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For more than two decades, scientists have used
Agrobacterium-mediated genetic transformation to
generate transgenic plants. Initial technologies to in-
troduce genes of interest (goi) into Agrobacterium in-
volved complex microbial genetic methodologies that
inserted these goi into the transfer DNA (T-DNA) re-
gion of large tumor-inducing plasmids (Ti-plasmids).
However, scientists eventually learned that T-DNA
transfer could still be effected if the T-DNA region and
the virulence (vir) genes required for T-DNA process-
ing and transfer were split into two replicons. This
binary system permitted facile manipulation of Agro-
bacterium and opened up the field of plant genetic
engineering to numerous laboratories. In this review,
we recount the history of development of T-DNA
binary vector systems, and we describe important
components of these systems. Some of these consider-
ations were previously described in a review by
Hellens et al. (2000b).

Agrobacterium transfers T-DNA, which makes up
a small (approximately 5%–10%) region of a resident
Ti-plasmid or root-inducing plasmid (Ri-plasmid), to
numerous species of plants (DeCleene and DeLey,
1976; Anderson and Moore, 1979), although the bac-
terium can be manipulated in the laboratory to trans-
fer T-DNA to fungal (Bundock et al., 1995; Piers et al.,
1996; de Groot et al., 1998; Abuodeh et al., 2000; Kelly
and Kado, 2002; Li et al., 2007) and even animal cells
(Kunik et al., 2001; Bulgakov et al., 2006). Transfer
requires three major elements: (1) T-DNA border re-
peat sequences (25 bp) that flank the T-DNA in direct
orientation and delineate the region that will be pro-
cessed from the Ti/Ri-plasmid (Yadav et al., 1982); (2)
vir genes located on the Ti/Ri-plasmid; and (3) various
genes (chromosomal virulence [chv] and other genes)
located on the bacterial chromosomes. These chromo-
somal genes generally are involved in bacterial exo-
polysaccharide synthesis, maturation, and secretion
(e.g. Douglas et al., 1985; Cangelosi et al., 1987, 1989;
Robertson et al., 1988; Matthysse, 1995; O’Connell and
Handelsman, 1999). However, some chromosomal
genes important for virulence likely mediate the bac-
terial response to the environment (Xu and Pan, 2000;
Saenkham et al., 2007). Several recent reviews enumer-
ate factors involved in and influencing Agrobacterium-
mediated transformation (Gelvin, 2003; McCullen and
Binns, 2006).

The vir region consists of approximately 10 operons
(depending upon the Ti- or Ri-plasmid) that serve four
major functions.

(1) Sensing plant phenolic compounds and trans-
ducing this signal to induce expression of vir genes (virA
and virG). VirA and VirG compose a two-component
system that responds to particular phenolic com-
pounds produced by wounded plant cells (Stachel
et al., 1986). Because wounding is important for effi-
cient plant transformation, Agrobacterium can sense a
wounded potential host by perceiving these phenolic
compounds. Activation of VirA by these phenolic
inducers initiates a phospho-relay, ultimately resulting
in phosphorylation and activation of the VirG protein
(Winans, 1991). Activated VirG binds to the vir box
sequences preceding each vir gene operon, allowing
increased expression of each of these operons (Pazour
and Das, 1990). In addition to induction of the vir
genes by phenolics, many sugars serve as co-inducers.
These sugars are perceived by a protein, ChvE, en-
coded by a gene on the Agrobacterium chromosome. In
the presence of these sugars, vir genes are more fully
induced at lower phenolic concentrations (Peng et al.,
1998).

(2) Processing T-DNA from the parental Ti- or Ri-
plasmid (virD1 and virD2). Together, VirD1 (a helicase)
and VirD2 (an endonuclease) bind to and nick DNA
at 25-bp directly repeated T-DNA border repeat se-
quences (Jayaswal et al., 1987; Wang et al., 1987). The
VirD2 protein covalently links to the 5# end of the
processed single-strand DNA (the T-strand) and leads
it out of the bacterium, into the plant cell, and to the
plant nucleus (Ward and Barnes, 1988; Howard et al.,
1992).

(3) Secreting T-DNA and Vir proteins from the
bacterium via a type IV secretion system (virB operon
and virD4). The Agrobacterium virB operon contains 11
genes, most of which form a pore through the bacterial
membrane for the transfer of Vir proteins (Christie
et al., 2005). Currently, we know of five such proteins
that are secreted through this apparatus: VirD2 (un-
attached or attached to the T-strand), VirD5, VirE2,
VirE3, and VirF (Vergunst et al., 2000, 2005). VirD4 acts
as a coupling factor to link VirD2-T-strand to the type
IV secretion apparatus (Christie et al., 2005).

