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�e airport gate assignment problem (AGAP) is one of the most important problems operations managers face daily. Many
researches have been done to solve this problem and tackle its complexity.�e objective of the task is assigning each �ight (aircra	)
to an available gate while maximizing both conveniences to passengers and the operational e
ciency of airport. �is objective
requires a solution that provides the ability to change and update the gate assignment data on a real time basis. In this paper, we
survey the state of the art of these problems and the various methods to obtain the solution. Our survey covers both theoretical
and real AGAP with the description of mathematical formulations and resolution methods such as exact algorithms, heuristic
algorithms, andmetaheuristic algorithms.We also provide a research trend that can inspire researchers about new problems in this
area.

1. Introduction

�e complexity of airport management has increased signif-
icantly. Flight delays or accidents might happen if operations
were not handled well, and domino e�ect might happen to
in�uence the whole operations of airport. In airports, the
tasks related to gate assignment problem (AGAP) are one of
the most important daily operations many researches have
been published onwith the aimof solving the problem in spite
of its complexity. �e objective of the task is assigning each
�ight (aircra	) to an available gate while maximizing both
conveniences to passengers and the operational e
ciency of
airport. Large airlines typically need tomanage di�erent gates
across an airport in the most e
cient way in a dynamic oper-
ational environment. �is requires a solution that provides
the ability to change and update the gate assignment data on
a real time basis. It should also provide robust and e
cient
disruption management, while maintaining safety, security,
and cost e
ciency.

Numerous methods have been developed to solve this
problem since 1974. Steuart [1] proposed simple stochastic
model to �nd the e
ciency use of the gate positions. �e
research interest in this �eldwas slow in development because
there were less than 15 publications within 25 years. However,

a	er 2000, the interest to develop solutions for this problem
increased, until nowadays, though with small growth. �e
objective of this problem varied and depended on the point of
view.�e�rst is as an airport owner, which is the government.
�e objectives are to maximize the utilization of the available
gates and terminal [1–4], minimize the number of gate
con�icts [5],minimize the number of ungated �ights [3, 6–9],
and minimize the �ights delay [10]. Another point of view is
as an airlines owner.�eir goals were to increase the customer
satisfaction with minimizing the passenger walking distance
between gates [3, 6, 7, 11–18] and minimizing the travelling
distance from runway to the gate [19].

Dorndorf et al. [20] divided the objectives into �ve
parts, which are reducing the number of the procedures
for the costly aircra	 towing, minimizing the passengers
total walking distance, minimizing the deviations in the
schedules, minimizing the number of ungated aircra	s, and
maximizing the preferences (i.e., certain aircra	s should go
for particular gates). �ey also de�ned three usually used
constraints, which are the fact that only one aircra	 can be
gated in a de�ned amount of time, the ful�llment of the
space restriction and service requirements, and the assurance
of getting a minimum time between sequent aircra	s and a
minimum ground time.
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�e solution approaches and the solving techniques are
variedwith nomethods, until nowadays, that provide a robust
technique for such problem. �is study focuses on assessing
the trend of solving gate assignment problem in light of the
preceding four points. Speci�cally, this study will address the
following research questions. (1) Is this problemNP-hard? (2)
What formulation can be de�ned for such problem? (3) How
e�ective are the recent methods and techniques to solve the
problem? (4) What recommendation can be made based on
the current �ndings with regard to research trends?

From amathematical view, AGAP has been formulated as
integer, binary, or mixed integer, general linear or nonlinear
models. Speci�c formulation as binary or mixed binary
quadratic models has also been suggested. Other well-known
related problems in combinatorial optimization such as
quadratic assignment problem (QAP), clique partitioning
problem (CPP), and scheduling problem have been used
to formulate AGAP. However, few publications on AGAP
tackled stochastic or robust optimization.

While the goal of combinatorial optimization research
is to �nd an algorithm that guarantees an optimal solution
in polynomial time with respect to the problem size, the
main interest in practice is to �nd a nearly optimal or at
least good-quality solution in a reasonable amount of time.
Many approaches to solve the GAP have been proposed,
varying from Brand and Bound (B&B) to highly esoteric
optimization methods.�emajority of these methods can be
broadly classi�ed as either “exact” algorithms or “heuristic”
algorithms. Exact algorithms are those that yield an optimal
solution. As discussed in Section 3.1 di�erent exact solution
techniques have been used to solve the GAP and in some
research, the authors used some optimization programming
languages like CPLEX and AMPL.

Basically the GAP is a QAP and it is an NP-hard
problem as shown in Obata [21]. Since the AGAP is NP-
hard, researchers have suggested various heuristic and meta-
heuristics approaches for solving the GAP. With heuristic
algorithms, theoretically there is a chance to �nd an optimal
solution. �at chance can be remote because heuristics o	en
reach a local optimal solution and get stuck at that point. But
metaheuristics or “modern heuristics” introduce systematic
rules to deal with this problem. �e systematic rules avoid
local optima or give the ability of moving out of local
optima. �e common characteristic of these metaheuristics
is the use of some mechanisms to avoid local optima.
Metaheuristics succeed in leaving the local optimum by
temporarily accepting moves that cause worsening of the
objective function value. Sections 3.2 and 3.3 addressed the
heuristic and metaheuristics approaches for solving the GAP.
Some papers presenting good overviews as well as annotated
bibliographies on the topic of GAP and a good literature
on the AGAP and the use of metaheuristics for AGAP are
Dorndorf et al. [20, 22] and Cheng et al. [23].

�is paper surveys a large number of models and tech-
niques developed to deal with GAP. In Section 2, we detail
the models formulations of the problem. In Section 3, we
addressed the resolution methods used to solve the problem.
We conclude in Section 4, and we represent the research
trends.

2. Formulations of AGAP and
Related Problems

Many researchers formulated the AGAP as an integer, binary,
or mixed integer linear or nonlinear model and some of
them formulated it as binary or mixed binary quadratic
models, whereas some of the researchers have formulated
the AGAP as well-known related problems in combinatorial
optimization such as quadratic assignment problem (QAP),
clique partitioning problem (CPP), and scheduling problem
or even as a network representation. However, some of the
researchers formulated the AGAP as a robust optimization
model. In this section, according to the way of how the
researchers deal with the gate assignment problem, a classi�-
cation for the AGAP has been made as follows.

2.1. Selected AGAP Formulations

2.1.1. Integer Linear Programming Formulations (IP). Lim et
al. [24] formulated the AGAP as an integer programming
model and developed two models with time windows. �e
�rst model was devoted to minimization of the passenger
walking distance (travel time)

Minimize
�∑
�=1

�∑
�=1

�∑
�=1

�∑
�=1

����������� + �∑
�=1

�� (�� − 	�) (1)

while the second model optimized the gate assignments with
cargo handling costs:

Minimize
�∑
�=1

�∑
�=1

�∑
�=1

�∑
�=1

[��
�� (��� + ��) + �	

�� (��� + �	)] �����
+ �∑

�=1
�� (�� − 	�) .

(2)

Both of these objectives put a penalty function due to a delay.
�ese two objectives used the constraints, as follows:

�∑
�=1

��� = 1, 1 ≤ � ≤ �, (3)

����� ≤ ���, 1 ≤ �, � ≤ �, 1 ≤ �, � ≤ �, (4)

����� ≤ ���, 1 ≤ �, � ≤ �, 1 ≤ �, � ≤ �, (5)

��� + ��� − 1 ≤ �����, 1 ≤ �, � ≤ �, 1 ≤ �, � ≤ �, (6)

�� ≥ 	�, 1 ≤ � ≤ �, (7)

�� ≤ �� − ��, 1 ≤ � ≤ �, (8)

(�� + ��) − �� + ���� > 0, 1 ≤ �, � ≤ �, (9)

(�� + ��) − �� − (1 − ���)� ≤ 0, 1 ≤ �, � ≤ �, (10)

��� + ��� ≤ �����, 1 ≤ �, � ≤ �, � ̸= �, 1 ≤ � ≤ �, (11)

where ���, ���, and ����� are binary and �� is integer.
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Constraint (3) ensures that each �ight must be assigned
to exactly one gate. Constraints (4)-(5) state that a binary
variable ����� can be equal to one if �ight � is assigned to gate �
(��� = 1) and �ight � is assigned to gate � (��� = 1). Constraint
(6) further speci�es the necessary condition that ����� must
be equal to one if ��� = 1 and ��� = 1. Constraints (7) and
(8) ensure that the �ight must land and depart within the
speci�ed time window. Constraint (9) indicates that ��� = 1 =
1 if (�� + ��) ≤ ��, which means ��� = 1 when �ight � departs
before or right at the time when some gate opens for �ight �.
Constraint (10) states that ��� = 0 if (��+��) > ��, whichmeans��� = 0when �ight � departs a	er some gate opens for �ight �.
Constraint (11) speci�es that one gate cannot be occupied by
two di�erent �ights simultaneously.

In the �rst model and according to the linearity of the
objective function and constraints, they used a standard IP
solver (CPLEX) to �nd the optimal solution, whereas in
the second model authors used several heuristic algorithms,
namely, the “Insert Move Algorithm,” the “Interval Exchange
Move Algorithm,” and a “Greedy Algorithm” to generate
solutions. �e generated solutions then have been improved
using a tabu search (TS) and memetic algorithm. �e results
showed that the used heuristics performed better than the IP
solver (CPLEX) in both CPU time and solutions quality.

Diepen et al. [25, 26] formulated the AGAP as integer
linear programming model with a relaxation for the inte-
grality. A	er relaxing the integrality, the resulting relaxed LP
was exploited to obtain solutions of ILP by using column
generation (CG). �e problem was divided into two phases,
planning and attaching. �e �rst phase was the planning
section and it was easier to model and calculate. �eir
objective is tominimize the cost of a gate plan.�ey proposed
the following model:

Minimize
�∑
�=1

���� (12)

subject to

�∑
�=1

����� + �� = 1 for � = 1, . . . , �, (13)

where

��� = {1, if �ight � is in gate plan �,0, otherwise,
�� ≥ 0 for � = 1, . . . , �, �� is a penalty variable.

(14)

�is constraint de�ned the high price penalty (��) when the
�ights were not assigned to the gates. �is penalty appeared
since the planner should do the assignment manually. In
addition, they added another constraint regarding the assign-
ment since there was possibility that a long stay �ight could
be split into two parts. �e extra �ights �
 and �� that refer to

the arrival and departure of �ight �were added to the previous
constraints:

�∑
�=1

(��� + ���,�) �� + ��� = 1,
�∑
�=1

(��� + ��	,�) �� + ��	 = 1,
(15)

�∑
�=1

 �ℎ�� = !ℎ for ℎ = 1, . . . , #, (16)

�� ∈ {0, 1} for � = 1, . . . , �, (17)

where

�� = {1, if gate plan � is selected,0, otherwise,
 �ℎ = {1, if gate plan � is type ℎ,0, otherwise,

(18)

�∑
�=1

�∑
�=1


∑
ℎ=1

��ℎ� �ℎ����� ≥ %� for & = 1, . . . , ', (19)

where

��ℎ�

=
{{{{{{{{{{{{{{{

1, if �ight � has preference on gate type ℎ
in preference &,0.5, if the unsplit version of �ight � has
preference on gate type ℎ in preference &,0, otherwise,

(20)

and ' denotes the total number of preferences.
�is constraint de�ned the �ight preferences; for exam-

ple, a �ight should be assigned to the same gate due to the
ownership or security. �e coe
cient 0.5 refers to the extra
�ight de�ned in constraint (15).

