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1. Introduction

The NIST Digital Library of Mathematical Functions (DLMF) Project1,
begun in 1997, is preparing a handbook and Web site intended for
wide communities of users. The contents are primarily mathematical
formulas, graphs, methods of computation, references, and links to
software. This project revises and extends Abramowitz and Stegun’s
Handbook of Mathematical Functions [1]. An overview of the project
can be found in [11]. This paper addresses some of the technical aspects
of the project. The route that we will take is to first describe the goals
of the DLMF. That some of these goals conflict with reality leads to
discussion of how we have adapted to those conflicts.

There are two underlying themes to this paper. The first theme is
finding the most practical way of obtaining a variety of information
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subject to copyright in the United States. Research was supported in part by NSF
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2 Bruce Miller and Abdou Youssef

from the project’s authors, much of which may seem unusual to them.
The second theme is how to make the information available to users
through different media and via appropriate search capabilities. We
must extract from the author’s manuscripts a close approximation to
the semantic content, especially the mathematical content, in a form
that will allow the broadest, most long-term usage. It must be noted
that this project is a work-in-progress; many of the most interesting
problems have not yet been completely solved; and even the notion of
‘best solution’ will evolve with the evolution of the web, itself.

2. Goals and Challenges

2.1. Goals

That the material must be of the highest quality — authoritative and
validated — should go without saying. We aim to produce a book, a
web site with extensive search capabilities and a CD-ROM version. The
material must therefore adapt to various media.

Clearly, the electronic formats must provide search capabilities. And
since the DLMF is primarily mathematics with little text, providing
a traditional search for the textual components will not be enough.
We must provide the capability to search for formulas that match a
user’s criteria as well; searching for formulas according to keywords
or properties of the formula: e.g. ‘addition theorem for elliptic func-
tions’. More intriguing would be searches using mathematical patterns.
These should be flexible regarding syntax, not restricted to TEX[8],
say. And the matching process must understand the basic properties of
commutativity, associativity and so forth.

Along with search capabilities, it would be extremely useful to be
able to extract virtual documents. For example, one might wish to create
a page of addition theorems, or a short booklet of differential equations
of certain classes. Thus one must not only find pages, but collections of
document fragments and formulas, and synthesize a document from
them. These, along with existing sections or subsections should be
viewable in a screen friendly format, or printable.

The DLMF should provide layers of detail. Beyond the dry, tele-
graphic, front facade of the identities, there should be associated with
most elements additional metadata. This data would point to refer-
ences, original sources, or short tracts going into extra detail or more
esoterica.

Often one finds a formula not quite in the terms one needs and
one would like to transform the expressions. It would be exciting,
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Technical Aspects of DLMF 3

from within the online book, to substitute variables, or rearrange an
expression, to acquire exactly the identity required. One may need to
re-expand, apply transformations, other identities, . . . . Transformed or
not, users will likely want to copy the formula into their own docu-
ments, graphics programs or computer algebra system, without loss of
meaning.

For some people, a differential equation tells them all they need to
know about a special function. Other, more visually oriented people,
will need interactive graphics to explore the function in different re-
gions, on different scales. Graphics in 2D and 3D (or more) will be
needed. Above all, these graphics must be ‘Honest’ in the sense of
Fateman [5]: they must not display artificial flat planes where clipped,
nor smooth over narrow features, nor succumb to other sampling errors.

2.2. Some Successes

Some of these goals are well on their way to success. Dan Lozier de-
scribes in [11] the project and the strategy for managing it. Given the
project’s Editorial Board and the authors they have contracted, the
quality of the mathematical content is well in hand.

Saunders and Wang [22, 18] have been making significant progress
on 3D graphics, with some ‘honest’ features (see also [11]). We have
been exploring 2D interactive honest graphics, as well.

