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Abstract

The development of integrated circuits requires powerful numerical
simulation programs� Of course� there is no method that treats all the
di�erent kinds of circuits successfully� The numerical simulation tools pro�
vide reliable results only if the circuit model meets the assumptions that
guarantee the successful application of the integration software� Because
of the large dimension of many circuits �about ��� circuit elements� it
is often di�cult to 	nd the circuit con	gurations that lead to numerical
di�culties� In this paper� we analyze electric circuits with respect to their
structural properties in order to give circuit designers some help for 	xing
modelling problems if the numerical simulation fails� We consider one of
the most frequently used modelling technique� the modi	ed nodal anal�
ysis �MNA�� and discuss the index of the di�erential algebraic equations
�DAEs� obtained by this kind of modelling�
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� Structural analysis

In the following we discuss lumped electric circuits containing nonlinear and pos�
sibly time�variant resistances	 capacitances	 inductances	 voltage sources and
current sources� Usually circuit simulation tools are based on these kinds of
network elements� For two�terminal �one�port� lumped elements	 the current
through the element and the voltage across it are well�de�ned quantities� For
lumped elements with more than two terminals	 the current entering any ter�
minal and the voltage across any pair of terminals are well de�ned at all times
�cf� 
���� Hence	 general n�terminal elements are completely described by �n���
currents entering the �n � �� terminals and the �n � �� branch voltages across
each of these �n� �� terminals and the reference terminal n�
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Figure ���� n�terminal circuit element

In particular	 n�terminal resistances can be modeled by an equation system of
the form

jk � rek�u�� ���� un��� t� for k � �� ���� n� �

if jk represents the current entering the terminal k and ul describes the voltage
across the pair of terminals fl� ng �for k� l � �� ���� n���� The Kirchho��s Current

Law implies the current entering the terminal n to be given by jn � �
Pn��

k�� jk�
The conductance matrix Ge�u�� ���� un��� t� is then de�ned by the Jacobian

Ge�u�� ���� un��� t� ��
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The index e shall specify the correlation to a special element of a circuit� Later
on we will introduce the conductance matrix G�u� t� describing all resistances
of a circuit� Correspondingly	 the capacitance matrix Ce�v�� ���� vn��� t� of a
general n�terminal capacitance is given by

Ce�u�� ���� un��� t� ��
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if the voltage�current relation is de�ned by means of charges by

jk �
d

dt
qek�u�� ���� un��� t� for k � �� ���� n� ��

In order to illustrate what the matrices Ce may look like	 let us consider a
MOSFET�model as an example of a common n�terminal element�
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Figure ���� MOSFET�model
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Choosing the source node S as the reference node	 we have the reference voltages
uGS	 uDS 	 and uBS � For the currents we obtain

jG � CGS �uGS � CGD� �uGS � �uDS��

jD � � CGD� �uGS � �uDS�� CBD� �uBS � �uDS�

� d�uBS � uDS� � g�uGS � uDS� uBS��

jB � CBS �uBS � CBD� �uBS � �uDS�� d�uBS�� d�uBS � uDS��

Note that jS is given by the formula jS � �jG � jD � jB due to Kircho��s
Current Law� Now it is easy to verify that

Ce�uGS� uDS � uBS� �

�
�CGS � CGD � CGD �

� CGD CGD � CBD � CBD
� � CBD CBS � CBD

�
A

for the MOSFET�model from 
����

Inductances can be modeled by means of �uxes by

uk �
d

dt
�ek�j�� ���� jn��� t� for k � �� ���� n� ��

Then	 the inductance matrix Le�j�� ���� jn��� t� of a general n�terminal induc�
tance is given by the Jacobian

Le�j�� ���� jn��� t� ��
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A commonly used method for network analysis in circuit simulation packages
like TITAN � and SPICE is the Modi�ed Nodal Analysis �MNA��
It represents a systematic treatment of general circuits and is important when
computers perform the analysis of networks automatically� The scheme to set
up the MNA equations is�

�� Write node equations by applying KCL �Kirchho��s Current Law� to each
node except for the datum node�

Aj � �� �����

The vector j represents the branch current vector� The matrix A is
called the �reduced� incidence matrix and describes the network graph	
the branch�node relations�

�� Replace the currents jk of voltage�controlled elements by the voltage�
current relations of these elements in equation ������

�� Add the current�voltage relations for all current�controlled elements�

�SIEMENS AG�

�



Note that	 in case of multi�terminal elements with n terminals	 we speak of
branches if they represent a pair of terminals fl� ng with � � l � n� ��

In general	 the MNA leads to a coupled system of implicit di�erential equations
and nonlinear equations	 i�e�	 to a di�erential�algebraic equation �DAE�

f� �x�t�� x�t�� t� � �� �����

where the partial derivative f ��x� �x�t�� x�t�� t� is singular� The analytical and nu�
merical solutions of ����� depend strongly on its structure and index� For a
detailed discussion of this fact we refer to 
��	 
��	 
���	 and 
���� Let us note
that numerical methods can fail in higher index cases	 particularly if the index
is greater than �� Therefore	 we are looking for conditions �depending on the
network topology� that guarantee a lower index �� ���

In order to obtain more detailed information about the structure of ����� we split
the �reduced� incidence matrix A into the element�related incidence matrices

A � �AC � AL� AR� AV � AI��

where AC 	 AL	 AR	 AV 	 and AI describe the branch�current relations for ca�
pacitive branches	 inductive branches	 resistive branches	 branches of voltage
sources and branches of current sources	 respectively� Denote by e the node
potentials �excepting the datum node� and by jL and jV the current vectors of
inductances and voltage sources� De�ning the vector of functions for current
and voltage sources by i and v	 respectively	 we obtain the following quasi�linear
DAE�system from the MNA�

AC

dq�AT
Ce� t�

dt
�ARr�A

T
Re� t� �ALjL �AV jV

�AI i�A
T e�

dq�AT
Ce� t�

dt
� jL� jV � t� � �� �����

d��jL� t�

dt
�AT

Le � �� �����

AT
V e� v�AT e�

dq�AT
Ce� t�

dt
� jL� jV � t� � �� �����

Note that the vectors AT
Ce	 A

T
Le	 A

T
Re and A

T
V e describe the branch voltages for

the capacitive	 inductive	 resistive and voltage source branches	 respectively�

Remark� Due to the fact that the currents through resistances are functions
of the branch potentials	 we do not include them separately as controlling func�
tions� Of course	 if the network does not contain controlled sources	 then the
source functions reduce to functions i�t� and v�t� which depend on time only�

Nowadays circuit simulation packages use two di�erent approaches for solving
�����������	 the conventional and the charge�oriented one�

The conventional MNA

For the conventional MNA the vector of unknowns consists of all node voltages
and all branch currents of current�controlled elements�
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De�ning
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we obtain

