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CurrentConceptsReview

Surgical Tourniquets in Orthopaedics
By Shahryar Noordin, MBBS, FCPS, James A.McEwen, PhD, PEng, Colonel John F. Kragh Jr., MD,

Andrew Eisen, MD, FRCPC, and Bassam A.Masri, MD, FRCSC

Investigation performed at the Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada

� Higher levels of tourniquet pressure and higher pressure gradients beneath tourniquet cuffs are associated with

a higher risk of nerve-related injury.

� Measurement of limb occlusion pressure can help to minimize tourniquet pressure levels and pressure gradients

for individual patients and individual surgical procedures.

� Selective use of pneumatic, wider, and contoured tourniquet cuffs reduces tourniquet pressure levels and the

applied pressure gradients.

The modern pneumatic tourniquet traces its roots to the
time of the Roman Empire (199 BCE-500 CE), when non-
pneumatic bronze-and-leather devices (Fig. 1) were used to
control bleeding from limb amputations during war. The goal
was to save a life without regard for the limb. The term ‘‘tour-
niquet,’’ coined by Jean Louis Petit, is a derivation of the French
verb ‘‘tourner,’’ meaning to turn. Petit described a new screw-
like device that tightened a belt to stop arterial blood flow1.

With the advent of general anesthesia, Joseph Lister was
the first to use a tourniquet to create a bloodless surgical field2,
in 1864. At the end of the nineteenth century, Friedrich von
Esmarch advanced tourniquet design by devising a flat rubber
bandage for exsanguination and to stop blood flow 3. In 1904,
Harvey Cushing introduced the first inflatable (pneumatic)
tourniquet, thereby permitting tourniquet pressure to be
monitored and manually controlled4,5.

Elements of Modern Pneumatic Tourniquet Systems

Within the last thirty years, there have been important im-
provements in the technology of tourniquet instruments and
tourniquet cuffs. The resulting improved safety, efficacy, and
reliability allowed the U.S. Food and Drug Administration to
classify pneumatic tourniquets as Class-I medical devices
(indicating that they present minimal harm to the user and do

not present a reasonable source of injury through normal use).
Pneumatic tourniquets are used in an estimated 15,000 or-
thopaedic and non-orthopaedic surgical procedures daily in
the United States and elsewhere, facilitating operations by re-
liably establishing a bloodless surgical field with a high level of
safety6.

The modern microcomputer-based tourniquet system
was invented in 1981 by one of us (J.A.McE.)7. The elements
of that first automatic tourniquet system are depicted in
Figure 2. A microcomputer-controlled pressure regulator
typically maintains cuff pressure within 1% of the set pres-
sure, allowing lower tourniquet pressures to be safely and
reliably used, and an automatic timer provides an accurate
record of tourniquet inflation time. Audiovisual alarms are
often included to prompt the operator if hazardously high
or low cuff pressures are present. Automatic detection and
monitoring of potentially hazardous air leakage from pres-
surized tourniquet cuffs is often included, and self-test ca-
pabilities are typically included to provide automatic checks
of calibration, audiovisual alarms, and hardware and software
integrity at each start-up of the tourniquet instrument. A backup
power source is often included to allow such instruments to
continue to operate normally during an unanticipated power
interruption.
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Also shown in Figure 2 are additional safety features of
the most modern tourniquet systems8. These include a cuff
hazard interlock to prevent a user from inadvertently powering
off a tourniquet instrument while the cuff is still inflated and
an intravenous regional anesthesia safety interlock to help
prevent a user from inadvertently deflating the wrong cuff
during intravenous regional (Bier block) anesthesia and during
bilateral limb procedures by requiring a separate confirming
user action. Most modern tourniquet systems now include
automated estimation of the limb occlusion pressure of each
patient, permitting individualized setting of safer tourniquet
pressures as described below. To facilitate measurement of
limb occlusion pressure and the adaptation of tourniquet
operation during surgery, some modern tourniquet systems
include a provision for connection of the tourniquet instr-
ument to physiologic monitors.