2.3. Challenges

Other elements remain difficult, however.
What might be called ‘live mathematics’, direct manipulation of the

formula within the browser, has been explored in teaching materials,
where it is quite appropriate. But in our case, the capability to trans-
form a given identity into an arbitrary form of the user’s choosing is
an open-ended task. Any non-trivial usage would require access to the
full power of a computer algebra system. Although presenting limited
alternative views of formulas is reasonable, providing completely live
on-line manipulations of them is quite beyond the scope of the planned
DLMF.

On the other hand, providing mathematical reference data is clearly
within our role at NIST. The right representation of the mathemat-
ics will allow inclusion in user documents, or insertion into a user’s
computer algebra system. The problem is thus transformed into the
problem of extracting a sufficiently generic, semantic representation of
the mathematics, say in OpenMath [21] or Content MathML [23], from
what the authors have written.
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While a mathematical structure editing application, say with but-
tons for every conceivable mathematical concept, might be a good
solution for the future, it is not an answer for us at present. The chapter
authors were chosen for their mathematical expertise. They are experi-
enced mathematicians who already have their preferred authoring tools,
their favorite operating system. For the most part, they do not want to
be retrained for new tools, nor do we want to retrain them — we want
them to focus on the mathematical content.

In fact, most (but not all!) of these authors are comfortable with TEX
or LATEX[10]. While LATEX markup is significantly more content oriented
than many systems, it still allows for a great many ambiguities. It has
been suggested that one should develop a LATEX package providing
completely unambiguous mathematics markup. Again, although this
may be a good goal for future work — and future authors — it would
not be workable here for the same reasons given above; it would be too
unfamiliar and too verbose, and would not get used.

Search, virtual documents and layered information require the sup-
port of a variety of metadata. Annotations are needed to provide lay-
ered information. An abundance of references and indexing keywords
are called for; some would appear in the regular bibliography or index,
but others used solely for layered information or for the search engine.
Constructing sensible virtual documents would need some knowledge
of the ‘role’ of sections and formulas, e.g. does it represent a definition,
or notation. Unless one is willing to impose a rigid organization on all
chapters, one must also include metadata to indicate this role.

These items are fairly unusual requests to make of an author, and
yet the authors are the best sources. So, while we accept that we will
have to augment and rationalize the metadata that they do provide,
we must make it as easy as possible for them to include that infor-
mation. Furthermore, since metadata is generally hidden from view,
we must provide feedback to the authors, and also to the editors, for
proofreading purposes of what data is present.

Even with extensive indexing metadata, users must be able to search
in the mathematical content itself. Search and retrieval technology has
been developing for several decades, and has reached a high level of
maturity for text search [9, 17]. The formulas, equations, and other
mathematical constructs present in the DLMF, however, are symbolic
and highly structured. Current search systems and technology do not
provide the means for formulating math queries and for searching for
equations and other mathematical constructs. Many equivalences, such
as commutativity and associativity, are simply not recognized.

Finally, there is the issue of targeting the material to different media.
Even were it not for our emphasis on semantic markup, we wish to
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Technical Aspects of DLMF 5

discourage presentation markup. Not only does it obfuscate the content
and waste the author’s time, it tends to be specific to a certain medium,
layout or dimensions.

2.4. A path to solution

Our general strategy is an evolutionary one. We have developed a
DLMF LATEX class that strays as little as possible from standard LATEX
markup, while encouraging content over presentation. This ‘modestly’
semantic markup is described further in Section 3.

Our initial work on the mathematical search problem adapts and
augments a conventional text search engine to meet the needs of the
DLMF. This involves predigesting the mathematics into a more tex-
tual form before indexing, defining and implementing a math query
language to express formula queries naturally and transforming the
search queries into special forms. While perhaps not ideal, the method
has had remarkable success so far. The approach is described in more
detail in Section 4.

These approaches will allow us to reach many of our goals in the
short term, while we continue research and development on better
solutions. Focusing the authors on content over presentation and im-
plementation specific details, will allow us to evolve the handling of the
material without restarting the project from scratch.

