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A theoretical investigation is presented of the mode propagation and attenuation in a nanometric coaxial

waveguide in real metal. By a rapid comparison with other structures, it is established that a coaxial waveguide

has propagative modes with very interesting properties: the cutoff wavelengths are very large, they become

larger when a perfectly electric conductor is replaced by gold or silver �real metal�, and they can be increased

when the outer and inner radii are very close one to other. By studying dispersion curves and field structures,

it is shown that surface plasmon modes are responsible for these properties. By simply changing the geometri-

cal parameters of the structure, a very large effective index and very low group velocities could be obtained.

We also establish that, in spite of the metal losses, a reasonable large propagation length could be obtained

�50 �m� which should allow applications for guiding light in nano-optics.

DOI: 10.1103/PhysRevB.74.205419 PACS number�s�: 78.67.�n, 78.20.Bh, 42.79.Gn

Miniaturization of optical components is now a real chal-

lenge and takes a large place in the domain of nanotechnol-

ogy. New optical devices are currently designed at the mi-

crometer scale. Tunable photonic crystals are a significant

example of such devices.1 Surface plasmons, which are lo-

calized electromagnetic waves, are used to enhance single-

molecule fluorescence2 or to build microdetectors for bio-

logical applications.3 The superoptical transmission obtained

when light passes through a metallic array of subwavelength

holes,4–6 is now used as a detector for organic molecules and

could be useful to modulate, to filter or to polarize light at

nanometric scales.6,7 Motivated by transmission problems

through optical near-field probes, some theoretical studies

were performed on metallic nanometric cylindrical guiding

structures.8,9 Waveguides that can transmit both electrical

and optical signals should also be designed at this scale as

proposed in Ref. 10. In their paper, Bozhevolnyi et al. clearly

demonstrate that a simple groove on a metallic layer can play

the role of an effective waveguide for surface plasmons with

a relatively very large decay length.

The aim of our paper is to propose another solution for

optical connections in nano-sized optical components: we

theoretically establish that a coaxial waveguide with submi-

crometer radii could guide light with a much larger wave-

length and with losses low enough to enable useful propaga-

tion distances.

In order to use light �0.4���1.5 �m� for optical con-

nections in nano-optical components, it is necessary to find a

structure with small transverse widths and with losses low

enough to enable a useful propagation distance. Dielectric

materials generally have negligible losses but the transverse

confinement is very difficult to obtain with such materials.

Some photonic optical fibers have subwavelength channels

but the field is delocalized among all the cross sections of the

fiber. A dielectric fiber can be easily tapered at a nanometric

scale and it can guide light without any cutoff restriction. But

the evanescent part of the guided mode is spread out over the

taper, which is not compatible with efficient confinement.

With metallic guides, at first glance, it seems easier to

confine the field in a transverse plane, but it is then necessary

to seriously discuss the problems of wavelength cutoff and of

losses especially if real metals are used. The properties of

metallic waveguides can be found in many textbooks �Ref.

11, for instance�, but the studies are generally restricted to

radio waves or microwaves. For theses spectral domains, the

metals are very close to perfect electric conductors �PECs�
and losses are treated as a small perturbation. In the optical

range, the properties of the metals must be described by a

complex dielectric constant with dispersion and losses. For

noble metals �silver, gold, aluminum�, experimental tables

are published12 and a good approximation is given by the

Drude model ����=1−�p
2 / ��2+ i���, where �p=1.374

�1016 rad/s is the plasma frequency and �=3.21

�1013 rad/s a coefficient directly related to the losses. It is

important to notice that for those metals, the losses remain

small and the imaginary part of the dielectric constant is

much smaller than its real part.

For a guiding structure along the z axis, the electric field

of a mode can be written in the general form

E� = E� 0�x,y�ei�	z−�t� = E� 0�x,y�ei��nef f/cz−t�. �1�

The propagation coefficient 	 is directly related to the

effective index of the mode: 	=nef f� /c. In general, 	 and

nef f are functions of � and they depend upon the geometry

and on the mode. Without losses, 	 is real or purely imagi-

nary. For a propagative mode, 	 is real; for a nonpropagative

evanescent mode it becomes purely imaginary. The cutoff

frequency corresponds to the limit between the two kinds of

modes. At this limit, 	 and the effective index vanish. For

real metals with losses, 	 is complex and a general discus-

sion is very difficult. However, when losses are small, a clear
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difference between propagative and attenuated modes re-

mains valid: for propagative modes Im�	�
Re�	� and a cut-

off frequency still exists when Re�	��0.

