL ARAv) has full row rank, because cutsets of current
sources are forbidden.



2. The matriz Ay has full column rank, because loops of voltage sources are
forbidden.

3. The matriz (AcArAv) has full row rank if and only if the circuit does not
contain a cutset consisting of inductances and/or current sources only.

4. Let Q¢ be any projector onto ker Ac. Then, the matriz QL Ay has full
column rank if and only if the circuit does not contain a loop consisting of
capacitances and voltage sources only.

Note that loops containing only capacitances are excluded under point 4, whereas
cutsets containing only inductances are included under point 3 of Theorem 1.1.
For a complete proof of Theorem 1.1 we refer to [16].

In the following the special cutsets and loops considered in Theorem 1.1 will be
important. Therefore we define:

1. An L-I cutset is a cutset consisting of inductances and/or current sources
only.

2. A C-V loop is a loop consisting of capacitances and voltage sources only.
In order to describe the different parts of the DAE (1.6)-(1.8) in more detail,

we will introduce some useful projectors. Before doing this, let us recall the
definition of a projector.

Definition 1.2 For R™ = Ry @ Ry a matriz Q € R™*™ is a projector onto Ry
along Ry if and only if Q> = Q, im Q = Ry, and ker Q = R».

We denote by Qc, Qv-c, Qr cv, Qv, Qc, and Qv ¢ a projector onto
ker AL, ker ALQc, ker ARQcQv_c, kerAl, kerAc, and ker QL Ay, respec-

tively. The complementary projectors will be denoted by P := I — ), with the
corresponding subindex. We observe that

im Po CkerPy_¢, im Py_¢o CkerPr_cy and im Po C ker Pr_cv,

and that thus QcQv _c is a projector onto ker(A¢ Ay)T, and QcQv_cQr_ve
is a projector onto ker(Ac Ar Ay)T. To shorten denotations, we use the abbre-
viation Qcrv := QcQv_cQr_cv. Remark that the projector Pogy does not
coincide with the projector Pr_cyv in general.

Using the introduced projections we obtain the following corollary from Theo-
rem 1.1.

Corollary 1.3 Theorem 1.1 implies that
1. Qcry =0 if and only if the network does not contain L-I cutsets,
2. Qv_c =0 if and only if the network does not contain C-V loops.
For a simpler description later on, we adduce two lemmata:

Lemma 1.4 If M is a positive definite m X m-matriz and N is a rectangular
matriz of dimension k X m, then it holds that

ker NMNT =ker N and im NMNT =im N.



The correctness of Lemma 1.4 follows immediately from the definition of positive
definite matrices.

Lemma 1.5 The matrices

Hi(Alet): = AcC(Ale,)AL +QLQc,
Hy: = QLAVALQc +QV cQv_c,
Hy: = ALQcQLAv +QV_cQv_c,
Hy(AfRe): = QV_cQEARG(AfRe, ) ALQcQv—c + Qf_cyvQr-cv,
Hs(jr.t): = QbrvALL™'(jr,t)ALQcry + PlryPery,
Hes(ALe,t): = QL _ ATH (ALe,t)AvQv ¢+ PL_oPv ¢

are reqular.

Proof: Using Lemma 1.4, the regularity of H,(Aze, t) is obvious since C'(ALe, t)
is positive definite. For Hs and for H3 the regularity follows immediately, and
for H, analogously if we consider that G(ALe,t) is positive definite.

Let us prove the regularity of Hy. Let z be an element of ker Hs5. Then we have

(QErvALL™ (jr, )AL Qcry + Plpy Poryv)z =0.

If we multiply this equation by PCTRV, it results that PCTRVPCRVZ = 0 and,
therefore, Poryz = 0. Hence, we obtain

QErvALL (i )AL Qcrvz = 0.

Then, since L™1(jr,t) is positive definite, ATQcryz = 0 holds. Applying
that (Ac, Ar, Ay, Ar)T has full column rank, we conclude Qoryvz = 0, i.e.,
z = Poryz and, since Pory z = 0, the regularity is verified.

The regularity from Hg(ALe, t) can be easily shown making use of the facts that
C(ALe,t) is positive definite and that Ay has full column rank.

q.e.d.

2 The index of DAESs resulting from the MNA
for electric circuits

The numerical behavior of solutions of DAEs depends strongly on their index.
Roughly speaking, the index of a DAE is the measure of the deviation of a
DAE from regular ODEs. DAEs have, among other things, the following two
important properties (see e.g. [1], [6], [10]):

(i) DAEs do not only represent integration problems, but differentiation prob-
lems, too. Some parts of a DAE must be differentiable sufficiently often.

(ii) Some components of the solution are determined algebraically. This im-
plies that the choice of initial values is not free for solutions of initial value
problems. The initial values must be consistent.



The higher the index the higher the differentiations needed for solving a DAE. In
the nonlinear case, the index concept is not unique in the literature. Therefore
we study two important index concepts for the circuits, the differential index in
Section 3 and the tractability index in Section 4. The results show that both
concepts lead to the same index in case of circuit simulation applying MNA.
The investigations of numerical methods for DAEs have shown that available
codes for general nonlinear DAEs provide reliable results only for DAEs of lower
index (< 2). Therefore we are interested in adequate conditions for electric cir-
cuits that guarantee a lower index DAE. In particular, the voltage-controlled
voltage sources (VCVS), current-controlled voltage sources (CCVS), voltage-
controlled current sources(VCCS), and current-controlled current sources (CCVS)
have to be analyzed very carefully. The result is given in the following theorem.

Theorem 2.1 Consider lumped electric circuits containing resistances, capac-
itances, inductances, and voltage and current sources. Let the capacitance, in-
ductance and conductance matrices of all capacitances, inductances, and resis-
tances, respectively, be positive definite.? Furthermore, let the following condi-
tions for the controlled sources be satisfied:

1. The controlled voltage sources do not form a part of any C-V loop and
their controlling elements fulfill the conditions exposed in the Tables 2.1
and 2.2.

