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(Received December 1997; revised July 1998) 

ABSTRACT Structural decomposition techniques are widely used to break down the 

growth in some variable into the changes in its determinants. In this paper, we discuss the 

problems caused by the existence of a multitude of equivalent decomposition forms which 

are used to measure the contribution of a specijic determinant. Although it is well known 

that structural decompositions are not unique, the extent of the problem and its consequences 

seem to have been largely neglected. In an empirical analysis for The Netherlands between 

1986 and 1992, results are calculated for 24 equivalent decomposition forms. The outcomes 

exhibit a large degree of variability across the different forms. We also examine the two 

approaches that have been used predominantly in the literature. The average of the two 

so-called polar decompositions appears to be remarkably close to the average of the full set 

of 24 decompositions. The approximate decomposition with mid-point weights appears to 

be almost exact. Although this last alternative might seem a solution to the problem of the 

marked sensitivity, in fact, it only conceals the problem. 

KEYWORDS: Decomposition techniques, input-output framework, sensitivity analysis 

1. Introduction 

Structural decomposition techniques have become a major tool for disentangling 
the growth in some variable over time, separating the changes in the variable's 
constituent parts (see Rose & Casler, 1996, for a detailed review of the literature). 
Within an input-output (10) framework, the analysis of changes in the structure 
of production has a long tradition, dating back to Leontief (1953) (see, for example, 
Chenery et al., 1962; Vaccara & Simon, 1968; Carter, 1970; Leontief & Ford, 
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308 E. Dietzenbacher @ B. Los 

1972; Staglin & Wessels, 1972). In the 1980s, this type of analysis witnessed a 
remarkable revival, with seminal contributions by Wolff (1985), Feldman et al. 

(1987) and Skolka (1989). Structural decomposition analysis is defined 'as a 
method of distinguishing major shifts within an economy by means of comparative 

static changes in key sets of parameters' (Skolka, 1989, p. 46).' 

Using structural decomposition techniques allows for the quantification of the 

underlying sources of change in a wide variety of variables. Examples are output 
(Fujimagari, 1989), value added (Oosterhaven et al., 1995), energy use (Lin & 

Polenske, 1995), labour requirements (Forssell, 1990), volume of imports (Kane- 

mitsu & Ohnishi, 1989), output of services industries (Barker, 1990) and total input 
requirements (Afrasiabi & Casler, 1991), all at the sectoral level. 

The methodology of structural decomposition analysis is similar to that of 

growth accounting, where the objective is to break down the growth rate of aggregate 

output into contributions from the growth of input and the growth of technology 

(see, for example, Solow, 1957; Kendrick, 196 1; Denison, 1974, 1985). Contribu- 

tions that combine I 0  elements with a growth accounting set-up include Wolff 
(1985, 1994), Galatin (1988), Fontela (1989) and Wolff and Howell (1989), who 

examine the decomposition of total factor productivity growth.' Other areas where 

similar techniques are used, and to which our results carry over, include demo- 
graphic accounting and shift and share analysis (see, for example, Oosterhaven, 

1981). 
To sketch the typical result in an empirical decomposition analysis, consider 

the following case. Let the change in sectoral output levels be decomposed into 

several sources, one of which is the change in the matrix of technical coefficients. 

A characteristic outcome would be that, for sector i, the contribution of technical 

changes to the output change might be 60%. A major problem of structural 
decomposition techniques, however, is that the decomposition is not unique. This 
problem has been recognized and analyzed in detail for a decomposition with only 

two  determinant^.^ For this specific case, the problem has been 'solved' on an 

ad hoc basis, by taking the average. This 'solution', which has certain intuitively 
appealing properties, is somewhat misleading, however, in the sense that it only 

applies to the simplest case of two determinants. As a consequence, for the 
economically more meaningful decompositions with a larger number of determi- 

nants, the non-uniqueness problem, its extent and its implications seem to have 

been largely neglected. 

In the next section, we show that, when the number of determinants or sources 

is n, the number of equivalent decomposition forms is n! In Section 3, we present 

the results of an empirical analysis in which n = 4. It turns out that the outcomes 

are very sensitive to the specific decomposition. For the previously mentioned 
example of a 60% contribution of technical changes, we would find outcomes 
ranging from 50% to 70%, for example. Although this range may not seem to be 

extremely large, it seriously affects the economic interpretation of the results. If, 

on the one hand, the contribution of technical changes were 50%, then the 

contribution of all other sources would also be 50%. The contribution of technical 

changes is then judged as being equally important to the contributions of all other 

sources. If, on the other hand, the contribution of technical changes were 70%, 

then the contribution of the other sources would be only 30%. In other words, the 

contribution of technical changes is twice as great as the contribution of all other 

sources. All this implies that measuring the contribution of factors such as technical 

changes crucially depends on the way that this contribution is measured. A large 
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Structural Decomposition Techniques 309 

sensitivity causes a serious problem, since there is no reason why one decomposition 

should be preferred to the others on theoretical grounds. Therefore, our sensitivity 

results cast doubts on the sense of structural decomposition techniques for the 

purpose of splitting the growth in some variable into its determinants. 

Section 4 discusses the two ad hoc 'solutions' that have been applied widely. 