To propagate light in a guide with a small cross section, it

is necessary to find the geometry that has the mode with the

largest cutoff wavelength. Figure 1 gives the cutoffs of the

fundamental modes of three kinds of waveguide made with

PECs. In the following, the cavity inside each guide is sup-

posed to be filled with air. In theoretical calculations it is

easy to replace air by another dielectric; it is not so easy

experimentally. So, in the following all the calculations are

performed with air inside the cavities.

For a square or rectangular waveguide �widths a and b

with a�b� in a PEC, the fundamental mode with the largest

cutoff wavelength is the TE10: �c=2a. By replacing a rect-

angular cross section by a circular one, with the same width

�diameter a=2R�, a smaller cutoff is obtained for the funda-

mental mode: �c=1.7a for the TE11 mode.

If we consider a coaxial waveguide, in a PEC, a very

interesting result is obtained. The cutoff wavelength of all

the modes except two depends on the difference between the

outer and inner radii, i.e., the wavelength cutoff is very

small. But the TEM0 mode has no cutoff ��c=�� and the

TEm1 mode has a cutoff proportional to the sum of the radii:

�TEm1

c �
�Ro+Ri� /m, where Ro and Ri are the outer and in-

ner radii, respectively. The TEM0 mode has a cylindrical

symmetry and it should be very difficult to be optically pro-

duced. On the contrary the electric field of TE11 is linearly

polarized and could be easily excited.

Thus, except for the TEM0 mode, the fundamental mode

of a coaxial guide in a PEC is the TE11 mode, which has a

rather large cutoff wavelength: �TE11

c �
�Ro+Ri�. If the ex-

ternal transverse width of the coaxial waveguide remains

constant, the cutoff wavelength of the TE11 mode can be

increased when the inner radius tends to the external one.

The maximum that can be reached is �TE11

c
→
�2Ro� which

is obtained for a very small gap between the two radii.

For optical applications, it is necessary to check if the

interesting properties of the coaxial waveguide remain valid

in the optical domain. Here analytical solutions are not pos-

sible and it is necessary to use numerical methods. Commer-

cial codes are available for this purpose; they are founded

upon the finite-difference time domain �FDTD� method or

the finite-element method �FEM�. They have no problems for

dielectric structures but they have shown erratic problems of

convergence when applied to our nanoguiding structures

with real metals.

The cutoff frequencies and the light distribution inside the

waveguide, which will be shown below, are calculated via an

original FDTD code that will be briefly described here. The

study of axially symmetrical structures can be easily done by

the body-of-revolution FDTD �BOR FDTD� method which

is based on the discretization of the Maxwell equations ex-

pressed in cylindrical coordinates.13,14 The N-order FDTD

method15,16 is then adapted to such a symmetry. To our

knowledge, this method is not yet recognized in cylindrical

FIG. 2. Effective index of the first guided modes for coaxial and

cylindrical waveguides made in PEC and in silver. The radius of the

cylindrical waveguide is set to R=125 nm, the outer radius of the

coaxial waveguide is Ro=125 nm, and the inner one is Ri=75 nm.

FIG. 3. Variations of the cutoff wavelength of the first mode of

the two structures �coaxial and cylindrical� versus outer radius. For

the coaxial waveguide, the inner radius is set to Ri=75 nm.

FIG. 1. �Color online� Cutoff wavelengths of the first guided

modes �associated with bigger values of wavelength� for three dif-

ferent waveguides made in a PEC.
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coordinates; however, it leads to an efficient and fast code as

it avoids the use of absorbing boundary conditions except in

the radial direction. Moreover, we have also used for these

calculations, a nonuniform mesh: the smallest spatial step

was �r=0.1 nm near the edges whereas �r=5 nm elsewhere.

Let us notice here that studies on optical fibers by the

FDTD method are generally performed with a two-

dimensional 2D algorithm with rectangular discretization17,18

which is not very well adapted to efficiently describe the

cylindrical geometry of the studied structure.