2. Each controlled current source fulfills at least one of the following condi-
tions:

(a) It does not form a part of any L-I cutset and the controlling elements
fulfill the conditions exposed in the Tables 2.3 and 2.4.

(b) There exists a path formed by capacitances that connects its incidence
nodes. The controlling elements fulfill the conditions exposed in Table
2.5 for CCCS, and the VCCS are controlled by an arbitrary voltage.

(c) There exists a path formed by capacitances and voltage sources that
conmnects its incidence nodes. The controlling elements fulfill the con-
ditions exposed in Table 2.6 for CCCS, and the VCCS are controlled
by an arbitrary voltage.

Then, the conventional MNA leads to an index-1 DAE? if and only if the network
contains neither L-I cutsets nor C-V loops. Otherwise, the conventional MNA
leads to an index-2 DAE.

Theorem 2.2 Theorem 2.1 holds if we consider the charge-oriented MNA in-
stead of the conventional MNA.
Remarks:

1. Similar results are well-known for the state equations of dynamic linear
networks (see e.g. [2]).

2For capacitances and inductances with affine characteristics the positive definiteness im-
plies that they are strictly locally passive (cf. [5]).

3For reasons of simplicity, we do not consider the index-0 cases, which result if
fi(&(t), z(t),t) is regular, separately.



2. For linear networks with special controlled sources, this coincides with
results in [13].

3. The presented criteria can be checked locally. It is neither necessary to find
convenient trees nor to make additional assumptions on the functions and
parameters that define the controlled sources. Usually, it is not difficult to
check whether a model of a network element including controlled sources
satisfies these conditions or not.

4. If a model of a network element does not satisfy the conditions, it is
not difficult to fulfill them by introducing some additional capacitances,
resistances or inductances.

5. Nevertheless, the topological assumptions made for the controlled sources
are sufficient but not necessary.

Examples:

1. Consider again the MOSFET-model given in Figure 1.2. The VCCS from
source to drain is controlled by the branch voltages ugs, ups, and ups.
For this, the conditions (2a)-(2c) are satisfied since there are capacitive
ways from gate to source, from drain to source as well as from bulk to
source, and there exists a capacitive way from source to drain.

2. Consider the VCCS in Figure 2.1 (from [2]). The considered CCVS does
not form a part of a C-V-loop and it is controlled by the current of a branch
that forms a cutset with inductances. Therefore, it meets the condition
(1) of Theorem 2.1.

R R
el !—1\ e2 1 e3
| I | I
R3
L1 % e % Lo
v (Ryey-€y)

Figure 2.1: Circuit with CCVS

Corollary 2.3 The assumption of Theorem 2.1 on the resistances can be slightly
reduced. In fact, only the positive definiteness of the conductance matrixz corre-
sponding to those resistances that do not form a loop with capacitances and/or
voltage sources is required.

This statement follows immediately from Theorem 2.1 if we consider the resis-
tances as VCCS.

In order to obtain a description of assumption (1) by means of projectors, we
split the incidence matrix Ay into (AvtAve,) for independent and controlled
sources, respectively.



The controlling voltages of a VCVS can be voltages of:
1. capacitances,
2. independent voltage sources,
3. CCVSs that are controlled by:

(a) inductances,
(b) independent current sources,
(c) resistances or VCCSs for which the controlling nodes are con-
nected by:
i. capacitances,
ii. independent voltage sources,
iii. paths containing only the elements described in (3(c)i),
(3(c)ii),
(d) branches that form a cutset with the elements described in (3a),
(3b) and (3c),

4. branches that form a loop with the elements described in (1), (2) and

(3).

Table 2.1: VCVS - condition (1)

Lemma 2.4 The condition that controlled voltage sources do not form a part
of a C-V loop is equivalent to Qy_c = ( (Qvao)t > Here, (Qy_c); denotes
the upper part of Qv_c corresponding to Ayy.

Proof: A controlled voltage source forms a part of a C-V loop if and only if the
column ag of Ay, corresponding to this source depends linearly on the columns
of (ACAV), where AV denotes the matrix Ay reduced by the column as, i.e.,
there is a vector v such that

(AcAy)v=0 and vy #0

for the s-th component of v corresponding to the controlled source considered.
That means, there is a vector v such that

QgAvv =0 and ws #0,
i.e., the s-th row of Qv _c has a non-zero entry. This is equivalent to
5 (Qv o)
Qv-c # ( 0 .
q.e.d.

Hence, assumption (1) of Theorem 2.1 implies that

~ dg(ALe,t) . . -
g—CU(ATev%ijv.]Vvt) = Qa—cvt(t)v (21)
dg(ALe,t) . . .
U(ATQ%M]LMYVJ&) = ’U*(Agevjlzvt) (22)

10



The controlling currents of a CCVS can be currents of:
1. inductances,
2. independent current sources,

3. resistances or VCCSs for which the controlling nodes are connected
by:
(a) capacitances,
(b) independent voltage sources,
(c) VCVSs for which the nodes that incide with the controlling
branch are connected by
i. capacitances,
ii. independent voltage sources,
iii. paths containing only the elements described in (3(c)i),
(3(c)ii),
(d) paths containing only the elements described in (3a), (3b) and
(3¢),

4. branches that form a cutset with the elements described in (1), (2)
and (3).

Table 2.2: CCVS - condition (1)

The controlling voltages of a VCCS can be voltages of:
1. capacitances,
2. voltage sources,

3. branches that form a loop with branches like those described in (1)
and (2).

Table 2.3: VCCS - condition (2a)

for a suitable function v, and for a vector vy(t) that contains the functions
of independent voltage sources and zeros instead of the functions of controlled
voltage sources. In the following we will drop the index *.