ACC�AT
Ce� t�A

T
C

de

dt
�ACq

�

t�A
T
Ce� t� �ARr�A

T
Re� t�

�ALjL �AV jV �AI i�A
T e� C�AT

Ce� t�A
T
C

de

dt
� jL� jV � t� � �� ���
�

L�jL� t�
djL
dt

� ��t�jL� t��AT
Le � �� �����

AT
V e� v�AT e� C�AT

Ce� t�A
T
C

de

dt
� jL� jV � t� � �� �����

Later on we will also need

G�u� t� ��
�r�u� t�

�u
� r�t�u� t� ��

�r�u� t�

�t
�

The charge�oriented MNA

In comparison with the conventional MNA	 the vector of unknowns consists
additionally of the charge of capacitances and the �ux of inductances� Moreover	
the original voltage�charge and current��ux equations are added to the system�
The resulting system is then of the form �cf� 
���

AC

dq

dt
�ARr�A

T
Re� t� �ALjL �AV jV

�AI i�A
T e�

dq

dt
� jL� jV � t� � �� �����

d�

dt
�AT

Le � �� ������

AT
V e� v�AT e�

dq

dt
� jL� jV � t� � �� ������

q � qC�A
T
Ce� t� � �� ������

�� �L�jL� t� � �� ������

Topological characterization of the splitted incidence ma�

trix

The splitting of the incidence matrix A � �AC � AL� AR� AV � AI� correspond�
ing to certain branches leads to the following useful structural information for
lumped circuits�

Theorem ��� Given a lumped circuit with capacitances� inductances� resis�
tances� voltage sources and current sources� Then� the following relations are
satis�ed for the �reduced� incidence matrix A � �ACALARAV AI��

�� Then matrix �ACALARAV � has full row rank� because cutsets of current
sources are forbidden�
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�� The matrix AV has full column rank� because loops of voltage sources are
forbidden�

�� The matrix �ACARAV � has full row rank if and only if the circuit does not
contain a cutset consisting of inductances and	or current sources only�


� Let QC be any projector onto kerAC � Then� the matrix QT
CAV has full

column rank if and only if the circuit does not contain a loop consisting of
capacitances and voltage sources only�

Note that loops containing only capacitances are excluded under point �	 whereas
cutsets containing only inductances are included under point � of Theorem ����
For a complete proof of Theorem ��� we refer to 
�
��

In the following the special cutsets and loops considered in Theorem ��� will be
important� Therefore we de�ne�

�� An L�I cutset is a cutset consisting of inductances and�or current sources
only�

�� A C�V loop is a loop consisting of capacitances and voltage sources only�

In order to describe the di�erent parts of the DAE ���
������� in more detail	
we will introduce some useful projectors� Before doing this	 let us recall the
de�nition of a projector�

De�nition ��� For Rm � R��R� a matrix Q � Rm�m is a projector onto R�

along R� if and only if Q� � Q� im Q � R�� and kerQ � R��

We denote by QC	 QV�C	 QR�CV	 QV	 �QC	 and �QV�C a projector onto
kerAT

C 	 kerAT
VQC 	 kerAT

RQCQV�C 	 kerA
T
V 	 kerAC 	 and kerQT

CAV 	 respec�
tively� The complementary projectors will be denoted by P �� I �Q	 with the
corresponding subindex� We observe that

im PC � kerPV�C � im PV�C � kerPR�CV and im PC � kerPR�CV �

and that thus QCQV�C is a projector onto ker�AC AV �
T 	 and QCQV�CQR�V C

is a projector onto ker�AC AR AV �
T � To shorten denotations	 we use the abbre�

viation QCRV �� QCQV�CQR�CV � Remark that the projector PCRV does not
coincide with the projector PR�CV in general�

Using the introduced projections we obtain the following corollary from Theo�
rem ����

Corollary ��� Theorem ��� implies that

�� QCRV � � if and only if the network does not contain L�I cutsets�

�� �QV�C � � if and only if the network does not contain C�V loops�

For a simpler description later on	 we adduce two lemmata�

Lemma ��� If M is a positive de�nite m �m�matrix and N is a rectangular
matrix of dimension k �m� then it holds that

kerNMNT � kerNT and im NMNT � im N�






The correctness of Lemma ��� follows immediately from the de�nition of positive
de�nite matrices�

Lemma ��	 The matrices

H��A
T
Ce� t� � � ACC�AT

Ce� t�A
T
C �QT

CQC �

H� � � QT
CAV A

T
VQC �QT

V�CQV�C �

H� � � AT
VQCQ

T
CAV � �QT

V�C
�QV�C �

H��A
T
Re� � � QT

V�CQ
T
CARG�AT

Re� t�A
T
RQCQV�C �QT

R�CVQR�CV �

H��jL� t� � � QT
CRV ALL

���jL� t�A
T
LQCRV � P T

CRV PCRV �

H��A
T
Ce� t� � � �QT

V�CA
T
VH

��
� �AT

Ce� t�AV
�QV�C � �P T

V�C
�PV�C

are regular�

Proof� Using Lemma ���	 the regularity ofH��A
T
Ce� t� is obvious since C�AT

Ce� t�
is positive de�nite� For H� and for H� the regularity follows immediately	 and
for H� analogously if we consider that G�AT

Re� t� is positive de�nite�
Let us prove the regularity of H�� Let z be an element of kerH�� Then we have

�QT
CRV ALL

���jL� t�A
T
LQCRV � P T

CRV PCRV �z � ��

If we multiply this equation by P T
CRV 	 it results that P T

CRV PCRV z � � and	
therefore	 PCRV z � �� Hence	 we obtain

QT
CRV ALL

���jL� t�A
T
LQCRV z � ��

Then	 since L���jL� t� is positive de�nite	 AT
LQCRV z � � holds� Applying

that �AC � AR� AV � AL�
T has full column rank	 we conclude QCRV z � �	 i�e�	

z � PCRV z and	 since PCRV z � �	 the regularity is veri�ed�
The regularity from H��A

T
Ce� t� can be easily shown making use of the facts that

C�AT
Ce� t� is positive de�nite and that AV has full column rank�

q�e�d�

� The index of DAEs resulting from the MNA

for electric circuits

The numerical behavior of solutions of DAEs depends strongly on their index�
Roughly speaking	 the index of a DAE is the measure of the deviation of a
DAE from regular ODEs� DAEs have	 among other things	 the following two
important properties �see e�g� 
��	 

�	 
�����

�i� DAEs do not only represent integration problems	 but di�erentiation prob�
lems	 too� Some parts of a DAE must be di�erentiable su�ciently often�

�ii� Some components of the solution are determined algebraically� This im�
plies that the choice of initial values is not free for solutions of initial value
problems� The initial values must be consistent�
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The higher the index the higher the di�erentiations needed for solving a DAE� In
the nonlinear case	 the index concept is not unique in the literature� Therefore
we study two important index concepts for the circuits	 the di�erential index in
Section � and the tractability index in Section �� The results show that both
concepts lead to the same index in case of circuit simulation applying MNA�
The investigations of numerical methods for DAEs have shown that available
codes for general nonlinear DAEs provide reliable results only for DAEs of lower
index �� ��� Therefore we are interested in adequate conditions for electric cir�
cuits that guarantee a lower index DAE� In particular	 the voltage�controlled
voltage sources �VCVS�	 current�controlled voltage sources �CCVS�	 voltage�
controlled current sources�VCCS�	 and current�controlled current sources �CCVS�
have to be analyzed very carefully� The result is given in the following theorem�

Theorem ��� Consider lumped electric circuits containing resistances� capac�
itances� inductances� and voltage and current sources� Let the capacitance� in�
ductance and conductance matrices of all capacitances� inductances� and resis�
tances� respectively� be positive de�nite�� Furthermore� let the following condi�
tions for the controlled sources be satis�ed�

�� The controlled voltage sources do not form a part of any C�V loop and
their controlling elements ful�ll the conditions exposed in the Tables ���
and ����

�� Each controlled current source ful�lls at least one of the following condi�
tions�

�a� It does not form a part of any L�I cutset and the controlling elements
ful�ll the conditions exposed in the Tables ��� and ��
�

�b� There exists a path formed by capacitances that connects its incidence
nodes� The controlling elements ful�ll the conditions exposed in Table
��� for CCCS� and the VCCS are controlled by an arbitrary voltage�

�c� There exists a path formed by capacitances and voltage sources that
connects its incidence nodes� The controlling elements ful�ll the con�
ditions exposed in Table ��
 for CCCS� and the VCCS are controlled
by an arbitrary voltage�

Then� the conventional MNA leads to an index�� DAE� if and only if the network
contains neither L�I cutsets nor C�V loops� Otherwise� the conventional MNA
leads to an index�� DAE�

Theorem ��� Theorem ��� holds if we consider the charge�oriented MNA in�
stead of the conventional MNA�

Remarks�

�� Similar results are well�known for the state equations of dynamic linear
networks �see e�g� 
����

�For capacitances and inductances with a�ne characteristics the positive de�niteness im�
plies that they are strictly locally passive �cf� ���	�

�For reasons of simplicity� we do not consider the index�
 cases� which result if
f �
�x
� �x�t	� x�t	� t	 is regular� separately�
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�� For linear networks with special controlled sources	 this coincides with
results in 
����

�� The presented criteria can be checked locally� It is neither necessary to �nd
convenient trees nor to make additional assumptions on the functions and
parameters that de�ne the controlled sources� Usually	 it is not di�cult to
check whether a model of a network element including controlled sources
satis�es these conditions or not�

�� If a model of a network element does not satisfy the conditions	 it is
not di�cult to ful�ll them by introducing some additional capacitances	
resistances or inductances�

�� Nevertheless	 the topological assumptions made for the controlled sources
are su�cient but not necessary�

Examples�

�� Consider again the MOSFET�model given in Figure ���� The VCCS from
source to drain is controlled by the branch voltages uGS 	 uDS 	 and uBS�
For this	 the conditions ��a����c� are satis�ed since there are capacitive
ways from gate to source	 from drain to source as well as from bulk to
source	 and there exists a capacitive way from source to drain�

�� Consider the VCCS in Figure ��� �from 
���� The considered CCVS does
not form a part of a C�V�loop and it is controlled by the current of a branch
that forms a cutset with inductances� Therefore	 it meets the condition
��� of Theorem ����
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Figure ���� Circuit with CCVS

Corollary ��� The assumption of Theorem ��� on the resistances can be slightly
reduced� In fact� only the positive de�niteness of the conductance matrix corre�
sponding to those resistances that do not form a loop with capacitances and	or
voltage sources is required�

This statement follows immediately from Theorem ��� if we consider the resis�
tances as VCCS�

In order to obtain a description of assumption ��� by means of projectors	 we
split the incidence matrix AV into �AV tAV co� for independent and controlled
sources	 respectively�
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The controlling voltages of a VCVS can be voltages of�

�� capacitances	

�� independent voltage sources	

�� CCVSs that are controlled by�

�a� inductances	

�b� independent current sources	

�c� resistances or VCCSs for which the controlling nodes are con�
nected by�

i� capacitances	

ii� independent voltage sources	

iii� paths containing only the elements described in ���c�i�	
���c�ii�	

�d� branches that form a cutset with the elements described in ��a�	
��b� and ��c�	

�� branches that form a loop with the elements described in ���	 ��� and
����

Table ���� VCVS � condition ���

Lemma ��� The condition that controlled voltage sources do not form a part

of a C�V loop is equivalent to �QV�C �

�
� �QV�C�t

�

�
� Here� � �QV�C�t denotes

the upper part of �QV�C corresponding to AV t�

Proof� A controlled voltage source forms a part of a C�V loop if and only if the
column as of AV co corresponding to this source depends linearly on the columns
of �AC

�AV �	 where �AV denotes the matrix AV reduced by the column as	 i�e�	
there is a vector v such that

�ACAV �v � � and vs �� �

for the s�th component of v corresponding to the controlled source considered�
That means	 there is a vector v such that

QT
CAV v � � and vs �� ��

i�e�	 the s�th row of �QV�C has a non�zero entry� This is equivalent to

�QV�C ��

�
� �QV�C�t

�

�
�

q�e�d�

Hence	 assumption ��� of Theorem ��� implies that

�QT
V�Cv�A

T e�
dq�AT

Ce� t�

dt
� jL� jV � t� � �QT

V�Cvt�t�� �����

v�AT e�
dq�AT

Ce� t�

dt
� jL� jV � t� � v��A

T
Ce� jL� t� �����

��



The controlling currents of a CCVS can be currents of�

�� inductances	

�� independent current sources	

�� resistances or VCCSs for which the controlling nodes are connected
by�

�a� capacitances	

�b� independent voltage sources	

�c� VCVSs for which the nodes that incide with the controlling
branch are connected by

i� capacitances	

ii� independent voltage sources	

iii� paths containing only the elements described in ���c�i�	
���c�ii�	

�d� paths containing only the elements described in ��a�	 ��b� and
��c�	

�� branches that form a cutset with the elements described in ���	 ���
and ����

Table ���� CCVS � condition ���

The controlling voltages of a VCCS can be voltages of�

�� capacitances	

�� voltage sources	

�� branches that form a loop with branches like those described in ���
and ����

Table ���� VCCS � condition ��a�

for a suitable function v� and for a vector vt�t� that contains the functions
of independent voltage sources and zeros instead of the functions of controlled
voltage sources� In the following we will drop the index ��
In order to transcribe the assumptions made for controlled current sources	 we
split the incidence matrix AI into �AIt� AIa� AIb� AIc� and the current vector i
correspondingly	 for the independent current sources and the controlled current
sources that ful�ll ��a�	 ��b� and ��c�	 respectively� If a controlled current source
ful�lls more than one of the conditions ��a�	 ��b� and ��c�	 the corresponding
column of AI should be assigned to only one of the matrices AIa	 AIb	 and AIc�

Lemma ��	 The condition that controlled current sources do not form a part
of an L�I cutset is equivalent to the relation QT

CRVAI � �QT
CRV AIt ���

Proof� A controlled current source forms a part of an L�I cutset if and only
if the column as of �AIa� AIb� AIc� corresponding to this controlled source is

��



The controlling currents of a CCCS can be currents of�

�� inductances	

�� independent current sources	

�� resistances or VCCSs for which the controlling nodes are connected
by�

�a� capacitances	

�b� voltage sources	

�c� paths containing only the elements described in ��a� and ��b�	

�� branches that form a cutset with the elements described in ���	 ��� or
����

Table ���� CCCS � condition ��a�

The controlling current of a CCCS can be the current of�

�� inductances	

�� independent current sources	

�� resistances	

�� voltage sources that do not form a part of a C�V loop	

�� VCCS	


� a branch that forms a cutset with the elements described in ���	 ���	
���	 ��� and ����

Table ���� CCCS � condition ��b�

linearly independent of the columns belonging to �AC � AR� AV �	 i�e�	

as �� im �ACARAV � and	 therefore	 QT
CRV as �� ��

But	 this is equivalent to the condition that QT
CRV �AIa� AIb� AIc� �� ��

q�e�d�

Thus	 assumption ��a� of Theorem ��� implies that

QT
CRVAI i�A

T e�
dq�AT

Ce� t�

dt
� jL� jV � t� � QT

CRVAItit� �����

i�AT e�
dq�AT

Ce� t�

dt
� jL� jV � t� � ia�A

T
Ce� A

T
V e� jL� t� �����

for a suitable function ia�

Furthermore	 assumption ��b� of Theorem ��� implies by de�nition that

QT
CAIb � �� �����

i�AT e�
dq�AT

Ce� t�

dt
� jL� jV � t� � ib�A

T e� jL� �PV�CjV � t� ���
�

��



The controlling current of a CCCS can be the current of�

�� inductances	

�� resistances	

�� independent current sources	

�� VCCS	

�� a branch that forms a cutset with the elements described in ���	 ���	
��� and ����

Table ��
� CCCS � condition ��c�

for a suitable function ib�

Finally	 assumption ��c� of Theorem ��� implies that

QT
V�CQ

T
CAIc � �� �����

i�AT e�
dq�AT

Ce� t�

dt
� jL� jV � t� � ic�A

T e� jL� t� �����

for a suitable function ic�

Regarding �����	 �����	 and �����	 the assumptions imply that

QT
CRVAI i�A

T e�
dq�AT

Ce� t�

dt
� jL� jV � t� � QT

CRVAItit �����

is always ful�lled� To shorten denotations we write

i�AT e� jL� PV�CjV � t� ������

when we do not distinguish between �����	 ���
�	 and ������

The proofs of the theorems follow in the next sections�

� The di�erential index

��� De�nition of the di�erential index

The most general de�nition of the di�erential index of nonlinear DAE systems
is �cf� 
�� pp� �������

De�nition ��� The di�erential index � of the general nonlinear� su�ciently
smooth DAE

f�x�� x� t� � � �����

��



is the smallest � such that

f�x�� x� t� � ��

d

dt
f�x�� x� t� � ��

�
�
�

d�

dt�
f�x�� x� t� � �

uniquely determines the variable x� as a continuous function of �x� t��

Fortunately	 the structure of the DAEs that results from the MNA in circuit
simulation is such that it will not be necessary to derive the whole function f �
As we will see	 it su�ces to derive the explicit constraints in the index � case
and	 additionally	 the hidden constraints in the index � case�

��� The di�erential index of the DAE systems in circuit

simulation

In this section we obtain the di�erential index of the DAE system as well as
expressions for the constraints� In the following we assume that the required
smoothness is given�

Theorem ��� Consider lumped electric circuits satisfying the assumptions of
Theorem ���� Then it holds�

�� If the network contains neither L�I cutsets nor C�V loops� then the con�
ventional MNA leads to a DAE system with di�erential index�� and the
constraints are only the explicit ones�

QT
C 
ARr�A

T
Re� t� �ALjL �AV jV �AIa�cia�c�A

T e� jL� t�� � �� �����

AT
V e� v�AT

Ce� jL� t� � �� �����

�� If the network contains L�I cutsets or C�V loops� then the conventional
MNA leads to a DAE system with di�erential index��� With regard to the
constraints� we distinguish the following three possibilities�

�a� If the network does not contain an L�I cutset �but contains C�V
loops�� then the constraints are the explicit ones� namely ����� and
������ and� additionally� the hidden constraint�

�QT
V�CA

T
VH

��
� �AT

Ce� t�P
T
C

�
ACq

�

t�A
T
Ce� t� �ARr�A

T
Re� t� �ALjL

�AV jV �AI i�A
T e� jL� �PV�CjV � t�

�
� �QT

V�C

dvt
dt

� �� �����

�b� If the network does not contain C�V loops� but contains L�I cutsets�
the constraints are the explicit ones� ����� and ������ and� addition�
ally� the hidden constraint�

QT
CRV

�
ALL

���jL� t�
�
AT
Le� ��t�jL� t�

�
�AIt

dit
dt

�
� �� �����

��



�c� If the network contains L�I cutsets and C�V loops� then the MNA
leads to a DAE system with di�erential index��� In this case� the
constraints are the explicit ones� ����� and ������ and the hidden
ones ���
� and �������

Remember that the functions vt�t� and it�t� represent the function of the in�
dependent voltage sources and that the matrices H���� � H���� were de�ned in
Lemma ����

Proof� In the following we will take advantage of the fact that the analyzed
system is quasi�linear and that the matrices C�AT

Ce� t�	 L�jL� t� and G�AT
Re� t�

are positive de�nite� Our aim is to obtain a representation of de
dt
	 djL

dt
	 djV

dt
as

continuous functions of e	 jL and jV � To this purpose	 we consider the following
splittings�

de

dt
� PC

de

dt
�QCPV�C

de

dt
�QCQV�CPR�CV

de

dt
�QCRV

de

dt
�

djV
dt

� �PV�C

djV
dt

� �QV�C

djV
dt

�

First we make a general approach and afterwards we distinguish the di�erent
cases with regard to the topological properties of the network�

Step �

If we multiply equation ���
� by H��
� �AT

C � t�P
T
C and QT

C 	 respectively	 we obtain

PC
de

dt
� �H��

� �AT
Ce� t�P

T
C

�
ACq

�

t�A
T
Ce� t� �ARr�A

T
Re� t� �ALjL

�AV jV �AI i�A
T e� jL� PV�CjV � t�

�
���
�

and ������ As L�jL� t� is regular	 we obtain equations for djL
dt

directly from �����

djL
dt

� L���jL� t��A
T
Le� ��t�jL� t��� �����

Note that the arguments of the controlled sources in ���
�	 �����	 and ����� are
written in accordance with ����� � �������

Step �

Next we di�erentiate the equations ����� and �����	 i�e�	 the constraints	 and
split them in the following way�

Step �a

Using ����� we split the derivative of ����� into

�QT
V�CA

T
V PC

de

dt
� �QT

V�C

dvt
dt

and �����

�P T
V�CA

T
V �PC �QC�

de

dt
� �P T

V�C

dv�AT
Ce� jL� t�

dt
� �����

�The expressions for the explicit and the hidden constraints are of special interest with
regard to a consistent initialization �cf� ���	�

��



If we consider �����	 we can realize that PC
de
dt

can be substituted making use of
���
� to achieve the hidden constraint ������

Step �b

Using ����� we split the derivative of ����� into

QT
CRV

	
AL

djL
dt

�AIt

dit
dt



� �� ������

P T
R�CVQ

T
V�CQ

T
C

	
ARG�AT

Re� t�A
T
R

de

dt
�ARr

�

t�A
T
Re� t�

�AL

djL
dt

�AIa

dia�A
T
Ce� A

T
V e� jL� t�

dt



� � ������

and

P T
V�CQ

T
C

	
ARG�AT

Re� t�A
T
R

de

dt
�ARr

�

t�A
T
Re� t� �AL

djL
dt

�AV

djV
dt

�AIa�c

dia�c�A
T e� jL� t�

dt



� �� ������

Taking into account �����	 ������ leads to the hidden constraint ������

Step �

Finally we di�erentiate the two hidden constraints ����� and ����� obtained in
the last step�

d

dt

�
QT
CRVALL

���jL� t�
�
AT
Le� ��t�jL� t�

� �
�QT

CRVAIt

d�it
dt�

� � ������

and

d

dt

�
�QT
V�CA

T
VH

��
� �AT

Ce� t�P
T
C

�
ACq

�

t�A
T
Ce� t� �ARr�A

T
Re� t�

�ALjL �AV jV �AI i�A
T e� jL� �PV�CjV � t�

� �
� �QT

V�C

d�vt
dt�

� �� ������

Step �

Let us now take into account the di�erent topological properties of the systems
we mentioned in Theorem ����

�� If the network does not contain L�I cutsets	 then QCRV � � �cf� point �
in Theorem ����� Thus	 in this case there is no hidden constraint ������
Moreover	 as we have de

dt
� PC

de
dt

� QCPV�C
de
dt

� QCQV�CPR�CV
de
dt

then	 already Step � leads to an expression for de
dt
� If we multiply

����� by H��
� QT

CAV after substituting the expressions ���
� for PC
de
dt

and

����� for djL
dt

	 we obtain an expression for PV�C
de
dt
� Then	 substituting

PC
de
dt

� QCPV�C
de
dt

and djL
dt

into ������ and multiplying by H��
� ���	 we

obtain a representation for PR�CV
de
dt
�

Note that these transformations are reversible by multiplication by
H��

� AT
VQCH� and H����	 respectively�

�




�� If the network contains an L�I cutset	 then QCRV �� � �cf� point � in
Theorem ����� Therefore	 we consider

de

dt
� PC

de

dt
�QCPV�C

de

dt
�QCQV�CPR�CV

de

dt
�QCRV

de

dt

and observe that we obtain the needed expression for QCRV
de
dt

when mul�

tiplying ������ by H��
� ��� after substituting the expressions for PC

de
dt

�

QCPV�C
de
dt

�QCQV�CPR�CV
de
dt

and djL
dt

�

�� If the network does not contain C�V loops	 then QT
CAV has full column

rank �cf� point � in Theorem ����� Therefore	 �PV�C � I 	 and we obtain
an expression for djV

dt
when multiplying ������ by H��

� AT
VQC after sub�

stituting the obtained expressions for de
dt

and djL
dt

� This transformation is

reversible as well	 as can be seen by multiplication by H��
� QT

CAVH��
On the other hand	 as �QV�C � �	 there is no hidden constraint ������

�� If the network contains a C�V loop	 then QT
CAV does not have full column

rank �cf� point � in Theorem ����� Therefore	 �QV�C �� �	 and we obtain
an expression for �QV�C

djV
dt

from ������ by multiplication by H��
� ��� after

the substitution of de
dt
	 djL

dt
and �PV�C

djV
dt

�

Note that this is successively possible because of ����������� and that it is im�
portant to achieve �rst the complete expression for de

dt
and afterwards those for

djV
dt

	 because of the allowed controlling elements in ��c�� �

Step �

Now we analyze the possible cases�

�� If the network contains neither L�I cutsets nor controlled C�V loops	 both
equations	 ����� and �����	 do not appear	 i�e�	 we obtain a representation
for de

dt
	 djL

dt
	 djV

dt
as functions of e	 jL and jV with the expressions obtained

in Step �� Thus	 the di�erential index of the system is � and no hidden
constraints appear�

�� In the other three cases	 one more di�erentiation has to be carried out
in order to �nd explicit expressions for the derivatives� Therefore	 the
di�erential index is ��

With Step � the statements of the theorem follow immediately from Step ��
q�e�d�

Theorem ��� If the di�erential index is �� then the network contains neither
C�V loops nor L�I cutsets� If the di�erential index is �� then the network con�
tains at least a C�V loop or an L�I cutset�

Proof� Let us now suppose that the di�erential index is �� Then the hidden
constraints have to be trivial	 i�e�	 if we regard the homogeneous system	 we

�This variation of the order changes the spaces associated with the DAE�system� as will
be shown in Lemma ����

��



obtain

�QT
V�CA

T
V PC

de

dt
� �� ������

QT
CRV AL

djL
dt

� �� ����
�

Making use of the fact that AT
V and �AC � AR� AV � AL� have full row rank	 we

obtain �QV�C � � and QCRV � � �cf� � and � in Theorem ����	 i�e�	 the network
does not contain C�V loops or L�I cutsets�
If the index is supposed to be �	 then at least one constraint has to appear	
i�e�	 either �QV�C or QCRV has to be nontrivial �or both�� Again	 Theorem ���
implies that the network has to contain at least a C�V loop or an L�I cutset�

q�e�d�

Proof of Theorem ����

To conclude	 we observe that Theorem ��� holds analogously for the charge�
oriented MNA� The results obtained with the di�erential index method are
basically the same as those for the conventional MNA� To shorten denotations	
we drop the arguments of the controlled sources	 because they appear in the
same way as in the proof of Theorem ���� Analogously to Step � from the proof
of Theorem ���	 we can split ����� into

AC

dq

dt
� P T

C

�
ARr�A

T
Re� t� �ALjL �AV jV �AI i

�
� �� ������

QT
C

�
ARr�A

T
Re� t� �ALjL �AV jV �AI i

�
� �� ������

If we de�ne �QC as a projector onto kerAC 	 we can de�ne the matrix �HC� ��
AT
CAC � �QT

C
�QC 	 which is regular	 and obtain the expression

�PC
dq

dt
� � �H��

C�A
T
CP

T
C

�
ARr�A

T
Re� t� �ALjL �AV jV �AI i

�
by multiplication of ������ by �H��

C�A
T
C � Note that this transformation is re�

versible by multiplication by �H��
C�ACA

T
CAC 	 if �HC� �� ACA

T
C � QT

CQC � As

equation ������ is already an expression for d�
dt
	 the constraints are �������������

and ������� The derivatives of ������ and ������ can be splitted as follows�

�PC
dq

dt
� �PCC�AT

Ce� t�A
T
C

de

dt
� �PCq

�

t�A
T
Ce� t� � �� ������

�QC

dq

dt
� �QCC�AT

Ce� t�A
T
C

de

dt
� �QCq

�

t�A
T
Ce� t� � �� ������

d�

dt
� L�jL� t�

djL
dt

� ��t�jL� t� � �� ������

From ������ we obtain the following expression for PC
de
dt

and multiplication by

H��
� �AT

Ce� t�AC

PC
de

dt
� �H��

� �AT
Ce� t�P

T
C

�
ARr�A

T
Re� t� �ALjL �AV jV �AI i

�
�H��

� �AT
Ce� t�ACq

�

t�A
T
Ce� t��

��



Note that this holds because of

H��
� ���AC

�H��
C�A

T
CP

T
C � H��

� ���

PT
Cz 
� �

AC
�H��
C�A

T
CAC� �z 


�PC

AT
C
�H��
C� P

T
C � H��

� ���P T
C �

Inserting this into ������	 we obtain an equation for �QC
dq
dt
� On the other hand	