(4) Participating in events within the host cell in-
volving T-DNA cytoplasmic trafficking, nuclear tar-
geting, and integration into the host genome (virD2,
virD5, virE2, virE3, and virF). VirD2 and VirE2 may
play roles in targeting the T-strand to the nucleus
(Howard et al., 1992; Zupan et al., 1996). In addition,
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VirE2 likely protects T-strands from nucleolytic deg-
radation in the plant cell (Yusibov et al., 1994; Rossi
et al., 1996). VirF may play a role in stripping proteins
off the T-strand prior to T-DNA integration (Tzfira
et al., 2004).

Although vir genes were first defined genetically
because of their importance in virulence (Koekman
et al., 1979; Garfinkel and Nester, 1980; Holsters et al.,
1980; DeGreve et al., 1981; Leemans et al., 1981), no
gene within T-DNA is essential for T-DNA transfer.
The ability to delete wild-type oncogenes and opine
synthase genes from within T-DNA and replace them
with genes encoding selectable markers and other goi
helped initiate the field of plant genetic engineering
(Bevan et al., 1983; Fraley et al., 1983; Herrera-Estrella
et al., 1983).

DEVELOPMENT OF BINARY VECTOR SYSTEMS

Initial efforts to introduce goi into T-DNA for sub-
sequent transfer to plants involved cumbersome ge-
netic manipulations to recombine these genes into the
T-DNA region of Ti-plasmids (co-integrate or ex-
change systems; Garfinkel et al., 1981; Zambryski
et al., 1983; Fraley et al., 1985; Fig. 1A). This was be-
cause Ti/Ri-plasmids are very large, low copy number
in Agrobacterium, difficult to isolate and manipulate
in vitro, and do not replicate in Escherichia coli, the
favored host for genetic manipulation. T-DNA regions
from wild-type Ti-plasmids are generally large and do
not contain unique restriction endonuclease sites suit-
able for cloning a goi. In addition, scientists wanted to
eliminate oncogenes from T-DNA to regenerate nor-
mal plants. Opine synthase genes were also generally
deemed superfluous in constructions designed to de-
liver goi to plants.

In 1983, two groups made a key conceptual break-
through that would allow laboratories that did not

specialize in microbial genetics to use Agrobacterium
for gene transfer. Hoekema et al. (1983) and de
Framond et al. (1983) determined that the vir and
T-DNA regions of Ti-plasmids could be split onto two
separate replicons. As long as both of these replicons
are located within the same Agrobacterium cell, pro-
teins encoded by vir genes could act upon T-DNA in
trans to mediate its processing and export to the plant.
Systems in which T-DNA and vir genes are located on
separate replicons were eventually termed T-DNA
binary systems (Fig. 1B). T-DNA is located on the
binary vector (the non-T-DNA region of this vector
containing origin[s] of replication that could function
both in E. coli and in Agrobacterium tumefaciens, and
antibiotic-resistance genes used to select for the pres-
ence of the binary vector in bacteria, became known as
vector backbone sequences). The replicon containing
the vir genes became known as the vir helper. Strains
harboring this replicon and a T-DNA are considered
disarmed if they do not contain oncogenes that could
be transferred to a plant.

The utility of binary systems for ease of genetic
manipulation soon became obvious. No longer were
complex, cumbersome microbial genetic technologies
necessary to introduce a goi into the T-region of a
Ti-plasmid. Rather, the goi could easily be cloned
into small T-DNA regions within binary vectors spe-
cially suited for this purpose. After characterization and
verification of the construction in E. coli, the T-DNA
binary vector could easily be mobilized (by bacterial
conjugation or transformation) into an appropriate
Agrobacterium strain containing a vir helper region.

Over the past 25 years, both T-DNA binary vectors
and disarmed Agrobacterium strains harboring vir helper
plasmids have become more sophisticated and suited
for specialized purposes. Table I lists many commonly
used T-DNA binary vectors (and vector series). Table II
lists many commonly used disarmed Agrobacterium vir
helper strains.