In order to transcribe the assumptions made for controlled current sources, we
split the incidence matrix Ay into (Ar¢, Ara, Arp, Arc) and the current vector i
correspondingly, for the independent current sources and the controlled current
sources that fulfill (2a), (2b) and (2c), respectively. If a controlled current source
fulfills more than one of the conditions (2a), (2b) and (2c), the corresponding
column of A should be assigned to only one of the matrices Ar,, Agp, and Aje.

Lemma 2.5 The condition that controlled current sources do mot form a part
of an L-I cutset is equivalent to the relation QL gz Ar = (QLzy A 0).

Proof: A controlled current source forms a part of an L-I cutset if and only
if the column as of (Aj., A, Aj.) corresponding to this controlled source is

11



The controlling currents of a CCCS can be currents of:
1. inductances,
2. independent current sources,

3. resistances or VCCSs for which the controlling nodes are connected
by:
(a) capacitances,
(b) voltage sources,

(c) paths containing only the elements described in (3a) and (3b),

4. branches that form a cutset with the elements described in (1), (2) or

(3).

Table 2.4: CCCS - condition (2a)

The controlling current of a CCCS can be the current of:
1. inductances,
2. independent current sources,
resistances,
voltage sources that do not form a part of a C-V loop,

VCCS,

S vtk W

a branch that forms a cutset with the elements described in (1), (2),
(3), (4) and (5).

Table 2.5: CCCS - condition (2b)

linearly independent of the columns belonging to (A¢, Ar, Ay ), i.e.,
as ¢ im (AcArAy) and, therefore, QZLgy-as # 0.

But, this is equivalent to the condition that QgRV (Aja, A, Ase) # 0.
q.e.d.

Thus, assumption (2a) of Theorem 2.1 implies that

dg(ALe,t) . . .
AT&%JLJVJ) = QlrvArit, (2.3)

AT, dq(Age7 t)
’ dt

QérvAri(
i(

for a suitable function i,.

Jngvet) = ia(Ale, Ale,jr,t)  (2.4)

Furthermore, assumption (2b) of Theorem 2.1 implies by definition that
QA = 0, (2.5)

) dqg(ALe,t) . . ) - )
Z(AT&M,JLJVJ) = iy(A%e, jr, Pr_cjv,t) (2.6)

dt

12



The controlling current of a CCCS can be the current of:
1. inductances,
2. resistances,

independent current sources,

VCCS,

ovok W

a branch that forms a cutset with the elements described in (1), (2),
(3) and (4).

Table 2.6: CCCS - condition (2c)

for a suitable function 7.

Finally, assumption (2c) of Theorem 2.1 implies that

QV_cQbAR = 0, (2.7)
i(ATe, %%;eﬁ,jbjwt) = i(ATe,jp,t) (2.8)
for a suitable function i..

Regarding (2.3), (2.5), and (2.7), the assumptions imply that

. dg(ALe,t) . . .
QERVAN(AT& %JLJVJ) = QngAltlt (2.9)

is always fulfilled. To shorten denotations we write
i(ATe7jL7PV—CjV7t) (210)

when we do not distinguish between (2.4), (2.6), and (2.8).

The proofs of the theorems follow in the next sections.

3 The differential index

3.1 Definition of the differential index

The most general definition of the differential index of nonlinear DAE systems
is (cf. [1] pp. 32-33):

Definition 3.1 The differential index v of the general nonlinear, sufficiently
smooth DAFE

f@z,t)=0 (3.1)

13



18 the smallest v such that

f(l",l’,t) = 0,
d '
Ef(xvmvt) = 0,
it = 0

uniquely determines the variable ' as a continuous function of (x, t).

Fortunately, the structure of the DAEs that results from the MNA in circuit
simulation is such that it will not be necessary to derive the whole function f.
As we will see, it suffices to derive the explicit constraints in the index 1 case
and, additionally, the hidden constraints in the index 2 case.

3.2 The differential index of the DAE systems in circuit
simulation
In this section we obtain the differential index of the DAE system as well as

expressions for the constraints. In the following we assume that the required
smoothness is given.

Theorem 3.2 Consider lumped electric circuits satisfying the assumptions of
Theorem 2.1. Then it holds:

1. If the network contains neither L-I cutsets nor C-V loops, then the con-
ventional MNA leads to a DAE system with differential index-1 and the
constraints are only the explicit ones:

Qg[ART(A£67 t) + ALjL + AVjV + Ala,cia,c(ATeijv t)] = 07 (32)
Ale —v(ALe,jr,t) 0.

2. If the network contains L-I cutsets or C-V loops, then the conventional
MNA leads to a DAE system with differential index-2. With regard to the
constraints, we distinguish the following three possibilities.

(a) If the network does not contain an L-I cutset (but contains C-V
loops), then the constraints are the explicit ones, namely (3.2) and
(3.3), and, additionally, the hidden constraint:

QU_cAVHT " (Ale,t)PL [Acqi(Ale,t) + Arr(Afe,t) + ALjL
d

. . . ~ . = v
+ Avjv + Ari(ATe, jr, Py_cjv,t)] + QxT/_cd—tt =0. (34)
(b) If the network does not contain C-V loops, but contains L-I cutsets,
the constraints are the explicit ones, (3.2) and (3.3), and, addition-
ally, the hidden constraint:
. . di
QgRV (ALL_I(]LJ) (Age — ¢2(,7L7 t)) + A”d—tt> =0. (35)

14



(¢) If the network contains L-I cutsets and C-V loops, then the MNA
leads to a DAFE system with differential indez-2. In this case, the
constraints are the explicit ones, (3.2) and (3.3), and the hidden
ones (5.4) and (3.5).

Remember that the functions v:(t) and i:(¢) represent the function of the in-
dependent voltage sources and that the matrices H;(-) - Hg(-) were defined in
Lemma 1.5.