�ey checked the solution’s optimality using pricing prob-
lem (minimum reduced cost) since they had dual multipliers7�, 8ℎ, and 9� for constraints (15), (16), and (19), respectively:

�� − 
∑
ℎ=1

 �ℎ8ℎ − �∑
�=1

(���7� + �∑
�=1


∑
ℎ=1

(��� �ℎ��ℎ�9�)) . (21)

�e second phase was amatter of assignment in physical gate.
�ey made the rules to solve this phase as follows.

(i) Sort the gates based upon the quality.

(ii) Sort the gate plans from the highest on the total
number of departing passengers that are on the �ights
in that gate plan.

(iii) Assign the gate plan to the best gate considering the
highest number of departing passengers, assign the
next gate plan to the next-best gate, and so on.
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In [26], Diepen et al. used the solution obtained from their
assignment of gates as an input to solve the bus-planning
problem in the same airport.

2.1.2. Binary Integer Programming. In 2009, Tang et al. [27]
formulated the AGAP as a binary integer programing model
as below. �e output model was used to generate a lower
bound to their original problem:

Minimize < = ∑
�∈�

∑
�∈��

∑
�∈���

������� + ∑
�∈�

∑
�∈��

∑
�∈���

�������
(22)

subject to

∑
�∈��

∑
�=���

���� = 1, ∀� ∈ @,
(23)

∑
�∈���

∑
�=
��

���� ≤ 1, ∀� ∈ A, ∀B ∈ C,
(24)

∑
�∈���

∑
�∈��

∑
�∈
��

���� ≤ 1, ∀ ∈ !�, ∀D ∈ E, ∀B ∈ C,
(25)

���� = {{{{{
1, if �ight � is assign to gate �

at the time point (starting point) �0, otherwise

∀� ∈ F��, ∀� ∈ G�, ∀� ∈ @.
(26)

Parameter Variables

���: time inconsistency value indicating that the �th �ight
is assigned at the �th time point (starting time); if � is
equal to the original time point, then ��� = 0;���: space inconsistency value indicating that the �th �ight
is assigned to the �th gate; if � equals the original gate,
then ��� = 0.

�e following sets have been de�ned:

@: considered �ights;A: available gates;G�: gates that the �th �ight can be assigned to;F��: time points in which the �th �ight can be assigned to
the �th gate;H��: �ights that can be assigned to the �th gate so that their
time windows will cover the Bth time point;C: all time points (i.e., the time points from the planning
time at each stage to the end of daily operations);#��: time points (starting times) assigned to the �th �ight,
where the resulting time windows cover the Bth time
point;!�: con�icting �ight pairs for the �th adjacent gate pair;I ��: �ights included in the  th con�icting �ight pair for theDth adjacent gate pair;E: adjacent gate pairs.

Equation (23) is the �ight constraint, indicating that every
�ight is exactly assigned to a gate. Equation (24) is the gate
constraint, ensuring that every gate is assigned to at most one
�ight at any time. Constraint (25) is related gate adjacency,
denoting that two con�icting �ights cannot be concurrently
assigned to an adjacent gate pair. Constraint (26) indicates
that the assignment variables are either zero or one.

Kumar et al. [18] presented a binary integer programing
model that produced a feasible gate plan in the light of all the
business constraints:

��� = {1, if turn � is assigned to gate �,0, otherwise,
�� = {1, if turn � is not assigned to any gate,0, otherwise,
�� = {1, if long turn  is towed,0, otherwise,
Maximize ∑

�∈�
∑
�∈�

J����� − J1∑
�∈�

�� − J2∑
�∈�

��

(27)

subject to

∑
�∈�

��� + �� = 1, � ∈ !, (28)

∑
�∈�;��∈��

��� + �� = 1, � ∈ !, (29)

∑
�∈�

�� ≤ K, (30)

��� + ��� ≤ 1, �, � ∈ !; � ∈ M:	� < �� + O,
	� < �� + O, � ̸= � (31)

��� + ��� ≤ 1, �, � ∈ !; � ∈ M;
(�, �) ∈ P:	� < ��, 	� < ��,

� ̸= �, Q� ∈ G1
�, Q� ∈ G1

�

(32)

��� + ��� ≤ 1, �, � ∈ !; �, � ∈ M;
(������, ������) ∈ IH:	� ≤ 	� ≤ ��,

� ̸= �, Q� ∈ G�
���	
 , Q� ∈ G�

���	


(33)

��� + ��� ≤ 1, �, � ∈ !; �, � ∈ M;
(������, ������) ∈ IH:	� ≤ �� ≤ ��,
� ̸= �, Q� ∈ G�

���	
 , Q� ∈ G�
���	


(34)

��� + ��� ≤ 1, �, � ∈ !; �, � ∈ M;
(��	, ��	) ∈ P�	 : �� − S < �� ≤ �� + S,

� ̸= �, Q� ∈ G�, Q� ∈ G�

(35)
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�� ≤ T,  ∈ !� (36)

��1� − ��2� ≤ ��, �1, �2 ∈ !,  ∈ !�,
� ∈ M:�1 ̸= �2, ��1 = ��2 =  (37)

��1� − ��3� − 1 ≤ ��, �1, �2, �3 ∈ !,  ∈ !�,
� ∈ M:	�1 < 	�3 , ��3 < 	�2 , ��1 = �, ��2 = � (38)

��1�1 − ��3�2 − 1 ≤ ��, �1, �2, �3 ∈ !,  ∈ !�,
�1, �2 ∈ M; � ∈ P:	�1 < 	�3 , ��3 < ��2 , ��1 = �,
��2 = �, �1 = D1� , �2 = D2� , Q�1 ∈ G1

� , Q�2 ∈ G2
� .

(39)

Constraint (28) ensures that turn � is assigned to at most one
gate. Constraint (29) states that turn � is assigned to a gate only
if its equipment type is among the types which the assigned
gate can accommodate. Constraint (30) restricts the number
of ungated turns to less than or equal to the allowed numberK. Constraint (31) shows that, at any given time, at most one
turn is assigned to one gate. Constraint (32) ensures that
adjacency constraints are observed. Constraints (33)-(34)
enforce LIFO restrictions. Constraint (35) guarantees that
pushback restrictions are observed. Constraint (36) con�rms
that no turn is towed if towing is not allowed. Finally,
constraints (37)–(39) certify that if a long turn  is towed, the�� variable is set to be 1.

Mangoubi and Mathaisel [11] also developed a binary
integer model to minimize the passenger total walking dis-
tance and proposed a heuristic method to �nd the solution.
�e heuristic method result has been compared with the
results from a standard IP solver and the comparison results
showed that the heuristic method was superior to the LP
solver; the average walking distance using the LP is 527 feet
while heuristic is 558 feet.�e developedmodel is introduced
as follows:

Minimize < = �∑
�=1

�∑
�=1

(�

� �
� + � 

� � � + ��
����) ���, (40)

where

��� = {1, if �ight � is assigned to gate �,0, otherwise. (41)

Transfer passenger walking distances are determined from
a uniform probability distribution of all intergate walking
distances.�e expected walking distance if��� is the distance
between gate � and gate � is

��� = 1U
�∑
�=1

��� ∀� = 1, . . . , U (42)

subject to

�∑
�=1

��� = 1 ∀� = 1, . . . ,� (43)

∑
ℎ∈�(�)

�ℎ� + ��� ≤ 1 ∀� = 1, . . . ,�, ∀� = 1, . . . , U, (44)

∑
ℎ∈�(!+1)

�ℎ� + �!+1,� = �!−3,� + �!−2,�
+ �!−1,� + �!� + �!+1,� ≤ 1, (45)

I (�) ⊂ I (� + 1) ⊂ ⋅ ⋅ ⋅ ⊂ I (� + �) , (46)

�∑
"=1

�∑
�=1

�#"�"��ℎ� ≤ Fmax

#ℎ , (47)

�

$�
� + � 

$� � + ��
$��� = min

�∈%
{�


$�
� + � 
$� � + ��

$���} . (48)

Constraint (43) shows that each �ight is assigned to at
most one gate. Constraint (44) ensures that no two planes
are assigned to the same gate concurrently. Constraint (45)
determines the con�ict constraint for each gate �. Constraint
(46) is written to consider only the constraint generated
by the last plane of two or more �ights arriving with no
departure in between. Constraint (47) ensures that �ights
are assigned to nearby gates. Constraint (48) assigns �ight �
to gate B ∈ C, where B is the gate with the minimum total
passenger walking distance for �ight �.

Vanderstraeten and Bergeron [28] formulated the GAP as
a binary integer model but with the objective of minimizing
the o�-gate events and they developed a new heuristic, which
is the “A�ectation Directe des Avions aux Portes (ADAP),” to
solve the developed model. A real case has been studied in
an Air Canada terminal. A new heuristic was applied to real
data at Toronto International Airport. �e developed model
was as follows:

Maximize < = ∑
�∈�

∑
�∈&

Z�� (49)

subject to

∑
�∈&�

Z�� ≤ 1, � ∈ @, (50)

Z�� + ∑
�∈���

Z�� ≤ 1, � ∈ @, � ∈ P�, (51)

Z�� + ∑
�∈	���

Z�� + ∑
�∈	���

Z�� ≤ 1, � ∈ @, � ∈ P�, (52)

Z�� = 0, 1 � ∈ @, � ∈ P�. (53)

Constraint (50) ensures that each �ight is assigned to at
most one gate. Constraint (51) de�nes the occupation time
at any gate. Constraint (52) determines the neighboring
constraint. Constraint (53) expresses the binary constraint
for all decision variables. �e results showed that using the
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developed method resulted in no more than 30 events ever
being handled o� gate while the manual procedure obtained
events up to 50 of the 300 events being handled o� gate.

Bihr [12] developed a binary integer model to minimize
the passenger walking distance and applied this model to
solve a sample problem using primal-dual simplex algorithm.
As a result, he obtained a total walking distance of 22,640.�e
developed model is introduced as follows:

Minimize [ = ∑J��\��, � = 1, . . . , �, � = 1, . . . , �, (54)

where the J�� are the elements of the matrix product of

PAX(�, �) ∗ DIST(�, �)� and

PAX(�, �) = number of passengers arriving on �ight �
and departing from gate �;
DIST(�, �) = number of passengers − distance units
from gate � to gate �;
\�� = 0 or 1

subject to

∑\�� = 1,
∑\�� = 1. (55)

In 2002, Yan et al. [29] formulated the static GAP as a binary
integer programing model to serve as a basis of real time
gate assignments in a simulation framework developed to
analyze the e�ects of stochastic �ight delays on static gate
assignments. �e presented model is as follows:

Minimize < = �∑
�=1

�∑
�=1

������ (56)

subject to

�∑
�=1

��� = 1 ∀�, (57)

∑
�∈��

��� ≤ 1 ∀B, ∀�, (58)

��� = 0 or 1 ∀�, ∀�. (59)

Constraint (57) ensures that each �ight is assigned to at most
one gate. Constraint (58) certi�es that no two planes are
assigned to the same gate concurrently. Constraint (59) is
related to the binary constraint for all decision variables. Two
greedy heuristics were used to solve the model and their
results were compared with the insights of the optimization
method. �e simulation framework was tested to solve
certain real case instances from CKS airport. �e results of
the usedmethodswere 24,562,588 for the optimizationmodel
and 27,833,552 and 30,166,809 (meters) for the two greedy
heuristics.