Figure 1. Schematic diagram of co-integration/
exchange systems and T-DNA binary vector systems
to introduce genes into plants using Agrobacterium-
mediated genetic transformation. A, Co-integration/
exchange systems. Genes of interest (goi) are exchanged
into the T-DNA region of a Ti-plasmid (either onco-
genic or disarmed) via homologous recombination.
Following exchange, the exchange/co-integration
vector can be cured (removed) from the Agrobacte-
rium cell; B, T-DNA binary vector systems. Genes of
interest are maintained within the T-DNA region of a
binary vector. Vir proteins encoded by genes on a
separate replicon (vir helper) mediate T-DNA process-
ing from the binary vector and T-DNA transfer from the
bacterium to the host cell. The selection marker is used
to indicate successful plant transformation. ori, Origin
of replication; Abr, antibiotic-resistance gene used to
select for the presence of the T-DNA binary vector in E.
coli (during the initial stages of gene cassette con-
struction) or in Agrobacterium.
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Table I. Agrobacterium T-DNA binary vectors

Vector Series

Name

Vector ori/

Incompatibility

Group

Important Featuresa Gateway

Compatable

Bacterial

Selection

Markerb

Plant

Selection

Markerb
Reference

pBIN IncPa mcs with blue/white
selection

No Kan Kan Bevan (1984)

pGA IncPa cos site ColE1 ori No Kan Kan An et al. (1985);
An (1987)

SEV IncPa Reconstitutes a missing
T-DNA border; not a
binary vector

No Kan Kan/Nos Fraley et al. (1985)

pEND4K IncPa cos site, mcs with
blue/white selection

No Kan/Tet Kan Klee et al. (1985)

pBI IncPa Promoterless gusA gene
for promoter studies

No Kan Kan Jefferson et al. (1987)

pCIB10 IncPa Chimeric antibiotic-resistance
gene

No Kan Chimeric
Kan/Hyg

Rothstein et al. (1987)

pMRK63 pRi pRi-based vector
(borders from pRi)

No Amp/Kan Kan Vilaine and
Casse-Delbart (1987)

pGPTV IncPa Promoterless gusA gene
for promoter studies

No Kan Kan/Hyg/Bar/
Bleo/Dhfr

Becker (1990)

pCGN1547 pRi 1 ColE1 ColE1 ori for high copy no.
in E. coli mcs with
blue/white selection

No Gent Kan McBride and
Summerfelt (1990)

pART IncPa 1 ColE1 ColE1 ori for high copy no.
in E. coli promoter/polyA
expression cassette

No Spec Kan Gleave (1992)

pGKB5 pRiA4 Promoterless gusA gene for
promoter studies

No Kan Kan/Bar Bouchez et al. (1993)

pMJD80
pMJD81

IncPa V, untranslated leader No Kan Kan Day et al. (1994)

pPZP pVS1 Small, stable, mcs with
blue/white selection

No Spec/Chl Kan/Gent Hajdukiewicz
et al. (1994)

pBINPLUS IncPa Selectable marker near
LB ColE1 ori

No Kan Kan van Engelen et al. (1995)

pRT100
pRT-V/Not/Asc

IncPa Rare-cutting sites (NotI, AscI) No Kan Kan/Hyg/
Bar/Dhfr

Uberlacker and
Werr (1996)

BIBAC pRi T-DNA binary vector designed
to transfer large DNA
fragments

No Kan Hyg Hamilton (1997)

pCB series IncPa Mini binary vectors small
backbone, not
self-mobilizable

No Kan Bar Xiang et al. (1999)

pGreen IncW ColE1 ori mcs with blue/white
selection

No Kan Kan/Hyg/
Sul/Bar

Hellens et al. (2000a)

pPZP-RCS2 pVS1 Multiple rare-cutting sites for
cassette insertion. Uses
pPZP200 as backbone

No Spec Kan/Gent Goderis et al. (2002)

GATEWAY
destination vector

pVS1 ColE1 ori. Uses pPZP200
as backbone

Yes Spec Kan/Hyg/Bar Karimi et al. (2002)

pMDC pVS1 Based on pCAMBIA (except
pMDC7, from PER8).
Facilitates protein tagging

Yes Kan; Spec
for
pMDC7

Kan/Hyg/Bar Curtis and
Grossniklaus (2003)

pRCS2 pVS1 Contains rare-cutting sites No Spec Kan/Hyg/Bar Chung et al. (2005)
pRCS2-ocs pVS1 Cloning of multiple genes No Spec Kan/Hyg/Bar Tzfira et al. (2005)
pEarleyGate pVS1 Based on pCAMBIA.