Tourniquet-Related Nerve Injuries:

History and Pathogenesis

The complications and relative contraindications of tourniquet
use have been well described and summarized by others5,9,10.
However, the risk of tourniquet-related nerve injury remains
a particular concern. In an early study, before the introduction
of automatic tourniquet systems and before the routine use
of lower tourniquet pressures, electromyographic evidence of
peripheral nerve injury was found in a high percentage of
limbs after tourniquet use11. In prospective randomized studies
conducted in the 1980s, when mechanical tourniquets and
higher tourniquet pressures were in common use, there was
evidence of denervation in 71% (seventeen) of twenty-four
patients after lower-extremity tourniquet use12 and in 77%
(twenty-four) of thirty-one patients after upper-extremity

tourniquet use13. The prevalence of electromyographic ab-
normalities was reported to increase with tourniquet time, and
evidence of denervation typically lasted from two to six
months. Electromyographic abnormalities correlated with
impaired postoperative function and delayed recovery, sug-
gesting that tourniquet-induced neuropathy played a causal
role in impaired rehabilitation14.

On the basis of a questionnaire survey in Norway, the
incidence of neurological complications associated with tour-
niquet use was estimated to be one per 6155 applications to the
upper limb and one per 3752 applications to the lower limb15.
Other estimates have varied, and it has been suggested that the
actual incidence of so-called tourniquet paresis may be un-
derreported7,16. Such nerve injuries range from a mild transient
loss of function to permanent, irreversible damage and are
a potential source of litigation. To minimize risk and potential
litigation, an understanding of both the mechanism of injuries
and possible preventive measures is important. Ochoa et al.17-19

showed that most cases of nerve damage were limited to the
portion of the nerve beneath and near the edges of the cuff.
They found that compressive neurapraxia rather than ischemic
neuropathy or muscle damage was the underlying cause of
tourniquet paralysis and demonstrated that compression of the
large myelinated fibers involves a displacement of the node of
Ranvier from its usual position under the Schwann-cell junc-
tion. This was accompanied by stretching of the paranodal
myelin on one side of the node and invagination of the para-
nodal myelin on the other. The nodal axolemma was some-
times identified as far as 300 mm from its original position
under the Schwann-cell junction, causing partial or complete
rupture of the stretched paranodal myelin (Fig. 3). The nodal
displacement was maximal under the edges of the cuff, where

Fig. 1

A thigh tourniquet used by the Romans to control bleeding, especially after traumatic

amputations. The tourniquet is made of bronze with engraved patterns and is covered with

leather to help protect the patient’s thigh and reduce pain
58
. (Printed with permission of

Science and Society Picture Library. http://www.scienceandsociety.co.uk/.)
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the applied pressure gradient was greatest. There was relative
or complete sparing under the center of the cuff, and the di-
rection of displacement was away from the cuff toward the
uncompressed tissue.

Tourniquet Cuff Design

The actual levels of pressure applied by a pneumatic tourniquet
cuff to the underlying limb and soft tissues vary widely in com-
parison with the pneumatic inflation pressure within the tour-
niquet cuff. McLaren and Rorabeck20 measured the distribution
of tissue pressures under pneumatic tourniquets in canine limbs.
The peak pressure, which was 97% of the cuff inflation pressure,
was in the subcutaneous tissue just proximal to the midposition
along the tourniquet width. Tissue pressures decreased pro-
gressively as they became closer to the cuff edges, with a decrease
of about 90% from the midpoint of the cuff width to the cuff
edge. Pressures were lower in deeper tissues as well, but the
decrease from the limb surface to the center was only about 2%.
At the midpoint of the cuff width, surface tissue pressure was
95% of the cuff inflation pressure. Shaw and Murray 21 also
showed a decrease in tissue pressure with increasing depth,
midway along the width of a cylindrical pneumatic tourniquet

cuff on the lower extremities of human cadavers. They noted that
the pressure measured in the soft tissue was consistently lower
than the pneumatic pressure in the tourniquet cuff and that the
level of tissue pressure varied inversely with the thigh circum-
ference. All such studies suggest that higher tourniquet inflation
pressures and higher applied pressure gradients on the limb
surface correspond to higher pressures and higher pressure
gradients in the underlying soft tissues.