3. Modestly Semantic Markup

Given these constraints, the first technical objective is to modify LATEX
markup just enough to:

− allow the authors to focus on the mathematical content;

− minimize presentation markup, while supporting different formats
and media;

− minimize mathematical ambiguities;

− support proofreading with optionally printed representations of all
hidden data.

3.1. Metadata

The indexing, labeling and citation mechanisms of standard LATEX pro-
vide a starting point for metadata. The addition of a few simple macros
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for annotations and original references forms a good basis. However, as
feedback to the authors and editors, as well as to other authors who
wish to cross-reference, we also provide means to print this extra data
without destroying the flow of the main text. An annotated format has
been developed which prints the chapter in a single narrow column,
with all metadata printed in the second column, aligned to the material
it relates to. Alternatively, the data can be printed in an appendix.

3.2. Optional Material

For practical reasons, a printed version of the DLMF must be con-
strained in size to not much more than 1000 pages. Electronic versions
are much less restricted, and thus may contain additional material.
Also, material that is most likely to change quickly (e.g. lists of avail-
able software) should probably be relegated to the more dynamic elec-
tronic media. Thus we provide LATEX environments that authors use to
mark sections of material as being appropriate only for certain media.
Again, feedback is needed for proofreading, so such marked material is
indicated by bars in the margin with an appropriate label.

3.3. Multiple Media

Although the book will be printed in a two column format, other
media will generally be in a single column — but without a known,
fixed width. We therefore strongly prefer that authors not break their
formula by hand.

We have adopted Michael J. Downes’ equation breaking package,
breqn[3]. It automatically breaks formulas across multiple lines de-
pending on the current column width. Although this package is experi-
mental, and the formulas we encounter stress the package, it is handling
the task remarkably well. By hiding the invocation of breqn inside the
standard equation environment, the author ideally is not even aware
of its presence.

Nevertheless, there are formulas, as well as tables or other material,
that the author knows will be too wide to be successfully stuffed into a
narrow column. For this, a onecolumn environment is defined. In order
to support this, and balanced switching between one and two column
modes, we have integrated Frank Mittelbach’s multicol package[6,
Ch. 3]. Again, other than the onecolumn environment, the author need
not be aware of its presence.
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3.4. Mathematical Markup

The range of mathematics represented in the DLMF, primarily algebra
and calculus, is considerably narrower than the field of mathematics
as a whole. Thus the range of notations — and ambiguities — we
must contend with is considerably smaller. Nevertheless, there are still
problems.

The intention is to adapt an infix parser to the task of transforming
the LATEX markup into semantic form. Since the goal is to only mini-
mally extend the markup, the parser must accept implicit operations;
in our application this will generally be implicit multiplication, but we
anticipate the need for a type inference engine to resolve ambiguities.
To further reduce the amount of guesswork such a parser must carry
out, we have developed several sets of markup described in the following
sections.

3.4.1. Special Functions
Two of the most widespread ambiguities in the field of special functions,
although they are not unique to that field, are the roles of parenthe-
ses and superscripts. A parenthesis may indicate either grouping or
function application. Superscripts may indicate a power, a function
parameter or a derivative. Both of these are partly resolved by declaring
all mathematical functions (as LATEX macros) and incorporating the
various sub/superscript parameters into the macro definition. Thus,
any remaining superscript can only be a power or derivative. A paren-
thesis following a function macro probably contains the arguments (and
since we know which special function is involved, we know how many
arguments to expect), otherwise the parenthesis is for grouping.

This distinction between the function ‘parameters’ (e.g. the sub-
and super-scripts) and ‘arguments’ (e.g. the parenthesized, or fenced,
arguments) is consistent with LATEX conventions. While the macro \sin
‘names’ the sine function (without arguments), one typically ‘names’
the Bessel function by writing Jν (Strictly speaking, the function J of
two arguments, ν and z, is curried to a function of z alone).