2.1.3. Mixed Integer Linear Programming (MILP). Bolat [30]
formulated a mixed integer program for the AGAP with the
objective of minimizing the range of slack times (slack time
is an idle time between two successive utilizations of the
gate). Certain instances, with more than 20 gates, have been
considered according to airplane types, gate types, terminal
types, and utilization levels:

Minimize V
+ (Γ) − V

− (Γ) (60)

subject to

V
+ (Γ) = max {V� (Γ)} , � = 1, . . . , U + �, (61)

V
− (Γ) = min {V� (Γ)} , � = 1, . . . , U + �, (62)

V� (Γ) = a � − G�,Γ� , � = 1, . . . , U, (63)

G�,Γ�

= {F�∗ , where �∗ = max {�} , Γ� = Γ�, � = 1, . . . , � − 1,bΓ, if no such � exist,
(64)

V�+� (Γ) = !� − G�+1,�, � = 1, . . . ,�. (65)

�e results related to expected average utilizations were,
respectively, 88.54%, 67.13%, and 45.57%over heavily utilized,
normally utilized, and underutilized problems. Concerning
the average number of �ights, results were 10%, 7.59%, and
5.15% per gate.

In 2001, Bolat [31] presented a framework for the GAP
that transformed the nonlinear binary models (it will be
discussed in Section 2.1.4 according to our classi�cation)
into an equivalent linear binary model with the objective of
minimizing the range or the variance of the idle times. �e
framework consists of �ve mathematical models, where two
of the �ve models were formulated as a mixed integer linear
programming and the others as a mixed integer nonlinear
programming.Models P1 to P4were de�ned for homogenous
gate while model P5 was de�ned for heterogeneous gate:

\�� = {1, if �ight � is assigned to gate �,0, otherwise,
%�� = {{{{{

1, if the assignment of �ight �  c gate � can

satisfy all considerations,0, otherwise.
(66)

Using the presented framework, nonlinear model P1 (model
P1 will be discussed in Section 2.1.4 according to our classi�-
cation) was transformed to the followingmixed integer linear
model, which is model P2.

Model P2. Consider

Minimize Cmax − Cmin (67)
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subject to

Cmax ≥ C�� � = 1, . . . , U, � = 1, . . . ,�, (68)

Cmin ≤ C�� + (1 − \��)< � = 1, . . . , U, � = 1, . . . ,�,
(69)

Cmax, Cmin ≥ 0, (70)

�∑
�=1

%��\�� = 1 � = 1, . . . , U, (71)

G1� = Maximize {a1\1�, b�} � = 1, . . . ,�, (72a)

G�� = Maximize {a�\��, I�−1,�} � = 2, . . . , U,
� = 1, . . . ,�, (72b)

I�� = G�� + A�\�� � = 1, . . . , U, � = 1, . . . ,�, (73)

C1� = G1� − b� � = 1, . . . ,�, (74a)

C�� = G�� − I�−1,� � = 2, . . . , U,
� = 1, . . . ,�, (74b)

C�+1,� = H� − I�� � = 1, . . . ,�, (75)

\�� = 0 or 1 � = 1, . . . , U, � = 1, . . . ,�, (76)

G��, I��, C��, C�+1,� ≥ 0 � = 1, . . . , U, � = 1, . . . ,�.
(77)

Similarly, for model P3 (Section 2.1.4), the resultant model
was model P4 that is a mixed binary model as in model P2,
but with two additional real variables as follows.

Model P4. Consider

Minimize Cmax − Cmin (78)

subject to

Cmax ≥ @��d�� � = 0, . . . , U, � = � + 1, . . . , U + 1, (79)

Cmin ≤ @��d�� � = 0, . . . , U, � = � + 1, . . . , U + 1, (80)

Cmax, Cmin ≥ 0, (81)

�∑
�=0

�+1∑
�=�+1

d�� = U + �, (82)

�+1∑
�=1

d0� ≤ �, (83)

�∑
�=0

d�,�+1 ≤ �, (84)

�−1∑
�=0

d�� = 1 � = 1, . . . , U, (85)

�+1∑
�=�+1

d�� = 1 � = 1, . . . , U, (86)

d�� = 0 or 1 � = 0, 1, . . . , U, � = � + 1, . . . , U + 1. (87)

Di�erent instances have been studied according to the num-
ber of the gates: small (�ve gates), medium (10 gates), and
large (20 gates). Instances with more than 20 gates were not
considered. �e results were as follows: average numbers
of �ight were 26.125, 52.25, and 105.417 and the average
utilizationswere 45.725, 66.548, and 88.871% according to the
gate size, respectively.

Şeker and Noyan [9] formulate the GAP as a mixed
integer programwith the objective ofminimizing the number
of con�icts and at the same time minimizing the total
semideviation between idle time and bu�er time:

Minimize ∑
�∈��\{0}

∑
�∈%

'�,��� + Λ ∑
�∈��

∑
�∈��

∑
�∈%

��,�,���. (88)

Anothermodel was developed as amixed integer program for
the same objective function. �e model was the same as the
previous model but with some di�erences:

Minimize ∑
�∈��\{0}

∑
�∈%

#�,��� + Λ ∑
�∈��

∑
�∈��

∑
�∈%

��,�,���, (89)

where

#�,� = {{{{{
1, if idle time of �ight � is

less than the bu�er time0, otherwise. (90)

�ese two models have the same constraints properties,

∑
�∈�

��,� = 1, � ∈ U, (91)

�0,� = 1, � ∈ �, (92)

��+�,� = 1, � ∈ �, (93)

∑
�∈� �,�

��,� + ��,� ≤ 1, � ∈ U-, � ∈ �, B = 0, (94)
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��,�,� ≥ ��,� + ��,� − 1, � ∈ U-, � ∈ �, B ∈ C, � ∈ I �,�,
(95)

'�,� ≥ � − @�,�, � ∈ U- \ {0} , B ∈ C, (96)

F�,� ≥ (��,� + ��,� − 2)< + ��,�, � ∈ U- \ {0} , � ∈ �,
B ∈ C, � ∈ E�,�

(97)

@�,� ≤ 	�,� − F�,� + � ∑
�∈��

��,�,�, � ∈ U- \ {0} , B ∈ C, (98)

��,� ∈ {0} , � ∈ U-, � ∈ �, (99)

All remaining variables ≥ 0, (100)

while objective (89) has the following additional constraints:

#�,�� ≥ � − @�,�, � ∈ U- \ {0} , B ∈ C, (101)

#�,� ∈ {0, 1} , � ∈ U- \ {0} , B ∈ C. (102)

2.1.4. Mixed Integer Nonlinear Programming. Li [5] formu-
lated the GAP as a nonlinear binary mixed integer model
hybrid with a constraint programing in order tominimize the
number of gate con�icts of any two adjacent aircra	s assigned
to the same gate. �e developed model has been solved using
CPLEX so	ware:

Minimize ∑
�∈�

∑
�<�,�∈�

��,� ∗ G (� (�, �)) , (103)

where

G (� (�, �)) = 1	� − �� + 2� , (104)

where 	: scheduled arriving time, �: scheduled departure
time, and �: bu�er time (constant). Consider

��,� = {1, if and only if aircra	 �� is assigned to gate ��,0, otherwise (1 ≤ � ≤ �, 1 ≤ � ≤ �) ,
��,� = {1, if ∃�, ��,� = ��,� = 1 (1 ≤ � ≤ �) ,0, otherwise (1 ≤ �, � ≤ �) .

(105)

In another work, Li [32] de�ned the objective as

Minimize ∑
�,�∈�;� ̸=�

��,�	� − �� + 2� . (106)

�ese two models have the same constraints; all constraints
are as follows.

∑
�∈�

∑
�∈/

��,� = 1, (107)

∑
�∈�

∑
�<�,�∈�

∑
�∈/

(��,� ∗ ��,�) = ��,�, (108)

��,� ∗ ��,� ∗ (�� − 	�) ∗ (�� − 	�) ≤ 0, (109)

��,� ∈ {0, 1} , (110)

∀1 ≤ �, � ≤ �, � ̸= �, ∀1 ≤ � ≤ �. (111)

Constraint (107) indicates that each aircra	 is assigned to at
most only one gate. Constraint (108) represents a method to
compute the auxiliary variable ��� from ���. Constraint (109)
ensures that one gate can only be assigned atmost one aircra	
at the same time. Some additional constraints in the real
operations are ignored. Constraint (110) represents binary
value of the decision variables.

As mentioned in Section 2.1.3, Bolat [31] proposed two
models formulated as a mixed integer linear program which
have been transformed from a mixed integer nonlinear
program. �e proposed mixed integer nonlinear program
was as follows:

\�� = {1, if �ight � is assigned to gate �,0, otherwise,
%�� = {{{{{

1, if the assignment of �ight � to gate �
can satisfy all considerations,0, otherwise.