Facilitates protein tagging
Yes Kan Bar Earley et al. (2006)

pGWTAC
pMDC99

pRiA4 Multi-Round Gateway for
cloning multiple genes

Yes Kan Hyg Chen et al. (2006)

pORE IncPa Based on pCB301 ColE1 ori
FRT sites. Promoterless gusA
or gfp gene for promoter
studies

No Kan Kan/Pat Coutu et al. (2007)

(Table continues on following page.)
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PROPERTIES OF BINARY VECTORS

T-DNA binary vectors generally contain a number
of features important for their use in genetic engineer-
ing experiments. These include the following.

(1) T-DNA left and right border repeat sequences to
define and delimit T-DNA. T-DNA border repeat
sequences (T-DNA borders) contain 25 bp that are
highly conserved in all Ti- and Ri-plasmids examined
to date (Waters et al., 1991). Nicking by the VirD1/
VirD2 endonuclease occurs between nucleotides 3 and
4 (Wang et al., 1987). Thus, within Agrobacterium,
nucleotides 4 to 25 remain within the T-DNA at the
left border (LB), whereas at the right border (RB)
nucleotides 1 to 3 remain intact. However, within the
plant, the T-strand is frequently chewed back, most
likely by exonucleases. Because VirD2 is linked to and
therefore protects the 5# end of the T-strand, loss of
nucleotides at this end is usually minimal (a few
nucleotides at most). Loss of nucleotides from the
unprotected 3# end occurs more frequently and is
generally more extensive; deletions up to several hun-
dred nucleotides are not uncommon (Rossi et al.,
1996). Early T-DNA binary vectors contained the plant

antibiotic selection marker gene near the 5# end of
T-DNA (RB), and goi were placed near the 3# end (LB;
e.g. Bevan, 1984). However, extensive loss of DNA
from the 3# end, most likely the result of nucleolytic
degradation, could result in antibiotic-resistant trans-
genic plants with deletions in the goi. This problem
was ameliorated by placing the selection marker gene
near the LB and the goi near the RB. Extensive deletion
of the T-DNA from the 3# end would result in removal
of the selection marker and lack of recovery of these
plants. Thus, deletion of the goi was generally abro-
gated. Sequences near RBs (so-called overdrive se-
quences) can increase transmission of T-DNA (Peralta
et al., 1986). These sequences are frequently incorpo-
rated into T-DNA binary vector RB regions.

(2) A plant-active selectable marker gene (usually
for antibiotic or herbicide resistance). The most com-
monly used selection systems employ aminoglycoside
antibiotics such as kanamycin or hygromycin, herbi-
cides such as phosphinothricin/gluphosinate, or her-
bicide formulations such as Basta or Bialophos. Other
selection systems, such as phospho-mannose isomer-
ase, employ metabolic markers (Todd and Tague,

Table I. (Continued from previous page.)

Vector Series

Name

Vector ori/

Incompatibility

Group

Important Featuresa Gateway

Compatable

Bacterial

Selection

Markerb

Plant

Selection

Markerb
Reference

pSITE pVS1 Fluorescence protein fusion.
Based on pRCS2

Yes Spec Kan Chakrabarty et al. (2007)

pMSP IncPa Super-promoter to drive
expression of goi

No Kan Kan/Hyg/Bar Lee et al. (2007)

pCAMBIA pVS1 Multiple vectors for cloning,
expression, and tagging

No Kan/Chl Kan/Hyg/Bar http://www.cambia.org/
daisy/cambia/materials/
vectors

pGD PVS1 Derived from pCAMBIA1301.
Multiple vectors for tagging
proteins with DsRed2
or GFP

No
Kan Hyg

Goodin et al. (2002)

acos, Bacteriophage l cohesive ends; mcs, multiple cloning site; ori, vegetative origin of replication; V, tobacco mosaic virus translational
enhancer. bAmp, Ampicillin; Bar, resistance to phosphinothricin; Bleo, bleomycin; Chl, chloramphenicol; Dhfr, dihydrofolate reductase; Gent,
gentamicin; Hyg, hygromycin; Kan, kanamycin, Nos, nopaline synthase; Pat, resistance to phosphinothricin; Spec, spectinomycin; Sul, sulfonylurea;
Tet, tetracycline.