First, we empirically compare the average of the two so-called polar decompositions 

with the average of the full set of decompositions. The outcomes appear to be 

remarkably close to each other. Second, we examine the 'solution' of using mid- 

point weights, which is a special case of the approximate decompositions. The 
decompositions in Sections 2 and 3 are all exact, in the sense that the sum of the 

contributions equals 100%. Approximate decompositions are based on the discrete 
approximation of the unique decomposition in continuous time, and the contribu- 

tions do not generally sum to 100%. The empirical results indicate that the errors 

may become very small, however. Clearly, this does not imply a solution to 

the non-uniqueness problem; it only adds another possibility to the n! exact 

decomposition forms. 

2. The Methodology 

The problem that is addressed in this paper is caused by the existence of a 
multitude of equivalent decompositon forms. In order to sketch the problem, 

consider the simplest case first. In other words, let y = xz, where y, x and z are 

scalars, vectors andlor matrices. The change in y between two points in time, i.e. 

Ay = y(1) - y(O), may be decomposed as follows: 

In this simple case, there are two alternative ways of additively decomposing the 

change in y into the changes in its determinants. The decompositions in equations 

(1) and (2) are equivalent and there is no reason why one decomposition should 
be preferred in favour of the other. For both equations (1) and (2), the components 

are typically described as 'the contribution of the change in x (respectively z) to 

the change in y'. A common 'solution' to the existence of several equivalent 

decomposition forms is to take the mean of the expressions. This yields 

where, for example z(f) = iz(0) + $ ~ ( 1 ) . ~  Note that this 'solution' is very attractive. 

It is exact (i.e. the contributions on the right-hand side sum to Ay) and it is 
intuitively appealing, in the sense that both A terms have the same type of weights 

and, moreover, have mid-point weights. Unfortunately, this 'solution' is only 

possible in the simplest case with two determinants. 

In the general case, we have 

In deriving the additive decomposition of Ay, we may start at one end, which yields 



D
o
w

n
lo

a
d
e
d
 B

y
: 
[U

n
iv

e
rs

it
y
 o

f 
G

ro
n
in

g
e
n
] 
A

t:
 1

0
:2

3
 2

6
 S

e
p
te

m
b
e
r 

2
0
0
7
 

3 1 0 E. Dietzen bacher G. B. Los 

Starting at the other end yields 

Although equations (5) and (6) are the most convenient expressions from a 

notational point of view, there is no reason why we should start at one end or at 
the other. All equivalent decomposition forms are obtained by applying equation 

(5) to each permutation of the set (1,. . . , n) of indices, and rewriting the n additive 
components in their original ordering as in equation (4). Thus, the number of 

different decomposition forms equals the number of permutations, which is (n!) .5 

Equations (5) and (6) are termed 'polar decompositions', because they work 
through the original ordering (1,. . . , n) from left to right and from right to left. 

It is well known that structural decompositions are non-unique and 'as a result, 

measures for various sources of change are not unique' (Rose & Casler, 1996, 

p. 47). It is somewhat surprising, therefore, that no attention has been paid to 

investigating the seriousness of this con~equence.~ Instead, most authors adopt the 
ad hoe 'solution' of either taking the average of the two polar decompositions in 

equations (5) and (6), or using equation (5) with mid-point weights. Recall that, 
in the simplest case of two determinants, this approach yields the same result (see 

equation (3)). It should be emphasized that taking the average of the two polar 

decompositions in the general case is still exact but not as intuitively appealing as 

the 'solution' in equation (3). The A terms have a complex weighting structure; 
moreover, they do not have the same type of weights. The ad hoc 'solution' of 

applying mid-point weights yields a decomposition that is not exact. 
In the next section, we analyze the variability of the outcomes obtained from 

the n! different decomposition forms. Using an I 0  framework, we consider the 
sectoral changes in the labour costs and in the imports. Based on a 214-sector I 0  

table, the model is 

with 

the 214 x 1 vector of sectoral labour costs (wages and salaries, including 
employers' contribution) 

the 214 x 1 vector of sectoral imports 

the 214 x 1 vector of sectoral output levels 
the 214 x 1 vector of sectoral labour costs per unit of this sector's output 

(in money terms)7 

the 214 x 1 vector of sectoral imports per unit of output 

the 2 14 x 2 14 matrix of technical coefficients aG, measuring the input from 

sector i in sector j, per unit of sector j's output 
the 214 x 5 matrix of bridge coefficients b,, measuring the fraction of the 

final demand in category k that is spent on products from sector i, 

describing the final demand mix or distribution 
the 5 x 1 vector with total final demands in each of the five categories, i.e. 

private consumption, government consumption, exports, investments, and 

imputed bank services 
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Structural Decomposition Techniques 3 1 1 

The solution of the model, which is the basis for the decompositions, is given as 

where L =  (I-A)-'  denotes the Leontief inverse, describing the total input 
requirements. According to equation (lo), the change Aw in sectoral labour costs 

may be decomposed into four components: 

(1) the effects of the change Aii in the labour costs per unit; 

(2) the effects of technical changes AL;' 

(3) the effects of changes AB in the final demand mix; 

(4) the effects of the changes Af in the final demand  level^.^ 

3. Sensitivity Analysis 

Based on equations (10) and (1 I), the decompositions for Aw and Am were 

applied to the 214-sector I 0  tables in current prices of The Netherlands, for the 
years 1986 and 1992." Equations (10) and (1 1) include four explanatory terms, 

so that the number of different decomposition forms is 24. The two polar forms 

were derived in equations (5) and (6) for the general case. For the present 

application, the two polar decompositions of Aw, for example, read as follows: 

+ ii(86)L(86) (AB)f(92) + il(86)L(86)B(86) (Af) 

= (AB)L(86)B(86)f(86) + ii(92) (AL)B(86)f(86) 
(14) 

+ ii(92)L(92) (AB)f(86) + ii(92)L(92)B(92) (Af) 

The four components on the right-hand side of equations (13) and (14) describe 

the contribution to Aw of the effects of changes in the labour costs per unit, 
technical changes, changes in the final demand mix and changes in the final 

demand levels. In the tables, these components are abbreviated and denoted as the 
Aii effects, the AL effects, the AB effects and the Af effects. 