(112)

Model P1. Consider

Minimize
�∑
�=1

�+1∑
�=1

C2�� (113)

subject to

�∑
�=1

%��\�� = 1 � = 1, . . . , U, (114)

G1� = Maximize {a1\1�, b�} � = 1, . . . ,�, (115a)

G�� = Maximize {a�\��, I�−1,�} � = 2, . . . , U,
� = 1, . . . ,�, (115b)

I�� = G�� + A�\�� � = 1, . . . , U, � = 1, . . . ,�, (116)

C1� = G1� − b� � = 1, . . . ,�, (117a)

C�� = G�� − I�−1,� � = 2, . . . , U, � = 1, . . . ,�, (117b)
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C�+1,� = H� − I�� � = 1, . . . ,�, (118)

\�� = 0 or 1 � = 1, . . . , U, � = 1, . . . ,�, (119)

G��, I��, C��, C�+1,� ≥ 0 � = 1, . . . , U, � = 1, . . . ,�.
(120)

Bolat [31] also proposed two alternative formulations
for homogenous and heterogeneous gates. �e proposed
extended formulation for the homogenous gates was as
follows: < = max

�=1,...,�
{H� − b�} , (121)

@�� = {a� − F�, if a� ≥ F�,<, otherwise, (122)

@0� = a� � = 1, . . . , U, (123)

@�,�+1 = # − F� � = 1, . . . , U. (124)

Model P3. Consider

Minimize
�∑
�=0

�+1∑
�=�+1

@2��d�� (125)

subject to

�∑
�=0

�+1∑
�=�+1

d�� = U + �, (126)

�+1∑
�=1

d0� ≤ �, (127)

�∑
�=0

d�,�+1 ≤ �, (128)

�−1∑
�=0

d�� = 1 � = 1, . . . , U, (129)

�+1∑
�=�+1

d�� = 1 � = 1, . . . , U, (130)

d�� = 0 or 1 � = 0, 1, . . . , U, � = � + 1, . . . , U + 1. (131)

In addition, the proposed extended formulation for the
heterogeneous gates was as follows:

@���
= {{{{{

a� − F�, if a � > b�, a� ≥ F�,%�� = %�� = 1,<, otherwise,
(132)

@0�� = {a� − b�, if a� ≥ b�,<, otherwise, (133)

@�,�+1,� = {H� − F�, if F� ≤ H�,<, otherwise. (134)

Model P5. Consider

Minimize
�∑
�=1

�∑
�=0

�+1∑
�=�+1

@2���d��� (135)

subject to

�∑
�=1

�∑
�=0

�+1∑
�=�+1

d��� = U + �, (136)

�+1∑
�=1

d0�� ≤ 1 � = 1, . . . ,�, (137)

�∑
�=1

�−1∑
�=0

d��� = 1 � = 1, . . . , U, (138)

�∑
�=1

�+1∑
�=�+1

d��� = 1 � = 1, . . . , U, (139)

d��� + �∑
�=1
� ̸=�

�+1∑
V=�+1

d�V� ≤ 1 � = 0, . . . , U − 1
� = � + 1, . . . , U � = 1, . . . ,�,

(140)

d��� = 0 or 1 � = 0, . . . , U, � = � + 1, . . . , U + 1,
� = 1, . . . ,� (141)

d
�- + �∑
�=1
� ̸=-

�+1∑
V=�+1

d�V� ≤ 1. (142)

As mentioned in Section 2.1.3, di�erent instances have been
studied according to the number of the gates: small (�ve
gates), medium (10 gates), and large (20 gates). Instances with
more than 20 gates were not considered. �e results were
as follows: average numbers of �ight were 26.125, 52.25, and
105.417 and the average utilizations were 45.725, 66.548, and
88.871% according to the gate size, respectively.

2.1.5. Quadratic Programming

(1) Quadratic Mixed Binary Programming. Zheng et al. [33]
formulated the GAP as a mixed binary quadratic program
with minimizing the slack time overall variance as the
objective function; an assumption has been stated such that
the �ights are sequenced with the smallest arrival time. �e
proposed mixed binary quadratic model was as follows:

Minimize � = �+1∑
�=1

�∑
�=1

('�� − ')2 (143)
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subject to

∑
�∈�

��� = 1, (144)

��� ≥ ∑
�∈�

����, (145)

��� ≥ ∑
�∈�

����, (146)

'�� = 	� − C!�, � = min (�) , � ∈ (� | ��� = 1) , (147)

'�+1,� = G!� − ��, � = max (�) , � ∈ (� | ��� = 1) , (148)

'�� = 	� − ��, ∀ (�, �, �) ∈ {((�, �, �) | ���� = 1)} , (149)

	� + (1 − ����) C ≥ �� + @, (150)

V� ≤ Q� + (1 − ���) C, (151)

��� = {1, if �ight � is assigned to gate �,0, otherwise, (152)

���� = {{{{{
1, if �ight � and �ight � are both

assigned to gate �,0, otherwise, (153)

where the indices �, �, � in (143)–(151) denote �, � ∈ U, � ∈ �.
Equation (143) represents the objective function with the aim
ofminimizing overall variance of slack time. Constraint (144)
imposes the assignment of every �ight to one gate. Constraint
(145) obliges every �ight to have at most one immediate
precedent �ight. Constraint (146) enforces every �ight to have
at most one immediate succeeding �ight. Constraints (147)
and (148) de�ne the �rst and last slack time of each gate,
and constraint (149) de�nes the other slack times. Constraint
(150) stipulates that the �ight can be assigned to the gate when
the preceding �ight has departed for dwell time. Constraint
(151) indicates that the di�erent type of gate allows parking
di�erent type of �ight.

Solutions were obtained using tabu search based on some
initial (starting) solutions; the results were compared with
those of a random algorithm developed in the literature.
Using data from Beijing International Airport (10 gates and
100 of �ights between 6:00 and 16:00), the initial solutions
using metaheuristic and random algorithm were 9821 and
15775, respectively.

Bolat [34] formulated the AGAP as a mixed binary
quadratic programming model to minimize the variance
of idle times and used branch and bound algorithm and
proposed two heuristics which were “single pass heuristic”
(SPH) and “heuristic branch and bound” (HBB) for solving
the proposed model. �e proposed mixed binary quadratic
model was stated as follows:

minimize < = �∑
�=1

�+1∑
�=1

C2�� (154)

subject to

�∑
�=1

%��\�� = 1, � = 1, . . . , U, (155)

G�� ≥ a�\��, � = 1, . . . , U, � = 1, . . . ,�, (156)

G�� ≥ I�−1,�, � = 1, . . . , U, � = 1, . . . ,�, (157)

I�� = G�� + A�\��, � = 1, . . . , U, � = 1, . . . ,�,
(158)

C�� = G�� − I�−1,�, � = 1, . . . , U, � = 1, . . . ,�, (159)

C�+1,� = I�+1,� − I��, � = 1, . . . ,�, (160)

\�� = {1, if �ight � is assigned to gate �0, otherwise,
� = 1, . . . , U, � = 1, . . . ,�,

(161)

G��, I��, C��, C�+1,� ≥ 0, � = 1, . . . , U,
� = 1, . . . ,�. (162)

Real instances, from King Khalid International Airport (72
generated sets), were used. During the initial phase, the
proposed heuristic methods gave an average improvement of
87.39% on the number of remote assigned �ights, whereas
the average improvement on the number of towed aircra	s
during the real time phase was 76.19%.

Xu and Bailey [14] formulated the GAP as a mixed
binary quadratic programming model (Model 1) and the
objective was to minimize the passenger connection time.
�e proposedmodel (Model 1) was reformulated (linearized)
into anothermodel (Model 2) in which the objective function
and the constraints have been linearized (the resultant model
was a mixed binary integer model). Model 1 and Model 2 are
listed below.

Model 1. Consider

Minimize ∑
�,�∈�

∑
�,�∈�

������������ (163)

subject to

∑
�∈�

��� = 1, ∀� ∈ U, (164)

��� = ∑
�∈�

����, ∀� ∈ U, ∀� ∈ M, (165)

��� = ∑
�∈�

����, ∀� ∈ U, ∀� ∈ M, (166)

 � ≥ 	� + ∝, ∀� ∈ U, (167)

 � ≤ �� − [� ∑
�∈�

���, ∀� ∈ U, (168)
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 � + [� ∑
�∈�

��� ≤  � + (1 − ����)�, ∀�,� ∈ U, ∀� ∈ M,
(169)

	� + (1 − ����)� ≥ �� + S, ∀�,� ∈ U, ∀� ∈ M, (170)

��� = {1, if �ight � is assigned to gate �,0, otherwise, (171)

���� = {{{{{
1, if �ight �, � are both assigned to gate �;

�ight � immediately precedes �ight �,0, otherwise,
(172)

����, ���� ∈ {0, 1} , ∀�,� ∈ U, ∀�,� ∈ M, (173)

 � ≥ 0, ∀� ∈ U, (174)

where objective function (163) seeks to minimize the total
connection times by passengers. Constraint (164) speci�es
that every �ight must be assigned to one gate. Constraint
(165) indicates that every �ight can have at most one �ight
immediately followed at the same gate. Constraint (166)
indicates that every �ight can have at most one preceding
�ight at the same gate. Constraints (167) and (168) stipulate
that a gate must open for boarding on a �ight during the
time between its arrival and departure and also must allow
su
cient time for handling the passenger boarding, which
is assumed to be proportional to the number of passengers
going on board. Constraint (169) establishes the precedence
relationship for the binary variable ���� and the time variables � and  � and is only e�ective when ���� = 1. It stipulates
that if �ight � is assigned immediately before �ight � to the
same gate �, the gate must open for �ight � earlier than for
�ight �. �erefore, it ensures each gate only serves one �ight
at any particular time. Constraint (170) further states that the
aircra	 can only arrive at the gate when the previous �ight
has departed for certain time.

Model 2. Consider

����� = {{{{{
1, if and only if �ight � is assigned to gate �,

and �ight � is assigned to gate �,0, otherwise,
(175)

Minimize ∑
�,�∈�

∑
�,�∈�

����������� (176)

subject to

∑
�∈�

��� = 1, ∀� ∈ U, (177)

��� = ∑
�∈�

����, ∀� ∈ U, ∀� ∈ M, (178)

��� = ∑
�∈�

����, ∀� ∈ U, ∀� ∈ M, (179)

 � ≥ 	� + ∝, ∀� ∈ U, (180)

 � ≤ �� − [� ∑
�∈�

���, ∀� ∈ U, (181)

 � + [� ∑
�∈�

��� ≤  � + (1 − ����)�, ∀�,� ∈ U, ∀� ∈ M,
(182)

	� + (1 − ����)� ≥ �� + S, ∀�,� ∈ U, ∀� ∈ M, (183)

����, ���� ∈ {0, 1} , ∀�,� ∈ U, ∀�,� ∈ M, (184)

 � ≥ 0, ∀� ∈ U, (185)

����� ≤ ���, ∀�,� ∈ U, ∀�,� ∈ M, (186)

����� ≤ ���, ∀�,� ∈ U, ∀�,� ∈ M, (187)

��� + ��� − 1 ≤ �����, ∀�,� ∈ U, ∀�,� ∈ M, (188)

����� ∈ {0, 1} , ∀�,� ∈ U, ∀�,� ∈ M, (189)

where constraints (186) and (187) state that a binary variable����� can be equal to one if �ight � is assigned to gate � (��� = 1)
and �ight � is assigned to gate 1 (��� = 1). Constraint (188)
further gives the necessary condition which is that ����� must
be equal to one if ��� = 1 and ��� = 1.

�e B&B and tabu search algorithm were used to solve
the generated instances (seven instances, up to 400 �ights
and 50 gates for 5 consecutive working days). �e results
of the analyzed instances showed an average saving of the
connection time of 24.7%.

(2) Binary Quadratic Programming. Ding et al. [6, 35]
developed a binary quadratic programming model for the
overconstrained AGAP to minimize the number of ungated
�ights. A greedy algorithm was designed to obtain an initial
solution, which has been improved using tabu search (TS).
�e developed model was stated as follows:

Minimize
�∑

�+1
��,�+1, (190)

Minimize
�∑
�=1

�∑
�=1

�+1∑
�=1

�+1∑
�=1

��,���,���,���,� + �∑
�=1

�0,��0,�

+ �∑
�=1

��,0��,0

(191)

subject to

�+1∑
�=1

��,� = 1 (∀�, 1 ≤ � ≤ �) , (192)

	� < �� (∀�, 1 ≤ � ≤ �) , (193)

��,���,� (�� − 	�) (�� − 	�) ≤ 0
(∀�, 1 ≤ �, � ≤ �, � ̸= � + 1) , (194)
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��� = {{{{{
1, if �ight � is assigned to gate �,(0 < � ≤ � + 1)0, otherwise

(195)

∀�, 1 ≤ � ≤ �, ∀�, 1 ≤ � ≤ � + 1, (196)

where constraint (192) ensures that every �ight must be
assigned to one and only one gate or assigned to the apron.
Constraint (193) speci�es that the departure time of each
�ight is later than its arrival time. Constraint (194) says that an
assigned gate cannot admit overlapping the schedule of two
�ights.