The distribution of perineural pressures under the cuff is
described by a parabolic curve (Fig. 4), with peak levels at the
midpoint of the cuff and much lower pressures at the proximal
and distal edges22. The difference between soft-tissue pressures
at the cuff midpoint and those at the cuff edges increases at
higher levels of cuff inflation, establishing a direct relationship
between the level of the cuff inflation pressure and the pressure
gradient in the underlying soft tissue. There is an inverse re-
lationship between limb occlusion pressure and the ratio of the
cuff width to the limb circumference23. This relationship is
shown in Figure 4, indicating that, for a given limb circum-
ference, a narrower cuff requires a much higher tourniquet
pressure to stop blood flow (higher limb occlusion pressure).
This is associated with higher applied pressure gradients and

Fig. 2

Modern tourniquet system with elements that have improved safety, accuracy, and reliability
8
. Microprocessor technology

allows precise sensing and regulation of the actual cuff pressure, enables accurate indications of cuff pressure and

elapsed time to be provided visually, produces audiovisual alarms automatically in the event of a wide range of hazardous

conditions, and allows automatic estimation of limb occlusion pressure (LOP). Improved cuff designs allow cuff pressure to

be applied effectively to encircled limbs with a wide range of sizes and shapes
24-27,41,42

. IVRA = intravenous regional

anesthesia, OR = operating room.
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a greater risk of neurological injury. Conversely, for the same
limb circumference, a wider cuff requires a lower tourniquet
pressure to stop blood flow. Additionally, a contoured tour-
niquet cuff occludes blood flow at a lower inflation pressure
than does a straight (cylindrical) cuff of equivalent width24,25.
This may be attributable to a better fit of the cuff to the limb
and thus more efficient transmission of pressure to the un-
derlying tissue. These facts have motivated the development
and increasing use of wider, variable-contour cuffs that con-
form to a wide range of limb shapes, stopping blood flow at
pressures that are lower than are necessary with narrower,
cylindrical cuffs.

Tourniquet Limb Occlusion Pressure

Limb occlusion pressure is defined as the minimum pressure
required, at a specific time by a specific tourniquet cuff applied
to a specific patient’s limb at a specific location, to stop the flow
of arterial blood into the limb distal to the cuff. Setting tour-
niquet pressure on the basis of limb occlusion pressure thus
minimizes the pressure and pressure gradients applied by a cuff
to an underlying limb and helps to minimize the risk of nerve-
related injuries. The currently established guideline for setting
tourniquet pressure on the basis of limb occlusion pressure is
that an additional safety margin of pressure is added to the
measured limb occlusion pressure to account for physiologic

Fig. 3

a: A normal node of Ranvier of a nerve in a limb, showing a nodal gap 1 to 2 mm in width. b:

An abnormal node of Ranvier four days after compression of the limb and nerve by

a tourniquet cuff. c: A low-power electron micrograph of the node shown in b
18
. This nodal

lesion is followed by breakdown of the paranodal myelin. Repair may be delayed by

intramyelin and periaxonal edema, resulting in localized swelling found in diminishing

amounts for several months and possibly responsible for a delay in functional recovery.

(Reprinted, with permission of Blackwell Publishing Ltd., from: Ochoa J, Fowler TJ, Gilliatt

RW. Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet. J

Anat. 1972;113 (pt 3):433-55.)
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variations and other changes that may be anticipated to occur
normally over the duration of a surgical procedure. Limb oc-
clusion pressure usually is determined by gradually increasing
tourniquet pressure until distal blood flow is interrupted26.
Previous studies23-27 have shown that cuff inflation pressures
based on limb occlusion pressure measured for each patient
before cuff inflation were generally lower than a predetermined
generic cuff inflation pressure but were sufficient to maintain
a satisfactory operative field.

Limb occlusion pressure inherently accounts for variables
such as systolic blood pressure, tourniquet cuff design, cuff ap-
plication method, limb circumference and shape, and tissue
characteristics at the cuff site. Some advanced surgical tourniquet
systems include means with which to measure limb occlusion
pressure automatically. After limb occlusion pressure is mea-
sured, tourniquet pressure is typically set by adding to the limb
occlusion pressure an additional pressure safety margin that is
selected to be greater than the magnitude of any increase in limb
occlusion pressure normally expected during the operation.