Proof: In the following we will take advantage of the fact that the analyzed
system is quasi-linear and that the matrices C'(Ale,t), L(j1,t) and G(AkLe,t)

are positive definite. Our aim is to obtain a representation of %7 de—tL, dgl—z’ as
continuous functions of e, j, and jy . To this purpose, we consider the following

splittings:

de de de de de
o cdt+Qc vcdt+Qchc RCth+QCRth7
djv = djV ~ djV
G _ py_oHY v
dt Voo TQv-oy

First we make a general approach and afterwards we distinguish the different
cases with regard to the topological properties of the network.

Step 0

If we multiply equation (1.6) by H; ' (AL, t)PL and QF, respectively, we obtain

de

o = —H7 Y (Ale,t)PL [Acq,(Ale,t) + Arr(Afe,t) + ApLjr

+ Avjv + Ari(ATe, ji, Py—cjv,t)] (3.6)
and (3.2). As L(jr,t) is regular, we obtain equations for % directly from (1.7)

dj 1. .
— = L7 0(ATe = 6i(iL.1)). (3.7)
Note that the arguments of the controlled sources in (3.6), (3.2), and (3.3) are
written in accordance with (2.2) - (2.10).

Step 1

Next we differentiate the equations (3.3) and (3.2), i.e., the constraints, and
split them in the following way:

Step la
Using (2.1) we split the derivative of (3.3) into

de  ~rp dy

Q{T/foAxT/PC% voc g and (3.8)
= de _ dv(ALe,jp,t
PE_cAb (Po+Qo) S = pg_c%. (3.9)

4The expressions for the explicit and the hidden constraints are of special interest with
regard to a consistent initialization (cf. [4]).
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de

If we consider (3.8), we can realize that Po 5%
(3.6) to achieve the hidden constraint (3. 4)

can be substituted making use of

Step 1b
Using (2.9) we split the derivative of (3.2) into
dj d
QL. [AL Ly Ap, dﬂ =0, (3.10)
Py Qf-oQE | ArG(tke, 0 4R + Anri(4Fe.t)
d]L dza(Acev Aaevjlm t)
Ar + Az, = 11
AL A dt 0 (311
and
T T T rde T djr
PvfoQo A}:{IG'(AR(B7 t)AR + Ath(ARe t) + A == 7t
d dia C(ATe,jb )
A Apge————"—=| = 0. 12
AV T dt } 0. (3.12)

Taking into account (3.7), (3.10) leads to the hidden constraint (3.5).

Step 2

Finally we differentiate the two hidden constraints (3.5) and (3.4) obtained in
the last step:

O (QF AL (1. 1) (ATe — 6. 1) )

d%i
+QC v An tt =0 (3.13)
and
d /.
(@ cATH M (ALe, 0 PE [Acqi(ALe.t) + Anr(Afe. 1
. . . . 5 . d*v
+ApjL + Aviv + A[l(ATe,jL,Pvfojv,t)] ) + QV c dt; = 0. (314)
Step 3

Let us now take into account the different topological properties of the systems
we mentioned in Theorem 2.1:

1. If the network does not contain L-I cutsets, then Qcry = 0 (cf. point 3

in Theorem 1.1). Thus, in this case there is no hidden constraint (3. 5)

Moreover, as we have % = Pol 4 QcPy_c% + QcQv_cPr-cvi

then, already Step 1 leads to an expression for % If we multiply

(3.9) by H_IQ Ay after substituting the expressions (3.6) for Po 2 de and

(3. 7) for %, we obtain an expression for Py 42 ;- Then, substltutlng
PC + QcPv—_cg e and d]L into (3.11) and multiplying by H4_1(~)7 we
obtaln a representatlon for PR_CV%.

Note that these transformations are reversible by multiplication by

H:;IA‘T,QCHZ and Hy(-), respectively.
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2. If the network contains an L-I cutset, then Qcry # 0 (cf. point 3 in
Theorem 1.1). Therefore, we consider

de de de de de
— =Po— 4+ QcPv_ oy +QOQV cPr— vy +QCRth

dt dt
and observe that we obtain the needed expression for ()¢ RV 7 when mul-
tiplying (3 13) by H5'() after substituting the expressions for PCE +

QcPy-c% + QcQv—_cPr-cv i and 4L

3. If the network does not contain C-V loops, then QL Ay has full column
rank (cf. point 4 in Theorem 1.1). Therefore, Py_¢ = I, and we obtain
an expression for ﬂ when multiplying (3.12) by H. lAgQC after sub-

stituting the obtalned expressions for ¢ and d]L

¥ . ThlS transformation is
reversible as well, as can be seen by multlphcatlon by Hy 1QgAVH3.

On the other hand, as Qy_¢ = 0, there is no hidden constraint (3.4).

4. If the network contains a C-V loop, then QgAvidoes not have full column
rank (cf. point 4 in Theorem 1.1). Therefore, Qv_c # 0, and we obtain

an expression for Qy_ ¢ %% V from (3.14) by multiplication by H *(-) after

fae 42 g Py_c4x.

the substitution of 7, %

Note that this is successively possible because of (2 3) (2.8) and that it is im-
portant to achieve first the complete expression for 26 and afterwards those for

dt
dgl—f, because of the allowed controlling elements in (2c¢). 3
Step 4

Now we analyze the possible cases:

1. If the network contains neither L-I cutsets nor controlled C-V loops, both

equations, (3.4) and (3.5), do not appear, i.e., we obtain a representation
for g‘z, dgltL, dglr as functions of e, j;, and jy Wlth the expressions obtained
in Step 1. Thus, the dlfferentlal index of the system is 1 and no hidden
constraints appear.

2. In the other three cases, one more differentiation has to be carried out
in order to find explicit expressions for the derivatives. Therefore, the
differential index is 2.

With Step 3 the statements of the theorem follow immediately from Step 2.
q.e.d.

