
Review Article

Survey of Robot 3D Path Planning Algorithms

Liang Yang,1,2 Juntong Qi,1 Dalei Song,1 Jizhong Xiao,3 Jianda Han,1 and Yong Xia4

1Shenyang Institute of Automation, Nanta 114th Street, Shenhe District, Shenyang 10016, China
2University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
3	e City College, City University of New York, Convent Avenue at 140th Street, New York, NY, USA
4State Grid Liaoning Electric Power Company, Benxi, Liaoning 117000, China

Correspondence should be addressed to Jizhong Xiao; jxiao@ccny.cuny.edu

Received 25 November 2015; Accepted 3 April 2016

Academic Editor: Petko Petkov

Copyright © 2016 Liang Yang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Robot 3D (three-dimension) path planning targets for 	nding an optimal and collision-free path in a 3D workspace while taking
into account kinematic constraints (including geometric, physical, and temporal constraints).�e purpose of path planning, unlike
motion planning which must be taken into consideration of dynamics, is to 	nd a kinematically optimal path with the least time as
well asmodel the environment completely.We discuss the fundamentals of thesemost successful robot 3Dpath planning algorithms
which have been developed in recent years and concentrate on universally applicable algorithmswhich can be implemented in aerial
robots, ground robots, and underwater robots. �is paper classi	es all the methods into 	ve categories based on their exploring
mechanisms and proposes a category, called multifusion based algorithms. For all these algorithms, they are analyzed from a
time e
ciency and implementable area perspective. Furthermore a comprehensive applicable analysis for each kind of method
is presented a�er considering their merits and weaknesses.

1. Introduction

Advances in commercial grade technology and advanced
researchmake it possible for robots to appear in everyday life.
Modern robots of di�erent varieties include industrial robots,
service robots, have seen bright future. For robots, such as
Google Self-Driving Car [1] and iRobot Vacuum Cleaning
robot [2], one of themost basic and important abilities is path
planning, that is, autonomous routing. �is requires both
time e
ciency to react to any emergency situation and safety
consideration for implementation.

Path planning targets for moving robots from their initial
locations to the goal location by their own actuators and
strategies, and during the process, robots must always be
able to avoid obstacles to maintain safety. Robots such as
underwater robots [3, 4], wall-climbing robot [5], and micro
air vehicles [6–8] have already been tested purposely with
di�erent kinds of methods. �ese methods can be basi-
cally perceived from [9–12], where algorithms were already
detailed synthesized. �ese works contributes a lot; however
they are analyzed in a general view without comparison and

analyzed in speci	c perspectives as well as covering the latest
works.�us, we need to provide a comprehensive analysis on
3D path planning methods.

By reviewing the latest works, it is not hard to see that
most works concentrate only on two dimensions (2D), thus
limiting the behaviors of the robots only to surface or each
iteration considering the height as a constant to achieve a
2.5-dimensional (2.5D) method. Choset [9] summarized a
lot of his own and others’ works; however he mainly con-
centrates on 2D environment and therefore algorithms like
bioinspired algorithms were paid no attention. LaValle et al.
[10] focused mainly on sampling based algorithms. None
of these researchers had analyzed all the algorithms in 3D
planning area. Surveys such as [13] almost all analyze the path
planning problems under 2D condition. Reference [14] only
focuses on micro air vehicle’s path planning problems, and
algorithms likemathematic optimal algorithmswere ignored.
Lately, authors in [13] did a thorough survey on coverage path
planning, which is classi	ed by distinguishing decomposi-
tion methods. �ey provided a basic understanding of 3D
path planning methods and then narrowed their discussion

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2016, Article ID 7426913, 22 pages
http://dx.doi.org/10.1155/2016/7426913

2 Journal of Control Science and Engineering

(a) Forest [15] (b) Urban [16] (c) Underwater [17]

Figure 1: Examples of 3D complex environments.

to sampling based algorithm to explain the 3D planning
idea.

Facing the more and more challenging environment that
robots faced, where environments tend to be unstructured
and full of uncertain factors, 3D path planning algorithms
are urgently needed nowadays. Several typical kinds of 3D
environments are presented in Figure 1, including forest,
urban, and underwater environments. When planning in
these complex situations, a simple 2D algorithm will not be
quali	ed; thus 3D path planning algorithms are needed.

Path planning in 3D environment shows great prospect,
but unlike 2D path planning, the di
culties increase expo-
nentially with kinematic constraints. In order to plan a
collision-free path through the cluster environment, the
problem of how to model the environment while taking
the kinematic constraints into consideration needs to be
solved. From the optimization point of view, 	nding a 3D
optimal path planning problem is NP-hard; thus there exist
no common solutions.

3D path planning algorithms include visibility graph [18]
which works by connecting visible vertexes of polyhedron,
random-exploring algorithms such as rapidly exploring ran-
dom tree [19], Probabilistic Road Map [20], optimal search
algorithms (such as Dijkstra’s algorithm [21], A∗ [22], and
D∗ [23]), and bioinspired planning algorithms.Whatmust be
emphasized is that this paper only pays attention to broadly
applicable methods proposed. Algorithms such as manifold
based algorithms [24], which generate smooth path, have
been ignored due to reason that it is only applicable to
rigid body robots without aerodynamical or hydromechan-
ical in�uences. Synthesizing all these methods, a two-step
procedure of 3D path planning is summarized as follows.

Step 1. �e 	rst step is environment perception and model-
ing, usually using a grid map [25] (with occupancy proba-
bility), or a convex or nonconvex region in combination of
polynomial form [26].

Step 2. �en path planning algorithm is employed to 	nd the
best path according to the cost function, with the ability to
achieve both time e
ciency and cost minimum.

Steps above are not absolute procedures we must obey,
and Step 1 can be divided into two parts, or Step 2 integrates
with Step 1. According to Step 2, this paper discusses the
e
ciency of each algorithm and particularly concentrates
on time complexity and applicability. Path planning in 3D
environments may face much more uncertainties; thus all
this should be taken into consideration to achieve the best

path. Local minimal and global optimal are two contradictive
points; this paper will analyze these two properties of the
algorithms. �is paper mainly answered several important
questions: (a) what is the taxonomy of these 3D path planning
algorithms? (b) How do these algorithms work in order to
	nd the path? (c) Why is it suitable or not suitable for such
environment?

�is paper is an extension of [27], with more comprehen-
sive explanation on each kind of algorithms.

�e main contributions of this paper are listed below.
(1)�e	rst contribution is proposing a taxonomymethod

for 3D path planning algorithms and puts forward a new
category called multifusion based algorithms.

(2) �e second contribution of this paper is providing a
comprehensive analysis of 3D path planning algorithmwhich
contains almost all of the current most successful methods.

�e following sections are arranged as follows. Sec-
tion 2 discusses some controversial points which need to
be declared and gives de	nitions to these problems for
further discussion. Section 3 explains the taxonomy of 3D
path planning algorithms and gives a detailed analysis of
the taxonomy’s reason and also lists elements of each cate-
gory. �is section includes the basic concept of each kind
of algorithms. A series of sampling based algorithms are
discussed particularly, and each element is put forward by
comparison in Section 4. Node based optimal algorithms’
common properties are analyzed in Section 5, and this
kind of algorithms shares the same merits. In Section 6,
this paper discusses a special kind of planning algorithms,
that is, mathematic model based algorithms, and con	rms
it to be path planning algorithm. Section 7 concentrates
on the working mechanism of bioinspired algorithms, and
three typical algorithms are analyzed elaborately. Multifusion
based algorithms are discussed in Section 8, which are
commonly ignored. Some typical researches are listed to
prove this category.�e last section outlines a conclusion and
some directions for further research.

2. Preliminary Materials

�is section discusses some controversial or ignored points
which needed to be declared for further discussion in
the following sections, namely, the di�erence between path
planning and optimal path planning and de	nition of path
planning and trajectory planning.

2.1. Problem Statement. Robots have the ability to operate
without (or just a little guiding from) human. Ranging from

Journal of Control Science and Engineering 3

3D path planning algorithms

Sampling

based

algorithms

based

Node

optimal

algorithms

model

Mathmtic

based

algorithms

Bioinspired

algorithms

Multifusion

based

algorithms

Figure 2: 3D path planning taxonomy.

underwater robots to aerial robots, when facing outdoor
or indoor complex situations, they need a path planner to
determine their next step movement. For path planning, the
de	nition varies according to [8–10, 57]; this paper presents
a more canonical de	nition based on [57].

Robots are assumed to operate in a three-dimension (�3)
space, sometimes called the workspace �. �is workspace
will o�en contain obstacles; let ��� be the �th obstacle. �e
free workspace without threat of obstacles is the set of points�free = �∪� ���; it is the spacewhere the robots should always
stay. For robots the initial point �init is an element of �free,
and the goal region �goal is also an element of�free. �us path
planning problem is de	ned by a triplet (�init, �goal, �free), and
the following de	nitions are given.

De�nition 1 (path planning). Given a function � : [0,] →�3 of bounded variation, where �(0) = �init and �() = �goal,
if there exists a process Φ that can achieve �(�) ∈ �free, for
all � ∈ [0,], the process Φ must be a continuous process
without break; thenΦ is called path planning.

De�nition 2 (optimal path planning). Given a path plan-
ning problem (�init, �goal, �free) and a cost function � :∑ → � ≥ 0 (∑ denote the set of all paths), if
De	nition 1 is ful	lled to 	nd a path �� and �(��) =
min(�(�), � is the set of all feasible paths), then �� is the
optimal path and Φ� is optimal path planning.

2.2. Path Planning and Trajectory Planning. Path planning
and trajectory planning problems are two distinct parts of
robotics, but they are intimately related. �ere exist several
works [8, 9, 11] concerned about this problem. Synthesizing all
the corresponding knowledge together, this paper supports
the following de	nitions for further discussion.

De�nition 3 (path planning (augmentation)). Find a contin-
uous curve (no need to be smooth) in the con	guration space
that begins from the start node �init to the goal end node�goal, and the curve should obey the criteria: (a) beingwithout
time continuous consideration, (b) including stops in de	ned
position, and (c) beingmade up of a number of segments, and
each can be a trajectory.

De�nition 4 (trajectory planning). Trajectory planning usu-
ally refers to the problem of taking the solution from a robot
path planning algorithm and determining how tomove along
the path. Trajectory is a set of states that are associated with
time; it can be described mathematically as a polynomial�(�), and velocities and accelerations can be computed by
taking derivatives with respect to time. It considers the
kinodynamic constraints, which can be an element of path.

3. 3D Path Planning Algorithm Taxonomy

Algorithms of 3D path planning have been arising since last
century; methods have di�erent characteristics and can be
applied to di�erent robots and environments. For researchers
and engineers, being stunned to swim in the algorithm sea is a
common scene to start in this 	eld.�is paper reviews almost
all the representative works and books and sorts out almost
all the successful 3D path planning methods such as rapidly
exploring random trees (RRT), Probabilistic Road Maps
(PRM), Arti	cial Potential Field [86], and Mixed-Integer
Programming [87]. �e taxonomy that proposed classifying
current approaches of 3D path planning is illustrated in
Figure 2.

�is paper divides 3D path planning algorithms into 	ve
categories; the categories are distinguished from each other
by their unique properties, such as sampling based algo-
rithms explored by applying Monte Carlo sampling (or likely
approaches) to achieve visible connection. From Sections 4–8
an exhaustive discussion of each category is presented.

3.1. Sampling Based Algorithms: Elements and Analysis. �is
kind of methods needs some preknown information of
the whole workspace, that is, a mathematic representation
to describe the workspace. �is kind usually samples the
environment as a set of nodes, or cells, or in other forms.�en
map the environment or just search randomly to achieve a
feasible path. �e elements of sampling based algorithms are
illustrated in Figure 3.

For ETC, it means the improved or similar versions of
corresponding algorithms; DDRRT isDynamicDomain RRT
algorithm. �ere is no doubt that rapidly exploring random

4 Journal of Control Science and Engineering

Sampling based algorithms

Active Passive

RRT∗ ,

RRT,

DDRRT,

and so forth

3D

Voronoi,

RRG,

and so forth
RM∗), and

PRM,

k-PRM,

s-PRM(P

so forth

Arti�cial

Field,

and so forth

Potential

Figure 3: Elements of sampling based algorithms.