An automated plethysmographic system built into the
tourniquet that measures limb occlusion pressure in about
thirty seconds at the beginning of an operation was developed
by one of us (J.A.McE.) and colleagues25,27. This system was used
to determine how much the pressure could be reduced by ap-
plying a wide contoured cuff instead of a standard cuff 26. Pa-
tients undergoing foot and ankle surgery with a thigh tourniquet
were randomized into two groups of twenty patients each: one
was treated with a standard cuff, and the other was treated with

a wide cuff. Pressure was set at the automatically measured limb
occlusion pressure plus a safety margin. The safety margin was
defined as 40 mm Hg for limb occlusion pressures of <130 mm
Hg, 60 mm Hg for those between 130 and 190 mm Hg, and 80
mm Hg for those of >190 mm Hg. Use of the new automated
plethysmographic technique for measurement of limb occlusion
pressure reduced the average thigh tourniquet pressures by 19%
to 42% as compared with the typical 300 to 350 mm Hg. The
standard cuff maintained an acceptable bloodless field in eigh-
teen of the twenty patients, at an average pressure of 242 mm
Hg. The wide cuff maintained an acceptable bloodless field in
nineteen of the twenty patients, at an average pressure of 202
mm Hg. The final cuff pressure did not correlate with the sys-
tolic blood pressure in either the standard or the wide-cuff
group, suggesting that basing cuff pressure on systolic blood
pressure alone does not lead to an optimum cuff pressure.
Therefore, earlier heuristic recommendations such as adding 50
to 75 mm Hg and 100 to 150 mm Hg above the systolic arm
blood pressure for the tourniquet pressure during upper and
lower-limb surgery, respectively 9, may not be ideal. However,
recommendations for estimating arterial occlusion pressure
with a formula combining systolic blood pressure and a ‘‘tissue
padding coefficient’’28 also may not adequately account for all of
the above-described variables that are known to affect limb
occlusion pressure.

Reilly et al.29 conducted a blinded prospective random-
ized controlled study of children ten to seventeen years old
who were undergoing anterior cruciate ligament repair. These

Fig. 4

Limb occlusion pressure (LOP) versus the ratio of tourniquet cuff width to limb circumference.

For any given limb circumference, the tourniquet pressure required to stop arterial blood flow

decreases inversely as the width of the tourniquet cuff increases. (Reproduced, with modifi-

cation, from: Graham B, Breault MJ, McEwen JA, McGraw RW. Occlusion of arterial flow in the

extremities at subsystolic pressures through the use of wide tourniquet cuffs. Clin Orthop Relat

Res. 1993;286:257-61. Reprinted with permission of Lippincott Williams and Wilkins.)
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patients were block randomized to either a control group
treated with a standard cuff (4 in [10.2 cm] wide) and a pres-
sure of 300 mm Hg or an experimental group treated with
a wide-contour cuff (6 in [15.2 cm] wide) in conjunction with
measured limb occlusion pressure. The quality of the bloodless
operative field did not differ between the groups (p = 0.053).
There was a significant difference in the mean cuff pressure
between the control group (300 mm Hg) and the limb-
occlusion-pressure group (151 mm Hg) (p < 0.001). The av-
erage limb occlusion pressure was 133 mm Hg in the control
group, in which the standard cylindrical cuffs were used, and
100 mm Hg in the limb-occlusion-pressure group, in which
wide contoured cuffs were used (p = 0.01).

In its 2009 Recommended Practices for the Use of the
Pneumatic Tourniquet, the (U.S.) Association of periOperative
Registered Nurses (AORN) recommended that tourniquet
pressure for normal adults be set at the limb occlusion pres-
sure, as measured with any validated method, plus a safety
margin of 40 mmHg for limb occlusion pressures of <130 mm
Hg, 60 mmHg for those of 131 to 190 mmHg, and 80 mm Hg
for those of >190 mm Hg30. The 2009 AORN Recommended
Practices notes that adding 50 mm Hg to the measured limb
occlusion pressure has been recommended for children.

Military and Surgical Tourniquets

Tourniquets are deployed in combat and in civilian emergency
settings. Non-pneumatic military tourniquets are commonly
used by both medical personnel and lay soldiers, and pneumatic
tourniquets are commonly used in war hospitals. Both types are
designed for rapid, one-handed self-application in the field.
Early use of both types of military tourniquets (pneumatic and
non-pneumatic) in the absence of shock has been strongly as-
sociated with the saving of lives31. Battlefield use is also associ-
ated with saved lives, particularly in the absence of shock, and in
one study no limbs were lost as a result of use of these military
tourniquets32. In another study of the same cohort, pneumatic
military tourniquets were rated 92% effective and non-
pneumatic tourniquets were rated 79% effective33.