Consequently, the LATEX macro we have defined for the Bessel func-
tion takes the parameters as arguments. Thus, one refers to the Bessel
function itself by

\BesselJ{\nu}→ Jν

but the application of the function, say in an expression, would be

\BesselJ{\nu}(z)→ Jν(z)

Since the formatting of sub- and super- and pre-sub-scripts, tends to
yield somewhat messy markup, eliminating that markup has the benefit
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of easing both the author and parser’s tasks, as well as standardizing
the presentation of these elements.

And of course a non-trivial benefit is that we know which function
J is being referred to, and indeed that it is a function at all.

3.4.2. Fractions and Derivatives
We further discourage various other typical LATEX idioms that are likely
to be ambiguous. Rather than using a / for inline fractions, we prefer
to complete the set \frac and (amstex’s) \tfrac with \ifrac (which,
admittedly, are providing presentation hints, by indicating normal, text
or inline fraction).

Likewise, rather than relying on a parser to wonder at the signif-
icance of fractions that have non-canceled ‘d’ in the numerator and
denominator in \frac{df}{dx}, derivative macros \deriv, \pderiv
(along with text and inline variants, and optional ‘n’), macros for
differentials, etc. have been defined.

3.4.3. Continuing work
The macros described above are currently being used by the authors
with apparent success. Yet, the macros do not quite reduce ambiguities
to the desired extent, particularly regarding powers and derivatives
using superscripts, and the status of parentheses is somewhat uncom-
fortable. The main extension being developed is that an optional @
sign will be taken as introducing the argument list (with the mnemonic
‘function evaluated at a point’). Thus,

\BesselJ{\nu}@{z}→ Jν(z).

Further, authors often wish to incorporate operations, particularly
powers and derivatives between the function and its arguments. We
must recognize the semantic import, while still accepting the presenta-
tional hint. We extend the syntax by allowing a primes (or a backprime
taking a macro argument), which applied to a mathematical function,
is taken as signifying single (or multiple) derivative; the caret is then
reserved solely for powers. Inclusion of other declared operators needs
also be considered (eg. transpose, conjugation, etc.).

Thus the following markup could be employed

\BesselJ{\nu}’’@{z}→ J ′′
ν (z)

or
\HypergeoF^{2}@{a,b}{c}{z}→ F 2

(
a, b

c
; z

)
.

This additional markup seems only slightly ‘odd’ (from a LATEX point
of view), while significantly clarifying the author’s intent.
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At the same time, it still supports good presentation. It preserves the
author’s flexibility in choosing whether to write derivatives with embed-
ded primes or as a prefix operation; similarly with powers. Standardized
presentation of function arguments is also provided.

The special function macros also serve as a starting point for type
inference, but further declarations will be needed to handle variables
and operators, at least.

4. Mathematical Search

In traditional books and handbooks, and even in well-structured Web
sites, an index and a table of contents are often adequate for find-
ing information. In the DLMF Handbook and Web site, however, the
contents contain so many formulas and other mathematical constructs
that mere indexes and table of contents fall extremely short. Rather, a
special search system has to be provided in order for users to quickly
locate what they are looking for.

Furthermore, although text search and retrieval is a mature technol-
ogy and many text search systems are available, math search presents
new demands and issues that the text search community never had
to face. To identify the major math search issues, it helps to consider
the reasons why conventional search systems are inadequate for math
search. We recognize three major reasons.

The first is that mathematical contents often involve non-alphabetical
symbols that are not understood by current search systems, or at
least not rightly interpreted. Terms like Gamma(1/2), P_n(x), x**5,
or d^2y/dx^2-x=0 are either meaningless or improperly read and pro-
cessed by current systems.

The second and more challenging reason is that formulas and equa-
tions, as well as other mathematical constructs, have rich structures
that convey much meaning. Current search engines are not “aware” of
those structures, do not capture or index them, and are thus unable
to search for information that involve structural relationships and pat-
terns. A query like sin(x + log x) is no different to a current search
system than sin x + log x. Similarly, x (y + z) is misinterpreted as
x y + z, if interpreted at all.