In 2005, Ding et al. [7] developed a binary quadratic pro-
grammingmodel for the overconstrainedAGAP tominimize
the number of ungated �ights. �e developed model was as
follows:

Minimize
�∑

�+1
��,�+1, (197)

Minimize
�∑
�=1

�∑
�=1

�+1∑
�=1

��,���,���,���,� + �∑
�=1

�0,��0,� + �∑
�=1

��,0��,0

(198)

subject to

�+1∑
�=1

��,� = 1 (∀�, 1 ≤ � ≤ �) , (199)

��,���,� (�� − 	�) (�� − 	�) ≤ 0
(∀�, 1 ≤ �, � ≤ �, � ̸= � + 1) , (200)

��� = {{{{{
1, if �ight � is assigned to gate �,(0 < � ≤ � + 1) ,0, otherwise, (201)

∀�, 1 ≤ � ≤ �, ∀�, 1 ≤ � ≤ � + 1, (202)

where constraint (199) ensures that every �ight must be
assigned to one and only one gate or assigned to the apron and
constraint (200) requires that �ights cannot overlap if they are
assigned to the same gate.

Using the same case study by Ding et al. [6, 35], a greedy
algorithm was designed to obtain an initial solution, which
has been improved using simulated annealing (SA) and a
hybrid of simulated annealing and tabu search (SA-TS).

2.1.6. Multiple Objective AGAP Formulations. Hu and Di
Paolo [36] mathematically formulated the multiobjective
GAP (MOGAP) as a minimization problem and solved
this problem using a new genetic algorithm with uniform
crossover. �e developed MOGAP model was presented as
follows:

Minimize
51 ,...,5��

PMOGAP (203)

subject to

��∑
#=1

## = U�/, (204)

G5�(�) = {{{
%5�(�), � = 1
max (%5�(�), G5�(�−1), A5�(�−1)) , � > 1,

� = 1, . . . , ##, � = 1, . . . , U6,
(205)

k� = G� − %�, � = 1, . . . , U�/, (206)

PTPWD = ��+1∑
#=1


�∑
�=1

���+1∑
�=1

�� (E# (�) , �)�PWD (�, V�) , (207)

PTBTD = ��+1∑
#=1

7�∑
�=1

���+1∑
�=1

�� (E# (�) , �)�PTD (�, V�) , (208)

PTPWT = ���∑
#=1

k�

���+1∑
�=1

(�� (�, �) + �� (�, �)) , (209)

PMOGAP = OPTPWD + SPTBTD + (1 − O − S) lPTPWT, (210)

O + S ≤ 1, 0 ≤ O ≤ 1, 0 ≤ S ≤ 1. (211)

Wei and Liu [16] considered the AGAP as a fuzzy model and
adopted a hybrid genetic algorithm to solve the developed
model. �e main objectives were minimizing passengers’
total walking distance and gates idle times variance. �ey
developed the following model:

minimize <1 = �∑
�=1

�∑
�=1

�+1∑
�=1

�+1∑
�=1

���!��������, (212)

minimize <2 = �∑
�=1

C2� + �∑
�=1

C2� (213)

subject to

�∑
�=1

��� = 1, ∀� ∈ U, (214)

(�� − 	� + O) (�� − 	� + O) ������ ≤ 0,
∀�, � = 1, . . . , U, ∀� = 1, . . . ,�, (215)

��� ∈ {0, 1} , ∀� ∈ U, ∀� ∈ M, (216)

where objective function (212) re�ects the total walking
distance of passengers. ��� is 0-1 variable; ��� = 1 if �ight� is assigned to gate �; otherwise it is 0; ��� describes the
number of passengers transferring from �ight � to �, and !��
is walking distance for passenger from gate � to �. Objective
function (213) is used as a surrogate for the variance of
idle times. �e actual number of assignments is U and the
number of nondummy idle times is U + �. Constraint
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(214) indicates that every �ight must be assigned to one gate.
Constraint (215) shows that �ights that have overlap schedule
cannot be assigned to the same gate, where O is the least safe
time between continuous aircra	s assigned to the same gate.
Constraint (216) denotes that ��� is a binary variable.

In 2001, Yan andHuo [2] formulated theAGAPas amodel
with two objectives: minimizing (3) the walking distance,
and (4) the waiting time for the passengers. �e proposed
mathematical model is binary integer linear programming:

Minimize <1 = �∑
�=1

�∑
�=1

� �∑
�=	�

(��� − ����) , (217a)

Minimize <2 = �∑
�=1

(%� ( �∑
�=1

� �∑
�=	�

����� − b�)) (217b)

subject to

�∑
�=1

� �∑
�=	�

���� = 1 ∀� (217c)

∑
�∈��

∑
�∈
��

���� ≤ 1 ∀�, ∀C
(217d)

���� = 0 or 1, ∀�, ∀�, ∀�, (217e)

where objective (217a) represents the minimum total pas-
senger walking distance. Objective (217b) represents the
minimum total passenger waiting time. Constraint (217c)
denotes that every �ight must be assigned to one and only
one gate. Constraint (217d) ensures that at most one aircra	
is assigned to every gate in every time window.

Column generation approach, simplex method, and B&B
algorithm were used to solve the proposed problem, which
was a case study in Chiang Kai-Shek Airport, Taiwan. �e
problem consisted of 24 gates (of which two were temporary;
eight out of 24 gates were only available for the wide type of
aircra	s, whereas the rest were available for the other types)
and 145 �ights. �e results showed that the obtained solution
(7,300,660 s the best feasible solution found so far) was away
from the optimal one by 0.077% (5595s).

Wipro Technologies [17] proposed a binary multiple
objective integer quadratic programming model for the
AGAP with a quadratic objective function. �e proposed
model was reformulated into a mixed binary integer linear
programming model (linear objective functions and con-
straints). �e proposed model has been solved using greedy
heuristic, SA, and TS (MIP solvers based B&B cannot solve
the proposedmodel within a reasonable time).�edeveloped
model was represented as follows.

Generic Model. Consider

Minimize∑
�∈�

��(�+1), (218)

Minimize ∑
�,�∈�

∑
�,�∈�

����-������� (219)

subject to

∑
�∈�

��� = 1, ∀� ∈ U, (220)

��� = 0, ∀� ∈ U, ∀� ∈ M�, (221)

��� > ���, ∀� ∈ U, ∀� ∈ M, ∀� ∈ U�, ∀� ∈ M�, (222)

(��� + ���) ≤ 1, ∀� ∈ U, ∀� ∈ M, ∀� ∈ U�, ∀� ∈ M�,
(223)

��� = ∑
�∈�

����, ∀� ∈ U, ∀� ∈ M, (224)

��� = ∑
�∈�

����, ∀� ∈ U, ∀� ∈ M, (225)

 � ≥ 	� + O, ∀� ∈ U, (226)

 � ≤ �� − [� ∗ ∑
�∈�

���, ∀� ∈ U, (227)

( � + [� ∗ ∑
�∈�

���) ≤ ( � + (1 − ����) ∗ �) , ∀�, � ∈ U,
(228)

(	� + (1 − ����) ∗ �) ≥ (�� + S) , ∀�, � ∈ U, ∀� ∈ M,
(229)

���,���� ∈ {0, 1} , ∀�, � ∈ U, ∀�, � ∈ M, (230)

 � ≥ 0, ∀� ∈ U, (231)

where objective function (218) aims at minimizing the num-
ber of �ights that must be assigned to the apron, that is,
those le	 ungated.Objective function (219) seeks tominimize
the total connection times by passengers. Constraint (220)
speci�es that every �ight must be assigned to one gate.
Constraint (221) shows the equipment restriction on certain
gates. Constraints (222) and (223) restrict the assignment of
speci�c adjacent �ights to adjacent gates. Constraints (224)
and (225) indicate that every �ight can have at most one �ight
immediately following and at most one �ight immediately
preceding, at the same gate. Constraints (226) and (227)
stipulate that a gate must open for boarding on a �ight
during the time between its arrival and departure, and it also
must allow su
cient time for handling the passenger/luggage
boarding, which is assumed to be proportional to the number
of passengers going on board. Constraint (228) ensures that
each gate only serves one �ight at any particular time (i.e.,
if �ight � is assigned immediately before �ight � to the
same gate �, the gate must open for �ight � earlier than
for �ight �). Constraint (229) further states the aircra	
can only arrive at the gate when the previous �ight has
departed, while also including the bu�er time between the
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�ights. Constraints (230) and (231) specify the binary and
nonnegative requirements for the decision variables.


e Reformulated Model. Minimizing (218) will remain the
same:

Minimize ∑
�,�∈�

∑
�,�∈�

����-������ (232)

subject to: Constraints. . . (220)–(231) from the genericmodel,

����� ≤ ���, ∀�, � ∈ U, ∀�, � ∈ M, (233)

����� ≤ ���, ∀�, � ∈ U, ∀�, � ∈ M, (234)

��� + ��� − 1 ≤ �����, ∀�, � ∈ U, ∀�, � ∈ M, (235)

����� ∈ {0, 1} , ∀�, � ∈ U, ∀�, � ∈ M, (236)

where constraints (233), (234), and (235) specify that ����� can
be equal to one if and only if �ight � is assigned to gate � and
�ight � is assigned to gate �. Constraint (236) expresses the
binary requirement for the decision variable �����.

Kaliszewski and Miroforidis [37] considered agap with
the objective of assigning incoming �ights to airport gates
with some assumptions; those assumptions were as follows:
gate assignment has no signi�cant impact on passenger
walking distance and no restrictions on the gates (all gates can
take any type of airplanes) and neighboring gate operations
can be carried out without any constraints. �e model was
stated as follows:

minimize �1 (�)
= omax

�
( �∑
�=1

�
�+1�,� + 2 �∑
�=1

�
�+2�,� + ⋅ ⋅ ⋅ + O �∑
�=1

�8�,�)
(237)

minimize �2 (�) = �∑
�=1

�� (238)

subject to

�∑
�=1

Δ∑
�=
�

���,� ≤ 1, for � = 1, . . . , �, (239)

���,� ≤ �:
� for p =  ,  + 1, . . . ,  + ��, (240)

�∑
�=1

���,� ≤ 1,  = 1, . . . , Δ, � = 1, . . . , �, (241)

�∑
�=1

Δ∑
�=
�

���,� ≤ 1 − ��, for � = 1, . . . , �. (242)

2.1.7. Stochastic Models. Yan and Tang [10] designed a frame-
work for a stochastic AGAP (�ight delays are stochastic).�e
framework included three main parts: the gate assignment
model, a rule for the reassignments, and two adjustment
methods for penalties. �e performance of the developed
framework has been evaluated using simulation-based eval-
uation method.