However, the use of non-pneumatic Petit (belt) tourni-
quets and Esmarch (elastic) tourniquets in non-military sur-
gical procedures other than amputations in the nineteenth
century resulted in continuing reports of permanent and
temporary limb paralysis, nerve injuries, and a variety of other
soft-tissue injuries7. This motivated the development of safer
types of pneumatic tourniquets for surgery, in which applied
pressures and pressure gradients could be measured, controlled,
and minimized. Figure 5 shows a comparison of applied pres-
sures and pressure gradients produced by a pneumatic surgical
tourniquet cuff, by a non-pneumatic non-surgical military
tourniquet designed for self-application on the battlefield, and
by a non-pneumatic elastic ring designed to combine exsan-
guination and tourniquet functions. As can be seen in this
figure, both the non-pneumatic, non-surgical military tour-
niquet and the non-pneumatic elastic ring tourniquet pro-
duced pressure levels and gradients that were higher than those
associated with the surgical tourniquet cuff. Higher pressure

levels and gradients are associated with higher probabilities of
nerve injuries during operations, as described above. However,
in modern warfare, the most common cause of preventable
death is exsanguination from limb hemorrhage32. The in-
dication for emergency tourniquet use on the battlefield is any
compressible limb bleeding that the rescuer deems to be life-
threatening34. Anatomic indications are tissue lesions with
limb bleeding that could cause death, such as a midthigh
gunshot wound with transection of the femoral artery. Ana-
tomic indications are defined medically and can be confirmed
during an operation. Situational indications are predicaments
in which a tourniquet is chosen as the best treatment for
reasons other than the lesion itself (e.g., care under fire on the
battlefield35) and are defined and determined by rescuers. Both
types of indications influence the rescuer’s decision regarding
when to use tourniquets instead of alternatives such as pressure
dressings. Civilians may encounter both indications, but in
general they are rare or uncommon in the civilian setting. In
war, both indications are common and can be present simul-
taneously. A rescuer who rapidly controls bleeding and trans-
ports a casualty and himself or herself to safety can save two
lives in war. Narrower and smaller devices of lighter weight
that can be carried by and applied by the injured soldier or
a close companion and that do not require electrical or battery
power to regulate and minimize applied pressure may be re-
quired in such warfare situations because of their portability
and ability to rapidly control hemorrhage, regardless of their
association with a higher risk of nerve injuries. In these situ-
ations, careful manual monitoring of tourniquet function is
essential for safety.

There have been reports of the use of non-pneumatic
tourniquets, including elastic bandages, elastic rolls, and non-
elastic straps similar to those used in the eighteenth and
nineteenth centuries, in some non-military settings36,37. We
stress that the uncritical use and acceptance of non-pneumatic
tourniquets for extended periods, without measurement of
applied pressure levels and gradients, may increase the in-
cidence of tourniquet-related adverse events, exposing patients
and surgical staff in civilian settings to unnecessary risks6.

Limb Exsanguination and Underlying Limb Protection

External compression in addition to elevation has been shown
to improve the degree of limb exsanguination at the time of
tourniquet application. However, it is contraindicated for pa-
tients who have a suspected infection or malignant lesion. Use
of an Esmarch bandage or hand-over-hand manual exsan-
guinations38 are more effective than elevation alone39. Exsan-
guination and the use of tourniquets are both controversial in
patients with sickle cell disease39.

Olivecrona et al.40 confirmed that an elastic stockinette
under a pneumatic tourniquet cuff protected against the de-
velopment of blisters during total knee arthroplasty. They
randomized ninety-two patients to one of three groups. In the
first group, the limb underneath the pneumatic tourniquet cuff
was protected by a two-layer elastic stockinette (n = 33). In the
second group, it was protected by cast padding (n = 29), and
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no protective material was used in the third group (n = 30). A
140-mm-wide contoured cuff or a 100-mm-wide cylindrical
cuff was applied at the discretion of the surgical nurse. Cuff
pressure, which was determined by the surgeon, was recom-
mended to be 70 to 100 mm Hg above the patient’s systolic
blood pressure for the contoured cuffs and 100 to 150 mm Hg
above the systolic blood pressure for the cylindrical cuffs. The
two groups with skin protection had fewer skin injuries (p =
0.007), and no patient who received the elastic stockinette had
blisters. Skin blisters developed beneath the pneumatic tour-
niquet in ten patients—seven in the no-tourniquet-padding
group and three in the cast-padding group. The duration of the
bloodless field was longer for the patients with blisters than it
was for those without blisters (mean and standard deviation,
112 ± 29 and 94 ± 21 minutes, respectively; p = 0.04). There
were no significant differences in cuff pressure, thigh cir-
cumference, or age between the patients in whom blisters
developed and those in whom they did not.