Table II. Frequently used disarmed Agrobacterium strains

Strain Name
Chromosomal

Background

Ti-Plasmid

Derivation

Antibiotic

Resistancea Reference

AGL-0 C58 pTiBo542 rif Lazo et al. (1991)
AGL-1 C58 pTiBo542 rif, carb Lazo et al. (1991)
C58-Z707 C58 pTiC58 kan Hepburn et al. (1985)
EHA101 C58 pTiBo542 rif, kan Hood et al. (1986)
EHA105 C58 pTiBo542 rif Hood et al. (1993)
GV3101TpMP90 C58 pTiC58 rif, gent Koncz and Schell (1986)
LBA4404 Ach5 pTiAch5 rif Ooms et al. (1982)
NT1(pKPSF2) C58 pTiChry5 ery Palanichelvam et al. (2000)

acarb, carbenicillin; ery, erythromycin; gent, gentamicin; kan, kanamycin; rif, rifampicin.
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2001). Some plant species have low-level tolerance to
kanamycin, and care should be taken to determine the
minimum concentration of antibiotic that will com-
pletely kill nontransformed tissues. As mentioned
above, early binary vectors had these markers placed
near the T-DNA RB. However, because of the polarity
of T-DNA transfer (RB to LB; Wang et al., 1984), recent
vectors contain the selectable marker near the LB to
assure transfer of the goi.

(3) Restriction endonuclease, rare-cutting, or hom-
ing endonuclease sites within T-DNA into which goi
can be inserted. Early binary vectors, such as pBIN19,
contained a few restriction endonuclease cloning sites
in a lacZ a complementation fragment, permitting
blue/white screening for the presence of the transgene
insertion (Bevan, 1984). In many vectors, promoters
and polyA addition signals flank these sites. More re-
cently, binary vectors containing multiple rare-cutting
restriction endonuclease or homing endonuclease sites
have been developed (Chung et al., 2005; Tzfira et al.,
2005). These vectors, derived from plasmids originally
constructed by Goderis et al. (2002), are designed to
accompany a series of satellite (pSAT) vectors. The
pSAT vectors contain expression cassettes (promoter,
multiple restriction endonuclease cloning sites, polyA
addition signal) flanked by rare-cutting/homing en-
donuclease sites (Chung et al., 2005). Some of these
vectors have incorporated into these expression cas-
settes tags to generate fluorescent fusion proteins for
protein localization studies (Tzfira et al., 2005) or
protein-protein interaction studies (Citovsky et al.,
2006). Multiple expression cassettes from the pSAT
vectors can be loaded into the cognate rare-cutting
sites in the binary vectors, permitting simultaneous
introduction of multiple genes into plants. Several re-
cent binary vectors contain Gateway sites to facilitate
insertion of genes or exchange of gene cassettes from
other vectors. Additionally, several BAC binary vectors
have been designed to clone large inserts of more than
100 kb (Hamilton, 1997; Liu et al., 1999, 2000).

(4) Origin(s) of replication to allow maintenance in
E. coli and Agrobacterium. The incompatibility group of
the plasmid, with function related to the specific origin
of replication, can be important if several plasmids
need to co-exist in the bacterium. As such, these plas-
mids must belong to different incompatibility groups.
In some instances, origins of replication may function
in both Agrobacterium and in E. coli (in which initial
constructions are generally made). These broad host
range replication origins include those from RK2
(incPa; e.g. pBIN19 and derivatives), pSa (incW; e.g.
pUCD plasmid derivatives), and pVS1 (e.g. pPZP de-
rivatives). Other origins of replication that function in
Agrobacterium, such as those from Ri-plasmids (e.g.
pCGN vectors), do not function in E. coli; thus, a ColE1
origin (such as the one used in pUC and pBluescript
plasmids) is added to the vector. Different origins of
replication replicate to different extents in Agrobacterium.
The pSa origin replicates to two to four copies per cell
(Lee and Gelvin, 2004), the RK2 (Veluthambi et al.,

1987) and pVS1 (L.-Y. Lee, unpublished data) origins
replicate to seven to 10 copies per cell, and the pRi
origin replicates to 15 to 20 copies per cell (L.-Y. Lee,
unpublished data).

(5) Antibiotic-resistance genes within the chromo-
some and within backbone sequences for selection of
the binary vector in E. coli and Agrobacterium. Many
commonly used Agrobacterium strains are resistant to
rifampicin due to a chromosomal mutation (see Table
II). In addition, commonly used Agrobacterium strains
can be grown on Suc as the sole carbon source. Most
commonly used E. coli K12 laboratory strains cannot
use Suc as a carbon source. Thus, growth on minimal
medium containing rifampicin and Suc generally will
eliminate E. coli from Agrobacterium cultures, an espe-
cially useful selection following introduction of the
binary vector into Agrobacterium by mating plasmids
between E. coli and Agrobacterium (Ditta et al., 1980;
Garfinkel et al., 1981).