�e formulation of the stochastic gate assignment model
(the objective was to minimize the total waiting time of the
passengers) was addressed as follows:

Minimize <% = ∑
�∈�

∑
��∈��

��������
+ ∑

�∈Ω
�� ∑

�∈�
∑

��∈5��
p�,��� ���� + �∑

�∈Ω
��ℎ� (243)

subject to

∑
�∈��

���� − ∑
�∈��

���� = 0 ∀� ∈ U�, ∀� ∈ M,
(244)

∑
�∈�

∑
��∈��

���� = 1 ∀ ∈ aH, (245)

0 ≤ ���� ≤ �� ∀ (�, �) ∈ Ja�, ∀� ∈ M, (246)

∑
�∈�

∑
��∈5��

p�,��� ���� − ℎ� ≤ ∑
�∈Ω

�� ∑
�∈�

∑
��∈5��

p�,��� ���� ∀B ∈ Ω,
(247)

ℎ� ≥ 0 ∀B ∈ Ω, (248)

���� ∈ <+ ∀ (�, �) ∈ Ja�, ∀� ∈ M, (249)

���� = 0, 1 ∀ (�, �) ∈ a� − Ja�, ∀� ∈ M, (250)

where function (243) denotes the minimization of the total
passenger waiting time, the expected penalty value for all� scenarios, and the expected semideviation risk measure
(SRM) for all � scenarios multiplied by the weighting vector�. Constraint (244) is the �ow conservation constraint at
every node in each network. Constraint (245) denotes that
every �ight is assigned to only one gate and one time window.
Constraint (246) ensures that the number of gates used in
each network does not exceed its available number of gates.
Constraints (247) and (248) are used to calculate the SRM.
Constraint (249) ensures that the cycle arc �ows are integers.
Constraint (250) indicates that, except for the cycle arcs, all
other arc �ows are either zero or one.

�e value of the performance measure (the objective,
minimizing the total waiting time of the passengers) for each
scenario in the real time stage was calculated as follows:

�&� = � � + � �, (251)

<' = ak! + a@! + � × C'�'
= ∑

�=Ω
��� � + ∑

�=Ω
��� �

+ �∑
�=Ω

�� (max(0, �&� − ∑
�=Ω

���&�))
= ∑

�=Ω
���&� + �∑

�=Ω
�� (max(0, �&� − ∑

�=Ω
���&�)) .

(252)
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For each iteration, the penalties were calculated, using the
developed two adjustment methods for penalties, as follows.

Method 1. Consider

(p�,��� )�+1 = (p�,��� )� + (���,�
�� + ���,��� )� . (253)

Method 2. Consider

(�V�,��� )� = {1, if ���,�
�� > 0 or ���,��� > 00, if ���,�
�� = 0, ���,��� = 0

∀ (�, �) ∈ Ea�, ∀� ∈ M, ∀B ∈ Ω,
(254)

�� = max
{{{{{

0, −∑ (�V�,��� )� (��,��� )�−1uuuuuu(��,��� )�−1uuuuuu2
}}}}}

, (255)

(��,��� )� = (�V�,��� )� + �� (��,��� )�−1 ∀ (�, �) ∈ Ea�,
∀� ∈ M, ∀B ∈ Ω (256)

 � = 8 zzzz<'� − <%�zzzzuuuuu�V�,��� uuuuu2 , 0 < 8 ≤ 2, (257)

(p�,��� )�1 = (p�,��� )�
+  � (��,��� )� ∀ (�, �) ∈ Ea�, ∀� ∈ M, ∀B ∈ Ω.

(258)

�e data was taken from the Chiang Kai-Shek (CKS) air-
port (172 �ights, 2 gate types, and 14 aircra	 types); the
distributions for the �ight delays were obtained from the
actual data taken from the CKS airport. �e obtained results
were 197 minutes which was the longest solution time of the
framework,whichwas e
cient in the planning stage, but a	er
40 scenarios, the solution times increased signi�cantly but
the solution results were more stable.

Genç et al. [38] developed a stochastic model for AGAP
with the objective of minimizing the gate duration, gate
duration de�ned as the total time of the allocated gates (for
all �ights in a day):

H�tness = �#∑
�=1

��∑
�=1
any (�- (�, �)) (259)

subject to

any (�- (�, �)) = {1, if �- (�, �) ̸= 00, otherwise. (260)

Şeker and Noyan [9] also developed a stochastic model con-
sidering the minimization of the number of con�icts and the
expected variance of the idle times as a performancemeasure;
the proposed performance measure was a part of the mixed
integer programming model presented in Section 2.1.3:

Minimize ∑
�∈%

Z��� + Λ ∑
�∈��

∑
�∈�

∑
�∈%

(�!�,�,� + �$�,�,�) �� (261)

subject to

∑
�∈�

��,� = 1, � ∈ U, (262)

�0,� = 1, � ∈ �, (263)

��+�,� = 1, � ∈ �, (264)

∑
�∈� �,�

��,� + ��,� ≤ 1, � ∈ U�, � ∈ �, B = 0, (265)

�!�,�,� ≥ ∑
�∈���,�

��,� + (��,� − 1) (� + �) ,
� ∈ U�, � ∈ �, B = C,

(266)

�$�,�,� ≥ ∑
�∈���,�

��,� + (��,� − 1) (� + �) ,
� ∈ U�, � ∈ �, B = C,

(267)

a �,� ≤ (2 − ��,� − ��,�)< + 	�,�,
� ∈ U� \ {0} , � ∈ I?�,�, � ∈ �, B = C,

(268)

a �,� ≤ (2 − ��,� − ��,�)< + 	�,�,
� ∈ U� \ {0} , � ∈ I!�,�, � ∈ �, B = C, (269)

a �,� ≤ (2 − ��,� − ��,�)< + 	�,�,
� ∈ U� \ {0} , � ∈ I$�,�, � ∈ �, B = C, (270)

∑
�∈��\{0}

a �,� = ∑
�∈�

	�,� + 	0,��, B = C,
(271)

@�,� = a �,� − ��,� + B!�,� + B$�,�, � ∈ U� \ {0} , B = C, (272)

@�,� ≤ (2 − ��,� − ��,�)<,
� ∈ U� \ {0} , � ∈ I!�,�, � ∈ �, B = C, (273)

@�,� ≤ (2 − ��,� − ��,�)<, � ∈ U� \ {0} ,
� ∈ I$�,�, � ∈ �, B = C, (274)

B!�,� ≤ < ∑
�∈�

�!�,�,�, � ∈ U�, B = C, (275)

B$�,� ≤ < ∑
�∈�

�$�,�,�, � ∈ U�, B = C, (276)

��,� ∈ {0, 1} , � ∈ U�, � ∈ �, (277)

All remaining variables ≥ 0. (278)

2.2. AGAP Related Problems. In some of the publications
on the GAP the researchers have formulated the AGAP as
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well-known related problems such as quadratic assignment
problem (QAP), clique partitioning problem (CPP), and
scheduling problem or even as a network representation.
However, some of the researchers formulated the AGAP as
a robust optimization model. In this section, we will present
the work that has been done on the GAP as a well-known
related problem.

2.2.1. Quadratic Assignment Problem (QAP). Drexl and
Nikulin [3]modeled themulticriteria airport gate assignment
as quadratic assignment problem (QAP) and solved the
problem using Pareto simulated annealing. �e performance
measures were as follows: minimizing connection times or
total passenger walking distances, maximizing the prefer-
ences of total gate assignment, and minimizing the number
of ungated �ights:

min �1 = �∑
�=1

7�,�+1, (279a)

min �2 = �∑
�=1

�∑
�=1

�+1∑
�=1

�+1∑
�=1

��,���,�7�,�7�,� + �∑
�=1

�+1∑
�=1

�0,��0,�7�,�
+ �∑

�=1

�+1∑
�=1

��,0��,07�,�,
(279b)

min �3 = �∑
�=1

�+1∑
�=1

V�p�,�7�,� (279c)

subject to

�+1∑
�=1

7�,� = 1, 1 ≤ � ≤ �, (280)

7�,�7�,� (�� − 	�) (�� − 	�) ≤ 0, 1 ≤ �, � ≤ �, � ̸= � + 1,
(281)

7�,� ∈ {0, 1} , 1 ≤ � ≤ �, 1 ≤ � ≤ � + 1, (282)

where objective (279a) addresses the number of �ights that
are not assigned to any terminal gate (i.e., to the apron).
Objective (279b) represents the total passenger walking
distance. It consists of three terms: the walking distance of
transfer passengers, originating departure passengers, and
disembarking arrival passengers. Objective (279c) represents
the total value for �ight gate assignment preference. Con-
straint (280) ensures that every �ight must be assigned
to exactly one gate including the apron. Constraint (281)
prohibits schedule overlapping of two �ights if they are
assigned to the same terminal gate. Constraint (282) de�nes
the variables to be Boolean.

Haghani and Chen [13] modeled the AGAP as QAP with
minimizing the total passenger walking distances (transfer

passengers and local passenger) as a performance measure.
�e QAP model was expressed as follows:

Minimize ∑
�

∑
��

∑
�

∑
��

%���F���\���\������

+ ∑
�

∑
��

(%�0F�0 + %0�F0�)\���, (283)

%���F��� ←� %�0F�0 + %0�F0� ∀�, �, (284)

Minimize ∑
�

∑
��

∑
�

∑
��

%���F���\���\������ . (285)

According to the simplicity of solving linear models, the
previous model was transformed into a linear model as
follows:

d������ = \���\������ , (286)

d������ = {{{{{
1, if �ight � is assigned to gate �

and �ight �? is assigned to gate �?,0, otherwise, (287)

Minimize ∑
�

∑
��

∑
�

∑
��

%���F���d������ (288)

subject to

∑
�
\��� = 1 ∀�,  
� ≤  ≤   � , (289)

∑
�
\��� ≤ 1 ∀�,  , (290)

\��� ≤ \��(�+1) ∀ ,  
� ≤  ≤   � − 1, (291)

\

���� + \


�����
− 2d


������ ≥ 0 ∀� < �?, �, �?, (292)

∑
�

∑
��

d������ = 1 ∀� ̸= �?.
(293)

�e results and conclusions were as follows: the proposed
approach was e
cient which provided results close to the
optimal solution according to the percent of improvement
from the starting solution (initial solution), in the case of 10
�ights and 10 gates, 20 �ights and 5 gates, and 30 �ights and
7 gates.

2.2.2. Scheduling Problems. In 2010, Li [39] formulated the
GAP as a parallel machines scheduling problem and used
the dynamic scheduling and the direct graph model to solve
the proposed model; B&B was used in solving the small size
problems while the large size problems have been solved
using dynamic scheduling.