Tredwell et al.41 quantitatively analyzed wrinkling and
pinching of the skin at the cuff-limb interface in a study of
children. In a series of forty-four trials on the upper arms and
thighs of two healthy child volunteers, tourniquet cuffs with
dual-layer stockinette limb-protection sleeves in sizes matched
to the specific cuffs significantly reduced (p < 0.01) the

quantity and maximum height of skin wrinkling when com-
pared with values associated with other forms of limb pro-
tection. In a study involving a total of fifty-five trials of five
different types of limb protection beneath tourniquet cuffs on
the upper limbs and thighs of five adults, it was found that
stretched sleeves made of two-layer tubular elastic material and
matched to the specific tourniquet cuffs produced significantly
fewer, less severe pinches and wrinkles in the skin surface as
compared with all other types of limb protection tested
(maximum p < 0.01)42.

Duration of Tourniquet Use

Tourniquet-related complications increase as tourniquet time
increases43-45. Because there is no completely safe tourniquet
time, the concept of accurately monitoring and minimizing
tourniquet time to minimize the risk of injury is commonly
accepted in surgical, military, and pre-hospital settings. Exper-
imental data have demonstrated that the severity of tourniquet
ischemia is dependent not only on tourniquet time but also on
tissue type. Serum creatine phosphokinase concentration is el-
evated in response to muscle damage at and distal to the tour-
niquet cuff. Furthermore, interruption of blood supply results
in cellular hypoxia, tissue acidosis, and potassium release39,
which, on reperfusion, are eventually corrected in the systemic

Fig. 5

A comparison of applied pressures and pressure gradients typically produced by a modern pneumatic surgical tourniquet cuff (A); a non-

pneumatic, non-elastic, belt-type military tourniquet designed for self-application on the battlefield (B); and a non-pneumatic ring made of

elastic material, designed to be rolled from a distal location to a proximal location on a limb and to remain there for surgery, thereby

combining exsanguination and tourniquet functions (C). Each tourniquet was selected and applied as recommended by the respective

manufacturer to stop arterial blood flow in an upper limb. Higher levels of pressure and higher pressure gradients are associated with higher

probabilities of patient injuries
6
.
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circulation. Although we are not aware of any prospective
randomized clinical trial that has defined the optimal duration
of tourniquet use in lower-limb surgery, two hours is consid-
ered to be relatively safe for upper-limb surgery 9. This is
consistent with the findings of a study of lower-extremity
surgery by Ostman et al.46, who used microdialysis to charac-
terize the time course and metabolite levels in skeletal muscle
exposed to ischemia and reperfusion in eight patients un-
dergoing arthroscopic-assisted anterior cruciate ligament re-
construction. The ischemia-induced energy metabolic change in
the rectus femoris muscle in these patients had almost com-
pletely disappeared within two hours after tourniquet deflation.

One way of avoiding ischemic injury to muscle cells may
be to employ a so-called tourniquet downtime technique, in
which the tourniquet is released for a short period and then is
reinflated. However, there is no evidence to support use of this
technique, the suggested reperfusion time between successive
ischemic periods has ranged from three to twenty minutes47,
and time limits for subsequent ischemia are unknown. Fur-
thermore, some authors have questioned the benefit of any
tourniquet release and reinflation if the total tourniquet time
does not exceed three hours48. In view of this controversy and
in the absence of convincing evidence otherwise, we do not
recommend a routine tourniquet inflation time of more than
two hours. Accurate monitoring and minimization of tourni-
quet time are recommended.