In our case, the dispersion of metals at optical frequencies

is easily incorporated in the FDTD algorithm via the discreti-

zation of the constitutive equation of the medium that con-

nects the displacement D� vector to the electric field E� .19

In order to test the validity of our approach, we first de-

termine the dispersion curve for a coaxial waveguide in a

PEC and compare the result with the same structure in silver.

An example of the dispersion curves is presented in Fig. 2

where are plotted the variations of the effective indices of the

first modes �TEM0, TE10, and TE11� versus the vacuum

wavelength for two different geometries.

The dispersion curves of the PEC structure, obtained with

our FDTD code, exactly correspond to the theoretical ones.

The TEM0 mode has no cutoff and its effective index is

equal to 1 along the whole spectrum. The effective index of

the TE1 mode verifies the simple equation nef f
PEC���

=�1−�2 / ��c�2.

For the coaxial waveguide in silver, only two modes have

a propagative part in the studied spectral range. A mode with

cylindrical symmetry is found, its cutoff wavelength far be-
yond the infrared, and the effective index exhibits a small
dispersion from �0=600–900 nm �even up to 1600 nm�. It is
important to notice that the effective index of this mode is
larger than 1. The other mode has a field distribution corre-
sponding to an m=1 mode. The two modes have, in the case
of silver, small Ez field components so they are not pure
TEM0 and TE1 modes, but they are in the continuity of the
previously described modes of the PEC structure and they
will be named in the following the TEM0� and TE11� modes.

The TE11� mode has a dispersion curve which looks like
the PEC one but is pushed towards the red region of the
spectrum. For a real noble metal, the cutoff wavelength is
increased compared to the same structure in the PEC. A simi-
lar result has also been recently established for the mode
propagation in rectangular20 or cylindrical18 structures made
of real metals. So a general property can be expressed: for a

guiding structure made in real metal, the cutoff wavelength

of a propagative mode is increased when compared with the

same mode of the same structure made in a PEC. This result

is a key point for the interpretation of the very large trans-

mission obtained with an annular aperture array.16 The red-

shift depends both on the value of the plasma frequency �wp�
used in the Drude model and on the geometrical parameters

of the waveguide �radii�. Moreover, the loss coefficient � of

the permittivity has a very small influence on the cutoff shift.

It is important to notice that, among the three studied

structures with the same external radius, the coaxial wave-

guide in silver is the structure which has propagative modes

with the largest wavelength.

FIG. 4. Dispersion curves of a

silver coaxial waveguide with four

values of Ro and with Ri=75 nm.

Only the modes with m=1 are

shown. The dashed line presented

on the four figures corresponds to

�=�p /�2.
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Another interesting phenomenon is presented in Fig. 3. In

this figure we have plotted the variations of the cutoff wave-

lengths versus the outer radius Ro of the fundamental modes

for four structures: a coaxial waveguide in PEC or silver and

a cylindrical waveguide also in PEC or silver. For the two

coaxial waveguides, the inner radius is fixed to Ri=75 nm.

For a cylindrical waveguide made in PEC or silver, the

behavior of the cutoff is linear but it is shifted toward the red

region of the spectrum in the case of real metal. We have also

reproduced the result presented in the inset of Fig. 2�a� by

Shin et al.18

The cutoff wavelength of the TE11 mode of the coaxial

waveguide made in the PEC varies linearly with respect to

the outer radius and verifies the theoretical equation �TE11

c

�
�Ro+Ri�. All these results are tests showing the good

accuracy of our FDTD code.

But for a coaxial waveguide made in silver �metal with

losses� one can see in Fig. 3 that the variation of the cutoff

wavelength of the TE11� mode exhibits an unusual behavior

when the external radius decreases. For a large external ra-

dius, the cutoff wavelength first decreases linearly, but, be-

low a limiting value �point F on the figure� Ro
min=125 nm,

the cutoff wavelength increases when Ro decreases. This

finding is at the origin of the enhanced transmission obtained

through annular aperture arrays with a small gap between Ro

and Ri when illuminated by very large incident

wavelengths.21

In order to explain this unusual behavior of the cutoff

wavelength in the case of a coaxial waveguide in real metal,

we study the evolution of the dispersion curves when Ro

varies and for a fixed value of Ri=75 nm. The calculations

are performed only for modes having the same azimuthal

number m=1.