3.1. The Variabiliy of Outcomes 

Table 1 presents the contributions of the four effects for the 10 'most important' 

sectors. In other words, we have selected the five sectors with the largest growth 

percentages in labour costs and the five sectors with the largest absolute increases 

in labour costs. For example, for sector 156, the smallest AG effect found in the 

24 different decompositions is 8.2 (million Dutch guilders); the largest Ail effect 
is 21.4. The next column gives the range ri as the difference between maxi and 

mini. The average Aii effect over the 24 decompositions is reported in the column 

under p, as 14.4." The standard deviation is given in the column under oj as 5.2. 

The last two columns relate the range and the standard deviation to the mean, 
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3 12 E. Dietzenbacher 6Y B. Los 

Table 1. Results for the 10 'most important' sectors 

Sectora min, maxi r, Pa 'J, r r /d  'Ji/pp 

Sectors with the largest percentage growth 

i =  156 w,(86) = 539, w,(92) = 1436, Aw, = 897, A% = 166.4' 
AQ 8.2 21.4 13.3 14.4 5.2 
AL 392.5 517.3 124.8 454.2 58.1 
AB 176.7 238.8 62.0 207.2 27.5 
A f 142.9 301.1 158.2 221.2 67.6 

i =  153 w,(86) = 1245, w,(92) = 2842, Aw, = 1597, A% = 128.3 
AQ 119.1 248.1 129.0 180.4 50.7 
AL 584.4 822.9 238.5 700.0 98.0 
AB 209.2 301.7 92.5 253.4 34.3 
A f 333.2 599.3 266.0 463.3 108.6 

i=205 ~ , ( 8 6 ) = 7 7 , ~ , ( 9 2 ) = 1 7 2 , A w , = 9 5 , A % = 1 2 3 . 4  

AQ 1.3 2.8 1.5 2.0 0.6 
AL 0 0 0 0 0 
AB 50.8 68.4 17.6 59.6 8.7 
A f 24.9 42.1 17.1 33.5 8.6 

i =  127 w,(86) = 189, w,(92) = 416, Aw, = 227, A% = 120.1 
AQ 16.1 32.6 16.5 23.9 6.6 
AL 19.0 27.4 8.4 23.1 3.5 
AB 83.1 120.3 37.1 101.3 16.4 
A f 59.3 99.3 40.0 78.8 17.0 

i=  157 w,(86) = 1032, w,(92) = 2249, Aw, = 1217, A% = 117.9 
AQ 5.0 10.8 5.8 7.8 2.2 
AL 451.6 578.2 126.6 514.6 62.3 
AB 285.0 355.7 70.7 320.1 34.1 
A f 279.2 470.0 190.8 374.5 80.8 

Sectors with the largest absolute growth 
i=121 w,(86)=13212,w, (92)=20712,Awi=7500,A%=56.8  

AQ 1902.6 2607.2 704.6 2249.5 310.2 
AL 387.9 614.1 226.2 492.8 70.9 
AB 597.3 911.5 314.2 745.0 107.0 
A f 3606.2 4428.4 822.2 4012.7 341.4 

i=  123 wi(86) = 7726, w,(92) = 12 225, Aw, = 4499, A% = 58.2 
AQ 1235.6 1685.6 449.9 1458.5 215.1 
AL 6.6 9.2 2.6 7.8 0.7 
AB 244.9 375.7 130.7 308.1 55.4 
A f 2482.3 2971.0 488.7 2724.6 224.3 

i = 146 w,(86) = 5385, wi(92) = 8232, Aw, = 2847, A% = 52.9 
AQ 363.0 519.9 156.9 439.8 66.8 
AL 291.9 405.5 113.7 346.3 42.2 
AB 300.5 425.0 124.5 360.3 47.3 
A f 1564.6 1838.9 274.3 1700.6 104.9 

i=  171 w,(86) = 8221, w,(92) = 10 863, Awi= 2642, A% = 32.1 
AQ 1169.0 1525.4 356.4 1341.4 130.0 
AL - 7.9 - 5.6 2.3 - 6.7 0.7 
AB - 714.4 - 505.8 208.6 - 607.2 87.5 
A f 1723.4 2117.1 393.7 1914.4 131.1 

i =  162 w,(86) = 6933, w,(92) = 9417, Aw, = 2484, A% = 35.8 
AQ 654.2 856.1 201.9 751.9 82.0 
AL -279.1 - 177.7 101.4 -226.1 40.2 
AB 205.3 306.7 101.5 252.3 30.1 
A f 1578.1 1843.2 265.2 1706.0 86.1 

"The sectors are as follows: 156, economic advising agencies; 153, computer services; 205, gambling 
and betting services; 127, beverage serving services (no accommodation); 157, other business services; 
121, wholesale trade; 123, retail trade; 146, railways, communication services, taxi and coach enterprises; 
17 1, special (primary) education (for handicapped children); 162, local government. 

bAs a percentage, i.e. 100(r,/pi) and 100(u,/p,). 
'The percentage growth, i.e. A% = 100[Awilwi(86)]. 
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Structural Decomposition Techniques 3 13 

Table 2. Percentage contributions for sector 127 

Labour costs Ati AL AB A f 

min 7 8 37 26 

max 14 12 53 44 

(*) 9 12 53 26 

(**IU 1 1  9 37 44 

"Because of rounding, the numbers do not sum to 100. 

both as a percentage. For example, for sector 156, the range and the standard 

deviation amount to 92.2% and 36.3% of the average effect pi. 