Tourniquet Deflation

Deflation and reperfusion permit replenishment of energy
supplies and elimination of toxic metabolites. However, careful
monitoring of the patient is essential at this stage of the oper-
ation, as pulmonary embolization may occur49. Despite the
substantial risk of postoperative deep venous thrombosis in
orthopaedic extremity surgery, use of a pneumatic tourniquet
does not appear to be an independent risk factor50. In the setting
of intramedullary instrumentation, cementation, or insertion of
a prosthesis in the lower limb, deflation of a pneumatic tour-
niquet adds the risk of a sudden release of large venous emboli,
emphasizing the need for careful patient monitoring at that
time49. The return of toxic metabolites to the circulation results
in systemic metabolic dysfunction, referred to as ‘‘myoneph-
ropathic metabolic syndrome’’ and characterized by metabolic
acidosis, hyperkalemia, myoglobulinemia, myoglobinuria, and
renal failure9. Paradoxically, tourniquet deflation is associated
with thrombolytic activity, anoxia promoting activation of the
antithrombin-III and protein-C pathways, which may be im-
plicated in post-tourniquet bleeding.

Tourniquet deflation prior to wound closure in knee
arthroplasty is associated with greater blood loss and a higher
demand for blood transfusion, suggesting that release follow-
ing wound closure would offer better control51. Rama et al.52

examined the time of tourniquet release in a meta-analysis of
eleven randomized controlled trials involving a total of 872
patients and 893 primary knee arthroplasties. They found that
early release of the tourniquet to achieve hemostasis increased
perioperative blood loss in association with primary knee ar-

throplasty. However, the risk of a complication requiring
additional operative treatment was increased when the tour-
niquet was left inflated until wound closure was complete.
Overall, the surgeon has to balance the potential downside of
delayed deflation (namely, increased bleeding) with the risks of
prolonging tourniquet inflation times. The final decision re-
garding when to deflate the tourniquet should be made by the
surgeon, after weighing the risks and benefits of delaying
tourniquet deflation until closure is complete.

Future Directions

The concept of measuring limb occlusion pressure immedi-
ately prior to inflation of a surgical tourniquet establishes
a basis for setting the optimal tourniquet pressure for each
patient. However, a single measurement represents a static
limb occlusion pressure to which a margin of safety must be
added to account for relevant intraoperative variations in the
patient’s physiology during an operation. In the future, safer
tourniquet systems using lower tourniquet pressures could
perhaps be developed by monitoring those physiologic varia-
tions intraoperatively and estimating a dynamic limb occlusion
pressure on the basis of those variations and the static limb
occlusion pressure, thus eliminating the need to increase the
static limb occlusion pressure by an arbitrary predetermined
margin of safety8,28,53,54.

The risk of tourniquet-related nerve injuries and par-
ticularly the increased risk of such injuries as tourniquet
pressure levels rise, as pressure gradients under cuffs increase,
and as tourniquet time increases are well established. To a large
extent, this is addressed in surgical practice by minimizing
tourniquet time, by new technology that helps to minimize the
tourniquet pressures that are required, and by new types of
pneumatic tourniquet cuffs that help to minimize cuff pressure
levels and gradients. Given the increasing rate of obesity, new
designs of tourniquet cuffs that allow arterial blood flow to be
stopped effectively at the lowest possible tourniquet pressures
and gradients may be helpful for the increasing numbers of
obese patients. Additionally, recent studies suggest that in the
future it may be feasible to further reduce the risk of neuro-
logical injuries by directly monitoring axonal excitability in
nerves beneath tourniquet cuffs55,56. This may allow surgical
staff to be alerted promptly to potential nerve-related hazards
before injury occurs.

A futuristic concept for further increasing tourniquet
safety and effectiveness in orthopaedic surgery may arise from
a current military project. The (U.S.) Defense Advanced Re-
search Projects Agency (DARPA) is sponsoring the Deep
Bleeder Acoustic Coagulation (DBAC) program with the goal
of developing a noninvasive, automated ultrasonic system for
the detection, localization, and coagulation of deep bleeding
vessels that is operable by minimally trained personnel in the
combat environment57. A spin-off benefit of the DARPA DBAC
program might be the development of low-cost ultrasonic
sensor arrays that could be useful for accurately detecting,
monitoring, and controlling the occlusion of arterial blood
flow beneath surgical tourniquet cuffs.
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In the future, to further improve tourniquet safety, ef-
ficacy, and reliability, the development and evaluation of sur-
gical tourniquets, military tourniquets, and new pre-hospital
tourniquets for both civilian and military applications will be
intertwined, and an improved exchange of information about
techniques, technology, and outcomes will be possible. n

NOTE: The authors acknowledge Daphné Savoy for her assistance in the preparation of this
manuscript.
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