Figure 4 shows the results obtained for only four values of

Ro around the point F of Fig. 3. The higher modes are propa-

gative ones and, as usual, they tend asymptotically to the

light line for large values of kz. For small values of Ro, these

modes are shifted toward high frequencies; they do not ap-

pear in Fig. 4�d� for Ro=80 nm.

The two interesting modes are the lowest ones. Actually,

they cut the light line and tend asymptotically to �=�p /�2

which is the surface plasmon frequency on a flat metal-

vacuum interface. When Ro decreases, the two curves repels

each other and a large gap is obtained for Ro=80 nm. These

FIG. 5. �Color online� Light distributions �square modulus of

the electric field� in a section of the waveguide for four values of Ro

and with Ri=75 nm. In all the eight subfigures, kz is set to zero, i.e.,

� is equal to �c. �a�, �c�, �e�, and �g� correspond to the lower mode

while �b�, �d�, �f�, and �h� are calculated for the second plasmonic

mode.

FIG. 6. Normalized group velocity �by c� of the lower mode

versus the wavelength for Ro=125 nm and Ri=75 nm.
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two modes look like the two plasmonic modes obtained in
the case of a 1D metallic photonic crystal.22 In the former
case, one of them has an odd symmetry while the other pre-
sents an even one. In our case, there is no geometrical sym-
metry in the radial direction except when Ro→Ri; this im-
plies that there are no even or odd symmetries. Figure 5
shows the light distribution at cutoff wavelengths for the two
lower modes in the case of a coaxial waveguide made in

silver with Ri=75 nm and for the four values of Ro consid-

ered in Fig. 4. One can see that for the fundamental mode,

the light distribution corresponds to the excitation of a sur-

face plasmon on the inner interface whichever the value of

the outer radius. Moreover, for the second mode, the maxima

of light are located between the two interfaces. We have

verified that these two modes are TE1n-like ones, i.e., at the

cutoff, Er, E�, and Hz are not equal to zero while the three

other components �Ez ,Hr ,H�� of the electromagnetic field

are null.

Note here that for an outer radius of Ro=80 nm �Fig.

5�h��, the cutoff wavelength of the second mode is almost

equal to �c=140 nm which corresponds to �=�p. In this

case, the dielectric constant of silver becomes null and a

plasmon resonance �in the volume� is obtained as shown in

Fig. 5�h�.
It seems that, when Ro→Ri, the cutoff frequency tends to

zero for the fundamental mode and to �p for the second

plasmonic mode. It would be interesting to have a theoretical

interpretation of this phenomenon.

Figure 4�d� shows also that, for a small value of the outer

radius �here Ro=80 nm�, the dispersion curves become al-

most horizontal. The group velocity vg is then small com-

pared to c �light velocity in vacuum�. Figure 6 shows the

group velocity versus the wavelength of the lowest guided

mode in the case of a silver coaxial waveguide with Ro

=125 nm and Ri=75 nm. This curve is simply numerically

calculated from Fig. 4�c� by vg=d� /dk. We have performed

many other calculations which demonstrate that for Ro→Ri

→0, the dispersion curve becomes more flat and, conse-

quently, the group velocity decreases �for example with Ro

=55 nm and Ri=50 nm, we get vg�c /4 for the whole vis-

ible region�. In all cases, the value of vg falls to zero at the

cutoff because there is no propagation along the z axis

�kz=0�.
These modes are interesting because of their large cutoff

wavelengths �especially the lowest one�. Nevertheless, for

practical applications, it is necessary to determine the propa-

gation losses. It is clear from Fig. 5 that, for the fundamental

mode �TE11� �, light is essentially confined in the gap between

the two metallic parts of the waveguide. This indicates that

losses should be very weak during the propagation.