The results indicate that there is substantial variation in the outcomes of the 

24 different decomposition forms. For the upper part of Table 1, with the sectors 
that have the largest percentage growth, the Aii effect and the A f  effect show the 

greatest variability. On average, the ratio between the range and the mean is 50% 
for the effects in the upper part. For the results in Table 1, as well as for most of 

the other sectoral calculations that we have carried out, the following 'rule of 

thumb' seems to apply. Roughly speaking, a value of 100(ril,ui) that equals 50 
implies that the minimum observation is 0 . 7 5 , ~ ~  and the maximum observation is 

1 .25pi. The average ri/pi ratio in the lower part of Table 1, with sectors that grew 

the most in an absolute sense, is lower, i.e. 31%. In part, this is caused by the 
sometimes exceptionally large values for pi. Similar results were also found for the 

decomposition of the growth A m  in the sectoral imports. 

To indicate the implications for the economic interpretation of the results, we 
have taken sector 127 (beverage serving services) as an example. Table 2 reports 

the percentage contributions of each of the four effects to the change in this sector's 

labour costs. The rows min and max give the smallest and largest contributions of 
the Aii effect, for example, that was found. The numbers are readily obtained from 

Table 1. At first sight, the differences do not seem to be dramatically large; the 
range for the A B  effect is 16%, while it is 18% for the A f  effect. It may be expected, 

however, that the one effect takes its maximum position when the other effect is at 
its minimum. 

This is precisely what happens, as reflected by the rows (*) and (**). These 

rows present the results for two of the 24 decompositions. In the case of (*), one 
would have concluded that the A B  effect was twice as large as the A f  effect. If (**) 

were used, however, the the A B  effect would have been reported to be clearly 

smaller than the A f  effect. 

Table 3 summarizes the variability of the outcomes of the 24 different decom- 

position forms for all sectors. Consider, for example, the decomposition of the 
change in the sectoral labour costs. For each sector i ( = 1, . . . ,214), the Aii effect 

was calculated for all 24 decomposition forms, yielding 1 OO(ri/pi) and 1 OO(oilpi). 

The figures in Table 3 report the average and the standard deviation, taken over 

all the sectors, of the absolute values.I2 

The results in Table 3 clearly show that the outcomes of the 24 different 
decomposition forms exhibit considerable variability.13 The average variation 

coefficient (ciilpi) for the A L  snd the A B  effect is between 20% and 25% for the 

decomposition of both the sectoral labour costs and the sectoral imports. Note also 

that there is considerable variability in the variation coefficients across the sectors, 

as reflected by the size of the standard deviations. This holds, in particular, for the 

variation coefficients of the A B  effect. A large standard deviation over the sectors 
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3 1 4 E. Dietzen bacher & B. Los 

Table 3. Average variability 

l O O ( r , l ~ ~ )  1 OO(ai/rJ 

Standard Standard 

Average deviation Average deviation 

Labour costs 

Aii 42.7 16.2 15.7 6.0 

A L  54.9 42.4 20.2 16.9 

A B  60.4 102.3 23.4 43.9 

A f 31.0 21.5 10.7 7.7 

Imports 

A+ 42.7 16.2 15.7 6.0 

A L  61.5 48.4 21.7 19.5 

A B  67.1 97.1 24.8 42.1 

A f 37.6 33.6 14.1 14.3 

indicates that quite a few sectors have a variation coefficient that is almost zero, 

while there are also several sectors with a very large variation coefficient. Hence, 

for some sectors, the AB effect hardly varies between the 24 different decomposition 
forms; in contrast, for other sectors, the variation is extremely large. 

Since the application of the structural decomposition technique induces a 

multitude of different computational forms, and since all these forms are equivalent, 

in the sense that no form is to be preferred on theoretical grounds to the others, 
we advocate that the average is computed. However, since the results may differ 

greatly between the different forms, we feel that the range (or the standard 
deviation) also provides relevant information. Therefore, we suggest that, in 

empirical analyses, the average effects and the ranges (or the standard deviations) 

are published. 

3.2. The Effects of Aggregation 

The next experiment addresses the question of whether the variability of the 

outcomes for the different decomposition forms is affected by the level of aggrega- 

tion. To this end, the calculations that were carried out at the 2 14-sector level, and 
which were summarized in Table 3, were repeated for a 113-sector, a 59-sector, a 

27-sector and the one-sector clas~ification.'~ Our 59-sector classification closely 

resembles the classification used by Statistics Netherlands in its official publications 

(see, for example, Statistics Netherlands, 1995). The one-sector case covers the 

utmost aggregation, where the entire production process constitutes the only 

sector. The 11 3-sector and the 27-sector classifications were constructed somewhat 
arbitrarily for the present purpose. 

In obtaining the results, the absolute values of the ratio rilpi (as a percentage) 

were first calculated for each sector i .  The averages over the sectors and the 
standard deviations are presented in Table 4. On the whole, the results exhibit a 

slowly declining variability, as reflected by decreasing average rilpi values. It should 

be noted, however, that it is possible that aggregation incidentally increases the 

variability. Observe that the variability of the outcomes remains substantial, even 

in the utmost one-sector case, for the Aii, the Air and both AL effects. In conclusion, 

it is not true that the variability vanishes or even reduces drastically as a result of 

the aggregation of the original data. 
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Table 4. The effects of aggregation before decompositiona 

No. of sectors 

214 113 59 27 1 

Labour costs 

Aii 42.7 39.5 41.2 35.0 24.3 

(16.2) (12.2) (13.9) (8.7) (-Ib 

A L  54.9 56.1 57.5 49.7 36.5 

(42.4) (39.7) (40.3) (20.4) (-1 
A B  60.4 52.9 44.8 43.8 - 

(102.3) (40.1) (17.6) (13.6) (-1 
A f 31.0 27.4 31.6 23.6 12.6 

(21.5) (19.0) (22.6) (13.9) (-1 

Imports 

AL 61.5 59.5 55.2 44.5 28.9 

(48.4) (47.7) (38.4) (17.6) (-1 
A B  67.1 56.5 43.2 38.6 - 

(97.1) (44.6) (17.0) (11.0) (-1 
A f 37.6 30.5 29.3 18.3 4.9 

(21.5) (19.0) (22.6) (13.9) (-1 

"The summary statistics for the A+ effects for the imports decomposition are identical to those of the 

AQ effects for the labour costs decomposition, so they are omitted. The figures denote the average of 

the absolute r,lp, values (as a percentage). The terms in parentheses denote the standard deviation. 

bSince the number of sectors equals one, there is only one observation. By definition, this implies that 

the standard deviation is zero, so it is omitted. 

'At this aggregation level, by definition, the bridge matrix (which describes the distribution of the final 

demand components over the sectors) consists of ones, so does not change. 

With aggregation before decomposition, as discussed already, the underlying 

I0  data are aggregated first, after which the decomposition is applied. Another 
possibility is aggregation after decomposition, which occurs when the calculations 

are based on detailed I 0  data but are presented in an aggregate manner.I5 For 
example, the total labour costs are obtained by the summation of the sectoral 

labour costs, i.e. 

W = Xiwi = e'w 

where e' denotes the row summation vector (1,. . . ,1) of appropriate length. 

Similarly, M = Ximi = e'm. From equation (12), it follows that the decomposition 

of the change in W is based on 

and again yields 24 different decomposition forms. The calculations of the four 

effects are obtained simply by summing the earlier outcomes over the sectors. 

The results in Table 5 clearly show that aggregation after decomposition does 

not necessarily induce a drastic reduction in the variability. Intuitively speaking, 

one might be inclined to expect that, for some sectors, the outcomes obtained with 

a certain decomposition form are greater than the average outcome, while they are 
smaller for other sectors. Summing over the sectors would then imply that the 

differences from the average outcome would cancel each other out. As a con- 

sequence, one would expect that the rlp results for the aggregate decomposition in 

Table 5, for example, would be much smaller than the average absolute r lp values 
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3 16 E. Dietzenbacher & B. Los 

Table 5. Results for aggregation after decomposition 

min max 

Total labour costs, A W  = 79 233 

Aii 16496 21772 

AL 3 907 5 258 

A B  3 505 5 421 

A f 47 850 54486 

Total imports, A M  = 25 303 

A9 - 844 - 249 

A L  - 1737 - 1097 

A B  -4064 - 2885 

A f 30026 31331 

reported in Table 3. It turns out that this only holds for the Af effect in the 

decomposition of the change in the imports and, to a lesser extent, for the 

decomposition of the change in the labour costs. Observe that the variability of the 

Air effect even becomes much greater. This is caused by the fact that the average 
Air effect becomes relatively small after aggregation, while the range remains 
substantial. 

4. Analyzing the ad hoc 'Solutions' 

In this section, we analyze the two ad hoc 'solutions' to the non-uniqueness problem 

that have been used predominantly in the literature. The first solution is obtained 
by taking the average of the two polar decompositions in equations (5) and (6). 

The second solution is obtained by applying mid-point weights. In the simplest 
case, with only two determinants, both approaches yield the same result. In the 

general situation, with n determinants, this is no longer the case. Also, the attractive 
properties of the ad hoc solution in the simplest case (i.e. a simple weighting 

structure based on mid-point weights and the decomposition being exact) no 

longer hold in the general case. The average of the polar decompositions is still 

exact, but it does not exhibit a simple weighting structure. The decomposition 

using mid-point weights is no longer exact. 

4.1. All versus Polar Decompositions 

This subsection examines whether or not it is necessary to compute all the 24 (or 

n! in general) decomposition forms in order to obtain some idea of the average 

effect and of the range of outcomes. As the alternative, we consider the average of 

the two polar decompositions in equations (1 3) and (14). For example, the average 

AL effect from the polar decompositions yields 

AL effect = hQ(86) (AL)B(92)f(92) + iQ(92) (AL)B(86)f(86) 

In contrast to the average effect from the polar decompositions, we have the average 

effect of the full set of all 24 decompositions. 
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Table 6 .  All versus polar decompositions 

Labour costs Imports 

AQ A L  A B  A f A? A L A B  A f 

lOO(Pf/Pf) 
Average 99.97 99.59 99.81 99.80 99.97 100.95 101.12 99.98 

Standard dev. 0.90 2.85 6.18 0.90 0.90 4.67 7.70 2.96 

p, = 100(rf l r f )  

Average 69.62 50.14 50.42 61.91 69.41 69.49 68.20 65.00 

Frequencies 

O<p,<50 30.05 54.41 51.17 40.38 30.19 28.78 30.05 34.74 

50<pi<  100 36.15 32.84 40.85 30.52 36.32 40.98 39.91 39.91 

pi= 100 33.80 12.75 7.98 29.1 1 33.49 30.24 30.05 25.35 

For Table 6 ,  for each sector i, we calculated the ratio (as a percentage) between 

the average effect as computed from the polar decompositions (i.e. pf)  and the 

average effect as computed from the full set of decompositions (i.e. pf;). Next, the 
average over all sectors and the standard deviation were computed. Similarly, pi is 

defined as the ratio (as a percentage) of the two ranges, rf and r;. Again, the 
average over all sectors is calculated, while a small frequency table is also given, 

reporting the percentage of all sectors with a pi value smaller than 50, larger than 

50 or equal to 100. 
The results show that, on average, the two average effects pr and pr are 

remarkably close to each other. The relatively small standard deviations indicate 

that this also holds for each sector separately. This suggests that, for estimating the 

average effects for the full decompositions (i.e. pr), it suffices to consider the 
average effects from the polar decompositions (i.e. pf). 

The variability of the outcomes, however, is considerably underestimated when 

the polar decompositions are used instead of the full decompositions. Moreover, 

the magnitude of this underestimation may vary greatly from case to case. For 
example, for the A L  effect (resp. A B  effect) of the sectoral labour costs decomposi- 

tion, the polar decompositions report a range (rf) that is less than half the range 

for the full decompositions (i.e. r;) for 54% (resp. 51%) of the sectors. For the 

A B  effect, we find that the same range is found for the polar and for the full 

decompositions (i.e. rf = rf)  in only 8% of the sectors. In contrast, for the Aii 
effect, the same range is found in 34% of the sectors. These results indicate that 

considering the polar decompositions instead of the full decompositions may be 

highly misleading, as far as the range (or standard deviation) is concerned. 
However, results in the rightmost four columns of Table 6, for the decomposition 

of the sectoral imports, show that this need not necessarily be the case. Comparing 

rf with r; for the effects of the import decomposition, we find that, for about 30% 

of the sectors, the range is more than halved, while also the range remains equal 

for 30% of the sectors. 

4.2. Approximate Decompositions 

In this subsection, we discuss the approach that uses the discrete approximation of 

the total differential (see, for example, Wolff, 1985, 1994; Afrasiabi & Casler, 

1991). The ad hoc solution of applying mid-point weights is a special case. 
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3 18 E. Dietzenbacher & B. Los 

Consider w = iiLBf; then, we have 

dw = (dii)LBf + ii(dL)Bf + QL(dB)f + iiLB(df) 

Using the discrete approximation yields 

Aw w (Aii)LBf + ii(AL)Bf + BL(AB)f + iiLB(Af) 

In empirical studies, the calculation of this approximate decomposition is usually 
based on first-year weights, on last-year weights or on their average (i.e. mid-point 
weights). This reads as 

AW = (Aii)LoBo fo + Go (AL)Bo fo + iioLo (AB)fo + iioLoBo (Af) + ~ ( 0 )  (17) 

= (Aii)Ll B1fl + iil(AL)Blf, + dl Ll (AB)fl + i i lLIBl (Af) + ~ ( 1 )  (18) 

where, for example, ~ ( 0 )  covers the interaction effects. These are higher-order 
effects up to the order 4 (or n for the general decomposition). The averages 
are defined as before. Thus, for example, L,,, = &Lo + iL,. Note that 4($) # $s(O) + 
is(l), since, in general, (Aii)L,12Bl~,f,~2 #$(Aii)LoBofo + i(Aii)L,Blfly etc. This 
implies that there is also a fourth alternative, i.e. 

+ iiioLo (AB)fo + iii, L, (AB)fl + $iioLoBo (Af) + id ,  L, Bl  (Af) + s($) 

where E($) = $s(O) + is(1).I6 
Table 7 contains the results with respect to the variability of the outcomes of 

the three approximate forms in equations (17), (18) and (20), and summary 
statistics for the error terms E(.). For each sector i, the range ri was obtained as the 
absolute difference of the AL effect for example, in equation (18), and the AL 
effect in equation (17). The average AL effect pi was taken from equation (20). 
For each sector, the absolute rilpi value was calculated (as a percentage). The 
averages and standard deviations are reported in Table 7 for each of the four 

Table 7. Approximate decompositions 

Labour costs Imports 

Standard Standard 

Average deviation Average deviation 

"At is A 6  in the case of the labour costs, and A9 in the case of the imports. 