Theorem 3.3 If the differential index is 1, then the network contains neither
C-V loops nor L-I cutsets. If the differential index is 2, then the network con-
tains at least a C-V loop or an L-I cutset.

Proof: Let us now suppose that the differential index is 1. Then the hidden
constraints have to be trivial, i.e., if we regard the homogeneous system, we

5This variation of the order changes the spaces associated with the DAE-system, as will
be shown in Lemma 4.4.
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obtain

~ de

VocAVPoo =0, (3.15)
i

QgRVAL% = 0. (3.16)

Making use of the fact that AT and (Ac, Ag, Ay, Ar) have full row rank, we

obtain Qy_¢ = 0 and Qcry = 0 (cf. 4 and 3 in Theorem 1.1), i.e., the network

does not contain C-V loops or L-I cutsets.

If the index is supposed to be 2, then at least one constraint has to appear,

i.e., either Qv _c or Qcry has to be nontrivial (or both). Again, Theorem 1.1

implies that the network has to contain at least a C-V loop or an L-I cutset.
q.e.d.

Proof of Theorem 2.2:

To conclude, we observe that Theorem 3.2 holds analogously for the charge-
oriented MNA. The results obtained with the differential index method are
basically the same as those for the conventional MNA. To shorten denotations,
we drop the arguments of the controlled sources, because they appear in the
same way as in the proof of Theorem 3.2. Analogously to Step 0 from the proof
of Theorem 2.1, we can split (1.9) into

d
ACd_ij -f-Pg (Am’(A%e,t) +ALjL +Avjv +A[i) = 0, (317)
Qg (ART(Aﬁa t)+ Arjr + Avjv + A]i) = 0. (3.18)

If we define Qc as a projector onto kerA¢c, we can define the matrix Heoy :=
AgAc + QgQa which is regular, and obtain the expression

_d _ . . .
Posl = —HG ALPE (Arr(Afe.t) + Avji + Aviy + Ari)

by multiplication of (3.17) by H, _llAg. Note that this transformation is re-
versible by multiplication by Hpoy AcALAc, if Hes = AcAL + QLQc. As
equation (1.10) is already an expression for %, the constraints are (1.11)-(1.13)
and (3.18). The derivatives of (1.12) and (1.13) can be splitted as follows:

Pc% — PCC(Agat)Ag% — Pogj(ALe,t) = o0, (3.19)
~ dqg = T rde =~ .7 _
QC% — QCC(AC€7 t)AC% — cht (Ace, t) = 07 (320)
do oD _
- L(JLvt)E - ¢i(jr,t) = 0. (3.21)

From (3.19) we obtain the following expression for Pc% and multiplication by
Hl_l (Age, t)Ac

de

Pc% = —H{'(Ale, )P} (Arr(Afge,t) + Apjr + Avjv + Agi)

—H{ ' (Ale ) Acqi(Ale, t).
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Note that this holds because of

Pg

A

HT'(VAcHZIALPE = H7' () Ac A ALAc ALAGy PY = H' () PE.
N———

Pc

Inserting this into (3.20), we obtain an equation for QC%. On the other hand,

(3.21) leads to the expression (3.7) for %. As the constraints (1.11) and (3.18)
are the same as (3.2) and (3.3) in the conventional MNA, the expressions for
the remaining derivatives are identical. This implies that the index statements
of Theorem (3.2) are valid for the charge-oriented MNA, too.

q.e.d.

Remark: Observe that only the required smoothness has to be given in each
case, and that we can recognize the smoothness requirements directly in the
above equations. The next chapter shows how it is possible to define an index
with considerably fewer smoothness assumptions on the variables and on the
input functions. This is specially relevant for circuit simulation because, in
general, only low smoothness is given.

4 The tractability index

4.1 Definition of the tractability index

The tractability index ([6], [11]) orientates on the linearization of a DAE. This
index concept requires only weak smoothness conditions. Furthermore, solvabil-
ity and stability results exist for index-1-tractable and index-2-tractable DAEs
(see e.g. [12], [15]).

We consider nonlinear DAEs
f@' z,t) =0 (4.1)

for which N := ker f,,(2',2,t) is constant and f is continuously differentiable.
We denote A(z',z,t) := f.,(2',2,t) and B(2',z,t) := fi(2', 2, 1).

Definition 4.1 The DAE (4.1) is called index-1-tractable if the matriz
Ai(a',x,t) .= A2’ x, t) + B(a', 2, t)Q is regular for a constant projector Q onto
N.

Remarks:

1. The matrix A;(a',z,t) is regular if and only if N N S(z',z,t) = {0} for
S(a',x,t) :={z: B(a',z,t)z € im A(z',z,t)}.

2. The condition does not depend on the choice of the projector Q.
For a proof see e.g. [6].
Definition 4.2 The DAE (4.1) is called index-2-tractable if

1. it is not index-1-tractable,
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2. Ny(2',z,t) := ker Ay (2',z,t) is of constant rank,

3. As(2' x,t) := Ay (2,2, t)+ By (2, 2, ) Q1 (2, z, t) is reqular for a projector
Q1(2',z,t) onto N1(x',x,t) and By (2',x,t) :== B(z',x,t) (I — Q).

Remarks:

1. The matrix As(a’,x,t) is regular iff Ny(a',2,t)NSi(a', 2, t) = {0} for
Si(a’,x,t) :={z: Bi(a',x,t)z € im Ay (2, z,t)}.

2. The condition does not depend on the choice of the projector Q.

For a proof see again [6].

4.2 The tractability index of the DAE systems in circuit
simulation

Note that the assumption N := ker f/,(z', x,t) is constant is given for the quasi-

linear DAEs (1.6)-(1.8) (cf. (4.5)) and (1.9)-(1.13).

For shorter expressions we drop the arguments in the following section. In order

to distinguish between constant and non-constant terms, we will use a dot as
an argument for non-constant terms.

Theorem 4.3 Let the assumptions of Theorem 2.1 be satisfied. Then it holds:

1. If the network contains neither L-I cutsets nor C-V loops, then the con-
ventional MNA leads to an index-1 tractable DAE system.

2. If the network contains L-I cutsets or C-V loops, then the conventional
MNA leads to an index-2 tractable DAE system. The canonical projector
Q1(-) onto Niy(z,t) along Sy is given by

QCRVHgl(')QERVAL

—1 ~ -1 AT T
HT (1)AvQv_cHg (1)Qvy_c Ay Pc *PCQVX(')QCRVHE,_l(')QgRVAL

0 L™ ()ATQorv HI ' ()QE py AL o|(4.2)
—Qv-cHg '()QV_c AV Pc - ATY()QcrvH; ' ()QE Ry AL 0

where the matrices X (-) and Y (-) are chosen in such a way that

dib,c(')
de

Arpe Qc = AcC(HALQvX () + AvATY ().

Note, the matrices Hy(-), Hs(-), and Hg(:) were defined in Lemma 1.5.
Remark: The existence of such matrices X (-) and Y'(-) is satisfied since the

relation Q7 _ Q5 A, dibg;(') =0 is true (cf. (2.5) and (2.7)).

Before we will prove this theorem, we want to consider the special structure of
A(), B(-), Q(), S(-), A1(-), B1(), Q1(-), and S1(+) in case of circuit simulation.
Writing the system (1.6)-(1.8) as a nonlinear DAE (4.1) with A(z',z,t) :=
fo (2 2z, t) and B(x',x,t) := fl(a',x,t), we obtain that

AcC(-)AL 0 o0
A(')=< ‘ g() 20 8) (4.3)
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and

AcO()AL + ArG()AL + A E0 A +Ar G2 A+ A GO
B() = —A7 L(-) 0 (4.4)
dv(- dv(-
Ay — d(e) - dj(L) 0
with

. d Cd,
C(t,u,t) = @C’(u,t)u+ @qt(mt)
and

. d . d
L(jr,jr,t) = =—L(jr,t)jr + —&,(jr, ).
(]Lv.]Lv ) d]L (]Lv )]L+ djL¢t(]L7 )
Let us remark here that A(-) represents the leading coefficient matrix. It has
a different meaning than the incidence matrix A = (A¢, A, Ar, Ay, Ar). We
will not use the notation A any longer. Therefore, this denotation should be
acceptable.

Since C(-) is positive definite, we may conclude that

ker A(-) = ker AL x {0} x R™ (4.5)
and

im A(-) =im Ac x R x {0}. (4.6)

Here, ny describes the number of voltage sources and ny describes the number
of inductances in the network. Note, the null-space of A(-) as well as the image-
space of A(-) are constant in any case. The null-space of A(:) describes the non-
dynamic components of the circuit. For further considerations let us introduce
a projector @) onto ker A(-) as

Qc 0 0
Q=10 0 0
0 0 I
For the definition of Q¢ see page 6. The space S(-) = {z: B(')z € im A(:)}
describes all solution components for which we do not find an algebraic repre-
sentation. Regarding (4.6) it is given by

. dv(-) do(-)  _
S0 ={e: (A - )% - G =0,
di () di () di(-

))Zv € im Ac}.

NAT
(ArRG()AR + A v

)Ze + (AL + AI

)zr + (Av + Af

de djL
Consider the space N N S(-). It represents all components that are determined
neither by a differential equation nor by an algebraic equation. If N N S(-) #
{0}, then these components can be determined only by inherent differentiation
instead of integration. The next lemma provides a possibility to determine from
the network topology whether a differentiation problem is involved in the DAE
4.1 obtained applying MNA. This has a big influence onto numerical solving
since differentiation problems are ill-posed in the sense of Hadamard, i.e., small
perturbations in the input data can provide arbitrarily large perturbations in
the output data.
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Lemma 4.4 Let the conditions of Theorem 2.1 be satisfied. Then it holds that

Qcrv 0 0
NAS()=im [ 0 0 0
—Py_cZ()Qcrv 0 Qv_c

is true for a matriz Z(-) satisfying QCAIC dic() =QLAVZ(").

de

Remarks:

1. The existence of such a matrix Z(-) is guaranteed by condition (2c) of
Theorem 2.1 (cf. (2.7)).

2. Regarding the definitions of Qcry and Qv _¢ on page 6 as well as Theo-
rem 1.1, Lemma 4.4 implies that the network equations involve a differen-
tiation problem if and only if the network contains a C-V loop or an L-I
cutset.

3. If all controlled current sources satisfy the conditions (2a) or (2b) of The-
orem 2.1, then the relation

NNS =im Qcrv X {0} X im QV—C’
is true.

4. The different structure of the general case and the one discussed in the
latter point corresponds to the alteration of the order in which we solve
the system for the differential index (cf. footnote 5). At this point it
is recognizable that N N S(-) represents those components for which the
differential index definition requires two differentiations to obtain the rep-
resentation of their derivative as a continuous function of the variables.

Proof: Firstly, we show that the relation “C” is true. Assuming z € N N S(+)
we know that ze = Qc¢ze, 2z, = 0 and 2z € S(-). Using (2.2), (2.4), (2.5), and
(2.8) we obtain

ATz, = 0, (4.7)
dic(+)

Ca 4 QRAvay = 0, (43)

QCARG( )AgQCZe + QgAIc

Then, equation (4.7) provides additionally that Q¥ AIC dic(: )ze =0 (cf.
(2.7)). Multiplying (4.8) by QT . and regarding A‘T/che — 0 we obtain

QXT/—CQEARG(')AgQCQvche =0.