Node based optimal algorithms

Dijkstra’s
algorithm

and so forth

D∗ ,

and so forth
D∗-Lite,

�eta∗ ,
A∗ , LPA∗ ,

∗lazy �eta
and

Figure 4: Elements of node based algorithms.

trees (RRT) andProbabilistic RoadMaps (PRM) are sampling
based algorithms. For 3D Voronoi, it forms a 3D obstacle
free network based on preknown knowledge of the whole
environment, which contains obstacle and free regions. To
achieve this network, Voronoi algorithm still works in an
optimization way to follow the varying edges to ensure equal
distance [88]. Arti	cial Potential Field algorithms are sorted
as sampling based algorithm due to the fact that it needs the
whole workspace sampling information to escape from local
minima.

It is shown in the second level of Figure 3 that this paper
divides the sampling based algorithms into twomore detailed
parts: active and passive. Active means algorithm such as
rapidly exploring random trees which can achieve the best
feasible path to the goal all by its own processing procedure.
Passive means algorithms such as Probabilistic Road Maps
(PRM) only generate a road net from start to the goal, thus a
combination of search algorithms to pick up the best feasible
path in the net map where many feasible paths exist. �is
paper classi	es the algorithms, which cannot independently
	nd the best path or any single navigation path, as passive.

3.2. Node Based Optimal Algorithms: Elements and Anal-
ysis. Node based optimal algorithms explore through the

decomposed graph [25]. Analyzing from the point of the
search mechanism, node based optimal algorithms share
the same property that they explore among a set of nodes
(cell) in the map, where information sensing and processing
procedures are already executed. �is kind of methods
can always 	nd an optimal path according to the certain
decomposition. Figure 4 illustrates the typical elements of
node based optimal algorithms.

Where LPA∗ [48] represents Lifelong Planning A∗ algo-
rithm which is a repeating version of A∗ (i.e., having the
ability to handle dynamic threats), D∗-Lite [56] was proposed
based on LPA∗, which deals with dynamic threat situations.
Dijkstra’s algorithms,A∗ andD∗, are traditionally classi	ed as
discrete optimal planning [10], or road map algorithms [12],
or search algorithms [9], and so on. However, they do not
collide with each other and just express the same thing where
algorithms like this kind deal with discrete optimization
based on grid decomposition.

3.3. Mathematic Model Based Algorithms: Elements and
Analysis. Mathematic model based algorithms include linear
algorithms and optimal control. �ese methods model the
environment (kinematic constraints) as well as the system
(dynamic) and then bound the cost functionwith all the kine-
matic and dynamic constraints bounds which are inequalities
or equations to achieve an optimal solution. �e elements
of mathematic model based algorithms are presented in
Figure 5.

Where �atness based method was 	rst proposed by
Chamseddine et al. [63], this method employs di�erential
�atness to ensure control �atness along the reference path;
it linearizes the nonlinear kinodynamic constraints to form
a rather simple form. MILP is Mixed-Integer Linear Pro-
gramming [5] which has a strong modeling capability to
describe almost all the information. BIP is Binary Linear
Programming [62]; it is a special case of linear programming
where the variables have only 0-1 integer value.

Journal of Control Science and Engineering 5

Linear algorithms

NLP

Optimal control

NLP

and so forth
Flatness based

Mathematic model
based algorithms

and so
MILP

forth

BIP
and so
forth

Figure 5: Elements of mathematic model based algorithms.

Neural network

GA
and so
forth

SFLA
and so
forth

Evolutionary algorithms

and so
forth

MA
and so
forth

PSO
and so
forth

ACO

Bioinspired
algorithms

Figure 6: Elements of bioinspired algorithms.

3.4. Bioinspired Algorithms: Elements and Analysis. Bioin-
spired algorithms originate from mimicking biological
behavior to solve problems. �is kind of planning methods
leaves out the process of constructing complex environment
models to search a near optimal path based on stochastic
approaches; it overcomes the weakness where general math-
ematic model based algorithms o�en fail (or drop into local
minimum) in solving NP-hard problem with large number
of variables and nonlinear objective functions [4]. Figure 6
presents a set of typical current methods belonging to this
category.

Where GA is Genetic Algorithm [89], it is the most
famous population-based numerical optimization method;
MA represents Memetic Algorithm [90]; it is a population-
based heuristic exploring approach for combinatorial opti-
mization problems; PSO is particle swarm optimization
[91]; it is a population-based stochastic optimization algo-
rithm; ACO is Ant Colony Optimization [92] that imitates
the behavior of ant in 	nding the shortest path by using
pheromone information; and SFLA is Shu�ed Frog Leaping
Algorithm [93]which is the combination ofMAandPSO. For
bioinspired algorithms, they are divided into Evolutionary
Algorithm (EA) and Neural Network (NN) due to the
fact that they are analyzed at di�erent level, which will be
discussed in detail in the following sections.

3.5. Multifusion Based Algorithms: Analysis. Fusion is a lately
arising approach to improving the performance of 3D path

planning algorithms; algorithms can bene	t each other by
this way. Usually, algorithms tend to fuse in a layer by
layer way and aim to plan an optimal path (with better
real time, or nonlocal optimal performance). For example,
Arti	cial Potential Field algorithms usually tend to drop into
local minima without navigation function or other tricks.
Probabilistic Road Maps also cannot generate an optimal
single path by itself. �us this paper classi	es this kind
of algorithms, which are introduced by combining several
algorithms together to achieve a better performance, as
multifusion based algorithms. Section 8 will give a canonical
illustration to this category.

4. Sampling Based Algorithms

In Section 3.1 a list of sampling based 3D path planning
algorithms is already illustrated, and this part aims to give
a detailed analysis of this kind of algorithms. In order to
give a clear image of this kind of algorithms, this paper
de	nes the RRT and its improved versions as RRT series, and
PRM series contains PRM and its improved versions. �is
de	nition is also applicable toVoronoi andArti	cial Potential
Field.

4.1. RRT Series

4.1.1. Rapidly Exploring Random Trees. Rapidly exploring
random tree (RRT) method is 	rst proposed by LaValle
[19]. �e method attempted to solve path planning prob-
lems under holonomic, nonholonomic, and kinodynamic
constraints. RRT has the advantage of handling multi-DOF
problems; thus it is widely used for PR2 and other robots [94].
Authors in [31] proposed a fast local escaping version called
Dynamic Domain RRT, which will be analyzed below. Kara-
man and Frazzoli [30] solved nonoptimal results problem of
RRT by introducing RRG and a heuristic method RRT∗.

RRT rapidly searches the con	guration space to generate
a path connecting the start node and the goal node. In each
step a new node is sampled; if the extension from the sampled
to the nearest node succeeds, a new node will be added.
When this kind of method is applied to 3D environment, it
normally assumes that there exists a 3D con	guration space� = �. �e con	guration space consists of two parts, a
	xed obstacle region, �obs ⊂ �, which must be avoided, and
an obstacle free region, �free ⊂ �, where the robots must
stay. Corresponding to the con	guration space, a path state
(or vertex) set � includes all the sampling vertices which are
generated by RRT exploration process. In order to implement
the algorithm, the following steps should be obeyed (see in
Figure 7).

Step 1. First add the initial state �init ∈ �free in � as the 	rst
vertex. �en randomly choose a state �random in �free, and
Figure 7 illustrates two states which are �random1 and �random2.

Step 2. Select a nearest state �near to the newly generated state�random in � based on a certain metric (mostly Euclidean
metric) which is already designed; regard �near as the parent
state of �random.

6 Journal of Control Science and Engineering

xinit

xrandom1

xrandom2

xnew1

xnew2xnear

�

Figure 7: Exploring procedure of RRT algorithms. �e cyan circles
represent obstacle regionswhich cannot be passed. � ismaximal step
extending length according to constraints and cost function stated.

Step 3. �random is the state which shows the direction where
the next step should go but may be beyond the robot’s
reachability.�us a control input factor is added, considering
the kinodynamic constraints, in a cost function� = �(�, �, �)
form. �en according to the constraints � and cost function�, we get the reachable state �new, judging �new whether it is
in�free. If it locates in�free, then add it to the path set �; else
ignore this state. It is illustrated in Figure 7; we delete �new1
and repeat the whole process.

Although RRT can 	nd a path to the goal, it is still the
problem that RRT explores based on Monte Carlo random
sampling, which is always biasing explored region as it will
increase with the time. �e method will consume much time
to 	nd a way out when the environments are cluttered, let
alone converge to the optimal.

4.1.2. Dynamic Domain RRT. Dynamic Domain RRT
(DDRRT) aims to solve the shortcoming where RRT
considers none of the obstacles region in the con	guration
space, especially local trap region. RRT does not consider
the information of local environments and thus causes
inappropriate sampling which may lead to low time
e
ciency. An intuitive comparison is given in Figure 8,
where the red arrow means the guiding to possible next
extending direction.

DDRRT and RRT di�er in Step 1; DDRRT introduces
a �-dimensional sphere (based on the dimension of the
environment) of certain radius � at the center �near to
represent the reachable region. At each time if the distance
of new sampling node �random to the nearest node �near is
within radius �, the sampling node will be chosen; otherwise
it will be neglected. �en try to connect �near and �random; if

the extension is succeed, then set � = ∞; otherwise set � = �,
where � is the boundary radius of dynamic domain.

DDRRT solves the Voronoi bias problem of general RRT;
it can ensure fast exploration. However, it is the same as
RRT where no post-smooth-processing is included; the path
which is generated by DDRRT will never tend to be optimal.

4.1.3. Rapidly Exploring Random Graph (RRG). RRT per-
forms well in practice and can guarantee completeness, but
it pays almost no attention to the quality of the results,
and it is proved that RRT algorithms are not asymptotically
optimal [30]. To ensure asymptotic optimality, authors in [30]
introduced rapidly exploring randomgraph (RRG).�ework
used a structure � = (�, �0, 	, �) to represent the performance
of the system, where � is the set of states, �0 ⊆ � is the initial
states sets, 	 ⊆ � × � is the transition relation, and � is the
labeling function which is used to map each state to the set of
atomic propositions.

It is illustrated in Figure 9, where “current new node”
denotes the new nodes generated at current steps. Unlike
RRT, RRG tries to extend to every state returned by Near()
(line 7 of Algorithm 2), which is illustrated in Figure 9. In
Figure 9(a), |!| is the radius stated to choose the neighbor
states around the center of “current new node”; then �new

connects all these nodes to form a graph as illustrated in
Figure 9(b) if the connection is collision-free (in Algorithm 2,
from line 7 to line 12).�e pseudocode is given in Algorithms
1 and 2.

Line 7 shows the main di�erence between RRT and RRG,
where RRG also connects to satisfaction vertices which lie
in the circle region; thus it forms a graph. RRG holds the
advantage of extending all the vertices returned by the Near()
process and then connects them to present a more complex
map. Although it seems to be more complex in some way, it
almost surely can converge to an optimal path. Reference [29]
showed experimental results of RRG, and the comparison
to PRM proves the advantage of RRG. Also, the conclusion
suggested that RRG enables navigatingmultiple robots simul-
taneously. However, it generates a complex network like PRM
and thus cannot 	nd the optimal path by itself.

4.1.4. RRT-Star (��	∗). RRT∗ [30] is the tree version of
RRG which also preserves the asymptotic optimal property
as RRG; it is proposed to tackle di�erential constraints. RRT∗

removes probable bad connection which works in a re	ning
way; thus it optimizes the solutions to be less expensive than
they used to be. Here a cost-function cost(!) is de	ned to
represent the cost of the unique path from �init to an arbitrary
state ! ∈ � and gives the cost(�init) equal to zero initially.
RRT∗ di�ers RRG in postprocessing process, compared to
Algorithm 2; RRT∗ pseudocode is given in Algorithm 3 with
intuitive illustration Figure 10.

Let us take the same example case as illustrated in
Figure 9(a). RRT∗ 	rst 	nds the nearest state as well as
the neighbor states �near and then adds the nearest state to
the tree as well as the minimal cost connection if it exists
(from line 4 to line 12). Further, RRT∗ tries to eliminate the
connections which have a larger cost by connection via �new

state (from line 14 to line 21). Because of the pruning and

Journal of Control Science and Engineering 7

xinit

(a) It is hard for general RRT to deal with bug trap problem

xinit

(b) DDRRT tackles trap problem by limiting the extension near
the margin

Figure 8: DDRRT compares with general RRT.