2.2.3. Clique Partitioning Problem (CPP). Dorndorf et al.
[8] developed an optimization model for the GAP and
transformed that model into a CPP model; the two models
are written below. A heuristic approach that was developed
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by Dorndorf and Pesch (1994), based on the ejection chain
algorithm, has been used to solve the transformed model
(CPP model).


e Optimization Model for the AGAP. Consider

Minimize{$|$:�→�} O1�1 (�) + O2�2 (�) + O3�3 (�) (294)

subject to

� (�) ∈ � (�) ∀� ∈ U,
� (�) ̸= � (�) ∀ �� < 0,
� (�) ̸= � + �, ∀�, � ∈ U,
� (�) ̸= � ∨ � (�) ̸= � ∀ (�, �, �, �) ∈ C,

(295)

�1 = − �∑
�=1

�∗
�$(�),

�2 = zzzz{� ∈ U | � (�) ̸= 0 ∧ � (�) ̸= � (� (�))}zzzz ,
�3 = ∑{(�,�)|�<�,$(�)=$(�) ̸=�+�}max { max −  ��, 0} .

(296)


e CPP Transformation of the Problem. Consider

maximize ∑
1≤�<�≤


������ (297)

subject to

��� + ��� − ��� ≤ 1 for 1 ≤ � < � < � ≤ 	,
��� − ��� + ��� ≤ 1 for 1 ≤ � < � < � ≤ 	,
− ��� + ��� + ��� ≤ 1 for 1 ≤ � < � < � ≤ 	,

��� ∈ {0, 1} for 1 ≤ � < � ≤ 	,
(298)

Z := {1, 2, . . . , � + � − 1} , (299)

���

:=

{{{{{{{{{{{{{{{{{{{{{{{{{{{

−∞ if  �� < 0
O2 if  �� ≥ 0

∧ (� (�) = � ∨ � (�) = �)
−O3 ⋅ max { max −  ��, 0} if  �� ≥ 0 ∧ � (�) ̸= �

∧ � (�) ̸= � ∀�, � < �,
(300)

��� := {{{
−∞ if � ∉ � (�)
O1 ⋅ �∗

�� if � ∈ � (�)
∀� ≤ �, � > �

(301)

��� := −∞ ∀�, � > �. (302)

2.2.4. Network Representation. Maharjan and Matis [40]
formulated the GAP as a binary integer multicommodity
network �ow model with minimizing the passengers com-
fort and aircra	 fuel burn as a performance measure. For
passengers comfort and with arguments of distance and time
for connection a penalty function in three dimensions was
speci�ed. For large size problem and based on amethodology
of zoning a decomposition approach was provided and
compared with the assignments made by the airline, and the
results showed that the developed methodology was shown
to be computationally e
cient.


eMathematical Formulation. Consider

\�
%� : binary variable representing initial assignment of
gate � ∈ K to aircra	 � ∈ F;

\�
�� : binary variable representing assignment of gate � ∈
K to aircra	 � ∈ D followed by � ∈ A;

\�
�� : binary variable representing last assignment of gate� ∈ K to aircra	 � ∈ D;

\�
%� : binary variable representing no assignment of gate� ∈ K to any aircra	:

Minimize < = ∑
�∈�

∑
�∈�

(J� + 2���-�� {��1 + ��2})(\�
�,� + ∑

�∈�
\�
�,�)

+ ∑
(�∈�,�=�,��=�� ,� ̸=�� ,� ̸=��)

∑
(��∈�,�=�,��=�� ,� ̸=�� ,� ̸=��)

∑
�∈�

∑
��∈�

U���J���
���\�

�,�\��
�� ,��

(303)
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subject to

∑
�
\�
�,� + \�

%,� = 1 ∀� ∈ M, � ∈ H, (304)

\�
�,� + ∑

�
ln��\�

�,� = \�
�,� ∀�, � ∈ a, �, � ∈ F,

� ̸= �, � = �, (305)

∑
�
ln��\�

�,� + \�
�,� = \�

�,� ∀�, � ∈ a, �, � ∈ F,
� ̸= �, � = �, (306)

∑
�
\�
�� + ∑

�
\�
%� = 1 � ∈ H, � ∈ M, (307)

∑
�
\�
�� = 1 ∀� ∈ a, � ∈ F, � = �, (308)

\�
�,�, \�

�,�, \�
�,�, \�

%,�, \�
�� = {0, 1} , (309)

ln�� = {{{
1, if (a � − F�) ≥ � ∀� ̸= �
0, otherwise, (310)

where (303) represents the expected taxi in and out fuel
burn cost of assigning a plane to a particular gate based on
the expected runway distance corresponding to arrival and
departure cities for the �ight. Equation (304) is referred to
as a �ow-in constraint because it deals with the gate �ow
from the source node to the arrival �ight node. Equation
(305) is referred to as conservation of �ow at the arrival
node. Equation (306) is conservation of �ow at the departure
node. Equation (307) is the �ow-out constraint that forces
all the �ow to leave the departure node to the terminal
node. Equation (308) is referred to as a unit �ow serving
arc constraint as it allows only one unit gate � ∈ M to �ow
through serving arc. Equation (309) is the binary constraints.

�e above model was with a quadratic objective function
and a linearization for that objective was made as follows:

Minimize<2 = ∑(�∈�,�=�,��=�� ,� ̸=�� ,� ̸=��) ∑(��∈�,�=�,��=��,� ̸=�� ,� ̸=��) ∑
�∈�

∑
��∈�

U���J���
���\�

�,�\��
�� ,�� . (311)

�e linearization has been made by replacing the quadratic

term (\�
�,�\��

�� ,��) by a new variable d���
��� de�ned as follows:

d���
��� =

{{{{{{{{{{{{{

1, if (\�
�� = 1, \��

���� = 1 ∀� = �,
�? = �?, � ̸= �?, � ̸= �?, � ̸= �?)

0, otherwise

(312)

subject to

d���
��� − \�

�� ≤ 0 ∀� = �, �? = �?, � ̸= �?, � ̸= �?, (313)

d���
��� − \��

���� ≤ 0 ∀� = �, �? = �?, � ̸= �?, � ̸= �?,
(314)

\�
�� + \��

���� − d���
��� ≤ 1 ∀� = �, �? = �?, � ̸= �?, � ̸= �?,

(315)

\�
�� + \��

���� − d���
��� ≥ 0 ∀� = �, �? = �?, � ̸= �?, � ̸= �?,

(316)

where inequalities (313) and (314) indicate that variable d���
���

is equal to 1 if and only if binary variables \�
�� and \��

���� are

equal to 1. Equation (315) speci�es thatd���
��� cannot be greater

than 1, and (316) further speci�es thatd���
��� cannot be less than

zero. Due to the binary nature of \�
�� and\��

���� with the above

constraints, d���
��� is forced to be a binary variable.

According to the passengers comfort, a cost function(J���
��� ) was represented as follows:

J���
��� = {B√���� (2 − Δ ���)2 , ∀0 < Δ ��� ≤  max0, otherwise, (317)

where (317) is a surface plot of the cost function.

Mathematical Formulation Using the Methodology of Zoning.
Consider
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Minimize < = ∑
�∈�

∑
�∈��

( 2���-�� {��1 + ��2})(\�
�,� + ∑

�∈�
\�
�,�)

+ ∑
(�∈�,�=�,��=�� ,� ̸=�� ,� ̸=��)

∑
(��∈�,�=�,��=�� ,� ̸=�� ,� ̸=��)

∑
�∈��

∑
��∈�

U���J���
���\�

��\��
����

(318)

subject to the following.
�e constraints of (304) and (308) are modi�ed and

replaced with

∑
�
\�
�� + \�

%� = zzzzM"
zzzz ∀� ∈ M", � ∈ H, (319)

∑
�
\�
�� + ∑

�
\�
%� = zzzzM"

zzzz ∀� ∈ H, � ∈ M". (320)

In order to solve the developed model a code for the
developed model was written using an AMPL/CPLEX 11.2
package, and as mentioned before the results showed that the
developed methodology was shown to be computationally
e
cient.

2.3. Robust Optimization. Diepen et al. [41] formulated a
completely new integer linear programming formulation for
the GAP with a robust objective function that is based on
the so-called gate plans. �e objective was to maximize
the robustness of a solution, which can be expressed as an
allocation of amaximumpossible idle time between each pair
of consecutive �ights to guarantee that each �ight can a�ord
to land with some slight earliness or tardiness without the
need for re-planning the schedule:

�� = {1, if gate plan � is selected0, otherwise,
Minimize

�∑
�=1

����
(321)

subject to

�∑
�=1

�
V��� = 1 for V = 1, . . . , Z, (322)

�∑
�=1

Q�
�� = C
 for 	 = 1, . . . , a, (323)

�� ∈ {0, 1} for � = 1, . . . , �, (324)

where

�
V� = {1, if �ight V is in gate plan �,0, otherwise,

Q�
 = {1, if �ight � is of type 	,0, otherwise.
(325)

In addition, to add the preferences to the ILP model the
following constraints have been added to the model:

�∑
�=1

C∑
V=1

�∑

=1

�
V
�Q�
�V��� ≥ %� for � = 1, . . . , M, (326)

where

(i) �
V
� = { 1, if �ight V has preference for gate type 
 in preference �

0, otherwise;
(ii) %� denotes the minimum number of �ights that have

to be assigned to a given gate type;

(iii) according to preference �;
(iv) M denotes the total number of preferences:

�∑
�=1

�
V��� + �aH

V
= 1 for V = 1, . . . , Z, (327)

where �aH
V

≥ 0 for V = 1, . . . , V. and �aH
V
is a penalty

variable:

�∑
�=1

(�
V� + �

V�,�) �� + �aH
V� = 1,

�∑
�=1

(�
V� + �

V�,�) �� + �aH
V� = 1,

��ℎ�

=
{{{{{{{{{{{{{{{

1, if �ight V has preference on gate type a

in preference �,0.5, if the split version of �ight V has preference

on gate type a in preference �,0, otherwise.
(328)

�e integrality of the developed model has been relaxed for
the integrality and the resulting relaxed LP was exploited to
obtain solutions of ILP by using column generation (CG).
Table 1 summarizes all the above mathematical formulations
used recently for the AGAP.

3. Resolution Methods

As mentioned before in Section 2, most of the solution
techniques presented in Sections 3.2 and 3.3 have been used
concurrently with complex mathematical formulations that
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Table 1: Formulations of AGAP and related problems.