������ leads to the expression ����� for djL
dt

� As the constraints ������ and ������
are the same as ����� and ����� in the conventional MNA	 the expressions for
the remaining derivatives are identical� This implies that the index statements
of Theorem ����� are valid for the charge�oriented MNA	 too�

q�e�d�

Remark� Observe that only the required smoothness has to be given in each
case	 and that we can recognize the smoothness requirements directly in the
above equations� The next chapter shows how it is possible to de�ne an index
with considerably fewer smoothness assumptions on the variables and on the
input functions� This is specially relevant for circuit simulation because	 in
general	 only low smoothness is given�

� The tractability index

��� De�nition of the tractability index

The tractability index �

�	 
���� orientates on the linearization of a DAE� This
index concept requires only weak smoothness conditions� Furthermore	 solvabil�
ity and stability results exist for index���tractable and index���tractable DAEs
�see e�g� 
���	 
�����

We consider nonlinear DAEs

f�x�� x� t� � � �����

for which N �� ker f �x��x
�� x� t� is constant and f is continuously di�erentiable�

We denote A�x�� x� t� �� f �x��x
�� x� t� and B�x�� x� t� �� f �x�x

�� x� t��

De�nition ��� The DAE �
��� is called index���tractable if the matrix
A��x

�� x� t� �� A�x�� x� t� �B�x�� x� t�Q is regular for a constant projector Q onto
N �

Remarks�

�� The matrix A��x
�� x� t� is regular if and only if N � S�x�� x� t� � f�g for

S�x�� x� t� �� fz � B�x�� x� t�z � im A�x�� x� t�g�

�� The condition does not depend on the choice of the projector Q�

For a proof see e�g� 

��

De�nition ��� The DAE �
��� is called index���tractable if

�� it is not index���tractable�

��



�� N��x
�� x� t� �� kerA��x

�� x� t� is of constant rank�

�� A��x
�� x� t� �� A��x

�� x� t��B��x
�� x� t�Q��x

�� x� t� is regular for a projector
Q��x

�� x� t� onto N��x
�� x� t� and B��x

�� x� t� �� B�x�� x� t��I �Q��

Remarks�

�� The matrix A��x
�� x� t� is regular i� N��x

�� x� t� � S��x
�� x� t� � f�g for

S��x
�� x� t� �� fz � B��x

�� x� t�z � im A��x
�� x� t�g�

�� The condition does not depend on the choice of the projector Q��

For a proof see again 

��

��� The tractability index of the DAE systems in circuit

simulation

Note that the assumption N �� ker f �x��x
�� x� t� is constant is given for the quasi�

linear DAEs ���
������� �cf� ������ and �������������
For shorter expressions we drop the arguments in the following section� In order
to distinguish between constant and non�constant terms	 we will use a dot as
an argument for non�constant terms�

Theorem ��� Let the assumptions of Theorem ��� be satis�ed� Then it holds�

�� If the network contains neither L�I cutsets nor C�V loops� then the con�
ventional MNA leads to an index�� tractable DAE system�

�� If the network contains L�I cutsets or C�V loops� then the conventional
MNA leads to an index�� tractable DAE system� The canonical projector
Q���� onto N��x� t� along S� is given by�

BBBB�
H��

� 	�
AV
�QV�CH

��
� 	�
 �QT

V�CA
T
V PC

QCRV H
��
� 	�
QT

CRV AL

� PCQVX	�
QCRVH
��
� 	�
QT

CRVAL

�

� L��	�
AT
LQCRV H

��
� 	�
QT

CRV AL �

� �QV�CH
��
� 	�
 �QT

V�CA
T
V PC � AT

V Y 	�
QCRVH
��
� 	�
QT

CRV AL �

�
CCCCA�����

where the matrices X��� and Y ��� are chosen in such a way that

AIb�c

dib�c���

de
QC � ACC���AT

CQVX��� �AV A
T
V Y ����

Note	 the matrices H����	 H����	 and H���� were de�ned in Lemma ����

Remark� The existence of such matrices X��� and Y ��� is satis�ed since the

relation QT
V�CQ

T
CAIb�c

dib�c	�

de

� � is true �cf� ����� and �������

Before we will prove this theorem	 we want to consider the special structure of
A���	 B���	 Q���	 S���	 A����	 B����	 Q����	 and S���� in case of circuit simulation�
Writing the system ���
������� as a nonlinear DAE ����� with A�x�� x� t� ��
f �x��x

�� x� t� and B�x�� x� t� �� f �x�x
�� x� t�	 we obtain that

A��� �

�
ACC	�
AT

C � �
� L	�
 �
� � �

�
�����

��



and

B��� �

�
AC

�C	�
AT
C �ARG	�
AT

R �AI
di���
de

AL � AI
di���
djL

AV � AI
di���
djV

�AT
L

�L	�
 �

AT
V �

dv���
de

�
dv���
djL

�

�
�����

with

�C� �u� u� t� �
d

du
C�u� t� �u�

d

du
q�t�u� t�

and

�L��jL� jL� t� �
d

djL
L�jL� t��jL �

d

djL
��t�jL� t��

Let us remark here that A��� represents the leading coe�cient matrix� It has
a di�erent meaning than the incidence matrix A � �AC � AL� AR� AV � AI�� We
will not use the notation A any longer� Therefore	 this denotation should be
acceptable�

Since C��� is positive de�nite	 we may conclude that

kerA��� � kerAT
C � f�g � R

nV �����

and

im A��� � im AC � R
nL � f�g� ���
�

Here	 nV describes the number of voltage sources and nL describes the number
of inductances in the network� Note	 the null�space of A��� as well as the image�
space of A��� are constant in any case� The null�space of A��� describes the non�
dynamic components of the circuit� For further considerations let us introduce
a projector Q onto kerA��� as

Q �

�
�QC � �

� � �
� � I

�
A �

For the de�nition of QC see page 
� The space S��� � fz � B���z � im A���g
describes all solution components for which we do not �nd an algebraic repre�
sentation� Regarding ���
� it is given by

S��� � fz � �AT
V �

dv���

de
�ze �

dv���

djL
zL � ��

�ARG���AT
R �AI

di���

de
�ze � �AL �AI

di���

djL
�zL � �AV �AI

di���

djV
�zV � im ACg�

Consider the space N � S���� It represents all components that are determined
neither by a di�erential equation nor by an algebraic equation� If N � S��� ��
f�g	 then these components can be determined only by inherent di�erentiation
instead of integration� The next lemma provides a possibility to determine from
the network topology whether a di�erentiation problem is involved in the DAE
��� obtained applying MNA� This has a big in�uence onto numerical solving
since di�erentiation problems are ill�posed in the sense of Hadamard	 i�e�	 small
perturbations in the input data can provide arbitrarily large perturbations in
the output data�

��



Lemma ��� Let the conditions of Theorem ��� be satis�ed� Then it holds that

N � S��� � im

�
� QCRV � �

� � �
� �PV�CZ���QCRV � �QV�C

�
A

is true for a matrix Z��� satisfying QT
CAIc

dic	�

de

� QT
CAV Z����

Remarks�

�� The existence of such a matrix Z��� is guaranteed by condition ��c� of
Theorem ��� �cf� �������

�� Regarding the de�nitions of QCRV and �QV�C on page 
 as well as Theo�
rem ���	 Lemma ��� implies that the network equations involve a di�eren�
tiation problem if and only if the network contains a C�V loop or an L�I
cutset�

�� If all controlled current sources satisfy the conditions ��a� or ��b� of The�
orem ���	 then the relation

N � S � im QCRV � f�g � im �QV�C

is true�

�� The di�erent structure of the general case and the one discussed in the
latter point corresponds to the alteration of the order in which we solve
the system for the di�erential index �cf� footnote ��� At this point it
is recognizable that N � S��� represents those components for which the
di�erential index de�nition requires two di�erentiations to obtain the rep�
resentation of their derivative as a continuous function of the variables�

Proof� Firstly	 we show that the relation �	 is true� Assuming z � N � S���
we know that ze � QCze	 zL � � and z � S���� Using �����	 �����	 �����	 and
����� we obtain

AT
V ze � �� �����

QT
CARG���AT

RQCze �QT
CAIc

dic���

de
ze �QT

CAV zV � �� �����

Then	 equation ����� provides additionally that QT
V�CQ

T
CAIc

dic	�

de

ze � � �cf�
������� Multiplying ����� by QT

V�C and regarding AT
VQCze � � we obtain

QT
V�CQ

T
CARG���AT

RQCQV�Cze � ��

Since G��� is positive de�nite	 this implies AT
RQCQV�Cze � �	 i�e�	 AT

Rze � �
and so ze � im QCRV � Now the relation ����� implies that

QT
CAV zV � �QT

CAIc

dic���

de
� �QT

CAV Z���ze � �QT
CAV Z���QCRV ze�

i�e�	

zV � � �PV�CZ���QCRV ze � �QV�CzV �

��



Secondly	 we show that the relation �
 is satis�ed� Assume that ze � QCRV ze
and zL � �� Furthermore	 we have

zV � �QV�CzV � �PV�CZ���ze� �����

Then z � N � kerA��� holds trivially and

�AT
V �

dv���

de
�ze �

dv���

djL
zL �

dv���

de
QCRV ze � � ������

is ful�lled� Using ����� we obtain additionally that

QT
C 
�ARG���AT

R �AI

di���

de
�ze � �AL �AI

di���

djL
�zL � �AV �AI

di���

djV
�zV �

� QT
C 
AIc

dic���

de
ze �AV zV � � QT

CAV Z���ze �QT
CAV zV � ��

q�e�d�

Corollary ��	 Let the conditions of Theorem ��� be satis�ed� The network
equation system obtained applying MNA is index���tractable if and only if the
network contains neither a C�V loop nor an L�I cutset�

Let us now study the higher index case� For that we investigate A���� and B����
de�ned on page ���

A���� �

�
�ACC���AT

C �ARG���AT
RQC �AI

di	�

de

QC � AV �AI
di	�

djV

�AT
LQC L��� �

AT
VQC � �

�
A

B���� �

�
B�AC

�C���AT
C �ARG���AT

RPC �AI
di	�

de

PC AL �AI
di	�

djL

�

�AT
LPC

�L��� �

AT
V PC �

dv	�

de

PC � �

�
CA

Lemma ��
 Let the conditions of Theorem ��� be satis�ed� Then the relation

im A���� � ker

�
�QT

CRV � �
� � �
� � �QT

V�C

�
A

is satis�ed�

Proof� Firstly	 im A���� 	 kerQT
CRV �R

nL �ker �QT
V�C holds trivially	 because

of

QT
CRVAI

di���

de
� � and QT

CRVAI

di���

djV
� �

for all admitted controlled current sources �see �����	 �����	 and �������
Secondly	 we assume that z � kerQT

CRV � R
nL � ker �QT

V�C 	 i�e�	 Q
T
CRV z� � �

and �QT
V�Cz� � �� Then	 there is an �� such that

z� � AT
VQC��� ������

��



Since QT
CRVAI � � �see �����	 �����	 and ������	 the relation

z� �ARG���AT
RQCPV�C�� �AI

di���

de
QCPV�C�� � kerQT

CRV

holds	 i�e�	 there are ��	 �� and �� such that

z� �ARG���AT
RQCPV�C�� �AI

di���

de
QCPV�C��

� ACC���AT
C�� �ARG���AT

RQCQV�C�� �AV ��� ������

This is a simple conclusion of the fact that

kerQT
CRV � im �ACC���AT

C � ARG���AT
RQCQV�C � AV A

T
V ��

since C��� and G��� are positive de�nite� Regarding �����	 ���
�	 and ����� we
obtain that

AI

di���

djV
� AIb

dib���

djV
�PV�C � ������

Considering ����� we see that

dia���

de
QC �

dia�A
T
Ce� A

T
V e� jL� t�

de
QC �

dia���

de
QCPV�C � ������

Regarding ����� we �nd �� and �� such that

AIc

dic���

de
QCQV�C�� � ACC���AT

C�� �AV ��� ������

Using ����� we �nd �� and �� such that

AIb

dib���

de
QCQV�C�� � ACC���AT

C��� ����
�

AIb

dib���

djV
��� � ��� � ACC���AT

C��� ������

Choosing � �� PC��� � �� � �� � ��� � QCPV�C�� � QCQV�C��	 � ��
L������z� �AT

LQC��	 � �� �� � �� and regarding �����������
�	 we obtain that

z � A����

�
���
�

�
A � im A�����

q�e�d�

Considering ����� and Lemma ��
 we obtain a simple description of the constant
space S��

S� � ker �QT
V�CA

T
V PC � kerQT

CRVAL � R
nV � ������

For a de�nition of S� see page ���

��



Lemma ��� Let the conditions of Theorem ��� be satis�ed� Then� the canonical
projector onto N���� � kerA���� along S� is given by �
����

Proof�

�� Q���� is a projector	 since

�QV�CH
��
� ��� � H��

� ��� �QT
V�C �

H��
� ��� �QT

V�CA
T
VH

��
� ���AV

�QV�C � �QV�C �

PCQCRV � ��

QCRVH
��
� ��� � H��

� ���QT
CRV � and

H��
� ���QT

CRV ALL
�����AT

LQCRV � QCRV �

These relations are simple conclusions of the de�nitions of H����	 H����	
and H�����

�� We show that im Q���� 	 kerA����� Regarding

ACC���AT
CH

��
� ��� � P T

C �

QCH
��
� ��� � H��

� ���QT
C �

di���

djV
�

dib���

djV
�PV�C �

this holds trivially�

�� We show that kerA���� 	 im Q����� Assume z � kerA����� Then	

ACC���AT
Cze �ARG���AT

RQCze �AI

di���

de
QCze

�AV zV �AI

di���

djV
zV � �� ������

�AT
LQCze � L���zL � �� ������

AT
VQCze � �� ������

Considering ������ we see that

ze � QV�Cze� ������

Next we have �cf� �����	 �����	 and ������

AIa

dia���

de
QCze � �� AIa

dia���

djV
zV � �� ������

QT
CAIb

dib���

de
QCze � �� QT

CAIb

dib���

djV
zV � �� ������

QT
V�CQ

T
CAIc

dic���

de
QCze � �� QT

V�CQ
T
CAIc

dic���

djV
zV � �� ������

Multiplying ������ by QT
V�CQ

T
C yields

QT
V�CQ

T
CARG���AT

RQCQV�Cze � ��

��



Since G��� is positive de�nite and ������ is valid	 it holds that

QCze � QCRV ze� ����
�

Relation ������ leads to

zL � L�����AT
LQCze � L�����AT

LQCRV ze� ������

Multiplying ������ by QT
C yields now

QT
CAV zV �QT

CAIc

dic���

de
QCze � ��

If we regard �������������	 then the relation ����� reduces to

ACC���AT
Cze �AIb�c

dib�c���

de
QCze �AV zV � �� ������

Since AIb�c
dib�c	�

de

QC � ACC���AT
CQVX��� �AV A

T
V Y ���	 we obtain that

QT
CAIb�c

dib�c���

de
� QT

CAV A
T
V Y ����

Multiplying ������ by QT
C we conclude that

QT
CAV �A

T
V Y ���QCze � zV � � ��

i�e�	

AT
V Y ���QCze � zV � �QV�C�A

T
V Y ���QCze � zV �� ������

From ������ we obtain

ACC���AT
Cze �ACC���AT

CQVX���QCze

�AV A
T
V Y ���QCze �AV zV � ��

i�e�	

PC�ze �QVX���QCze� � �H��
� ���AV �zV �AT

V Y ���QCze�

� �H��
� ���AV

�QV�C�zV �AT
V Y ���QCze�

because of ������� Thus

z � Q����

�
�ze �QVX���QCze
L�����AT

LQCRV ze
�

�
A � im Q�����

�� The relation S� 	 kerQ���� is a simple conclusion of �������

�� We show that kerQ���� 	 S�� Assume Q����z � �� Then

L��AT
LQCRVH

��
� ���QT

CRV ALzL � � ������

and

�QV�CH
��
� ��� �QT

V�CA
T
V PCze � �� ������

Multiplying ������ by QT
CRVAL yields QT

CRVALzL � �� Regarding

�QV�CH
��
� ��� � H��

� ��� �QT
V�C

we conclude from ������ that �QT
V�CA

T
V PCze � �� Considering ������ the

assertion is proved�

�




q�e�d

Remark� Lemma ��� and Lemma ��� now imply Theorem ��� for the tractabil�
ity index�

The validity of Theorem ��� follows by similar considerations as above� More
precisely	 it can be shown that the following relations are satis�ed for the charge�
oriented MNA�

�i� The analogue to Lemma ��� reads

N � S��� � im

�
BBBB�
� � � � �
� � � � �
� � QCRV � �
� � � � �
� � � �PV�CZ���QCRV � �QV�C

�
CCCCA

for Z��� chosen as in Lemma ����

�ii� Lemma ��
 reads

im A���� � ker

�
B�
QT
CRV � � � QT

CRV ALL
��	�


� � � � �

� � �QT
V�C

�QT
V�CA

T
VH

��
� 	�
AC �

� � � � �
� � � � �

�
CA

�iii� Equation ������ corresponds to

S���� � ker �QT
V�CA

T
VH

��
� ���AC � kerQT

CRV ALL
������ R

ne � R
nL � R

nV �

�iv� Theorem ��� holds analogously for the charge�oriented MNA	 and the
canonical projector Q���� onto N���� along S���� is given by

�
BBBBBBBBBBBBBBB�

�PCA
T
C
�H��
� AV

�QV�C �

H
��
� 	�
 �QT

V�CA
T
VH

��
� 	�
AC

� �PCC	�
AT
CQV X	�
QCRV �

H��
� 	�
QT

CRV ALL
��	�


� � �

� AT
LQCRVH

��
� 	�
QT

CRV ALL
��	�
 � � �

� QCRVH
��
� 	�
QT

CRV ALL
��	�
 � � �

� � � � �

� �QV�CH
��
� 	�
 �QT

V�CA
T
VH

��
� 	�
AC � AT

V Y 	�
QCRVH
��
� 	�
QT

CRV ALL
��	�
 � � �

�
CCCCCCCCCCCCCCCA

where �H� �� ACA
T
C �QT

CQC and the matrices X��� and Y ��� are chosen
as before�
Note that if no controlled current sources that ful�ll only the conditions
��b� or ��c� of Theorem ��� appear	 then N� is constant�

� Conclusion

The presented results provide the possibility to obtain information about the
index of the systems ���
������� and ������������ by topological analysis of the

��



network� The only assumption made on the parameters de�ning its elements is
the exposed positive de�niteness�
The class of controlled sources described in this paper is precisely the one that
does not seriously a�ect the structure of the spaces associated with the DAE�
systems� Basically�	 these spaces are the same as for networks without controlled
sources� If no assumptions on the controlled sources are made	 then di�erent
problems arise�
On the one hand	 if arbitrary controlling elements for the controlling sources
are considered	 then the index of the network equations may depend on the
parameters de�ning them �cf� 
�����
On the other hand	 if controlled sources are allowed to form part of L�I�cutsets of
C�V�loops	 then it is possible to be confronted with higher index �	�� problems
�cf� 
����
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Notations

MNA Modi�ed Nodal Analysis�

V CV S voltage�controlled voltage sources�

CCV S current�controlled voltage sources�

V CCS voltage�controlled current sources�

CCCS current�controlled current sources�

L�I cutset cutset consisting of inductances and�or current sources only�

C�V loop loop consisting of capacitances and voltage sources only�

A � �AC � AL� AR� AV � AI� �reduced� incidence matrix describing

the branche�node relations�

AC capacitive branches�

AL inductive branches�

AR resistive branches�

AV branches of voltage sources�

AI branches of current sources�

QC projector onto kerAT
C �

QV�C projector onto kerAT
VQC �

QR�CV projector onto kerAT
RQCQV�C �

QV projector onto kerAT
V �

�QC projector onto kerAC �

�QV�C projector onto kerQT
CAV �

QCRV �� QCQV�CQR�CV �

C�u� t� ��
�q�u� t�

�u
� q�t�u� t� ��

�q�u� t�

�t
�

L�j� t� ��
���j� t�

�j
� ��t�j� t� ��

���j� t�

�t
�

G�u� t� ��
�r�u� t�

�u
� r�t�u� t� ��

�r�u� t�

�t
�

H��A
T
Ce� t� �� ACC�AT

Ce� t�A
T
C �QT

CQC �

H� �� QT
CAV A

T
VQC �QT

V�CQV�C �

H� �� AT
VQCQ

T
CAV � �QT

V�C
�QV�C �

H��A
T
Re� �� QT

V�CQ
T
CARG�AT

Re� t�A
T
RQCQV�C �QT

R�CVQR�CV �

H��jL� t� �� QT
CRVALL

���jL� t�A
T
LQCRV � P T

CRV PCRV �

H��A
T
Ce� t� �� �QT

V�CA
T
VH

��
� �AT

Ce� t�AV
�QV�C � �P T

V�C
�PV�C �

�HC� �� AT
CAC � �QT

C
�QC �

�HC� �� �H� �� ACA
T
C �QT

CQC �

��


