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ABSTRACT

Mechanistic understanding of many key cellular

processes often involves identification of RNA

binding proteins (RBPs) and RNA binding sites in

two separate steps. Here, they are predicted simul-

taneously by structural alignment to known protein–

RNA complex structures followed by binding

assessment with a DFIRE-based statistical energy

function. This method achieves 98% accuracy and

91% precision for predicting RBPs and 93%

accuracy and 78% precision for predicting RNA-

binding amino-acid residues for a large benchmark

of 212 RNA binding and 6761 non-RNA binding

domains (leave-one-out cross-validation). Addi-

tional tests revealed that the method makes no

false positive prediction from 311 DNA binding

domains but correctly detects six domains binding

with both DNA and RNA. In addition, it correctly

identified 31 of 75 unbound RNA-binding domains

with 92% accuracy and 65% precision for predicted

binding residues and achieved 86% success rate in

its application to SCOP RNA binding domain super-

family (Structural Classification Of Proteins). It

further predicts 25 targets as RBPs in 2076 struc-

tural genomics targets: 20 of 25 predicted ones

(80%) are putatively RNA binding. The superior

performance over existing methods indicates the

importance of dividing structures into domains,

using a Z-score to measure relative structural simi-

larity, and a statistical energy function to measure

protein–RNA binding affinity.

INTRODUCTION

RNA binding proteins (RBPs) make specific binding with
RNAs and play an important role in translation regula-
tion and post-transcriptional processing of pre-mRNA
including RNA splicing, editing and polyadenylation (1).
Interactions between proteins and RNA influence the
structure of RNA and play an critical role in their bio-
genesis, stability, function, transport and cellular localiza-
tion. RNA and proteins are stably bound together as
ribonucleoprotein (RNP) complexes throughout the
journey from synthesis to degradation in a temporal and
spatial manner (2). Proteomic studies in human further
showed that RBPs are associated with cell cycle check-
point defects, genomic instability and cancer (3). Thus, a
comprehensive, mechanistic understanding of a wide
variety of cellular processes requires the identification of
RBPs and RNA binding sites.
Identifying RBPs and binding residues is often treated

as two separate problems. Several classifiers dedicated
for predicting RBPs are developed by employing support-
vector machines (SVM) (4–7). In some studies (4,5),
homologous sequences were not excluded from training
or testing. Performance for most methods was not
measured by standard measure of a receiver-operating
characteristic (ROC) curve or the Matthews Correlation
Coefficient (MCC). The only reported MCC value for
RBP classification is 0.53 for a sequence-based SVM
classifier (5-fold cross-validation on 134 RNA binding
and 134 non-binding proteins) (8) and 0.72 for a structure-
based SVM classifier for a dataset of 76 RNA binding
proteins and 246 non-nucleic acid binding proteins
(leave-one-out test) (9). The latter, however, is unable to
distinguish RNA binding from DNA binding proteins.
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Separately, RNA-binding residues are predicted by
employing sequence-based (8,10–17) and structure-based
(9,18–22) information. Sequence-based predictors have
employed a number of machine-learning or statistical
techniques such as neural-network (10), SVM
(8,11,14–17), and a naive Bayes classifier (12,13).
Structure-based predictions, on the other hands, relied
on patches built on electrostatics, evolution and geometric
information (9,18), accessible surface and contact network
topology based on SVM and naive Bayes classifiers (19),
linear-regression analysis of structural neighboring infor-
mation combined with sequence profiles (20), secondary
structure, solvent accessibility, sidechain environment,
interaction propensity and other features with a random
forest method (21), and a simple propensity-based tech-
nique (22). The best reported MCC values are between
0.47 and 0.51 (8,20,21) for sequence and structure-based
techniques.
One issue facing binding-site prediction is that it will

predict RNA binding sites even for the proteins that do
not bind RNA. In this work, we will predict RBPs and
RNA binding sites within a single method. This method is
based on a recently developed approach (23,24) that was
successfully employed for identifying DNA binding
proteins and binding sites. In this approach, protein struc-
tures in known protein–DNA complex structures are
employed as templates and structurally aligned to the
target protein structure. If structural similarity between
the target structure and a template is observed, the pre-
dicted protein–DNA binding complex structure is con-
firmed by the prediction of protein–DNA binding affinity.
Here, we will extend this structure-based approach

by developing a distance-dependent knowledge-based
energy function for protein–RNA interactions. Only a
few knowledge-based energy functions for protein–RNA
interactions have been developed so far (25,26). Here, we
will build the statistical energy function based on a
distance-scaled, finite, ideal gas reference (DFIRE) state,
initially developed for proteins (27–29) and subsequently
extended to protein–DNA interactions (24,30,31). This
new energy function, together with a measure of relative
structural similarity by Z-score makes an accurate
domain-based prediction of RBPs and binding residues.
The Mathews correlation coefficients for RNA binding
domains and RNA binding residues are 0.56 and 0.72,
respectively, for the largest benchmark developed so far
(212 RNA binding and 6761 non-RNA binding domains).
The new technique is further validated on 311 DNA
binding domains (negatives), 75 unbound APO structures
(positives) and SCOP RNA binding domain superfamily
(32), and applied to uncover RBPs from structural
genomics targets.

METHODS

Datasets

RB250: Template library of RNA-binding domains. A
template library was built by querying the PDB (July
2009 release) to retrieve all protein-RNA complex struc-
tures determined by X-ray (resolution better than 3.0 Å).

The resulting 419 complex structures were split into chains
and the chains are further divided into domains by using
an automatic domain parser program called DDOMAIN
(33) [with the parameter set that mimics SCOP annotation
(32)]. These domains were further clustered with a
sequence-identity cutoff of 95% with BLASTClust (34).
One representative was randomly selected from each
cluster. There is a total of 250 representative domain
structures with at least 40 amino acids long and at least
5 residues contacting with 5 or more RNA bases. A
protein residue and a RNA base are considered in
contact if the shortest distance between any pair of
heavy atoms from them is within 4.5 Å. These repre-
sentative structures (RB250) form the template library
for predicting RNA-binding proteins and binding sites.

RB212: Non-redundant RNA binding domains. We further
obtain a non-redundant RNA binding domains by using
BLASTClust (34) at a 25% sequence identity cutoff. There
is a total of 212 domains (the RB212 set).

NB6761: Non-RNA binding data set. A non-redundant set
of 8770 protein structures was obtained by using PISCES
(35) with a 30% global sequence identity cutoff, a reso-
lution better than 3 Å and a chain length cutoff of 40
amino acid residues. We removed those chains whose
function is associated with RNA-binding and whose
PDB records contain the key words ‘RIBOSOMAL’,
‘UNKNOWN FUNCTION’ and ‘RNA’ by searching in
the title. The remaining 6699 chains were divided into
domains with DDOMAIN (33) and clustered with a
sequence identity cutoff 25% by BLASTClust (34). One
representative was randomly selected from each cluster.
The final dataset contains 6761 protein domains that do
not binding RNA (NB6761). We emphasize that DNA
binding proteins are not excluded from this dataset.

APO75/HOLO75 dataset. To examine the effect of
binding induced conformational changes on the accuracy
of predicting RBPs, we established a dataset with both
bound (HOLO) and unbound (APO) structures. We
started with the set of bound structures (RB250) and per-
formed BLAST (34) search for the sequences homologous
to the sequences in RB250. We selected those homologous
sequences whose protein structures do not contain RNA.
These unbound APO structures are partitioned into
domains by using the DDOMAIN program (33). An
all-against-all sequence alignment between the APO
domain set and the HOLO domain set from RB250 was
performed by employing the ALIGN0 program from the
FASTA2 package (36). The alignment yielded 869 pairs
with sequence identity above 45% that are further culled
by excluding redundant sequences with an identity cutoff
of 30% and removing the structure with lower resolution.
The final set contains 75 APO domains whose sequence
identity ranges from 45% to 100% to their corresponding
HOLO domains. The majority (56 out of 75 pairs) are
more than 85% sequence identity. The APO and their
corresponding HOLO domain sets are labeled as APO75
and HOLO75, respectively.
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DB311: DNA-binding protein database. To examine the
ability to distinguish RNA and DNA binding proteins,
we also obtained a DNA binding protein dataset of 250
DNA binding structures (24). These DNA binding struc-
tures were divided into domains by DDOMAIN and clus-
tered by BLASTClust (34) sets. The clustered domains
were further reduced with a sequence identity cutoff of
25% to produce the final dataset of 311 DNA binding
domains (DB311).

RBD292: RNA binding domain superfamily. The dataset
is obtained from SCOP superfamily database. RBD
superfamily is divided into five families: canonical,
non-canonical, splicing factor U2AF subunits, Smg-4/
UPF3 and GUCT, which contain 171 PDB, 4 PDB,
1 PDB and 1 PDB, respectively. These PDBs are split
into chains and then divided into 292 domains. The ca-
nonical RRM family has 280 domains, the non-canonical
family has nine domains, and the remaining three domains
are splicing factor U2AF subunits, smg-4/UPF3, and
GUCT families, respectively.

SG2076: Structural genomics targets. A set of 2076
domains is obtained from previously collected 2235
structural genomics targets (24) by domain parsing
(DDOMAIN) and clustering (BLASTClust) with a
sequence identity cutoff of 30%.

Knowledge-based energy function

We employed exactly the same volume-fraction corrected
DFIRE energy function that generated DDNA3 (24) to
produce an DRNA energy function for protein–RNA
interaction uDRNA

i;j .

uDRNA
i;j ðrÞ ¼
�� ln Nobsði;j;rÞ

fv
i
ðrÞfv
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where the volume-fraction factor f vi ðrÞ ¼
�jN

Protein�RNA
obs ði; j; rÞ=�jN

All
obsði; j; rÞ, Nobs(i, j, r) is the

number of pairs of atoms i and j within the spherical
shell at distance r observed in a given structure
database, rcut is the interaction cutoff distance, �rcut is
the bin width at rcut, the value of a (1.61) was determined
by the best fit of ra to the actual distance-dependent
number of ideal-gas points in finite protein-size spheres
(27), the exact value of b for volume correction (0.5) was
employed. We employ residue/base-specific atom types
with a total 253 atom types (167 for protein and 86 for
RNA). We cutoff interactions at 15 Å (rcut) with a bin
width of 0.5 Å(�r) as for the protein–DNA interaction
(24). We also set the factor Z arbitrarily to 0.01 to
control the magnitude of the energy score. The RB250
set was used to train the statistical energy function [i.e.
to calculate Nobs (i, j, r)]. To avoid overfitting, we
employed the leave-one-out scheme to train multiple
statistical energy functions for different targets. For each

target, we exclude all template proteins whose sequence
identity to the target protein is >30%.

Prediction protocol

The protocol for predicting RBPs and binding sites is as
follows. First, the target structure is scanned against those
templates with sequence identity <30% in the template
library (RB250) by using the structural alignment
program TM-align (37). If the structural similarity score
is higher than a threshold, the protein–RNA complex
structure is predicted by replacing the template structure
with the aligned target structure. Two structural similarity
scores are employed: one is based on the raw TM-Score
and the other one is based on Z-score (see ‘Results’
section). If the lowest binding energy between the target
protein and template RNA is lower than a threshold and
the structure similarity is higher than a threshold, the
target is predicted as a RBP and its RNA binding site
can be predicted from the predicted protein–RNA
complex structure. If no matching template is found to
satisfy these two thresholds, this target is predicted as a
non-RNA binding protein.

Performance evaluation

The performance of the proposed method is measured
by sensitivity [SN=TP/(TP+FN)], specificity [SP=
TN/(TN+FP)], accuracy [AC=(TP+TN)/(TP+FN+
TN+FP)] and precision [PR=TP/(TP+FP)]. In
addition, we calculate a MCC given by

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞðTPþ FPÞðTNþ FPÞðTNþ FNÞ
p

ð2Þ

Here TP, TN, FP and FN refer to true positives, true
negatives, false positives and false negatives, respectively.
This performance measure is applied to both binding-
protein prediction and binding-residue prediction.

RESULTS

Using structural similarity measured by TM-Score
for discrimination

We first examine the ability of the structural similarity
measured by TM-Score from TM-align (37) for discri-
minating RBPs from non-binding proteins. TM-Score is
1 for 100% structural similarity and around 0.2 between
two random protein structures. Figure 1 shows the
fraction of the target domains (binding or non-binding
proteins) as a function of the highest TM-Score from its
alignment to the templates in the RB250 set, generated by
the leave-one-out scheme. Forty-eight percent binding
targets (from RB212) but only 14% non-binding targets
(from NB6761) have a TM-Score of more than 0.5 with
at least one binding template. When the threshold of
TM-Score is 0.58, 40% binding targets but only 3%
non-binding targets have a hit to a binding template.
Increasing the TM-Score threshold further reduces the
fraction of non-RNA-binding domains relative to that of
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RNA binding domains. However, the highest MCC value
is only 0.29 at the TM-Score threshold of 0.72. Thus, the
structural similarity based on TM-Score alone has a weak
ability to discriminate RBPs from non-binding proteins.

Using relative structural similarity measured by Z-score
for discrimination

The structural similarity measured by TM-Score between
two protein domains with significantly different sizes is
normalized by the average size. This structural similarity
is unrealistically small when the smaller target has a nearly
perfect match to only a small portion of the larger
template (the binding region). To help remediate this
situation, we introduce a relative structural similarity
based on Z-score. For a given target whose TM-Score is
greater than 0.4 with a binding template, the Z-score of
this target is defined as follows:

Z-score ¼ TMqT �
P

i TMiT=n
ffiffiffiffiffiffi

�T
p ð3Þ

where TMqT is the structural similarity TM-Score between
the query q and a RNA binding template T, TMiT is
the structural similarity score between the template T
and a reference structure i, n is the number of reference
structures, and sT are the standard deviation of TMiT.
Here, we use the mixed binding and non-binding
proteins (RB250 and NB6761 excluding homologous
templates) as the reference structures and choose only
10% top ranked TM-Scores (n=701) (see ‘Discussion’
section) and exclude the structure pairs whose TM-
scores are higher than 0.7 to avoid noises from either
irrelevant structures or highly similar structures. TMiT

and sT for each binding template can be pre-calculated
and stored. We further modified the definition of Z-score
to reduce the effect of TM-Score fluctuation.
Figure 2 displays the fraction of target structures

as a function of the highest Z-score from its

structural alignment to binding templates. Forty-two
percent binding targets (from RB212) but only 2.5%
non-binding targets (from NB6761) have a Z-score of
more than 1 with at least one binding template. When
the Z-score threshold is 2, 20% binding targets but only
0.01% (11) non-binding targets have a hit to a binding
template. Increasing the Z-score threshold further
reduces the fraction of non-RNA binding domains
relative to that of RNA binding domains. The highest
MCC value is 0.48 at the Z-score threshold of 1.4. Thus,
the relative structural similarity based on Z-score alone is
substantially better than TM-Score to discriminate RBPs
from non-binding proteins.

Combining with the DRNA binding energy score for
discrimination

To further improve the discriminative power, we calculate
the DRNA binding energy [Equation (1), see ‘Methods’
section] based on the predicted complex structure
generated from structural alignment of the target with
the binding template. Using the leave-one-out scheme on
RB212/NB6761, we have optimized TM-Score and
binding affinity thresholds to achieve the highest
MCC value by a simple grid-based search. The grid for
TM-Score is 0.01. For the binding affinity threshold, we
obtained the lowest energy in all predicted complex
structures under different TM-Score thresholds for a
given target. These energy values are considered
sequentially as the energy threshold. The highest MCC
is 0.49 for the TM-Score threshold of 0.60 and the
energy threshold of �15.3. The corresponding accuracy,
precision and sensitivity are 98%, 77% and 32%,
respectively.

Similarly, we can combine Z-score with the DRNA
energy score for RNA binding discrimination. With a
grid of 0.1 for the Z-score threshold, we found that
the highest MCC is 0.57 with the Z-score threshold of
1.2 and the energy threshold of �9.9. The corresponding
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accuracy, precision, and sensitivity are 98%, 91% and
36%, respectively. It is clear that combining Z-score and
binding affinity score substantially improves precision
(14%) and sensitivity (4%) without changing the
accuracy (98%) over combining TM-Score and binding
affinity.

Method comparison

To further benchmark the performance of our approach,
the ROC curves given by various methods are shown in
Figure 3. PSI-BLAST (34) was performed with four
iterations of searching against NCBI non-redundant
protein sequence library. A target is identified as a RBP
by PSI-BLAST if it has at least one template from RB250
with an E-value higher than a specific threshold (excluding
all templates with �30% sequence identity to the targets).
The highest MCC of PSIBLAST is 0.41 with accuracy
97%, precision 54% and sensitivity 33%. This MCC
value is higher than the method based on TM-align but
lower than the method based on Z-score alone (0.48). The
combination of Z-score with energy is the most effective in

detecting RBPs. The combined technique can achieve a
reasonable sensitivity at a very low false positive rate.

Test on APO75/HOLO75 datasets

The trained method (combined Z-score and binding
affinity) is further benchmarked on APO75/HOLO75
datasets. For a given target, any template with sequence
identity >30% is excluded from the template library. For
a protein solved by NMR with multiple NMR models, it is
classified as RNA-binding if anyone of the NMR models
satisfies both Z-score and binding affinity thresholds.
The number of positive predictions are 31 for the APO
set, and 32 for the HOLO set, respectively. These numbers
correspond to a sensitivity of 41% for APO75 and 42%
for HOLO75, compared with the value of 36% (77/212)
observed in RB212. That is, using monomeric unbound
structures leads to 1% reduction of sensitivity.
A more detailed analysis on predicted results shows that

there is an overlap of 28 predicted positive results between
the APO and HOLO sets. These predictions agree mostly
because in these cases, RNA binding only leads to
minor conformational changes in binding regions. There
are 3 correctly predicted HOLO targets but incorrectly
predicted APO targets as shown in Table 1. Three APO
targets (some even with only small structural changes due
to binding) have strong protein–RNA binding (lower than
the energy threshold) but with borderline Z-score values
(0.98–1.1 versus 1.2, the Z-score threshold). The result
suggests the need to further improve structural similarity
measure. Furthermore, there are two correctly predicted
APO targets but missed by HOLO targets prediction.
One target 2bggB2 has Z-score 2.4 much higher than
threshold 1.2 but with a borderline energy (�9.8 versus
�9.9). Another HOLO target 1ec6A is missed because
the best template is excluded as result of its sequence
identity between the target and the best template >30%.

Binding site prediction

The predicted binding complexes can be employed to infer
the RNA binding residues. We define an amino-acid
residue as a RNA binding residue if any heavy atom of
that residue is <4.5 Å away from any heavy atom of a

Table 1. Targets are predicted as RNA-binding on HOLO set but not on APO set

HOLOa APOb TMHA
c SeqIDd TMPe TMH

f ZHT
g EH

h TMAT
i ZAT

j EA
k

2atwA2 1hh2P3 0.95 47.9 2asbA3 0.66 1.4 �17.4 0.57 0.98 �14.7
1uvlA 1hi8B 0.98 96.2 2r7xA 0.43 1.2 �27.9 0.42 1.1 �25.9
2j03S 1ovyA 0.56 54.3 1jj2M 0.60 1.2 �59.3 0.46 1.1 �37.3

aTargets from HOLO set.
bTargets from APO set.
cTM-Score between HOLO and APO targets.
dSequence identity between APO and HOLO target calculated by bl2seq in blast2.2.
eTemplate for HOLO target.
fTM-score between template and HOLO target.
gZ-score between HOLO target and template.
hBinding energy of template RNA–HOLO target complex.
iTM-score of APO target and template.
jZ-score of APO target and template.
kBinding energy of template RNA–APO target complex;

Figure 3. Sensitivity verus false positive rate, given by TM-align (cross),
PSIBLAST (open triangle), Z-score (open diamond), TM-Score
combining with the DRNA energy score (closed circle) and Z-score
combining with the DRNA energy score (solid line).
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RNA base. Predicted binding residues from template-
based modeling can be compared to actual binding
residues. For 77 predicted RNA-binding proteins from
RB212, we achieved 75% in sensitivity, 96% in specificity,
93% in accuracy, 78% in precision, and 0.72 for the MCC
value. For predicted HOLO targets, we achieved 56% in
sensitivity, 96% in specificity, 92% in accuracy, 65%
in precision and 0.56 for the MCC value. For predicted
APO targets, we achieved 55% in sensitivity, 97% in
specificity, 92% in accuracy, 65% in precision and 0.56
for the MCC value.

Discrimination against DNA-binding proteins

We examine the ability of our method to separate DNA
binding from RBPs because they share common structural
features (9). We apply our approach to the set of 331
DNA binding domains. Seven out of 331 targets are
recognized as RBPs because they are highly homologous
(>50%) to the templates in RB250. They are 1r0aA1,
1h38D2, 2o5iC2, 2o5iC1, 2o5iD1, 1zblB and 1qbjB.
There are six additional proteins recognized as RBPs as
shown in Table 2. Our method correctly identified RNA
polymerase II [2nvqB1 and 2nvqB2 (38)], Human RNase
H catalytic domain [2qkbA (39)], and DNA/RNA helicase
domain [2p6rA1 (40)] as RNA binding proteins. In
fact, some of the them were crystallized with RNA and
DNA at the same time and involved in the transcription

and reverse transcription process, respectively. The
comparison between predicted and actual RNA binding
residues reveals high accuracy (99% and 89%) with MCC
values of 0.66 and 0.64 for 2nvqB1 and 2qkb, respectively.
The fifth recognized protein domain is Nuclear factor of
activated T-cells (NFAT1, pdb ID# 1p7hN). Although it
is not annotated as a RBP, it is a part of the nuclear
factors of activated T-cells transcription complex as
annotated in the NCBI database. In fact, it binds to
specific RNA aptamers (41). The sixth recognized RNA
binding domain is poxvirus protein Z-alpha domain
[1sfuA (42)]. This poxvirus protein is E3L protein that
has a Z-alpha motif similar with ADAR1 (double-
stranded RNA adenosine deaminase) which is known to
bind with Z-RNA (43,44).

As an example, Figure 4 compares the predicted RNA
binding site with two separate native RNA and DNA
binding sites for the target domain in chain B of DNA-
directed RNA polymerase II (pdb #2nvqB1). Despite its
low sequence identity to the template 2o5iM (13%), RNA
binding region of RNA polymerase II is successfully
predicted with close to 100% accuracy and sensitivity.

Application to SCOP RNA binding domain superfamily

RBD (RNA binding domain) is the most abundant RNA
binding domain in eukaryotes (45). For this domain, the
mode of protein and RNA interaction is variable. This
domain can modulate its fold to recognize many RNAs
and proteins to achieve multiple biological function (46).
The RBD dataset was built to test the performance of
our method on annotation of RBPs of RBD superfamily
(See ‘Methods’ section). The trained thresholds (Z-score
1.2 and energy �9.9) was used. The majority of canonical
family (248/290) are correctly predicted as RNA binding.
The other domains such as Splicing factor U2AF subunits,
Smg-4/UPF3 and GUCT are also predicted correctly. It,
however, does not recognize any of nine non-canonical
RBD proteins (four are true positives and five are true
negatives). The five true negatives are leucine-rich repeat

Figure 4. The native binding regions of DNA (in orange) and RNA (in red) of the target domain 1 of Chain B (PDB ID#2nvqB1) is compared to
the predicted RNA binding region (in green) as well as the corresponding RNA binding region of the template (2o5iM) (in green, all binding region
in blue). The native RNA binding region of the target is completely overlapped with the predicted region (red is a part of green). For clarity, residue
index of >1000 for 2o5i is not shown.

Table 2. DNA binding proteins predicated as RBPs from the

DB311 set

Target Template SeqID (%) Sens. Speci. Acc. Prec. MCC

2nvqB1 2o5iM 12.7 1.00 0.99 0.99 0.44 0.66
2nvqB2 2o5iM 8.7 1.00 0.99 0.99 0.63 0.79
2qkbA 1zbiB 15.8 0.52 0.99 0.89 0.94 0.64
2p6rA1 2db3A 15.6 – – – – –
1p7hN 1ooaA1 22.4 – – – – –
1sfuA 2gxbB 27.1 – – – – –
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domains (LRR), which is required in cis to the RNP
domains for CTE RNA binding (47,48). Failure to
recognize any true positive structures in the non-canonical
family (4/9) is due to lack of a corresponding similar
template structure in our template database.

Application to structural genomics targets

We further applied this method to 2076 structural
genomics domains of unknown function. Based on the
same thresholds (Z-score of 1.2 and energy of �9.9) that
yielded the highest MCC on the leave-one-out benchmark
test of RB212/NB6761, we predict a total of 25 targets as
RNA-binding proteins (Table 3). Among them, 20 out of
25 (80%) targets are putative RNA-binding proteins
according to NCBI annotations. One target 1x40A has
phosphorylation site and the putative function related
with protein binding. The function of the remaining four
proteins is unknown. Because there are 52 targets
annotated as putative RNA binding by the NCBI
database, the sensitivity of our method for this application
is 38% (20/52), consistent with other test sets.

DISCUSSION

In this study, we developed a new approach to predict
RBPs and binding sites simultaneously. This approach
is based on a similar, successful approach employed for
predicting protein–DNA binding proteins with struc-
tural alignment to known complex structures followed
by evaluation of binding affinity (23,24). The main

distinction in this paper is the employment of Z-score,
rather than TM-Score to measure structural similarity
and development of a statistical energy function for
protein–RNA interaction based on a volume-fraction-
corrected DFIRE reference state (24). The proposed
technique is able to identify RBPs with low-sequence
homology (<30% sequence identity) but have high-
structural similarity in binding regions to known RBPs.
More importantly, the majority of HOLO structures (28
in 32) detected for RNA binding continues to be classified
as RNA-binding when APO structures are employed.
In particular, the method is capable of separating DNA
binding proteins from the proteins that bind both DNA
and RNA. Furthermore, its successful application to
RNA binding domain superfamily (86% success rate)
and structural genomics targets (20 out of 25 predictions
are annotated as putative RNA binding proteins) confirms
the usefulness of the proposed method.
The employment of Z-score, rather than TM-Score,

to measure structural similarity is because the TM-Score
for aligning two protein structures with significantly
different sizes strongly depends on how the TM-Score is
normalized. Z-score provides a simple way of removing
size dependence through a normalization of standard
deviation of TM-Scores against reference structures of
mixing RNA binding and non-binding proteins. Z-score
alone yields a respectable MCC value of 0.48 and its
combination with the DRNA energy function leads to
the MCC value of 0.57. By comparison, TM-Score
alone only achieves a MCC value of 0.29. We have
chosen 10% top-ranked TM-Scores (701 values from
RB250+NB6761 excluding homologous templates) and
remove the TM-scores larger than 0.7 to calculate
average and standard deviation of TM-Score for a given
template. This was an optimized value in order to reduce
noises from irrelevant random reference structures and
highly similar structures. The MCC value reduces to
0.52 if all structures (RB212+NB6761) are employed as
reference structures in calculating Z-score.
Another change in RNA-binding protein prediction

from DNA binding protein prediction is the use of
binding domains as templates. We found that if whole
chains are employed as templates and targets (i.e. the
datasets of RB176 and NB5667), the highest MCC
values are 0.39 for the combined use of TM-Score and
DRNA energy score and 0.47 for the combined use of
Z-score and DRNA energy score. The latter has an
accuracy of 98%, a precision of 87% and a sensitivity of
26%. Compared to the domain-based prediction, the
employment of domains leads to 10% improvement
in sensitivity and 4% in precision without changing
accuracy. This result is consistent with the fact that
other methods such as phylogenic analysis and protein
modeling work best for single domains (49).
It is difficult to make an exact comparison with existing

machine-learning-based techniques because we have used
a significantly large database of non RBPs for training
and leave-one-out cross-validation. This mimics the
realistic situation that RBPs are only a small fraction of
all proteins. Existing machine-learning techniques are
typically trained on equal or similar number of RNA

Table 3. Structural genomics targets (SG2076) predicated as RBPs

Target Template TM-score Z-score Energy Function

1vhyA1 2rfkA2 0.56 1.5 �14.0 RBa

1nnhA 1asyA2 0.78 2.8 �13.5 RB
1nzjA 1gaxA1 0.49 1.2 �16.8 RB
2oceA5 2ix1A4 0.65 1.4 �12.2 UKb

2f96A 2a1rB 0.57 1.4 �13.5 RB
2cphA 1fxlA2 0.70 1.3 �17.9 RB
3cymA1 2a1rB 0.56 1.3 �11.9 RB
1tuaA1 1ec6A 0.68 1.4 �11.5 RB
2q07A2 1r3eA2 0.67 2.1 �10.9 RB
1yvcA 2bh2A1 0.72 1.8 �13.5 RB
1t5yA2 1r3eA2 0.77 2.8 �15.3 RB
3go5A2 2ix1A4 0.68 1.5 �13.7 RB
2k52A 2ix1A4 0.63 1.3 �12.4 RB
1zkpA 2fk6A 0.78 2.3 �15.9 RB
1x40A 2f8kA 0.62 1.3 �10.8 UBc

2ogkD 1jj2D 0.62 1.8 �25.5 RB
2cpfA 1fxlA2 0.74 1.5 �12.0 RB
1yezA 2bh2A1 0.69 1.6 �14.9 RB
2e5hA 1fxlA2 0.74 1.5 �13.3 RB
3frnA3 1jj2J 0.51 1.2 �20.4 UK
2jz2A 1jj2P 0.59 1.3 �33.5 UK
3ir9A 1rlgB 0.56 1.2 �11.5 UK
3hp7A1 1h3eA2 0.63 1.4 �12.5 RB
1wi6A 1fxlA2 0.70 1.3 �17.6 RB
1wdtA4 1fjgI 0.55 1.4 �29.7 RB

aTargets are annotated as having putative functions related to RNA
binding in the NCBI database.
bFunction unknown.
cNon-RNA binding
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binding and non-binding proteins. It is possible that these
methods would have substantially higher false positive
rates when they were applied to a significantly larger set
of non-binding proteins most of which are unseen by
machine-learning techniques. Nevertheless, we have
achieved a comparable MCC value of 0.57 with the
largest non-redundant set of 212 RBPs and 6761 non-
binding proteins (including DNA binding ones),
compared to 0.53 for a sequence-based classifier (5-fold
cross-validation on 134 RNA-binding and 134 non-RNA
binding proteins) (8) and 0.72 for structure-based classifier
for a database of 76 RNA binding proteins and 246 non-
nucleic acid binding proteins, leave-one-out test) but the
latter is unable to separate RNA from DNA binding
proteins (9).
One advantage of the proposed structure-based method

is simultaneous prediction of protein–RNA complex
structures. The predicted complex structures allow
prediction of RNA binding residues. High specificity and
accuracy (>90%) are achieved for binding residue
prediction even for the APO structures. Our MCC
values for binding site prediction range from 0.72 for
leave-one-out cross-validation, to 0.56 for HOLO targets
and 0.56 for APO targets. These results can be compared
to the best reported MCC values between 0.47 and 0.51
for sequence and structure-based binding site prediction
(8,20,21).
One potential concern is insufficient statistics due to

the small number of complex structures for deriving the
DRNA energy function. However, a smaller dataset of
179 protein–DNA complexes was employed for obtaining
the DDNA3 energy function for protein–DNA interaction
and its robustness is found via various tests (24). Here, we
have addressed this question by employing the leave-one-
out (for NB212 sets) technique. The consistency between
the leave-one-out and APO/HOLO test sets provides the
confidence about the energy function obtained.
One possible way to improve our prediction is to

introduce an energy threshold that is dependent on
structural similarity threshold because one expects that
the binding-energy requirement should be stronger for
less similar structures but weaker for highly similar
structures between template and query. Previously, it
was found that introducing a TM-Score dependent
energy threshold makes significant and consistent impro-
vement in predicting DNA binding proteins (23,24). Here,
we found that introducing TM-Score-dependent energy
threshold does lead to an increase of the MCC value
from 0.49 to 0.52. However, an Z-score-dependent
energy threshold leads to no significant change (0.5690
versus 0.5694). Thus, we employed two independent
(Z-score and energy) thresholds only in this work.
The success of our proposed technique is limited by

the availability of protein–RNA complexes as templates.
It cannot predict RBPs with novel structures or binding
modes that are not included in the template library. We
have used DB250 based on 90% sequence-identity cutoff
as template library for the purpose of maximizing
available templates. The low sensitivity (36–42%) in
various tests is likely in part due to lack of structurally
matching templates. On the other hand, binding induced

conformational changes suggest that the rigid-body
approximation employed here likely has limited the
performance of DRNA to discriminate the binding from
non-binding proteins. How to improve our method by
incorporating protein flexibility is a challenging problem
to be addressed.

Compared to our corresponding method for DNA
binding proteins, the present work indicates that RBPs
are more difficult to predict. In particular, sensitivity is
more than 50% for predicting DNA binding proteins,
compared to about 36% for RBPs. This is likely due to
highly flexible and diverse RNA structures (50), compared
to DNA structures. More diverse RNA structures will
lead to more diverse protein structures to bind them.
The latter will be more difficult to detect by structural
alignment to a limited number of existing RNA binding
template structures that is similar to the number of
available template structures for protein-DNA
interactions.

Finally, the method is available in the SPOT package
(Structure-based function-Prediction On-line Tools) at
http://sparks.informatics.iupui.edu/spot.
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