bAT, is Aw, in the case of the labour costs, and Am, in the case of the imports. 
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effects. The sectoral errors were obtained as a percentage of the total sectoral 

effect, i.e. 100~,(.)lAw~ in the case of decomposing the labour costs. Table 7 reports 

the averages and the standard deviations of the absolute errors. 
The results indicate large differences between the effects computed with first- 

year weights and those computed with last-year weights. Also, the errors are 

substantial, although the reported averages are somewhat suggestive. It should be 

mentioned that the weighted averages, using IAwil as weights, of the absolute 
sectoral error percentages are substantially smaller. For the labour costs decomposi- 

tion, we find weighted averages of 11.2% for E(O), 11.7% for ~ ( 1 )  and 0.4% for 

E(;). For the import decomposition, the corresponding figures are 18.7%, 19.1% 

and 0.9%. These differences between the weighted averages and the averages 

reported in Table 7 indicate that the larger absolute error percentages are observed 

for sectors with relatively small total effects Awi and Am,. In contrast to the cases 

with first-year and last-year weights, the approximation in equation (20) performs 
well. Most sectors have very small absolute errors. For example, for the decomposi- 

tion of the change in the labour costs, there are 21 1 sectors for which Aw, # 0. Of 
these, 179 have an absolute error smaller than 2%, only five have an absolute error 

greater than 10% and the largest reported error was 58.4%. 
Instead of using the average of the effects with first-year and last-year weights, 

one may use the effects obtained with mid-point weights, i.e. using equation (19) 

instead of equation (20). Table 8 analyzes the differences between these two 

alternatives. To this end, the ratio between the effects computed with equation 

(19) and those computed with equation (20) is calculated for each sector. It turns 
out that the results are very similar, in the sense that the ratios are very close to 

unity. In Table 8, this is reflected by an average ratio that is approximately 100 

with a small standard deviation.I7 
Table 8 also shows that the approximate decomposition of equation (19) is 

almost exact. For the labour costs decomposition, the average absolute error is less 

than 1 %; the weighted average is even only 0.2%. For the 21 1 sectors with Aw, # 0, 
no less than 197 have an absolute error 4(;)  smaller than 2%, while only two 

sectors show an absolute error larger than 10%. The findings for the decomposition 

of the changes in the imports sketch a similar picture. 

The central problem with the application of decomposition techniques is finding 

appropriate weights. For the exact decompositions in Sections 2 and 3, each effect 
is weighted in a different manner. For example, in equation (13), the AQ effect has 

Table 8. Approximate decomposition with mid-point weights 

Labour costs Imports 

Standard Standard 

Average deviation Average deviation 

"Ai is A 4  in the case of the labour costs, and A8 in the case of the imports. 

'AT, is Awi in the case of the labour costs, and Ami in the case of the imports. 
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320 E. Dietzenbacher t3 B. Los 

a different type of weight compared with the A f  effect. Moreover, for exact 

decompositions, in general, n! equivalent forms exist. Approximate decompositions 

seem to solve these problems, but only at first sight. The results in Table 7 show 

that using either first-year or last-year weights causes serious errors. The errors 

vanish almost completely, however, when the average effects are considered or 

when the effects are computed using mid-point weights. Intuitively speaking, this 
result is most appealing, since the approximate decomposition in equation (19) is 

almost exact and has the attractive feature that the same types of weight are used 

for each effect. It should be borne in mind, however, that using the decomposition 

in equation (19) only conceals the problem of a large variation in the outcomes of 
the exact decompositions, as indicated by the empirical analysis in the previous 

section. At best, therefore, the approximate decomposition in equation (19) may 

be viewed as being an additional alternative to the existing 24 (or n! in general) 
equivalent exact decompositions. 

5. Conclusions 

In this paper, we have addressed the problem that there is no unique form to 

decompose the change in one variable (or vector, or matrix of variables) into the 

changes in its determinants. In the simplest case, with only two determinants, the 

problem is usually solved on an ad hoc basis by taking the average of the two 
possible forms. The resulting decomposition has the intuitive advantage that mid- 

point (or average) weights are used for the change in each of the determinants. In 

our view, this simple and intuitive solution has distracted the attention from the 
potential seriousness of the non-uniqueness problem. This is because, in the 

general case with n determinants, there are n! equivalent decomposition forms, 
and a single ad hoc solution with the same 'nice' properties as in the simplest case 

no longer exists. 

In evaluating the extent of the non-uniqueness problem, an empirical analysis 
was carried out for The Netherlands based on the 214-sector I 0  tables for 1986 

and 1992. The changes in sectoral labour costs and the sectoral imports were 

decomposed into four underlying sources. Results were calculated for all 4! = 24 

decomposition forms. The outcomes exhibit considerable variability, so the contri- 
bution of a certain source appears to depend crucially on the way that it is 

measured. Since structural decomposition analysis aims to quantify the contribution 

of each underlying course, the sensitivity with respect to the chosen decomposition 
form casts doubts on its sense. The major finding of considerable variability is not 

affected by the number of sectors taken into account. The decomposition results 

after the original data have been aggregated only show a slowly declining variability. 

Next, we have analyzed the two ad hoc solutions to the non-uniqueness problem 
that have been used predominantly in the literature: taking the average of the 

results of the two polar decompositions and applying mid-point weights. Recall 
that, in the simplest case of only two determinants, both approaches are the same. 

When there are n determinants, the average of the two polar decompositions does 

not yield a form with a simple, intuitively appealing weighting structure, unless 

n = 2. Using mid-point weights only yields an approximate decomposition (i.e. 

where the sum of all contributions does not sum to loo%, in general), again unless 
n = 2. 