Current new node
|P|

xinit

(a) �e near nodes returned

xinit

(b) �new connects all near nodes to form RRG

Figure 9: Typical operation of RRG.

reconnecting, the tree turns to bemore compact and dense as
illustrated in Figure 10(b). Consequently the overall minimal
cost can be obtained. However, the whole time consumption
increases, and also it cannot work to generate multipath.
Choudhury et al. [28] assumed that if the nearest parent
already has children nearby; then the second best parent
will be chosen. �is method solves the problem of general
RRT and RRT∗ by supporting an on-line fast replanning
method.

4.2. PRM Series. Unlike RRT, Probabilistic RoadMap (PRM)
considers di�erent choices for the set of states to which
connections are attempted. PRM [20] is the 	rst popular
multiple-query method for building a road map by using
sampling approach.When applied to 3D space, it 	rst de	nes
the con	guration space � and an obstacle free space �free.
�e method samples a random state in �free. �en it tries
to connect to nearest � neighbors ("-PRM) or connect to
states within a �-ball region or connect to states under

8 Journal of Control Science and Engineering

x1

x2

x3

xnearest

xinit

(a) Pruning process of RRT∗

x1

x2

x3

xinit

(b) �e 	nal RRT∗ graph

Figure 10: RRT∗ postre	ning process, that is, pruning of heavy connect.

is the set of edges
(1) $ ← �init
(2) for � = 0 to �
(3) & = (�, #)
(4) �rand ← �th randomly chosen state
(5) (!, #) = ExploreRRG(&, �rand)
(6) End

Algorithm 1: Body of RRG.

computational burden which is a combination of the above
two, that is, "-PRM ∩ �-ball. It should be declared that each
connection is collision-free. A�er the road map is absolutely
formed, a node based search algorithm (Dijkstra, A∗, D∗,
etc.) is used to 	nd the least cost path from initial state
to the goal state. �e pseudocode of PRM is illustrated in
Algorithm 4.

In Algorithm 4, PRM adds all the connections which are
without collision (from line 4 to line 9). Authors in [95] 	rst
implemented PRM into 3D environment and showed fast
exploration performance.However, with the expanding of the
exploring graph, the expense on collision checking increases.
Amato et al. [32] put it forward by proposing an obstacle-
based nodes generation strategy; at each step the road map
candidate points are selected on the obstacle surface. �is
trick reduces the total processing time by ignoring the
useless points in obstacle region. Hsu et al. [33] solved the
“dynamic threat weak” problem of PRM by introducing a
concept of “milestone,” that is, state × time which creates
a real time graph connecting the initial point and the goal
point. It was implemented in ground robots and proved of
having quick convergence ability. Yan et al. [6] proposed an
octree to build 3D grid-structure which weakens the e�ect
of randomness, thus guaranteeing fast searching ability. �e

Table 1: Elements of PRM.

Name of each
sub-PRM

Criteria of corresponding algorithm

"-PRM
Meaning each step choose nearest � neighbors to
be the states which are under consideration.

�-PRM
�e expected states are to be chosen within a ball
(or circle) region, for all states included in the
radius � will be chosen to connect to the vertex.

"-�-PRM
A combination of above two, where for a given
radius � the upper bound of the vertices to be
chosen is �.

work gave a great thought of random sampling in bounding
box array. Reference [30] introduced PRM∗ to guarantee
asymptotical optimality. Authors in [34] concentrated on the
problem that typical PRM cannot tackle dynamic threats;
they imported the idea of potential to avoid this, which is
called Reactive Deformation Road Maps (RDR).

PRM has the bottleneck of not being able to determine
an e
cient near vertex choosing and connection principle.
Based on the di�erence of vertex chosen criteria, this paper
combines the idea of [10, 57] and divides PRM into three parts
in Table 1.

Although "-PRM has the advantage of adopting enough
samples to ensure smoothness by adjusting parameter �, the
extension will be biased if a 	xed direction tends to be much
more dense. �-PRM can keep out the shortcoming of "-
PRM, but an unreasonable radius �may result in an excessive
computational burden. "-�-PRM likes an adaptable �-PRM;
it can guarantee all direction connection and also limit the
computational burden to a certain degree.

4.3. Voronoi. Shamos and Hoey [96] introduced the Voronoi
diagram into the 	eld of computational geometry; it is 	rstly

Journal of Control Science and Engineering 9

Steer(�, �) returns a point closer to � but within the reach of � by a certain value;
Near(&, �rand, |�|) return all vertices in a ball center at �new and radius is ��;
Freeobsta(�, �)means no obstacle between �, �;
(1) �� = �; #� = #
(2) �nearest ← Nearest(&, �)
(3) �new ← steer(�nearest, �)
(4) if Freeobsta(�nearest, �new)
(5) �� = �� ∪ �new
(6) #� = #� ∪ {(�new, �nearest), (�nearest, �new)}
(7) �near ← Near(&, �new, |��|)
(8) while �new ∈ �near

(9) if Freeobsta(�new, �near)
(10) #� = #� ∪ {(�new, �nearest), (�nearest, �new)}
(11) End
(12) End
(13) End
Return &� = (��, #�)

Algorithm 2: Explore RRG (&, �).

Steer(�, �), Near(&, �rand, |�|), Freeobsta(�, �) are the same as RRG;
Parent(�near) returns the parent vertex of �near;
(1) �� = �; #� = #
(2) �nearest ← Nearest(&, �)
(3) �new ← steer(�nearest, �)
(4) if Freeobsta(�nearest, �new)
(5) �� = �� ∪ �near
(6) #� = #� ∪ {(�new, �nearest), (�nearest, �new)}
(7) �near ← Near(&, �new, |�|)
(8) while all �new ∈ �near

(9) if Freeobsta(�new, �near) and
(10) cost(�new) > cost(�near) + *(Dist(�new, �near))
(11) �min = �new;
(12) End; END;
(13) #� = #� ∪ {�min, �new}
(14) while all �new ∈ �near\{�min}
(15) if Freeobsta(�min, �new) and
(16) cost(�near) > cost(�new) + *(Dist(�new, �near))
(17) �parent ← Parent(�near);
(18) #� = #�\{�parent, �near}
(19) #� = #� ∪ {�new, �near}
(20) End
(21) End
Return &� = (��, #�)

Algorithm 3: ExploreRRT∗(&, �).

used for 	nite points in the Euclidean plane and now widely
used with a series of improved forms in the 	eld of path
planning.Voronoi diagramgenerates topological connection;
the distances from the edges to the nearby obstacles are the
same.

3D Voronoi 	rst selects an initial site; this site’s coor-
dinates hold the property that the minimal distance to the
obstacles nearby is the same. �en it calculates new Voronoi
sites based on calculation of the Voronoi channel [88] and
de	nes the Voronoi net bounds. �e whole process stops
when all the sites are recorded and all the channels are

obtained. �e calculation of the Voronoi channel is used to
choose a Voronoi site, and the equation of Voronoi channel
for the triplet of objects {�, /, �} is as follows:

3� (�) = 3� (�) = 3� (�) , (1)

where 3�(�) is the minimal distance from a give point (or
robot as amass point with 3D coordinate) to the surface of �th
obstacle in 3D space. Equation (1) extends the characteristics
of general Voronoi, if there exists a small shi� V along the

10 Journal of Control Science and Engineering

4 is the vertices set according to the node choose method claimed ahead;
Freeobsta(�rand, 5)means no obstacle between �rand and 5;� is the path vertex set, # is the path edges set;
(1) �� = ⊘; #� = ⊘;
(2) for � = 0 to �
(3) �rand ← the �th sample state in �free

(4) 4 ← (" PRM or �-ball or " ∩ �)\{!}
(5) � = � ∪ �rand
(6) for each 5 ∈ 4
(7) if Freeobsta(�rand, 5)
(8) � = � ∪ {(�rand, 5), (�rand, 5)}
(9) End; End;
(10) End;
Return & = (�, #)

Algorithm 4: Whole PRM.

channel and the point �� = � + V should satisfy the constraint
equation,

3� (� + V) = 3� (� + V) = 3� (� + V) . (2)

With respect to (1), linearization of this system should obey

(∇3� ⋅ V)????	 = (∇3� ⋅ V)?????	 = (∇3� ⋅ V)????	 . (3)

�is ensures 	nding the direction of the displacement V; thus
we can get a new point �� along the vector.

An estimation function (4) is used to improve the
computer-based accuracy, that is, controlling the deviation of
the trajectory from the Voronoi channel:

Φ = (3� − 3�)2 = (3� − 3�)2 = (3� − 3�)2 . (4)

Let Φ = 0 ensure that the point is on the Voronoi
channel. If Φ > �2 (� is desired value), then it returns to
the Voronoi channel by applying gradient decay procedure.
However, in order to ensure fast convergence, the preliminary
sampling of each state is very important; thus this kind of
algorithm is classi	ed as sampling based (even though it
introduced information adjustment feedback to correct the
initial sampling).

Voronoi generates a global graph or local graph, but
almost the same as RRG and PRM; it also cannot generate
the shortest path at the same time. �us it seeks help from
Dijkstra’s algorithm, A∗, D∗, and so forth. �is paper de	nes
three steps to Voronoi path generationmethods: (a) sampling
the environment or just seeking help fromother environment
construction methods, (b) generating a 3D Voronoi graph,
and (c) employing a search algorithm to 	nd theminimal cost
path globally.

Luchnikov et al. [88] 	rst proposed an elaborate 3D
Voronoi diagram construction method, which solves 3D
complex system path planning problem. Reference [35–37]
improved it to a further stage by proposing a radial edge like
data structure which is capable of dealing with topological
characteristics of Euclidean Voronoi diagram of spheres. �e
topological characteristics are region, face, edge, vertex, oop,

and partial edge, which contain the geometric information
and adjacency relationship. When implemented in reality,
Lifeng and Shuqing [38] introduced the method that uses
geographical information system to generate the environ-
ment nodes and combined with Dijkstra’s algorithm to 	nd
the shortest path. Shari	 et al. [97] assigned Voronoi region
to a group of UAV to solve the problem of coverage planning
for an environment. Voronoi was combined with potential
	eld method in [39, 40] which is e
cient to guarantee
fast convergence. Voronoi channel is built mainly based on
static obstacles; authors in [41] tackle dynamic threats by
adding a bound to the Voronoi channels, and the idea can
be introduced to 3D environment.

4.4. Arti�cial Potential Algorithms. Since 	rst proposed by
Khatib [86], potential 	eld methods have been widely
researched and implemented universally because of its low
computational complexity. Potential 	eld methods are based
on the idea of assigning a potential function (relationship
between obstacle free and obstacle space) to free space and
simulating the vehicle as a particle reacting to force due
to the potential 	eld. It computes the goal attraction and
obstacle repulsion simultaneously and guides the robot along
the total force gradient.�e potential 	eld can be represented
as

4
 (�) = 4� (�) + 4	 (�) , (5)

where, in formula (5), 4
(�) is the total potential at state�, 4�(�) is the attractive potential at state �, and 4	
denotes the repulsive potential at state �. Given ∇4	(�) =−∑all �	,�(�), that is, the virtual attractive force (from all
neighbor obstacles, also please keep in mind the relation
between the gradient of potential 	eld and virtual force can
be negative or positive for your consideration), then the force
	eld at state� can be represented as

�
 (�) = −∇4
 = �� (�) + all∑
�=1
�	,� (�) . (6)

Journal of Control Science and Engineering 11

For the attractive potential,

4� = �� CCCC�� − �CCCC , (7)

�� (�) = −∇4� = −�� (�� − �)CCCC�� − �CCCC , (8)

where �� is the goal node, �� − � is the error vector with
respect to the goal node, and ��(�) is the attractive force at�. Hence, attractive force increases with the distance between
current node and goal node. For the repulsive potential,

4	,� = {{{{{
0 if H� (�) > H0,�
"	,� (1H� (�) −

1H0 (�)) if H� (�) ≤ H0,�, (9)

�	,� (�) = −∇4	,� (�)
= {{{{{

0 if H� (�) > H0,�"	,�H2� (�) (
1H� (�) −

1H0 (�))∇H� (�) if H� (�) ≤ H0,�,
(10)

where H�(�) is the distance from � to obstacle region which
has been partitioned in convex components, the distance can
be de	ned �exibly, ΔH�(�) is a polar value, �	,� is the �th
obstacle component repulsive force to �, and H0,� is the safe
margin of �th convex component which is de	ned by certain
obstacle. For 	eld implementation, APF tends to be more
complicated as the bounder of the obstacles is not constant;
thus the time e
ciency is constructed basedmainly on initial
guess; thus we classify it as sampling based algorithm.