The third and most challenging reason is that the many equivalent
ways in which mathematical terms can be expressed, which correspond
to synonyms in text search, are often much more complex than textual
synonyms, and thus cannot be fully captured in a thesaurus. A summa-
tion or a product of two or more terms can be expressed in many equiva-
lent ways due to commutativity and associativity laws. Numbers can be
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represented in multiple forms (e.g., 1/2 vs. 0.5 vs 2^{-1}). Polynomials
can be expressed in many factored and unfactored forms. Trigonometric
terms can be easily substituted by other equivalent trigonometric terms.
Indeed, it can be argued that a large part of Mathematics is about the
different and equivalent ways of expressing a concept or a quantity.
Obviously, current search systems are not equipped to recognize those
equivalences and take them into account when searching — indeed, the
problem is not solvable in general.

Therefore, the major math search issues can be summarized as
follows:

− Recognition and proper processing of mathematical symbols in
mathematical content and queries.

− Capturing and indexing mathematical structures.

− Providing a math-appropriate query language and user interface
that enable users to express their information needs, which often
involve math symbols and structures.

− Developing and integrating techniques for taking into account math-
ematical synonyms and equivalences — at least some of the more
common ones such as commutativity and associativity based equiv-
alences.

The next subsection will discuss some of the approaches that are
being taken to address those issues.

4.1. Approaches to Math Search

Broadly speaking, two general approaches suggest themselves. The first
approach is an evolutionary one, which augments existing text search
systems with math-appropriate searching capabilities. The second ap-
proach is to create a math search system wholly from scratch to fully
capture and index mathematical content.

The augmentation approach leverages the power and maturity of
text search engines, and involves less work. Although it has inherent
limitations as to how much mathematical structure it can capture, it
has taken us a long way toward effective equation-based searching. It
is the approach currently adopted by the DLMF, and will be discussed
in more detail in the next subsection.

The second approach is much more demanding in time and effort. It
will require not only the careful use and integration of various computer
algebra and symbolic processing techniques, but also the development
of novel indexing and search techniques for which research has barely
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begun. Certainly, parsing techniques for mathematical expressions have
been developed for compilers and computer algebra systems [2, 13].
Those techniques can and should be adopted by this approach as well
as by the augmentation approach.

The indexing of mathematical structures is a largely new subject.
Some work has been done on searching for integrals [4]. However, to the
authors’ knowledge, no work has been published on indexing full math-
ematical structures in such a way that users can search for structures
of parts thereof. For example, a user can search for a whole matrix or
a submatrix, a fraction or a denominator, a function with its argument
or just the argument, a summation or just the summand, and so on.
This ability to search with queries that specify the patterns to be found
in named parts of a structure is possible with the mathematical index-
ing approach but cannot be fully achieved through the augmentation
approach.

As for incorporating mathematical synonyms and equivalences, some
aspects of automated theorem proving [14] and symbolic processing
in computer algebra can be drawn upon. Specifically, a thesaurus-like
dictionary of abstract equivalence rules will have to be used by the
search system to detect concrete instances of equivalences between the
query form of an expression and the contents’ form(s) of the same
expression. Applying abstract inference (equivalence) rules in this con-
text is tantamount to matching (i.e., instantiating) them to concrete
instances, which is a task that automatic theorem provers generally
carry out. Sophisticated equivalence detection, however, is not a mature
technology, and is probably too slow for online searching. Nevertheless,
for certain kinds of equivalences, equivalence detection is feasible and
will be addressed in our future work.

4.2. Search Engine Requirements

To meet the imminent search needs of the DLMF, we pragmatically
opted for the augmentation approach. The first step was to find a text
search engine which has a wide range of capabilities and features to
make it amenable to augmentation for math search. The second step
was to carry out the actual augmentation.

There are a number of search systems, some of which are in the
public domain [16, 20, 12, 15, 19] while many others are commercially
available2. Clearly, what is important is not which specific system to go

2 Identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that
these systems are necessarily the best available for the purpose
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12 Bruce Miller and Abdou Youssef

with, but what features are the most relevant and useful for adaptation
and augmentation to math search.