Comparing the average of the two polar decompositions with the average of the 

full set of 24 decompositions showed that the results are extremely close to each 
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Structural Decomposition Techniques 32 1 

other, even at the sectoral level. Analyzing the range of the two polar decompositions 

versus the range of all the decompositions gave very diverse results. For one of the 

four sources, we found that, in 34% of the sectors, both ranges were equal to each 

other, while, in 30% of the sectors, the ratio between the two ranges was less than 

0.5. For another source, however, the corresponding percentages were 8% and 51 %. 
The results for the approximate decompositions (which are also non-unique) 

showed that, when mid-point weights are applied, the approximation is almost 

exact. However, all that this says is that, at best, using mid-point weights provides 

another alternative to the existing n! exact decompositions. 

Applying a structural decomposition technique can be carried out with a 

multitude of computational forms which are different but which are equivalent in 
the sense that no form is to be preferred on theoretical grounds to the others. 

Since the ad hoe solutions to this non-uniqueness problem that have been used 
predominantly appear to be unsatisfactory for cases with more than two determi- 

nants, we suggest that the average should be computed. However, given the fact 
that the results may differ greatly between the different forms, we feel that the 

range (or the standard deviation) also provides relevant information. Therefore, 

we would recommend that, in empirical analyses, the average effects as well as the 
ranges (or the standard deviations) are published. 

Notes 

1 .  This is an adaptation of the first formal definition by Rose and Miernyk (1989,  p. 245) .  

2 .  Dollar and Wolff (1988,  1993) and Bernard and Jones (1996)  go one step further, and decompose 

the convergence of aggregate labour productivities and aggregate total factor productivities of 

several countries into productivity convergence at the sectoral level and productivity effects caused 

by shifts in the employment or the output mixes. 

3 .  For example, Fromm (1968)  provides a link with the index number problem (see also Schumann, 

1994) .  

4 .  Alternatives that include interaction terms are Ay = ( A x ) z ( l )  + x(1)  ( A z )  - (Ax) (Az )  or 

Ay = (Ax)z(O) + x(0)  (Az )  + (Ax) (Az ) .  Note also that the mean of these two expressions yields 

equation (3). 

5. It should be mentioned that these n! decomposition forms do not exhaust the possibilities. For 

example, use Ay = [A(x,  . . . x,)]  [ (x , ,  . . . x , ) ( l ) ]  + [ (x ,  . . . x,)(O)] [A(x,+,  . . . x,)] for i =  1 , .  . . , n and 

decompose the A terms further along the same lines. This provides a set of decomposition forms 

with a different structure (see, for example, Dietzenbacher and Los, 1997) .  

6 .  This holds in particular, since the non-uniqueness problem has been extensively dealt with, both 

theoretically and empirically, in the literature on index numbers. In the field of I 0  analysis, an 

exception is Dietzenbacher and Los (1997) ,  who examine the decomposition of changes in the 

aggregated Leontief inverse and in the value added per sector. Using highly aggregated data, the 

analysis of the variability is based purely on the arithmetical equivalence of decomposition forms, 

implying that the majority of forms have inconsistent structures. As a consequence, some forms 

are to be preferred to others. In contrast, the present decompositions are based on economic 

equivalance where no single form is to be preferred over the others. 

7. fi denotes the diagonal matrix with the vector u on its main diagonal and all other entries equal 

to zero. 

8 .  In the empirical analysis, we have used I 0  tables in current prices. Although it is generally preferable 

to use tables in constant prices, the present data set suffices for the paper's purpose to analyze the 

sensitivity of the results with respect to the chosen decomposition form. It should be emphasized, 

however, that A A  not only describes technical changes but also covers price changes. Strictly 

speaking, AL then gives the effects of a changing cost structure. 

9 .  This change may be decomposed even further into the change in the overall final demand level and 

the change in the distribution of the overall final demand over the five categories (see, for example, 

Lin & Polenske, 1995) .  

10. Although the data have not been published in printed form, they are available on diskette from 
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322 E. Dietzenbacher & B. Los 

Statistics Netherlands. For general information or details on the sector classification, see, for 

example, Statistics Netherlands (1996). 

11. Note that, for each sector, the four figures in the column under pi add up to the reported change 

Aw, (for example, 897 for sector 156). 

12. For example, the average is, in principle, determined as Z~~:1100(rilpi)11214. Some sectors, 

however, were not included, because r, = ai = pi = 0. 

13. Observe that the reported results for the Aii effect are identical to those for the A? effect. Although 

the effects differ from each other, it is easily shown that their r,lp, and ailp, ratios are equal to each 

other, for each sector. 

14. Although a classification of 20-30 sectors is the highest level of aggregation that still bears some 

economic relevance for applied analyses, the one-sector case is included for completeness. 

15. In a similar fashion, Wolff (1985, 1994) decomposes the change in the overall rate of total factor 

productivity growth into a value share effect, an inter-industry effect reflected by the change in the 

Leontief inverse matrix and a sectoral technical change effect. 

16. Note that, for a decomposition in two components (say x=yz), we have ~ ( 0 )  = (Ax)(Az), 

c(1) = - (Ax)(Az) and ~ ( 1 )  = 0. For the case of two components, the approximate decomposition 

with average weights is exact and equal to equation (3). This does not hold in general, however. 

17. The relatively large standard deviation for the AB effect in the decomposition of the change in the 

labour costs is caused by one sector with very small AB effects, both with equation (19) and 

equation (20). 
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