Since G() is positive definite, this implies ALQcQv_cze = 0, i.e., ALze =0
and so z. € im Qcry. Now the relation (4.8) implies that

Qhavay = - QLA " o QLAvZ()z = QEAVZ()QcRv =

ie.,

v=—Py_cZ(")Qcrvze + Qv_czv.
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Secondly, we show that the relation “D” is satisfied. Assume that z. = Qcryv ze
and z7, = 0. Furthermore, we have

v =Qv_cav — Pr_cZ()z. (4.9)
Then z € N = ker A(+) holds trivially and
dv(-) dv(-) du(-)
T _ _ _ —
(Ayv de )ze dir ZL Je Qcrvze =0 (4.10)
is fulfilled. Using (4.9) we obtain additionally that
di(- di(- di(-
Qg[(ARG()Ag + A ( ))Ze + (AL + As ( ))ZL + (Av + As ( ))Zv]
de djr djv
dic(:
= QBT 4 Ayan) = QEAVZ()z + QhAvay =0,
q.e.d.

Corollary 4.5 Let the conditions of Theorem 2.1 be satisfied. The network
equation system obtained applying MNA is index-1-tractable if and only if the
network contains neither a C-V loop nor an L-I cutset.

Let us now study the higher index case. For that we investigate 4;(-) and By (+)
defined on page 19.

(ACC(-)Ag +ARGOALQe + Ar%0e 0 Ay + 4, igv'))

Ai() = —- A7 Qc L(:) 0
AT Qe 0 0
AcC ()AL + ArG()ALPe + A %2 Po Ap+ A5 0
Bi() = — Al Pc L() 0
ATPe — 2 Py 0 0

Lemma 4.6 Let the conditions of Theorem 2.1 be satisfied. Then the relation

Qbry 0 0
im A;(-) = ker 0 0 0
0 0 QV_¢

is satisfied.

Proof: Firstly, im A4;(-) C ker QL x R* x ker QT holds trivially, because

of

di()
de

for all admitted controlled current sources (see (2.3), (2.5), and (2.7)).

Secondly, we assume that 2 € ker QLry xR xker Q¥ _, ie., QEryz1 =0
and QY23 = 0. Then, there is an ag such that

23 = AT Qcap. (4.11)

di)

=0 and L A —2L =0
Qcrv i

Qbrv Al
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Since QL zyAr =0 (see (2.3), (2.5), and (2.7)), the relation

di(-
21 — ARG(-)ARLQcPy_cag — Ar d(e) QcPyv_cag € ker QL py

holds, i.e., there are a;, ay and 7; such that

di(-)
de
= AcC()ALay + ARG(VARQcQv_cas + Ay, (4.12)

21 — ARG()ARQcPy_cag — Ar

QcPv_cag

This is a simple conclusion of the fact that
ker Qfpy = im (AcC ()AL, ARG()ARQcQv-c, AvAD),

since C'(-) and G(-) are positive definite. Regarding (2.4), (2.6), and (2.8) we
obtain that

i p, (4.13)

di(-) _ A,

Ar— -
"djv djv

Considering (2.3) we see that

dig (- dig(ALe, AT e, jp,t dig (-
Uge = oo e, el p, o 4w
de de de
Regarding (2.7) we find a3 and 2 such that
4, %0 = AcC()ALas + A 4.15
e QcQv_cas = AcC(-)Acas + Avys. (4.15)
Using (2.5) we find a4 and a5 such that
dip(-
Anp ;6( )QCQV—Ca2 = AcC()Alau, (4.16)
dip (-
A0~ = acC()AFas. @17)

Choosing a := Po(ay —az — ay — as) + QcPv_cao + QcQv_caz, f =
L) (22 + ALQca), v := 71 — 72 and regarding (4.11)-(4.16), we obtain that

2= A1) (ﬂ) € im A, ().
Y

Considering (4.2) and Lemma 4.6 we obtain a simple description of the constant
space St:

q.e.d.

S; =ker Q¥ _ AL Po x ker QL AL x R, (4.18)

For a definition of S; see page 19.
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Lemma 4.7 Let the conditions of Theorem 2.1 be satisfied. Then, the canonical
projector onto Ny (-) = ker A;(-) along Sy is given by (4.2).

Proof:

1. @Q1(+) is a projector, since

Qv_cHg'() = Hg'()QV ¢,
o (VQV_cAVH '(VAvQv_c = Qv_c,
PcQcrv = 0,
QorvH;'() = Hy'()Qlgy, and
M ()QErvALLT (VAL Qerv = Qerv.

These relations are simple conclusions of the definitions of H;(-), Hs(-),
and Hg(-).

2. We show that im @1 (-) C ker 4;(-). Regarding

AcC()ALHT'() = PC,
QCH1 1() = 71(')@57
di(-) _ dip(: )P
dyv Ay O

this holds trivially.
3. We show that ker A;(-) Cim @Q1(-). Assume z € ker A;(-). Then,

di(-
4000 ALz + AnG() ARQoze + 41T e,
di(-)

+Ayvzy + Ar——=z = 0, (419)
djv
- AgQCZe + L()ZL = 0, (420)
ATQcze = 0. (4.21)
Considering (4.21) we see that
Ze = Qv _cZze. (4.22)
Next we have (cf. (2.4), (2.5), and (2.7))
dia(~) N dia(') —
AIU/?QC/Z& = 07 A[aWzV = 07 (423)
di di
QLA b( )Qo ze = 0, Q& A db( ) zy =0, (4.24)
A%
di, di,
Qv_cQEAL d( )che =0, QV_cQbAL dj‘(/) zy =0.  (4.25)

Multiplying (4.19) by QT QL yields

QXT/—CQEARG(')AgQCQvche =0.
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Since G() is positive definite and (4.22) is valid, it holds that
Qcze = Qcrv ze. (4.26)
Relation (4.20) leads to
2 =L ()AL Qcze = L7 ()AL Qcry ze- (4.27)
Multiplying (4.19) by Q% yields now
dic (")

QLAvzy + QEAL Qcze =0.

de
If we regard (4.23)-(4.25), then the relation 4.19) reduces to
T dib,C(') _
AcC()Acze + Anpe——=Qcze + Avzy = 0. (4.28)
Since Ap o222 Qr = AcC()ALQy X () + Ay ALY (-), we obtain that
dip,c(-
Qan et~ gray Ay ().