In our experience, we found that to ease augmentation to math
search, certain capabilities and features are particularly desirable to
have in a text search system. These capabilities and features are de-
scribed in the next 4 subsections.

4.2.1. Boolean and proximity operators
All three Boolean operators (AND, OR, and NOT) and many of the
proximity operators should be allowed in queries. Examples of proxim-
ity operators are word adjacency operators (for phrase search) as well
as unidirectional and bidirectional distance operators that specify the
distance between the operands in terms of the number of intervening
words or intervening paragraphs.

4.2.2. Fields and field-based search
It is desirable to be able to partition any document in the database into
parts (called fields), and label each part by a field name. Queries can
be targeted not only to whole documents but also to specific fields. An
important field might be “equation”, another might be “theorem”, and
yet another might be “chapter-title”. Hierarchical fields (i.e., a field
could be made up of several fields, to any level of nesting), if available,
give more flexibility to system designers and to search users.

4.2.3. Thesaurus support
The thesaurus would allow the math search system designers to define
various terms not only in terms of equivalent synonyms, but also as full-
fledged queries (i.e., an expression involving Boolean and/or proximity
operators). For example, it was mentioned earlier that markup such
as BesselJ (and BesselI, BesselK, BesselH etc.) helps in semantics
and formatting matters. Should a user enter Bessel as a keyword, all
those markup words (BesselJ, BesselI, etc.) will not be recognized as
matches of Bessel. However, if an entry for Bessel is defined in the
thesaurus, where Bessel is made to stand for

(Bessel OR BesselJ OR BesselY ...),

a thesaurus lookup will cause the keyword Bessel to be replaced by
its thesaurus entry, and the markup is then guaranteed to be matched.

Note, however, that such a thesaurus cannot handle mathematical
equivalences that involve formulas.
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4.2.4. Allowance for surrogate files
The underlying concept is to view a document as a pair of files (D,S).
File D is the display file that is presented to the user when the document
matches a query and is retrieved. The file S (the surrogate file) is what
is indexed at the time of creating the database or when adding the
document to the database. The key point is that the two files D and S
need not be identical. Indeed, the surrogate file S can have:

− Non-displayable metadata, such as (a) authors’ notes, (b) descrip-
tive terms and keywords for equations, formulas, graphs and tables,
and (c) annotations.

− Modified representations of mathematical equations, symbols and
other constructs so that those representations are indexable and
searchable by text search systems. Roughly speaking, the modified
representation corresponds to content markup in the parlance of
MathML [23] and OpenMath [21], and the original representation
corresponds to presentation markup as in MathML, LATEX, and
other word processing systems. Note that the modified represen-
tation could be standard markup such a in MathML, but it need
not be, depending on the intended use.

The main reason for having a pair of files is that display files do not
have all the textual (and thus indexable) contents needed, and, on the
other hand, the surrogate files have contents that are not for display.
In practice, D is a subset of S. File S is created at indexing time, and
can later be discarded (after the index has been generated); only file D
need be kept.

4.3. Search Augmentation

For the augmentation strategy to work, we need to perform the follow-
ing fundamental tasks:

Textualization of all symbolic entities in the contents and in the
queries. This trivial but necessary step means mapping non-alphanumerical
characters to alphanumerical strings. For example, + is turned into
“plus” and < into “lt”. This is needed since text search systems do
not recognize symbols like +, /, < or ^ as known mathematical op-
erators. The textualizing process merely involves substituting non-
alphanumerical characters with pre-defined alphanumerical coun-
terparts.

Flattening of mathematical equations & structures in contents and
in queries, that is, converting them into a linear, sequential form.
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Table I. Illustrations of Textualization and Flattening

Original Textualized & Flattened Form

x^{t-2} = 1 x BeginExponent t minus 2 EndExponent Equal 1

f(x) or f@(x) f ApplyAt BeginArgument x EndArgument

(x+1)/(x-1) fraction (x plus 1)(x minus 1)

-alternatively-

fraction BeginNumerator x plus 1 EndNumerator

BeginDenominator x minus 1 EndDenominator

Flattening is needed because the closest thing to capturing struc-
tures in text search is through linear contiguity & proximity oper-
ators.