However, such methods are incomplete because they are
prone to drop into local minima area. Many studies have
been done to help potential 	eld algorithms to overcome
the local minima by generating navigation functions or
computing the potential with constraints. Reference [42]
proposed a harmonic potential method to solve the local
minima problem by using Laplace’s Equation to constrain the
generation of a potential function; Rimon and Koditschek
[43] proposed a Morse function with a single minimum at
the desired destination strategy to form a strong stable robot
navigation method to jump out of the local minima, and this
is the 	rst formally proposed navigation method. Authors in
[44] imported the idea of Hamilton-Jacobi-Bellman to form
a HJB function:

min
 ⟨$ (�) , 5⟩ = −1, (11)

where 5 is the control and $(�) is the potential factor. �is
function generates a unique global minimum value; thus
it is able to yield a global feasible path that jumps out of
local minima, and [45, 46] put it to a higher stage. Ge and
Cui [47] solved the goals nonreachable with obstacle nearby
(GNRON) problem by introducing a new repulsive:

4	,�
= {{{{{

0 if H� (�) > H0,�
"	,� (1H� (�) −

1H0 (�))
2 O� (�,��) if H� (�) ≤ H0,�,

(12)

where O�(�,��) is theminimal distance between the robot�
and the goal��. O�(�,��) ensures the total potential4�(�)
arrives at its globalminimum, that is, 0, if and only if� = ��.
4.5. Analysis. Sampling based algorithms exploring depends
much on initial guess, and this guess repeats every step. �e
algorithms may take advantage of nearby collision detection
or potential adjustment. Although this leads to loss of
completeness and inexplicit construction of the environment
sometimes, this can somehow reduce the dependence on
environmentmodel and thus enable them to be implemented
in various environments. We summarize all the advantage
and weakness of this kind of algorithms and analyze each
subcategory in detail as illustrated in Table 2.

Except for algorithms analyzed in Table 2, algorithms
such as visibility graphs [18] and corridor map [98] also
belong to sampling based algorithms.Visibility graphmethod
likes a simple version of obstacle-based PRM which is
proposed by Amato et al. [32]. Corridor map method likes
octree-structure PRM introduced by Yan et al. [6]. �ey
both de	ned a cell decomposition method to construct
the workspace. However, such as PRM and Voronoi, these
methods need a node search algorithm to achieve the best
path.

5. Node Based Optimal Algorithms

Node based optimal algorithms are classi	ed by the reason
that they deal with nodes’ and arcs’ weight information
(but not limited to these, or sometimes called grid); they
calculate the cost by exploring through the nodes, thus to
	nd the optimal path. �is kind of algorithms is also called
network algorithms [99] which means they search through
the generated network, and it means the same with node
based algorithms.

5.1. Dijkstra’s Algorithm. Named a�er Dijkstra [21], Dijkstra’s
algorithm targets for 	nding the shortest path in a graph
where edges’/arcs’ weights are already known. Dijkstra’s
algorithm is a special form of dynamic programming and it is
also a breath 	rst search method. It 	nds shortest path which
depends purely on local path cost. When applying 3D space,
a 3D weighted graph must be built 	rst; then it searches the
whole graph to 	nd theminimum cost path. A generalization
of Dijkstra’s algorithm is shown below with pseudocode in
Algorithm 5.

Authors in [100] proposed an improved Dijkstra’s algo-
rithm by adding a center constraint; it works well in tubular
objects, which is 	rst proposed by [101]. �e work [102]
showed that 3D GIS environment combined method may
be a practical way to implement in real outside world, and
experimental results are provided to prove that Dijkstra’s
algorithm acts well enough. But Dijkstra’s algorithm relies
much on the priority queue P data structure type, which
in�uences the total exploring time.

5.2. A-Star (Q∗). A-star (A∗) [22] is an extension of Dijkstra’s
algorithm, which reduces the total number of states by
introducing a heuristic estimation of the cost from the

12 Journal of Control Science and Engineering

Table 2: Analysis of sampling based algorithms.

Method type
Shortcoming

Advantages
Shortcomings Improvement

RRT

Single path [28, 29]
Low time complexity, fast
searching abilityNonoptimal [29, 30]

Static threat only [31]

PRM

Expensive collision check [6, 32, 33] Appropriate for complex
environments and replanning
situations

Static threat only [34]

Nonoptimal [30]

Voronoi

Incomplete representation [35–38]
Easy to implement on-line and
ignoring collision checkingNonconvergence [39, 40]

Static threat only [41]

Arti	cial potential Local minima [42–47] Fast convergence

P is the priority queue; �� is the goal;R(�, 5) return the cost to apply action 5 from �;�� is the best cost-to-come known so far;4� is the 	nite action space;�� = �(�, 5) ∈ � is a state transition function;
(1) �(�) = ∞ | (� ̸= �init); �(�init) = 0
(2) P.Insert(��);
(3) while P not empty
(4) � ← P.GetFirst()
(5) for all 5 ∈ 4(�)
(6) �� ← �(�, 5)
(7) if �(�) + R(�, 5) < min{�(��), �(��)}
(8) ��(�) = �(�) + R(�, 5)
(9) if �� ̸= ��
(10) P.Insert(��)
(11) END; END
(12) END; END;

Algorithm 5: Dijkstra’s algorithm.

current state to the goal state. �e heuristic function can be
designed to obtain the constraints, while the estimation must
never overestimate the actual cost to get the nearest goal node.
By applying this guiding like heuristic, A∗ can converge very
fast and ensures optimality as well.

A∗ is proposed by introducing an evaluation function
(13), which consists of postcalculation toward the initial state
and heuristic estimation toward the goal,

� (�) = U (�) + ℎ (�) , (13)

where U(�) is the cost from initial state �init to current state�, which is the same as *(�) in Algorithm 5. ℎ(�) is the
heuristic estimation of the cost of an optimal path from
current state � to goal state. �e estimation ℎ(�) of each state
tends to be close to the real cost; thus A∗ has a faster speed
to converge based on comparison of the cost of neighbors.
ComparedwithDijkstra’s algorithm,A∗ obtains a faster speed
to converge.

For 3D environment, A∗ has been widely implemented.
Amato et al. [32] constructed the feasible road map by

applying PRM and then adopted A∗ to execute best route
exploration. Authors in [6] implemented A∗ with UAV
platform with an octree based PRM. Niu and Zhuo [53]
introduced “cell” and “region” conception to enhance the
environment understanding of A∗, thus enabling �exible rep-
resentation of 3D environments. Koenig and Likhachev pro-
posed an environment-representation varying adaptive A∗,
that is, Lifelong Planning A∗ (LPA) [48]. LPA∗ can adapt to
environment changes by using previous information as well
as iterative replanning.Williams andRagno [49] propounded
a con�ict-direct A∗; it accelerates the exploring process by
eliminating subspaces around each state that are inconsistent.
It is proposed in [50] that A∗ can choose any state to be
parent state, thus resulting in amore �at turning angle, named
Theta∗. �e algorithm has the ability to be able to obtain
system constraints; thus it can 	nd shorter and more realistic
path. De Filippis et al. [103] implemented both Theta∗ and
A∗ in 3D environment, and an experimental comparison is
given to prove that Theta∗ reduces the searching compared
to A∗. Although Theta∗ acts well compared to A∗, but when
applied to 3D environment, it consumes much time to check
unexpected neighbors. Line-of-sight check method, called
lazy Theta∗ [51], is proposed to avoid unnecessary check of
unexpected neighbors. Authors in [54] introduced a method
to reuse information from previous explorations and update
information through the a�ected and relevant portions of
the exploring space. �is may cause extra computational
consumption, but it can tackle dynamical threat and converge
fast.

5.3. D-Star (W∗). D-star (D∗) [23, 52], short for dynamic
A∗, is famous for its wide use in the DARPA unmanned
ground vehicle programs. D∗ is a sensor based algorithm that
deals with dynamic obstacles by real time changing its edge’s
weights to form a temporal map and then moves the robot
from its current location to the goal location in the shortest
unblocked path.

D∗, As well as A∗, evaluates the cost by considering
the postcalculation and forward estimation. D∗ maintains a
list of states which is used to propagate information about
changes of the arcs cost function. �e evaluation function is
represented as

Journal of Control Science and Engineering 13

Table 3: Analysis of node based optimal algorithms.

Method type
Shortcoming

Advantages
Shortcomings Improvement

Dijkstra’s algorithm
High time complexity [22, 23, 48–52]

Easy to implement for various environments
Static threat only [23, 52]

A∗
Heavy time burden [48, 50, 51]

Fast searching ability, enabling implementation on-lineNonsmoothness [50, 53]

Static threat only [23, 52, 54]

D∗ Unrealistic distance [55, 56] Fast searching ability, dealing with dynamic environments

�� (�) = U� (�) + ℎ� (�) . (14)

However, di�ering from A∗, ℎ�(�) is not necessarily
the shortest path length to the goal compared to A∗; also
computation of ℎ�(�) assumes that the robot can pass
through obstacles. At each time it updates a minimum
heuristic function when it encounters new obstacles and the
whole graph, thus enabling e
cient searching in dynamic
environments.

Smirnov [55] considered the worst travel distance case
of D∗ and restrained its lower bound as Ω((log |$|/
log log |$|)|$|) steps and upper bound asZ(|$|2).�e bound
is used to solve the problem that D∗ uses unrealistic distance
in its graph, and there is a large gap between the lower bounds
and upper bounds. Based on [55], Tovey et al. [104] put it
forward by adding more tighter bounds for D∗. Koenig and
Likhachev [56] extended LPA∗ to the case where the goal
changes between replanning episodes; it is like a simpli	ed
version of D∗, called D∗ Lite, but it is proposed based on
LPA∗.

5.4. Analysis. Table 3 provides a straightforward summa-
rization of node based optimal algorithms. As the name
implies, node based optimal algorithms deal with node and
arc information. However, as the nodes and arcs provide an
incomplete structure of the con	guration space, this kind
of method can only achieve the best result limited by the
representation of environment. �is kind of algorithms is
single search methods. It cannot generate multipath for �eet.
For real time implementation, Dijkstra’s algorithm’s time

complexity is Z(�2) (� is the number of the nodes); A∗ and
D∗ reduce the complexity to a lower degree, which enables
on-line implementation.

6. Mathematic Model Based Algorithms

Node based optimal algorithms use grids to represent con-
	guration space; meanwhile this kind of methods assumes
the robot as a point and only considers the acceleration
and velocity constraints. �us it is not complete to represent
the environments as well as consider system dynamics.
Mathematic model based algorithms optimize by describ-
ing kinodynamic constraints in combination of polynomial
forms. �ey can model the environment as a time variant
system (sometimes even a model and time variant system),
which is synchronization to the current location of the robot.

Due to the fact that this kind of algorithms can han-
dle dynamics constraints to achieve cost optimum, some
researchers regard mathematic optimization methods as
trajectory planning method. However, mathematic model
based algorithms are proposed to solve the problemof 	nding
a path or trajectory locally or globally [45, 105]. In order to
distinguish from trajectory planning methods, we provide a
stronger de	nition compared to De	nition 4.

De�nition 5. Trajectory planning assumes output to be time
continuous and must be able to ensure control limitation,
which is still a part of the whole path.

According to De	nition 5 above, local mathematic opti-
mization methods also partly belong to path planning 	eld.
Authors in [105] transformed kinodynamic constraints into
a bound of linear or nonlinear constraints and then used
mathematic programming methods to 	nd the bounded
optimal path. Miller et al. [45] modeled the path planning
problem in an optimal control form, which combines cost
criterion and Hamiltonian function to form a boundary
value problem (BVP) to 	nd a realistic optimal path globally.
Chamseddine et al. [63] introduced �atness based method to
linearize the nonlinear bounds into polynomial form, and a
bang-bang control is employed to generate a global optimal
path. Other mathematic optimization methods such as level
set method and support vector machine method also belong
to this kind.

6.1. Linear Algorithms. For linear algorithm form based path
planning problem, this kind of algorithm tends to have the
following form:

ĉost-goal = � (5, �, �, �) + _ (�, �, �) + � (�, �, �) (15)

subject to

`0 = ` [5 (�0) , � (�0) , � (�0) , � (�0)] , (16)

`� = ` [5 (��) , � (��) , � (��) , � (��)] , (17)

Ulower ≤ U (5, �, �, �) ≤ Uupper, (18)

5lower ≤ 5 (�) ≤ 5upper, (19)

where ĉost-goal is a cost function that takes into kinodynamic
constraints as as well as the expected properties, such as min-
imum distance, energy, and threat. �(5, �, �, �) represents

14 Journal of Control Science and Engineering

Maximum

principle

results

in optimal path

Form cost function

Hamiltonian function

Min goal

conditions

Kinodynamic

constraints

Figure 11: Basic optimization problem steps.

the control factor, _(�, �, �) is the kinodynamic constraint
which acts as penalty function, and �(�, �, �) is the exploring
step reachable region function to ensure a strong convergence
ability to the goal. Equation (16) is the initial condition, (17) is
the 	nal condition, (18) is algebraic path constraints, and (19)
is the control constraints.

Linear algorithms have the ability to describe the environ-
ment completely; meanwhile they can model the kinematics
and dynamics constraints. Furthermore, linear algorithms
can handle control disturbance or model uncertainty. Mixed-
Integer Linear Programming (MILP) methods combine
binary and integer logical constraints and are most com-
monly used because they closely represent the environment
and system. Reference [3, 5, 106] implemented MILP, respec-
tively, in aerial, underwater, and ground robots. Bhattacharya
[64] directly supported a free MATLAB toolbox, which is
called OPTRAGEN, to solve the MILP problem. Masehian
and Habibi [62] used 0-1 binary integer to represent the path
length operator and then solved the path planning problem
using binary integer programming.

6.2. Optimal Control. Path planning problem can be posed
in an optimal control form, where optimal control can
	nd the state and control oriented path based on a set
of di�erential equations [107]. Optimal control can be
interpreted as an extension of the linear algorithms to an
in	nite number of variables’ condition, with the ability to
model uncertainty as linear chance constraints much more
easier.

A basic optimization problem is depicted in a �owchart
form in Figure 11, where the initial state (or current state)
and goal state are included in the constraints to ensure
completeness.

For optimal control case, a general system model is
considered in time continuous form,

�̇ = � (� (�) , 5 (�)) , (20)

where �(�) represent the evolving state and 5(�) is the control
parameters. �e minimizing criterion is

� = � [� (�) , 5 (�)] . (21)

With the necessary constraints,

` (� (�0) , �0) = f, (22)

` (� (��) , ��) = g. (23)

�en cost function (an recommended performance
index) can be derived by including all constraints above:

^ = � [� (�) , 5 (�)] + ∫
�

0
i� (�) {� [� (�) , 5 (�)] − �̇} . (24)

�en we can achieve the Hamiltonian:

j = i� (�) � [� (�) , 5 (�)] , (25)

where (22) is the initial condition and (23) is the 	nal
condition. Hamiltonian is used to solve the optimal problem
based on the maximum principle and then follow the typical
optimal solving procedure to generate an optimal path
globally. �is paper only explains in a general form; each
equation can be extended to contain much more constraints.

Tisdale et al. [58] implemented discrete receding-horizon
control (RHC) in UAV, which is a variant of optimal control.
Chen and Schwartz [65] described the optimal control
problem in detail and proposed a free MATLAB toolbox
RIOTS 95, and in [108] they further implemented it to solve
model predictive problem.

6.3. Analysis. �is kind of methods maintains a complete
form to describe the states and environmental variables, and
when applied in 3D cluttered environments, these methods
can adapt themselves by employing much more constraints
according to the environments. �ese algorithms tend to
have a much more complex formulation, that is, a heavy
computational burden. �ere exists a method that can solve
the weakness, that is, discrete decisions in an optimization
procedure. �e method allows problems to be solved on-line
�exibly by devising the environment [58–60]. For example,
Bellinghamet al. [61] only usedMILP to justify the local states
and thus increase the whole exploring process a lot. Based on
the analysis above, this paper provides a summarization in
Table 4.

Journal of Control Science and Engineering 15

Table 4: Analysis of mathematic model based algorithms.

Method type
Shortcoming

Advantages
Shortcomings Improvement

Mathematic model based algorithms
High time complexity [58–62] Containing almost all the information to generate

an optimal path indeedNo analytic solutions [63]

Free tool
OPTRAGEN [64], RIOTS 95 [65]

DIDO [66], SeDuMi [67], and so forth

7. Bioinspired Algorithms

Path planning is attributed to the top layer of a robot control
process, which enables robots to work without (or with
little) help from man. �e motivation of planning a path
in real cluttered environments is that the robots should
obtain the ability to accomplish the mission by itself without
supervision. For bioinspired algorithms, they originate from
imitating the way how humans or other natural creatures
behave or think, and they form a family of a series of
algorithms which can solve NP-hard problems to generate a
near optimal path.

�ere are two subcategories of bioinspired algorithms:
one is Evolutionary Algorithm, which stems from analyzing
the behavior of a certain species; another is Neural Network
algorithmwhich follows the way how inner neuron processes
the information. �ey belong to di�erent level accordingly,
and this paper discusses them, respectively. For Evolutionary
Algorithms, they work almost with the same mechanism;
thus this paper mainly analyzes two relative popular algo-
rithms: Genetic Algorithm and Ant Colony Optimization
Algorithm.

7.1. Evolutionary Algorithm. Evolutionary Algorithm is an
umbrella name which includes Genetic Algorithm (GA),
Memetic Algorithm (MA), Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO), and Shu�ed Frog
Leaping Algorithm (SFLA). EA was propounded to solve
the problem where traditional linear programming and
dynamic programming o�en fail to solve NP-hard problems
with large number of variables. EA is a stochastic search
approach that imitates the metaphor of natural biological
evolution and social behavior. �e 	rstly proposed and
now widely implemented Evolutionary method is GA; then
inspired by di�erent natural process four other methods
developed.

Figure 12 illustrates a typical �owchart of Evolutionary
Algorithm, which is proposed by Dong and Juris [109].
Evolutionary Algorithms start by selecting randomly feasible
solutions as the 	rst generation. �en it takes the envi-
ronment, robot’s capacity (dynamic ability), goal, and other
constraints into consideration, to evaluate the 	tness of each
individual. In the next step, a set of individuals is selected
as parents for the next generation according to their 	tness.
�e last step is a mutation and crossover step. �e whole
process is performed in an iterative way and stops the process
when a preset goal is achieved.�e best 	tness individuals are
decoded as the optimal path nodes.

7.1.1. Genetic Algorithms. Holland [89] 	rstly introduced
GA, and now it is the most popular population-based
optimization method. �e basic version of GA de	nes a
cost function to evaluate the potential solutions. �en a
partly random crossover operator takes two parents from
the population set and recombines them in some way. �e
mutation operator tries to modify the solutions and aims to
achieve a valid solution in order to escape local optimality.

GA holds the process that all individuals can exchange
information; by doing this way, this nest generation can
converge very fast by using this information. However, if
the population becomes too similar and loses population
diversity, it o�en leads to premature convergence. If there
exists too much population diversity, it may result in a heavy
computational burden to investigate the poor solutions.
GA needs to repeatedly evaluate the 	tness of the current
generation, which also causes a high computational burden.

Fonlupt et al. [70] proposed a cooperatingGA to solve the
premature convergence problem of typical GA. �e method
holds the concept that when a certain GA is stuck in local
minimum, then another GA might provide a feasible path
point to allow it to search again. Hacioglu and Ozkol [71] and
Hacioĝlu and Özkol [72] solved the problem by introducing
an idea, that is, periodically applying a vibrational mutation
operator to the whole population. �erefore, it becomes
possible to escape from local optimums and then to obtain a
global optimal path. To avoid time consumption with a high
burden, authors in [68] proposed a combination of GA and
Voronoi method. �e Voronoi diagrams are constructed by
using fuzzy *-means clustering method to generate the 	rst
generation, which accelerates the convergence speed. RRT
obtains the merits of random exploring, which can enable
escaping of local optimum. Authors in [69] employed RRT
to generate the 	rst generation of chromosomes to achieve
global optimality.

7.1.2. Ant Colony Optimization. Animals such as ants could
manage to establish shortest path from their colony to
the feeding source and back home by group cooperation;
researchers mimic the behavior and proposed Ant Colony
Optimization (ACO) method. ACO introduces two basic
concepts, which are “intensity of trail” and “visibility” to form
the transition probability which at last decides which way to
go, thus to formulate the shortest path.

“Intensity of trail” on edge (�, /) at time � + � is expressed
by the following formula:

	�� (� + �) = O ⋅ 	�� (�) + Δ	��, (26)

16 Journal of Control Science and Engineering

Evaluate �tness
of current
generation

Initialization

Select
parents

Decode Path

Mutation
crossover

Figure 12: Evolution process for path planning.

where 	��(� + �) represents the information about how many
ants in the past have chosen the same edge (�, /) and O is a
weight to represent how much information is le� between �
and � + �:

Δ	�� = �∑
�=1
Δ	���,

Δ	��� = {{{
P�� if �th ant uses the edge (�, /)
0 if otherwise,

(27)

where Δ	�� is the sum of all k ants’ “pheromone” laid on

the edge (�, /) between time � and � + �, Δ	��� is the �th ant

“pheromone” laid, P is a constant, and �� is the �th ant tour
length.

“Visibility” on edge (�, /) can be described as

H�� = 13�� , (28)

where 3�� is the Euclidean distance between � and / and H��
determines the degree of how close the state � is to state /.

ACO aims to 	nd the best path by evaluating the
pheromone density in each step. �e process runs �exi-
bly in dynamic environments only needing to change the
representation of “intensity of trail” of a certain edge. �e
algorithm is proved to be able to deal withmultiobjective path
planning problems, and it is also able to tackle continuous
planning problems [110]. ACO is now widely implemented
in 3D environment [7, 73] for path planning. However, it
must be emphasized that the basic ACO is not applicable
to handle vast size of pheromone matrix in practical time
with computer memory limitation. �us it is validated in
simulation, but not practical in real time planning situations
in most cases.

Authors in [7] proposed a di�erential evolution (DE)
ACO method by applying di�erential evolution to opti-
mize the pheromone tail. DE is a simple population-based
algorithm; it tends to be more e
ciency; thus the work
takes advantage of DE crossover operation to achieve faster
convergence. Method proposed in [73] started with relative

coordinates, which can avoid rotation transformation for
UAV, to reduce time consumption for generating an optimal
path. Saber and Alshareef [74] came up with using A∗ to
increase the local searching ability and introduced proba-
bilistic nearest neighbor method to estimate the pheromone
intensity; it is proved to be e�ective.

�e other three Evolutionary Algorithms, Memetic Algo-
rithm [90], Particle Swarm Optimization [91], and Shu�ed
Frog Leaping Algorithm [93], all almost share the same
exploring process, and their shortcomings and advantages are
also almost the same. Although compared to GA and ACO
they have a lower degree of implementation, still a lot ofworks
[4, 111, 112] have been done with these methods.

7.2. Neural Network. Another subcategory of bioinspired
path planning method is Neural Network (NN). NN was
introduced 	rst introduced by Glasius et al. [113] to avoid
obstacle as well as navigation and then became popular and
implemented to path planning in various areas [114–116].
NN approach aims to generate a dynamic landscape in a
neural-like form. It shares some merits as Arti	cial Potential
Field method; the unsearched areas attract the robot in the
entire space globally. A typical shunting equation is used to
express the dynamics of a robot in neuron network, which is
represented in the following form:

3��3� = −Q�� + (l − ��)([n�]+ + �∑
�=1
��� [��]+)

− (W + ��) [n�]− ,
(29)

where �� denotes the neuron activity of the �th neuron.
ParametersQ, l, andW are nonnegative constants represent-
ing the passive decay rate and the upper and lower bounds

of the neural activity, respectively. [n�]+ + ∑��=1 ���[��]+ and[n�]− are the excitatory and inhibitory inputs. n� is the external
input to the �th neuron, and it is de	ned as n = # if it is a safe
unexplored area; n = −# if it is an obstacle area; n = 0means
other cases. Here # ≫ l is a very large positive constant.

For NN, in each step it 	rst chooses the maximal neural
activity among the neighbor neurons; then the next location

Journal of Control Science and Engineering 17

Table 5: Analysis of bioinspired algorithms.

Method type
Shortcoming

Advantages
Shortcomings Improvement

GA
High time complexity [68, 69] Able to solve NP-hard and

multiobjectives problemsPremature convergence [70–72]

ACO High time complexity [7, 73, 74]
Able to deal with multiobjectives and
continuous planning problems

PSO

High time complexity
[75] It acts faster than GA and can deal with a

low number of individuals problemsPremature convergence

Parameter sensitive [76]

SFLA
High time complexity [77] It is more e
cient than PSO and can

achieve global convergence fasterParameter sensitive [78]

MA High time complexity [79]
It is more e
cient than GA in path
smoothness and with low computational
complexity

NN
High time complexity [80–82] Stable under sudden changes in the

networkRelying on suitable rules and organisms [83]

is determined by this maximal neural activity. Equation (29)
guarantees that the positive neural activity can propagate
to all the free unexplored space with the maximal neural
activity, but negative activity only stays locally. Although NN
attracted so much attention, it shares the weakness as other
bioinspired algorithms that it cannot form canonical rules
and model; thus the reliability and time consumption are
not guaranteed. Even though Hop	eld model is introduced
to solve the weakness [83], this is only applicable to certain
problems.

Kassim and Kumar [80] propounded a new “wave
expansion neural network (WENN)” which introduces grid
potential for path planning; the method was implemented to
3D workspace and proved to have time e
ciency. Recently
Kroumov et al. [81, 82] improved themethod by combination
with potential 	eld methods; this method accelerates the
speed of basic NN. But according to [80], it clearly can be
seen that when extended to 3D environments, the number
of neighbor neurons will increase to 26, which means the
computation complexity will explode simultaneously. �us it
is applicable to implement real time.

7.3. Analysis. Bioinspired algorithms stem from mimicking
the natural behavior; they specify a set of optimizing rules
as well as the model of processing the information. �en the
whole process executes based on the rules and models by
iterative optimization. �us the 	nal results rely much on
the rules and model proposed, and the time consumption
cannot be guaranteed. O�en if the environment becomes
more complex, they need a large computational resource to
	nd a solution to meet the expectation (Table 5).

EA is named as a kind of population-based algorithm; all
of its subcategories share almost the same procedures: repro-
duction, mutation, recombination, and selection. Although
this kind of algorithms tends to be time consuming and
premature convergence, it can deal with multiobjectives
problems and solve NP-hard problems. GA is the most
popular Evolutionary Algorithm, and PSO is proved to act

much faster than GA, but PSO is sensitive to parameters.
PSO can be solved by hybrid approach [76] but also holds
the same shortcoming as GA. ACO can 	nd optimal path
without premature convergence, but it is impossible for the
basic ACO to deal with real complex environment. SFLA
operates the local exploration by using PSO-like method,
but it shu�es virtual frogs periodically with ensuring global
exploration. �e PSO-like method relies strongly on suitable
parameters [78]. MA is sometimes called hybrid GA, which
di�ers from GA in that MA shares chunk of the gene rather
than a neat crossover in chromosomes. Since MA coupled
with a learning procedure to perform local re	nements, it still
has a more heavy computational burden. NN is not sensitive
to environment changes, but it relies too much on its model.

8. Multifusion Based Algorithms

Multifusion based algorithms manage with problems where
usually a single approach proposed cannot work to 	nd
an optimal path individually. When faced with unknown
environments, with whether dynamic threat or static threat,
not all traditional single planning approaches can ful	ll the
task of obtaining cost minimum or fast convergence or
computational e
ciency. For example, PRM cannot generate
an optimal path itself, which is the same as Voronoi. Potential
	eld methods o�en jump into local minimum; node based
optimal algorithms need preknown environmental skeleton
information. Mathematic model based algorithms tend to
be time consuming and unable to solve NP-hard problem
with varying environments; bioinspired algorithms vary their
performance with the model diagram and have heavy time
complexity. �us researchers try to introduce a combination
of di�erent approaches to form a fast searching and global
optimal algorithm.

Yan et al. [6] used 3D grid to represent the environment
and 3D PRM to form a road map in obstacle free space; at
last A∗ optimal search algorithm combined to achieve an
optimal path. Masehian and Amin-Naseri [39] introduced

18 Journal of Control Science and Engineering

a visibility graph, Voronoi diagram, and potential 	eld (VVP)
integrated algorithm. If the extension of VVP algorithm to
3D space is investigated, it shows e�ective tradeo� between
the shortest and safest path. Schøler et al. [85] combined
visibility graph and Dijkstra’s algorithm (or Geodesics) to
	nd an optimal solution for path planning problem in 3D.
Jaishankar and Pralhad [84] planned outdoor environment
path by citing GIS-MCDA approach which 	rst synthesizes
a variety of information to generate a “combined gray level
image”; then an optimal searching algorithm asA∗, D∗, or EA
is used to achieve an optimal path. A hybrid of mathematic
model based algorithms with EA [117] is proposed to solve
NP-hard problem, where general EA tend to be premature.
A lot of works adopt this idea; this paper gives a pioneering
work of coming up with a taxonomy of this kind of methods.

Based on the principle of each algorithm, this paper clas-
si	es all of these multifusion based algorithms into two cat-
egories: (a) Embedded Multifusion Algorithms (EMA) and
(b) Ranked Multifusion Algorithms (RMA). EMA combines
several algorithms’ advantages together; these algorithms
work in simultaneous model, thus ensuring a tightly cou-
pled approach to achieve better performance. RMA means
each algorithm works in separate level, where they work
rankly. Table 6 illustrates several typical algorithms of each
category.

9. Analysis and Conclusion

�is paper analyzes a certain aspect of providing a compre-
hensive knowledge of 3D path planning, including canonical
de	nition and basic knowledge of each kind of algorithms
as well as applicable area. By analyzing all these algorithms
which have already proved to be successful, this paper
classi	es all the approaches into 	ve categories: sampling
based algorithms, node based optimal algorithms, mathe-
matic model based algorithms, bioinspired algorithms, and
multifusion based algorithms. �is paper 	rst lists the ele-
ments of each category and then supports a critical discussion
of each algorithm. During each discussion process, this paper
answers four important questions, respectively: (a)what is the
taxonomy of these 3D path planning algorithms? (b) How do
these algorithms work in order to 	nd the path? (c) Why is it
suitable or not suitable for such environment?

According to the analysis we supported, several conclu-
sions can be drawn as illustrated in Table 7, with the details
of time complexity, static (S) or dynamic (D) environmental
applicability, and real time applicability.

(1) Sampling based algorithms all share themerits of using
an initial guess; they di�er in how to do postprocessing to
ensure completeness or optimum. �e random initial guess
ensures escaping of local minimum, and this kind of algo-
rithms does not rely much on environmental representation.
�is kind of algorithms can be further classi	ed as active and
passive, where active algorithm can 	nd the optimal path by
their own, but passive algorithms cannot. �ese approaches
are appropriate for on-line implementation as they have a
high time e
ciency, with the ability to handle dynamic and
static threats.

Table 6: Typical elements of multifusion based algorithms.

Name of
subcategory

Typical elements of each subcategory

Embedded
multifusion
algorithms

RDR [34], VVP [39],

Voronoi potential 	eld algorithms [39, 40],

neural network potential 	eld algorithms
[80–82],

hybrid bioinspired [7, 74, 76, 78], and so forth

Ranked
multifusion
algorithms

PRM node based optimal algorithms [6],

GIS-MCDA algorithms [84],

visibility graph node based optimal algorithms
[85],

visibility graph geodesics algorithm [85],

sampling based EA [68, 69], and so forth

(2) Node based optimal algorithms are grid based explor-
ing algorithms; they commonly tackle with node/arc infor-
mation which can transform distance between nodes/arcs
into weight. �ey originate from dynamic programming
approaches and thus cannot further optimize the result
beyond the decomposition of the environment. �e results
of this kind of algorithms rely much on the preconstructed
graph and can be combined with other methods to achieve
global optimal.

(3) Mathematic model based algorithms aim to describe
the whole workspace in a mathematic form, with the advan-
tage of describing all constraints with di�erential equations.
�ey can easily represent dynamic constraints and kinematic
constraints. �is kind of algorithms gives an overall consid-
eration to safety, reliability, and e
ciency and then bounds
the cost function tightly. Although this kind ofmethods loads
a heavy computational burden on computer, it can perform
well enough with the improvement of computer technology.

(4) Bioinspired algorithms import heuristic idea and can
excellently deal with complex and dynamic unstructured
constraints as well as NP-hard problem. �is kind of algo-
rithms optimizes the path by mutation (iterative optimiza-
tion), but the process also brings problem simultaneously.
�e mutation process repeats until 	nal goal is achieved;
almost all bioinspired algorithms have the shortcoming of
having a long dealing period. �us this kind of algorithms
is suggested to work o�-line, even though they can handle
dynamic threats.

(5) Multifusion based algorithms synthesize several algo-
rithms’ advantages together to achieve global optimal and
cost minimum. �is kind of algorithms imports the idea
of complementation, that is, merging the merits of several
algorithms. �ese algorithms have ability to achieve several
goal simultaneously; thus it o�en happens that sometimes
several simple relativemethods combine to form a rather well
performedmethod.�ese methods are designed to work real
time, with strong environmental adaption.

3D path planning approaches explode these years, but
problems such as real time planning, complete information
expressing, and complex environments modeling still have
not been completely solved yet. According to Section 8,

Journal of Control Science and Engineering 19

Table 7: Properties of each kind of methods.

Method Time complexity S/D environment Real time

Sampling based algorithms Z(� log �) ≤ 	 ≤ Z(�2) S and (Part) D On-line

Node based algorithms Z(k log �) ≤ 	 ≤ Z(�2) S and (Part) D On-line

Mathematic model based algorithms Depending on the polynomial equation S and D O�-line

Bioinspired algorithms Z(�2) ≤ 	 S and (Part) D O�-line

Multifusion based algorithms Z(� log �) ≤ 	 Depending on the algorithms On-line

this paper recommends a fusion of multipath planning and
environment modeling methods; this may become a key
direction for 3D path planning under complex situations, and
also control uncertainty is recommended to be included.

Competing Interests

�e authors declare that they have no competing interests.

Acknowledgments

�is work is partially supported by National Science and
Technology Support under Grant no. 61503369 and Grant
no. 61528303, which are highly acknowledged. High acknowl-
edgment goes also to Professor D. �eilliol [118], who really
provided so much guiding of how to construct a nice work
during his visiting time.

References

[1] G. INC, Google self-driving car project, https://www.google
.com/selfdrivingcar/.

[2] iRobot INC, “Vacuum cleaning robot,” http://www.irobot.com/
For-the-Home/Vacuum-Cleaning/Roomba.aspx.

[3] N. K. Yilmaz, C. Evangelinos, P. F. J. Lermusiaux, and N.
M. Patrikalakis, “Path planning of autonomous underwater
vehicles for adaptive sampling using mixed integer linear
programming,” IEEE Journal of Oceanic Engineering, vol. 33, no.
4, pp. 522–537, 2008.

[4] M. P. Aghababa, “3D path planning for underwater vehicles
using 	ve evolutionary optimization algorithms avoiding static
and energetic obstacles,” Applied Ocean Research, vol. 38, pp.
48–62, 2012.

[5] R. Yue, J. Xiao, S. L. Joseph, and S. Wang, “Modeling and path
planning of the city-climber robot part II: 3D path planning
using mixed integer linear programming,” in Proceedings of
the IEEE International Conference on Robotics and Biomimetics
(ROBIO ’09), vol. 6, pp. 2391–2396, Guilin, China, December
2009.

[6] F. Yan, Y.-S. Liu, and J.-Z. Xiao, “Path planning in complex 3D
environments using a probabilistic roadmap method,” Interna-
tional Journal of Automation and Computing, vol. 10, no. 6, pp.
525–533, 2013.

[7] H. Duan, Y. Yu, X. Zhang, and S. Shao, “�ree-dimension
path planning for UCAV using hybrid meta-heuristic ACO-DE
algorithm,” Simulation Modelling Practice and 	eory, vol. 18,
no. 8, pp. 1104–1115, 2010.

[8] F. Schler, 3d path planning for autonomous aerial vehicles in
constrained spaces [Ph.D. thesis], Department of Electronic Sys-
tems, Faculty of Engineering and Science, Aalborg University,
Aalborg, Denmark, 2012.

[9] H. M. Choset, Principles of Robot Motion: 	eory, Algorithms,
and Implementations, MIT Press, 2005.

[10] S.M. LaValle,PlanningAlgorithms, CambridgeUniversity Press,
2006.

[11] J.-C. Latombe, Robot Motion Planning, vol. 124, Kluwer Aca-
demic, Norwell, Mass, USA, 1991.

[12] Y. B. Sebbane, Lighter	an Air Robots: Guidance and Control of
Autonomous Airships, vol. 58, Springer, 2012.

[13] E. Galceran and M. Carreras, “A survey on coverage path
planning for robotics,” Robotics and Autonomous Systems, vol.
61, no. 12, pp. 1258–1276, 2013.

[14] H. Himawan Triharminto, A. Prabuwono, T. Adji, N. Setiawan,
and N. Chong, UAV Dynamic Path Planning for Intercepting of
a Moving Target: A Review, vol. 376 of Book Section 18, Springer,
Berlin, Germany, 2013.

[15] F. Yan, Y. Zhuang, and J. Xiao, “3D PRM based real-time path
planning for UAV in complex environment,” in Proceedings of
the IEEE International Conference on Robotics and Biomimetics
(ROBIO ’12), vol. 6, pp. 1135–1140, Guangzhou, China, Decem-
ber 2012.

[16] T. Leenknegt, 	ree-Dimensional Path Planning in Complex
Environments, Vakgroep Elektronica en Informatiesystemen,
Universiteit Gent, 2013.

[17] A. Mustard, “Underwater environment,” http://it.sohu.com/
20110512/n280555394.shtml.

[18] S. Flemming, C.-H. Anders la, and B. Morten, Con�gura-
tion Space and Visibility Graph Generation from Geometric
Workspaces for UAVs, Book Section 4, American Institute of
Aeronautics and Astronautics, 2011.

[19] S. M. LaValle, “Rapidly-exploring random trees a new tool for
path planning,” Tech. Rep. 98-11, Computer Science Depart-
ment, Iowa State University, Ames, Iowa, USA.

[20] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high dimen-
sional con	guration spaces,” IEEE Transactions on Robotics and
Automation, vol. 12, no. 4, pp. 566–580, 1996.

[21] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[22] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” IEEE
Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100–107, 1968.

[23] A. Stentz, “Optimal and e
cient path planning for partially-
known environments,” in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 3310–3317, San
Diego, Calif, USA,, May 1994.

[24] M. Žefran, V. Kumar, and C. B. Croke, “On the generation of
smooth three-dimensional rigid body motions,” IEEE Transac-
tions on Robotics and Automation, vol. 14, no. 4, pp. 576–589,
1998.

20 Journal of Control Science and Engineering

[25] D. Meyer-Delius, M. Beinhofer, and W. Burgard, “Occupancy
grid models for robot mapping in changing environments,” in
Proceedings of the 20th AAAI Conference on Arti�cial Intelli-
gence, Toronto, Canada, 2012.

[26] A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control design
along trajectories with sums of squares programming,” in
Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA ’13), pp. 4054–4061, IEEE, Karlsruhe,
Germany, May 2013.

[27] L. Yang, J. Qi, J. Xiao, and X. Yong, “A literature review of UAV
3D path planning,” in Proceedings of the 11th World Congress on
Intelligent Control and Automation (WCICA ’14), pp. 2376–2381,
IEEE, Shenyang, China, July 2014.

[28] S. Choudhury, S. Scherer, and S. Singh, “Rrt∗-ar: sampling-
based alternate routes planning with applications to auton-
omous emergency landing of a helicopter,” in Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA ’13), pp. 3947–3952, IEEE, Karlsruhe, Germany, 2013.

[29] R. Kala, “Rapidly exploring random graphs: motion planning of
multiple mobile robots,” Advanced Robotics, vol. 27, no. 14, pp.
1113–1122, 2013.

[30] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion
planning using incremental sampling-based methods,” in Pro-
ceedings of the 49th IEEE Conference on Decision and Control
(CDC ’10), pp. 7681–7687, Atlanta, Ga, USA, December 2010.

[31] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle, “Dynamic-
domain RRTs: e
cient exploration by controlling the sampling
domain,” in Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 3856–3861, Barcelona, Spain,
April 2005.

[32] N. M. Amato, O. B. Bayazit, and L. K. Dale, “OBPRM: an
obstacle-based PRM for 3D workspaces,” in Proceedings of
the 3rd Workshop on the Algorithmic Foundations of Robotics
on Robotics : 	e Algorithmic Perspective: 	e Algorithmic
Perspective (WAFR ’98), pp. 155–168, 1998.

[33] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized
kinodynamic motion planning with moving obstacles,” 	e
International Journal of Robotics Research, vol. 21, no. 3, pp. 233–
255, 2002.

[34] R. Gayle, A. Sud, M. C. Lin, and D. Manocha, “Reactive
deformation roadmaps: motion planning of multiple robots in
dynamic environments,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS ’07),
pp. 3777–3783, San Diego, Calif, USA, November 2007.

[35] Y. Cho, D. Kim, and D.-S. K. Kim, “Topology representation
for the voronoi diagram of 3d spheres,” International Journal of
CAD/CAM, vol. 5, no. 1, pp. 59–68, 2005.

[36] D. Kim and D.-S. Kim, “Region-expansion for the Voronoi
diagram of 3D spheres,” CAD Computer Aided Design, vol. 38,
no. 5, pp. 417–430, 2006.

[37] D.-S. Kim, Y. Cho, D. Kim, S. Kim, J. Bhak, and S.-H. Lee,
“Euclidean voronoi diagrams of 3D spheres and applications
to protein structure analysis,” Japan Journal of Industrial and
Applied Mathematics, vol. 22, no. 2, pp. 251–265, 2005.

[38] L. Lifeng and Z. Shuqing, “Voronoi diagram and gis-based
3d path planning,” in Proceedings of the 17th International
Conference on Geoinformatics, vol. 5, pp. 1–5, Fairfax, Va, USA,
2009.

[39] E. Masehian and M. R. Amin-Naseri, “A voronoi diagram-
visibility graph-potencial 	eld compound algorith for robot
path planning,” Journal of Robotic Systems, vol. 21, no. 6, pp. 275–
300, 2004.

[40] Y. K. Hwang and N. Ahuja, “A potential 	eld approach to path
planning,” IEEE Transactions on Robotics and Automation, vol.
8, no. 1, pp. 23–32, 1992.

[41] T. Roos and H. Noltemeier, Dynamic Voronoi Diagrams in
Motion Planning, vol. 553 of Lecture Notes in Computer Science,
Book Section 17, Springer, Berlin, Germany, 1991.

[42] C. I. Connolly, J. B. Burns, and R. Weiss, “Path planning using
Laplace’s equation,” in Proceedings of the IEEE International
Conference on Robotics and Automation, vol. 3, pp. 2102–2106,
Cincinnati, Ohio, USA, May 1990.

[43] E. Rimon and D. E. Koditschek, “Exact robot navigation using
arti	cial potential functions,” IEEETransactions onRobotics and
Automation, vol. 8, no. 5, pp. 501–518, 1992.

[44] S. Sundar and Z. Shiller, “Optimal obstacle avoidance based
on the hamilton-jacobi-bellman equation,” in Proceedings of the
IEEE International Conference on Robotics and Automation, vol.
3, pp. 2424–2429, San Diego, Calif, USA, 1994.

[45] B. Miller, K. Stepanyan, A. Miller, and M. Andreev, “3D
path planning in a threat environment,” in Proceedings of the
50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC ’11), vol. 6, pp. 6864–6869, IEEE,
Orlando, Fla, USA, December 2011.

[46] R. Olfati-Saber, “Flocking for multi-agent dynamic systems:
algorithms and theory,” IEEE Transactions on Automatic Con-
trol, vol. 51, no. 3, pp. 401–420, 2006.

[47] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot
path planning,” IEEE Transactions on Robotics and Automation,
vol. 16, no. 5, pp. 615–620, 2000.

[48] S. Koenig and M. Likhachev, “Improved fast replanning for
robot navigation in unknown terrain,” inProceedings of the IEEE
International Conference on Robotics and Automation (ICRA
’02), vol. 1, pp. 968–975, IEEE, Washington, Wash, USA, 2002.

[49] B. C. Williams and R. J. Ragno, “Con�ict-directed A∗ and
its role in model-based embedded systems,” Discrete Applied
Mathematics, vol. 155, no. 12, pp. 1562–1595, 2007.

[50] A. Nash, K. Daniel, S. Koenig, and A. Felner, “�eta∗: Any-
angle path planning on grids,” in Proceedings of the National
Conference on Arti�cial Intelligence, vol. 22, pp. 1177–1198, AAAI
Press, MIT Press, Vancouver, Canada, 2007.

[51] A. Nash, S. Koenig, and C. Tovey, “Lazy theta∗: any-angle path
planning and path length analysis in 3D,” in Proceedings of the
	ird Annual Symposium on Combinatorial Search, vol. 2, pp.
153–154, Atlanta, Ga, USA, 2010.

[52] A. Stentz, “�e focussed d-star algorithm for real-time replan-
ning,” in Proceedings of the International Joint Conference on AI,
vol. 95, pp. 1652–1659, Montreal, Canada, 1995.

[53] L. Niu and G. Zhuo, “An improved real 3d a∗ algorithm for dif-
	cult path 	nding situation,” in Proceeding of the International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 37, Beijing, China, 2008.

[54] M. Likhachev and D. Ferguson, “Planning long dynamically
feasible maneuvers for autonomous vehicles,”	e International
Journal of Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[55] Y. V. Smirnov, “Hybrid algorithms for on-line search and
combinatorial optimization problems,” Carnegie-Mellon Univ
Pittsburgh Pa Dept of Computer Science, vol. 142, p. 141, 1997.

[56] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3,
pp. 354–363, 2005.

[57] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, 2011.

Journal of Control Science and Engineering 21

[58] J. Tisdale, Z.W. Kim, and J. K. Hedrick, “AutonomousUAVpath
planning and estimation: an online path planning framework
for cooperative search and localization,” IEEE Robotics and
Automation Magazine, vol. 16, no. 2, pp. 35–42, 2009.

[59] A. Richards and J. P. How, “Aircra� trajectory planning with
collision avoidance using mixed integer linear programming,”
in Proceedings of the American Control Conference, pp. 1936–
1941, Anchorage, Alaska, USA, May 2002.

[60] C. S. Ma and R. H. Miller, “Milp optimal path planning for
real-time applications,” in Proceedings of the American Control
Conference, p. 6, Minneapolis, Minn, USA, 2006.

[61] J. Bellingham, M. Tillerson, A. Richards, and J. P. How, “Multi-
task allocation and path planning for cooperating UAVs,” in
Cooperative Control: Models, Applications and Algorithms, pp.
23–41, Springer, 2003.

[62] E. Masehian and G. Habibi, “Robot path planning in 3D space
using binary integer programming,” International Journal of
Mechanical System Science and Engineering, vol. 23, pp. 26–31,
2007.

[63] A. Chamseddine, Y. Zhang, C. A. Rabbath, C. Join, and D.
�eilliol, “Flatness-based trajectory planning/replanning for
a quadrotor unmanned aerial vehicle,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 48, no. 4, pp. 2832–2848,
2012.

[64] R. Bhattacharya, “Optragen: a matlab toolbox for optimal tra-
jectory generation,” in Proceedings of the 45th IEEE Conference
on Decision and Control, pp. 6832–6836, San Diego, Calif, USA,
December 2006.

[65] Y. Chen and A. L. Schwartz, “RIOTS 95: aMATLAB toolbox for
solving general optimal control problems and its applications
to chemical processes,” in Recent Developments in Optimization
and Optimal Control in Chemical Engineering, R. Luus, Ed., pp.
229–252, Transworld Research Publishers, 2002.

[66] I. M. Ross and M. Karpenko, “A review of pseudospectral
optimal control: from theory to �ight,” Annual Reviews in
Control, vol. 36, no. 2, pp. 182–197, 2012.

[67] J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for opti-
mization over symmetric cones,” Optimization Methods and
So�ware, vol. 11, no. 1–4, pp. 625–653, 1999.

[68] Y. V. Pehlivanoglu, “A new vibrational genetic algorithm
enhanced with a Voronoi diagram for path planning of
autonomous UAV,” Aerospace Science and Technology, vol. 16,
no. 1, pp. 47–55, 2012.

[69] G. Erinc and S. Carpin, “A genetic algorithm for nonholonomic
motion planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1843–1849, Roma,
Italy, April 2007.

[70] C. Fonlupt, P. Preux, and D. Robilliard, “Preventing premature
convergence via cooperating genetic algorithms,” in Proceedings
of the ACMWorkshop on Foundations of Genetic Algorithms, pp.
1–6, Citeseer, 1993.

[71] A. Hacioglu and I. Ozkol, “Transonic airfoil design and
optimisation by using vibrational genetic algorithm,” Aircra�
Engineering and Aerospace Technology, vol. 75, no. 4, pp. 350–
357, 2003.

[72] A. Hacioĝlu and I. Özkol, “Vibrational genetic algorithm as
a new concept in airfoil design,” Aircra� Engineering and
Aerospace Technology, vol. 74, no. 3, pp. 228–236, 2002.

[73] Y. Chen, X. Zhao, C. Zhang, and J. Han, “Relative coordination
3D trajectory generation based on the trimmed ACO,” in
Proceedings of the International Conference on Electrical and

Control Engineering (ICECE ’10), vol. 1, pp. 1531–1536, Wuhan,
China, June 2010.

[74] A. Y. Saber and A. M. Alshareef, “Scalable unit commitment
by memory-bounded ant colony optimization with A∗ local
search,” International Journal of Electrical Power and Energy
Systems, vol. 30, no. 6-7, pp. 403–414, 2008.

[75] Y. Del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C.
Hernandez, and R. G. Harley, “Particle swarm optimization:
basic concepts, variants and applications in power systems,”
IEEE Transactions on Evolutionary Computation, vol. 12, no. 2,
pp. 171–195, 2008.

[76] J. Tang, J. Zhu, and Z. Sun, “A novel path planning approach
based on appart and particle swarm optimization,” Advances in
Neural Networks, vol. 3498, pp. 253–258, 2005.

[77] H. Pu, Z. Zhen, and D. Wang, “Modi	ed shu�ed frog leaping
algorithm for optimization of UAV �ight controller,” Interna-
tional Journal of Intelligent Computing and Cybernetics, vol. 4,
no. 1, pp. 25–39, 2011.

[78] A. Rahimi-Vahed and A. H. Mirzaei, “A hybrid multi-objective
shu�ed frog-leaping algorithm for a mixed-model assembly
line sequencing problem,” Computers and Industrial Engineer-
ing, vol. 53, no. 4, pp. 642–666, 2007.

[79] L. Buriol, P. M. França, and P. Moscato, “A new memetic
algorithm for the asymmetric traveling salesman problem,”
Journal of Heuristics, vol. 10, no. 5, pp. 483–506, 2004.

[80] A. Kassim and B. Kumar, “A neural network architecture
for path planning,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN ’92), vol. 2, pp. 787–792,
IEEE, Baltimore, Md, USA, 1992.

[81] V. Kroumov and J. Yu, “3D path planning for mobile robots
using annealing neural network,” in Proceedings of the IEEE
International Conference on Networking, Sensing and Control
(ICNSC ’09), pp. 130–135, Okayama, Japan, March 2009.

[82] V. Kroumov, J. Yu, and K. Shibayama, “3D path planning
for mobile robots using simulated annealing neural network,”
International Journal of Innovative Computing, Information and
Control, vol. 6, no. 7, pp. 2885–2899, 2010.

[83] C. W. Ahn, R. S. Ramakrishna, C. G. Kang, and I. C. Choi,
“Shortest path routing algorithm using Hop	eld neural net-
work,” Electronics Letters, vol. 37, no. 19, pp. 1176–1178, 2001.

[84] S. Jaishankar and R. N. Pralhad, “3D o�-line path planning
for aerial vehicle using distance transform technique,” Procedia
Computer Science, vol. 4, pp. 1306–1315, 2011.

[85] F. Schøler, A. la Cour-Harbo, and M. Bisgaard, “Generating
approximative minimum length paths in 3D for UAVs,” in
Proceedings of the IEEE Intelligent Vehicles Symposium (IV ’12),
pp. 229–233, Madrid, Spain, June 2012.

[86] O. Khatib, Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots, Book Section 29, Springer, New York, NY, USA,
1990.

[87] R. Deits and R. Tedrake, “Footstep planning on uneven terrain
with mixed-integer convex optimization,” in Proceedings of the
14th IEEE-RAS International Conference on Humanoid Robots
(Humanoids ’14), pp. 279–286, Madrid, Spain, November 2014.

[88] V. A. Luchnikov, N. N. Medvedev, L. Oger, and J.-P. Troadec,
“Voronoi-Delaunay analysis of voids in systems of nonspherical
particles,” Physical Review E, vol. 59, no. 6, pp. 7205–7212, 1999.

[89] J. H. Holland, Adaptation in Natural and Arti�cial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Arti�cial Intelligence, University of Michigan Press, Ann Arbor,
Mich, USA, 1975.

22 Journal of Control Science and Engineering

[90] P. Moscato and M. G. Norman, “A memetic approach for the
traveling salesman problem implementation of a computational
ecology for combinatorial optimization on message-passing
systems,” Parallel Computing and Transputer Applications, vol.
1, pp. 177–186, 1992.

[91] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
Machine Learning, section 630, pp. 760–766, Springer US, 2010.

[92] M.Dorigo, V.Maniezzo, andA. Colorni, “Ant system: optimiza-
tion by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no.
1, pp. 29–41, 1996.

[93] M.M. Eusu� and K. E. Lansey, “Optimization of water distribu-
tion network design using the shu�ed frog leaping algorithm,”
Journal of Water Resources Planning and Management, vol. 129,
no. 3, pp. 210–225, 2003.

[94] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[95] L. Kavraki and J.-C. Latombe, “Randomized preprocessing of
con	guration space for fast path planning,” in Proceedings of the
IEEE International Conference on Robotics and Automation, vol.
3, pp. 2138–2145, May 1994.

[96] M. I. Shamos and D. Hoey, “Closest-point problems,” in
Proceedings of the 16th Annual Symposium on Foundations of
Computer Science, pp. 151–162, Berkeley, Calif, USA, 1975.

[97] F. Shari	, Y. Zhang, and B. W. Gordon, “Voronoi-based cov-
erage control for multi-quadrotor UAVs,” in Proceedings of the
ASME International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference
(IDETC/CIE ’11), vol. 6, pp. 991–996, Washington, DC, USA,
August 2011.

[98] R. Geraerts, “Planning short paths with clearance using explicit
corridors,” in Proceedings of the IEEE International Conference
onRobotics andAutomation (ICRA ’10), pp. 1997–2004, Anchor-
age, Alaska, USA, 2010.

[99] F. B. Zhan and C. E. Noon, “Shortest path algorithms: an
evaluation using real road networks,” Transportation Science,
vol. 32, no. 1, pp. 65–73, 1998.

[100] L. Verscheure, L. Peyrodie, N. Makni, N. Betrouni, S. Maouche,
and M. Vermandel, “Dijkstra’s algorithm applied to 3D skele-
tonization of the brain vascular tree: evaluation and applica-
tion to symbolic,” in Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC ’10), pp. 3081–3084, Buenos Aires, Argentina,
September 2010.

[101] M. Wan, Z. Liang, Q. Ke, L. Hong, I. Bitter, and A. Kaufman,
“Automatic centerline extraction for virtual colonoscopy,” IEEE
Transactions on Medical Imaging, vol. 21, no. 12, pp. 1450–1460,
2002.

[102] I. A. Musliman, A. A. Rahman, and V. Coors, “Implementing
3d network analysis in 3d-gis,” in Proceedings of the 21st ISPRS
Congress Silk Road for Information from Imagery, vol. 8, pp. 113–
120, Beijing, China, 2008.

[103] L. De Filippis, G. Guglieri, and F. Quagliotti, “Path planning
strategies for UAVS in 3D environments,” Journal of Intelligent
and Robotic Systems, vol. 65, no. 1–4, pp. 247–264, 2012.

[104] C. Tovey, S. Greenberg, and S. Koenig, “Improved analysis
of D∗,” in Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 3371–3378, Taipei, Taiwan,
September 2003.

[105] C. L. Shih, T.-T. Lee, and W. A. Gruver, “A uni	ed approach for
robotmotion planningwithmoving polyhedral obstacles,” IEEE

Transactions on Systems, Man and Cybernetics, vol. 20, no. 4, pp.
903–915, 1990.

[106] K. Culligan, M. Valenti, Y. Kuwata, and J. P. How, “�ree-
dimensional �ight experiments using on-line mixed-integer
linear programming trajectory optimization,” in Proceedings of
the American Control Conference (ACC ’07), vol. 6, pp. 5322–
5327, New York, NY, USA, July 2007.

[107] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma,
“An optimal-control-based framework for trajectory planning,
threat assessment, and semi-autonomous control of passenger
vehicles in hazard avoidance Scenarios,” International Journal of
Vehicle Autonomous Systems, vol. 8, no. 2–4, pp. 190–216, 2010.

[108] C. Tricaud and Y.-Q. Chen, “Linear and nonlinear model
predictive control using a general purpose optimal control
problem solver riots 95,” in Proceedings of the Chinese Control
and Decision Conference, pp. 1552–1557, Yantai, China, 2008.

[109] J. Dong and V. Juris, Parallel Evolutionary Algorithms for UAV
Path Planning, section 1, American Institute of Aeronautics and
Astronautics, 2004.

[110] M. Dorigo and M. Birattari, “Ant colony optimization,” in
Encyclopedia ofMachine Learning, pp. 36–39, SpringerUS, 2010.

[111] S. Kundu and D. R. Parhi, “Modi	ed shu�ed frog leaping
algorithm based 6DOF motion for underwater mobile robot,”
Procedia Technology, vol. 10, pp. 295–303, 2013.

[112] F. Jung Leng, K. Jared, O. James, and W. Eliot, 	ree-
Dimensional Path Planning of Unmanned Aerial Vehicles Using
Particle SwarmOptimization, American Institute ofAeronautics
and Astronautics, 2006.

[113] R. Glasius, A. Komoda, and S. C. A.M. Gielen, “Neural network
dynamics for path planning and obstacle avoidance,” Neural
Networks, vol. 8, no. 1, pp. 125–133, 1995.

[114] A. A. Kassim and B. V. K. V. Kumar, “A neural network architec-
ture for path planning,” in Proceedings of the International Joint
Conference on Neural Networks, vol. 2, pp. 787–792, Baltimore,
Md, USA, 1992.

[115] C. Luo and S. X. Yang, “A real-time cooperative sweeping
strategy formultiple cleaning robots,” in Proceedings of the IEEE
International Symposium on Intelligent Control, pp. 660–665,
Vancouver, Canada, October 2002.

[116] S. X. Yang and C. Luo, “A neural network approach to complete
coverage path planning,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 718–725,
2004.

[117] X. Zhang, H. Duan, and Y. Yu, “Receding horizon control
for multi-UAVs close formation control based on di�erential
evolution,” Science China Information Sciences, vol. 53, no. 2, pp.
223–235, 2010.

[118] D. �eilliol, http://page-perso.cran.uhp-nancy.fr/sitejoomla/.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