Multiplying (4.28) by Q% we conclude that
QLAY (ALY ()Qcze +2v) =0,

ie.,

AVY ()Qcze + 2v = Qu_c(AVY ()Qcze + 2v). (4.29)
From (4.28) we obtain

AcC()Abze + AcC()ALQV X ()Qcze

+AvALY ()Qcz + Avzy = 0,
ie.,
Po(ze +QvX()Qcz) = —Hy'(VAv(zv + ALY ()Qcz)

—H{ ' ()AvQv_c(av + ALY ()Qcze)

because of (4.29). Thus

ze + QvX()Qcze
2=Q1() | L)AL Qcrvze | €im Qi(-).

0
. The relation Sy C ker Q;(-) is a simple conclusion of (4.18).
. We show that ker Q1(-) C S;. Assume @1(-)z =0. Then

L' ATQorvH; ' ()Qbry ALz =0 (4.30)

and

Qv-cHi ' (VQV_c Ay Poze = 0. (4.31)
Multiplying (4.30) by Q& gy AL yields QL gy ALz = 0. Regarding

Qv-cHg'() = Hg '()QV _c

we conclude from (4.30) that Q¥ _, AL Pcz, = 0. Considering (4.18) the
assertion is proved.
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q.e.d

Remark: Lemma 4.4 and Lemma 4.7 now imply Theorem 4.3 for the tractabil-
ity index.

The validity of Theorem 2.2 follows by similar considerations as above. More
precisely, it can be shown that the following relations are satisfied for the charge-
oriented MNA.

(i) The analogue to Lemma 4.4 reads

0 O 0 0 0

0 0 0 0 0
NﬂS(-):im 0 0 QCRV 0 0

0 0 0 0 0

0 0 —Py_cZ()Qcrv 0 Qv-c

for Z(-) chosen as in Lemma 4.4.
(ii) Lemma 4.6 reads

QgRV QgRVALL_l(')
im A;(-) = ker 0
0
0

0
,0 —
QV_c QV_cAVH ' ()Ac
0

coocoo

oovqoo
o

cooo

(iii) Equation (4.18) corresponds to

Si() =ker QY _(ATH ' ()Ac x ker QL py AL L7 (1) x R™ x R™ x RV,

(iv) Theorem 4.3 holds analogously for the charge-oriented MNA, and the
canonical projector Q1 (-) onto Ni(-) along S (-) is given by

PeAGHT Ay Qv —c- — PoC()ALQy X ()Qorv- 0 o0 o
Hy'()QY_oAVHT ' () Ac Hy ' ()QERvALLTH()
0 ATQcrvHT ' (VQERvALL™() 0 0 0
0 QcrvH'()QE Ry ALL (1) 0 0 0
0 0 0 0 O

—Qv-cH;'()QV_cAVHT '()Ac  — ALY ()Qcrv HF '()QEryALLTI() 0 0 0

where Hy := Ac AL + QLQc and the matrices X (-) and Y(+) are chosen
as before.

Note that if no controlled current sources that fulfill only the conditions
(2b) or (2c) of Theorem 2.1 appear, then N is constant.

5 Conclusion

The presented results provide the possibility to obtain information about the
index of the systems (1.6)-(1.8) and (1.9)-(1.13) by topological analysis of the
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network. The only assumption made on the parameters defining its elements is
the exposed positive definiteness.

The class of controlled sources described in this paper is precisely the one that
does not seriously affect the structure of the spaces associated with the DAE-
systems. Basically®, these spaces are the same as for networks without controlled
sources. If no assumptions on the controlled sources are made, then different
problems arise.

On the one hand, if arbitrary controlling elements for the controlling sources
are considered, then the index of the network equations may depend on the
parameters defining them (cf. [13]).

On the other hand, if controlled sources are allowed to form part of L-I-cutsets of
C-V-loops, then it is possible to be confronted with higher index (>2) problems

(ct. [9]).
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Notations

MNA Modified Nodal Analysis,

veovs voltage-controlled voltage sources,

ccvs current-controlled voltage sources,

vees voltage-controlled current sources,

ceces current-controlled current sources,
L-I cutset cutset consisting of inductances and/or current sources only,
C-V loop loop consisting of capacitances and voltage sources only,

A = (A¢, A, AR, Ay, Ar) (reduced) incidence matrix describing

the branche-node relations:
Ac  capacitive branches,
Ar  inductive branches,
Agr  resistive branches,
Ay branches of voltage sources,

Ar branches of current sources,

Qc projector ontoker AL,
Qv_c projector onto ker Ag@c,
Qr_cv projector onto ker AgQCQV,C,
Qv projector ontoker A%,
Qc projector onto ker A¢,
Qv_c projector ontoker QL Ay,
Qcrv = QcQv-cQr-cv,
C(u,t) := ng: t)7 q;(u, t) == 8qg;7 t),
L. = 2 g = 20,
G(u,t) := 87’éu,t)7 ri(u,t) = 8T(E;jf, t),
Hy(Ale,t) = AcC(Ale, )AL +QLQc,
Hy = QLAVALQc+QV Qv_c,
Hs = AVQcQbAv +QV Qv ¢,

Hy(ARe) = QV_cQtARG(ARe,) ARQcQv—c + Qh_cvQr-cv,
Hs(jr,t) == QLpyALL™'(jr,t)ALQorv + PlryPorv,
Hg(ALe,t) = QU_oATH (ALe,t)AvQv o + PE_oPy_c,

Hey = AbAc+QEQc,
HC2 = H1 = AcAg + QgQC~
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