The main task of flattening is to identify and scope the parts
of a formula such as numerators, denominators, exponents and
arguments, and to surround them with pairs of matching markup
tags. Table I below illustrates the concept.

The main approach, which performs both textualization and flat-
tening, is as follows. First, each formula is parsed into a tree
where each node is labeled with the corresponding entity in the
formula (e.g., “+”, “2”, “x”, and “^”). Second, the parse tree is
traversed and converted into a textualized sentence with all the
proper matching pairs surrounding formula parts. The granularity
of the parts to be scoped depends on how much specificity we want
to allow the users to have when formulating queries.

Flattening deserves special attention, not only because it is in-
herent to text search, but also because it creates a new problem
stemming from the multiplicity of linear forms that an expression
can be mapped to. For example, x3

2 can be flattened in two ways,
depending on whether we put the subscript before or after the su-
perscript. If the order in the contents is different from the order in
the query (after flattening), then an undesirable mismatch results.
Hence the need for the next task.

Normalization of the linear forms, that is, converting the linear form
of each expression/formula into a single format, called a normal
form.
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Table II. A Sample of Operators in the Math Query
Language

Operator Meaning

+, -, /, * the standard arithmetic operators

^, ** Superscript or power

_ subscript

@ apply at as in f(x) or f@(x)
=>, <=>, <== imply, equivalent, if

!=, ~=, not= not equal

=- equivalence (≡)

=~ congruence (∼=)

=. dot equal (
.
=)

-~ similar-to or equal (')

~ similar-to (∼)

~~ approximate (≈)

|.| determinant, magnitude

The normal form is a data model that should be generic enough
to model all expressions/formulas. We define a new data model
called the sorted parse tree normal form. It is a parse tree where
the children of any nodes are sorted from left to right whenever
changing the order of the children does not alter the mathematical
meaning, such as when the node is an associative and commutative
operator, and the children are its operands. The ordering is based
on any numerical or alphabetical associated key. For example, we
can sort the children based on the number of descendent nodes
that each child has in the parse tree. If two nodes have the same
number of descendants, then we sort them alphanumerically based
on the entity labels of the nodes. The normalization algorithm is
an algorithm that sorts the parse tree.

Development of a query language to express math queries as well
as text queries. The math query language will be similar to but
much simpler than LaTeX, where many LaTeX word-commands
are replaced by short yet intuitive strings. The language incorpo-
rates notations from other languages. Table II gives a sample of
operators, and Table III illustrates math queries.

We built an augmented search system for the DLMF. Its principal
modules are described next.
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Table III. Illustrations of Math Queries. Each query in the
left column finds documents having formulas that contain
the corresponding matched element in the right column of
the table.

Query Matched element

x^2 x2

(x OR t)^3 x3 or t3

$^3 any single-character cubed

sqrt(x^2+1)
√

x2 + 1

Gamma(1/3) Γ(1/3)

^(x+2) (x+2) in an exponent part

/(x+2) (x+2) as a denominator

(... x+2 ...)/ (x+2) embedded in a numerator

Math query language: Our language, illustrated in Table III, is flex-
ible, intuitive, easy-to-use, and efficiently expressive. It is flexible in
that it accommodates a variety of “idioms” for operator symbols,
e.g., Matlab, C, Fortran, LATEX, and others. It is intuitive and
easy to use in that it draws on what most users know and use in
their daily math reading and writing. It is efficiently expressive
in that a formula (or fragment thereof) can be expressed in a
minimum number of keyboard characters, without resorting to
lengthy and elaborate commands and markups. The details of the
language will be in the help file of the system, and will be published
elsewhere.