Care must be taken in matching binary vectors with
specific vir helper Agrobacterium strains. As listed in
Table II, many of these strains already express genes
for resistance to kanamycin, carbenicillin, erythromy-
cin, or gentamicin. Thus, one cannot easily use binary
vectors with the same selection marker in these strains.
For example, many T-DNA binary vectors based upon
pBIN19 utilize kanamycin-resistance as the bacterial
selection marker. A. tumefaciens EHA101 is kanamycin
resistant and cannot easily be used with these pBIN19
derivatives. However, one can use these binary vectors
in the near-isogenic kanamycin-sensitive strain A.
tumefaciens EHA105. In addition, some Agrobacterium
strains are resistant to low levels of spectinomycin, an
antibiotic that is used in conjunction with the pPZP
plasmids and their derivatives. When using spectino-
mycin, the researcher should test various concentra-
tions of the antibiotic with the vir helper strain lacking
the binary vector to assure effective killing. Care must
also be taken if a binary vector contains a tetracycline-
resistance gene. A. tumefaciens C58 harbors a tetracycline-
resistance determinant (Luo and Farrand, 1999) and is
thus resistant to low levels of this antibiotic.

Although some Agrobacterium strains or binary vec-
tors may harbor a b-lactamase gene that confers resis-
tance to carbenicillin, it is still relatively easy to kill these
bacteria following infection of plants. The b-lactam anti-
biotics Augmentin and Timentin contain, additionally,
clavulanate, which will inhibit b-lactamases. Concen-
trations of Timentin ranging from 100 to 150 mg/L will
completely eliminate growth of Agrobacterium C58-
based strains harboring a b-lactamase gene (Cheng
et al., 1998). Agrobacterium Ach5-based strains, such as
LBA4404, do not express b-lactamase activity well,
and thus can be killed by even lower concentrations of
either carbenicillin or Timentin (Hooykaas, 1988).

ALTERNATIVE T-DNA BINARY SYSTEMS

Although T-DNA binary vector systems almost al-
ways consist of T-DNA and vir regions localized on
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plasmids, it is not essential that they function this way.
Replicons containing T-DNA or vir genes do not need
to be plasmids. Indeed, several laboratories have shown
that T-DNA can be integrated into an Agrobacterium chro-
mosome and launched from this replicon (Hoekema
et al., 1984; Miranda et al., 1992), and specialized
vectors have been generated to facilitate integration of
DNA into a specific neutral (i.e. not involved in
virulence) region of the chromosome of A. tumefaciens
C58 (Lee et al., 2001). Although launching T-DNA
from the Agrobacterium chromosome can result in
lower transformation frequencies, this process has
the beneficial consequences of reducing integrated
transgene copy number and almost completely elim-
inating integration of vector backbone sequences into
the plant genome (Ye et al., 2007).

CONCLUSION

T-DNA binary systems have greatly simplified the
generation of transgenic plants. No longer are com-
plex, sophisticated microbial genetic regimens required
to integrate goi into T-DNA regions located on large,
cumbersome Ti- or Ri-plasmids. Along with compan-
ion vir helper strains, numerous different T-DNA
binary vectors with specialized properties have been
designed to facilitate such diverse activities as protein
expression, activation tagging, protein localization,
protein-protein interaction studies, and RNAi-mediated
gene silencing. However, the ease of use of binary
vectors may have come at a cost. The use of multicopy
binary vectors generally results in integration of mul-
tiple copies of T-DNA into the plant genome. Multiple
transgene copies have a propensity to silence to a
greater extent than do single integrated copies. In ad-
dition, integration of vector backbone sequences from
binary vectors into plant DNA, a potential regulatory
problem, is common (Martineau et al., 1994; Kononov
et al., 1997; Wenck et al., 1997). Integration of non-
T-DNA region sequences when T-DNA is launched
from large Ti-plasmids is relatively rare (Ramanathan
and Veluthambi, 1995). Thus, the use of multicopy binary
vectors may have exacerbated two common problems
associated with plant transformation, multiple inte-
grated transgene copy number and vector backbone
integration. Launching T-DNA from low-copy-number
T-DNA binary vectors or from the Agrobacterium chro-
mosome may mitigate these problems (Ye et al., 2007).
Such systems should greatly increase the quality of
Agrobacterium-mediated transformation events.
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