In order to confirm that, let us determine the imaginary

part of the effective index �nef f =nef f� + inef f� �. The real part nef f�

�which is presented in Fig. 2� is determined from the disper-

sion curves given in Fig. 4 by nef f� =�ckz /2
. The imaginary

part of nef f can be determined by studying the width of the

resonance peaks obtained by the N-order FDTD method.23

But this method is not sufficiently accurate in our case. Thus,

we have determined it by performing a numerical propaga-

tion experiment. A body-of-revolution FDTD calculation on

FIG. 7. Schema of the studied coaxial waveguide. A pulsed TE11

guided mode is injected at z=zI. Light intensities are then recorded

at z=zA, zB, and zC.
FIG. 8. Numerical values of the imaginary part of the effective

index for the TE11� mode in the case of a silver coaxial waveguide

with Ri=75 nm. Distances AB and BC were set to zB−zA=zC−zB

=500 nm and the injection point I was located at 500 nm above A

�see Fig. 7�.

FIG. 9. Comparison of the efficiency of the diffracted zero order

by four different single coaxial apertures pierced into a metallic

layer. For all, the metal thickness is set to h=100 nm and the struc-

ture is supposed to be free standing �surrounded by vacuum�. Dot-

ted line corresponds to a PEC structure with Ro=90 nm while the

solid line corresponds to the same structure in silver. The dot-

dashed line and the dashed one are both calculated for Ro

=125 nm and for PEC and silver metal, respectively.
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a z-finite structure is performed and the imaginary part of the

effective index is determined by measuring the light attenu-

ation. The schema of the studied structure is presented in

Fig. 7.

A pulsed guided mode is injected at the point I. This pulse

is centered around �=500 nm and has a small temporal

width in order to cover the whole visible range. Three point

detectors are set at A, B, and C. The three components �Er�t�,
E��t�, and Ez�t�� of the electromagnetic field are then re-

corded versus time at these three points.

A time Fourier transform is then made over each compo-

nent in order to determine the spectral densities IA, IB, and IC.

Thus, the imaginary part of the effective index can be

easily calculated from one of the following equations:

n� =
� ln�IA,B or C/IB,C or A�

4
�zB,C or A − zA,B or C�
. �2�

One notice here that this BOR FDTD calculation is time

consuming �36 h on a laptop computer Dell Precision M70�
because of the small spatial meshing in the radial direction

��r=0.1 nm� which leads to a very small time step in the

FDTD code ��t�1.35�10−19 s� and also because of the

weak value of the group velocity.

On the other hand, this method remains valid only for

wavelengths less than the cutoff. In fact, for �=�c, the group

velocity of the guided mode is zero and the light does not

propagate.

Because of this, Fig. 8 presents the logarithm of the

imaginary part of the effective index only for ���c for three

different geometrical configurations. For all three cases Ri is

fixed to 75 nm. The dotted line is obtained for Ro=125 nm,

the dashed one for Ro=250 nm, and the solid one in the case

of Ro=80 nm.

Figure 8 shows that the imaginary part of the lower

guided mode �the TE11� one� increases when Ro decreases,

and then the decay length decreases. Moreover, nef f� is around

2�10−3 for the whole visible range when Ro=125 nm. This

corresponds to a decay length of 50 �m �in average�. Thus,

this mode presents weak losses during its propagation and

waveguides of several tens of micrometers can be designed

for optical applications.

On the other hand, this finding can be used in the domain

of enhanced transmission through subwavelength apertures

as studied by Haftel et al.21 In that study, the authors dem-

onstrate that by decreasing the value of the outer radius, the

transmission peak is shifted toward large wavelength values.

Figure 9 shows the zero-order efficiency of a 100-nm-thick

silver layer perforated by only one aperture. Four apertures

were studied: cylindrical and coaxial ones in PEC and in

silver, and two different geometrical configurations.

Two phenomena are clearly shown on Fig. 9: first, the use

of silver instead of PEC leads to a shift in the transmission

peak toward a larger value of wavelength and, second, this

shift can be amplified by decreasing the outer radius.

To the best of our knowledge, this work shows for the first

time the determination of cutoff frequencies of a real metal-

lic coaxial waveguide. In addition, the abnormal behavior of

the cutoff wavelength of the fundamental mode is pointed

out: it increases when the outer radius decreases. The group

velocity of such a mode shows a weak value compared to c,

which means that light will propagate slowly inside the

waveguide. This property is very important if we consider

nonlinear or electro-optical materials placed between the in-

ner and the outer metallic parts because their coefficients can

then be strongly increased with slow light.
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