Math query parser/translator: This is a front-end layer to parse
and translate formula queries to purely textual-and-numeric queries
that use Boolean and proximity operators. This module textual-
izes, flattens, and normalizes the users’ queries. Table I illustrates
some aspects of the work of this module.

Contents transformation module: This transforms the mathemat-
ical content in the DLMF database, especially equations, formulas,
and mathematical symbols, into a textual-numerical normalized
form. This module and the query parser/translator perform some
of the same processing – textualization, flattening, and normaliza-
tion. However, they still differ in that the parser’s input format,
that is, the math query language syntax, is different from the
transformation module’s input format (e.g., the Latex encoding
of math formulas in documents).
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Surrogate-files generator: This module generates the surrogate files
that contain the transformed math content as well as other meta-
data. It clearly calls upon the content transformation module to
modify the mathematical representation into an indexable form,
as discussed earlier.

Thesaurus: The thesaurus, which will continue to evolve, contains
generic math entries, DLMF-specific entries, and markup related
entries.

An example of a generic math entry is that of the term derivative,
which includes among its synonyms the term differential or diff for
short. An example of a DLMF-specific entry is:

U: (U OR VoigtU OR KummerU OR WhitU
OR ChebyU OR ChebyUs)

which tells the system that U should be interpreted as the OR of
generic U, the Voigt function U (through its local markup VoigtU),
the Kummer function U (through its markup KummerU), and so
on. Note that the latter example illustrates also the use of the
thesaurus for capturing internal markup.

Those modules have been designed and implemented, and a working
math search system is in place. The system has math search capabilities
that far exceed those of text search engines. Still, the system is work in
progress. Additional refinements are being made, and new capabilities
are being added.

Among those new capabilities are (1) the proper handling of cus-
tomary names and symbols that are widely used in the area of spe-
cial functions, and (2) the support of basic equivalences, including
commutativity and associativity, among others.

In the future, we will explore searching based on new and emerging
encodings such as MathML and OpenMath. The precise direction that
will be taken will be determined according to which of the new encoding
standards will be adopted and become widely used and technology-
supported.

Also, an all-math search engine, created from scratch for that pur-
pose, may be developed, if and when the necessary research in indexing
of mathematical structures yields the necessary understanding and
techniques. Experience gained from the mathematical and scientific
user community regarding math search, especially in reference to query
languages, modes of search, and what kinds of math information users
usually need to search for, will be an extremely valuable guide into
building future math search systems.
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5. Conclusions

At this stage of the DLMF project, we are still very much focused on
obtaining the content. Much of the effort up to this point has gone
into TEX programming to provide support for a subtly modified level
of LATEX markup. The goal is to allow authors to minimize presentation
markup and ambiguity, while maximizing content markup. We try to
enable the authors to concentrate on the mathematics and develop the
content as painlessly as possible. The ulterior motivation for this is that
the material can then easily be presented in different media: in print
and on the web.

We are moving into the next phase, focusing on the transformation
to XML and Presentation MathML. This latter, using systems such as
tex4ht[7, Ch. 4] seems within reach, although some refinement is still
needed.

It is clear that as we move into further stages, parsing into fully
Content MathML or OpenMath, additional refinement and markup of
the mathematics will be necessary, even adoption of more verbose, un-
ambiguous markup. But, with the approach outlined we should already
be relatively close to that state. As long as we understand the author’s
intent, we will be able to augment the sources with additional markup
and declarations to complete the parsing. But while the tools to carry
out that parsing are not yet available, applications to use such content
markup are also not yet widespread, so the pressure is not yet intense.

Between the metadata markup and modestly semantic mathematical
markup, we already have sufficient data for the augmented text-based
search techniques described here. We believe that with this approach
powerful search capabilities will be available to DLMF users. Our ap-
proaches are rather generic, and should be immediately applicable to
other mathematics databases. If these methods prove insufficient, and
once we have made further progress in capturing the complete structure
of the mathematical data, we will look into true mathematical search
techniques.
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