Formulation References Criterion (comments) Problem type

Integer linear
programming (IP)

Lim et al. [24]
(i) Minimizing the sum of the delay penalties
(ii) Minimizing the total walking distance

�eoretical

Diepen et al. [25]
(i) Minimizing the deviation of arrival and departure
time
(ii) Minimizing replanning the schedule

Real case (Amsterdam
Airport Schiphol)

Diepen et al. [26]
Minimizing the deviations from the expected arrival
and departure times

Real case (Amsterdam
Airport Schiphol)

Binary integer
programming

Mangoubi and Mathaisel
[11]; Yan et al. [29]

Minimizing passenger walking distances

Real case (Toronto
International Airport); Real

case (Chiang Kai-Shek
Airport)

Vanderstraeten and
Bergeron [28]

Minimizing the number o�-gate event �eoretical

Bihr [12] Minimizing of the total passenger distance �eoretical

Tang et al. [27]
Developing a gate reassignment framework and a
systematic computerized tool

Real case (Taiwan
International Airport)

Prem Kumar and Bierlaire
[18]

(i) Maximizing the gate rest time between two turns
(ii) Minimizing the cost of towing an aircra	 with a
long turn
(iii) Minimizing overall costs that include penalization
for not assigning preferred gates to certain turns

�eoretical

Mixed integer linear
programming (MILP)

Bolat [30] Minimizing the range of slack times
Real case (King Khaled
International Airport)

Bolat [31] Minimizing the variance or the range of gate idle time
Real case (King Khaled
International Airport)

Mixed integer
nonlinear
programming

Li [5, 32]
Minimizing the number of gate con�icts of any two
adjacent aircra	s assigned to the same gate

Real case (Continental
Airlines, Houston Gorge
Bush Intercontinental

Airport)

Bolat [31] Minimizing the variance or the range of gate idle time
Real case (King Khaled
International Airport)

Multiple objective
GAP formulations

Hu and Di Paolo [36]
Minimize passenger walking distance, baggage
transport distance, and aircra	 waiting time on the
apron

�eoretical

Wei and Liu [16]
(i) Minimizing the total walking distance for passengers
(ii) Minimizing the variance of gates idle times

�eoretical

B.A.C.o.E.B. Team and
A.I.C.o.E. Team [17]

(i) Minimizing walking distance
(ii) Maximizing the number of gated �ights
(iii) Minimizing �ight delays

�eoretical

Yan and Huo [2]
(i) Minimizing passenger walking distances
(ii) Minimizing the passenger waiting time

Real case (Chiang Kai-Shek
Airport)

Kaliszewski and
Miroforidis [37]

Finding gate assignment e
ciency which represents
rational compromises between waiting time for gate
and apron operations

�eoretical

Stochastic model

Yan and Tang [10] Minimizing the total passenger waiting time
Real case (Taiwan

International Airport)

Genç et al. [38]
Maximizing gate duration, which is total time of the
gates allocated

�eoretical and real case
(Ataturk Airport of
Istanbul, Turkey)

Şeker and Noyan [9] Minimizing the expected variance of the idle time �eoretical

Quadratic assignment
problem (QAP)

Drexl and Nikulin [3]

(i) Minimizing the number of ungated �ights
(ii) Minimizing the total passenger walking distances or
connection times
(iii) Maximizing the total gate assignment preferences

�eoretical

Haghani and Chen [13] Minimizing the total passenger walking distances �eoretical
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Table 1: Continued.

Formulation References Criterion (comments) Problem type

Scheduling problems Li [39]

(i) Maximizing the sum of the all products of the �ight
eigenvalue
(ii) Maximizing the gate eigenvalue that the �ight
assigned

�eoretical

Quadratic mixed
binary programming

Bolat [34] Minimizing the variance of idle times
Real case (King Khaled
International Airport)

Zheng et al. [33] Minimizing the overall variance of slack time
Real case (Beijing

International Airport,
China)

Xu and Bailey [14] Minimizing the passenger connection time �eoretical

Binary quadratic
programming

Ding et al. [6, 7, 35]
Minimize the number of ungated �ights and the total
walking distances or connection times

�eoretical

Clique partitioning
problem (CPP)

Dorndorf et al. [8]

(i) Maximizing the total assignment preference score
(ii) Minimizing the number of unassigned �ights
(iii) Minimizing the number of tows
(iv) Maximizing the robustness of the resulting
schedule

�eoretical

Network
representation

Maharjan and Matis [40]
Minimizing both fuel burn of aircra	 and the comfort
of connecting passengers

Real case (Continental
Airlines at George W. Bush
Intercontinental Airport in

Houston (IAH))

Robust optimization Diepen et al. [41]
Maximizing the robustness of a solution to the gate
assignment problem

Real case (Amsterdam
Airport Schiphol)

led to very high computing time. Section 3.1 addressed the
exact solution techniques and the optimization programming
language used to solve the proposed models to their opti-
mality. Sections 3.1, 3.2, and 3.3 include the research work
that has been done on the exact, heuristic, and metaheuristic
approaches for solving the AGAP.

3.1. Exact Algorithms. Exact algorithms are those that yield
an optimal solution. According to the literature, di�erent
exact solution techniques have been used to solve the GAP.
As an example branch and bound was used as well as column
generation and other methods, and in some research, the
authors used some optimization programming languages like
CPLEX and AMPL. In this section, only the research work
that has been done on the exact solution techniques for
solving the AGAP is presented.

Li [5, 32] solved the proposed hybridmathematicalmodel
using CPLEX so	ware. Mangoubi and Mathaisel [11] relaxed
the integrality of the developed ILP model and solved the
relaxed ILP model using CG; an optimal solution has been
obtained for minimizing the total walking distance. Bihr
[12] proposed a primal-dual simplex algorithm to �nd the
solution and found the optimal solution. Yan and Huo
[2] used simplex algorithm with column generation and
weighting method to solve the provided model. Bolat [30,
34], Li [39], and Yan and Huo [2] used branch and bound
algorithm to solve themodels they have developed. Reference
[14] used branch and bound algorithm and compared the
result with tabu search algorithm.

3.2. Heuristic Algorithms. Basically theGAP is aQAP and it is
an NP-hard problem as shown in Obata [21]. Since the AGAP
is NP-hard, researchers have suggested various heuristic and
metaheuristics approaches for solving the GAP. �is section
is for the heuristic algorithms; with heuristic algorithms,
theoretically there is a chance to �nd an optimal solution.
�at chance can be remote because heuristics o	en reach a
local optimal solution and get stuck at that point, so it was
necessary to have modern heuristics called metaheuristic.
�is approach will be presented in the following part in this
section; the research work that has been done on the heuristic
approaches for solving the AGAP is presented.

Yan and Tang [10] developed a framework designed
to deal with the GAP which has stochastic �ight delays;
the developed framework was with a heuristic approach
embedded in it. Genç [42] used several heuristics, which
are the “Ground Time Maximization Heuristic,” “Idle Time
Minimization algorithm,” and “Prime Time Heuristic,” to
solve the GAP with minimizing the idle gate time (or
maximizing the number of assigned �ights) as a performance
measure. Ding et al. [6, 35] designed a greedy algorithm
for solving the GAP with the objective of minimizing the
number of ungated �ights. Lim et al. [24] used several
solution approaches, which are the “Insert Move Algorithm,”
the “Interval Exchange Move Algorithm,” and a “Greedy
Algorithm,” to solve the developed model for the GAP. Yan
et al. [29] proposed a simulation framework and developed
an optimization model (Section 2.1.2) and then solved the
model using two greedy heuristics: the �rst was related to
the number of passengers and the second was related to the
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Table 2: Resolution methods.

Method References Approach/results Problem type

Exact algorithms

Mangoubi and Mathaisel
[11]

Linear programming relaxation
Real case (Toronto International
Airport)

Bihr [12] Primal-dual simplex �eoretical

Yan and Huo [2]
Simplex;
branch and bound

Real case (Chiang Kai-Shek Airport)

Bolat [30, 34]; Xu and
Bailey [14]; Li [39]

Branch and bound
Real case (King Khaled International
Airport, KSA); theoretical

Heuristic algorithms

�engvall et al. [43] Bundle algorithm approach �eoretical

Yan and Tang [10]
Heuristic approach embedded in a
framework designed

Real case (Taiwan International
Airport)

Ding et al. [6, 35] Greedy algorithm �eoretical

Lim et al. [24]
�e Insert Move Algorithm, the
Interval Exchange Move Algorithm,
and a Greedy Algorithm

�eoretical

Diepen et al. [25] Column generation
Real case (Amsterdam Airport
Schiphol)

Dorndorf et al. [8]
Heuristic based on the ejection chain
algorithm

�eoretical

Mangoubi and Mathaisel
[11]

Heuristic approach
Real case (Toronto International
Airport)

Vanderstraeten and
Bergeron [28]

ADAP �eoretical

Yan et al. [29] Greedy heuristics Real case (Chiang Kai-Shek Airport)

Bolat [30] Heuristic branch and trim
Real case (King Khaled International
Airport, KSA)

Bolat [34]
Heuristic branch and bound, SPH
heuristic

Real case (King Khaled International
Airport, KSA)

Haghani and Chen [13] Heuristic approach �eoretical

Genç [42]
Ground time maximization heuristic,
and idle time minimization heuristic

�eoretical and real case (Ataturk
Airport of Istanbul, Turkey)

B.A.C.o.E.B. Team and
A.I.C.o.E. Team [17]

A hybrid heuristics algorithm guided
by simulated annealing and greedy
heuristic

�eoretical

Bouras et al. [45] Heuristic approach �eoretical

Metaheuristic algorithms

Ding et al. [6, 35] Tabu search �eoretical

Ding et al. [7]
Simulated annealing, hybrid of
simulated annealing and tabu search

�eoretical

Lim et al. [24] TS algorithm and a memetic algorithm �eoretical

Hu and Di Paolo [36]
New genetic algorithm with uniform
crossover

�eoretical

Drexl and Nikulin [3] Pareto simulated annealing �eoretical

Xu and Bailey [14] Tabu search �eoretical

Bolat [31] Genetic algorithm
Real case (King Khaled International
Airport, KSA)

Şeker and Noyan [9] Tabu search algorithms �eoretical

Zheng et al. [33]
A tabu search algorithm and
metaheuristic method

Real case (Beijing International
Airport, China)

Wei and Liu [16] A hybrid genetic algorithm �eoretical

Gu and Chung [44] Genetic algorithms approach �eoretical

Cheng et al. [23]
Genetic algorithm (GA), tabu search
(TS), simulated annealing (SA), and a
hybrid approach based on SA and TS

Real case (Incheon International
Airport, South Korea)

Bouras et al. [45]
Genetic algorithm (GA), tabu search
(TS), and simulated annealing (SA)

�eoretical
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Table 2: Continued.

Method References Approach/results Problem type

OPL

Li [5, 32]
Optimization programming language
(CPLEX)

Real case (Continental Airlines,
Houston Gorge Bush Intercontinental
Airport)

Tang et al. [27]
Using CPLEX 10.0 solver concert with
C language

Real case (Taiwan International
Airport)

Prem Kumar and Bierlaire
[18]

Optimization
programming language (OPL)

�eoretical

Maharjan and Matis [40] AMPL/CPLEX 11.2
Real case (Continental Airlines at
George W. Bush Intercontinental
Airport in Houston (IAH))

arrival time of the �ight at the gate.�edistance result showed
that the optimization model outperformed the heuristic but
the heuristic simulation time outperformed the optimization
model. Diepen et al. [25] solved the resulting LP-relaxation
and the original ILP model using column generation.

�engvall et al. [43] represented a heuristic approach
for the problem of schedules recovery in airports during
hub closures; the proposed approach was a bundle algorithm
approach. Dorndorf et al. [8] used a heuristic approach
that was developed by Dorndorf and Pesch (1994), which
was based on the ejection chain algorithm, to solve the
transformed model (CPP model). Mangoubi and Mathaisel
[11] also used heuristic approach to solve the GAP with the
objective of minimizing walking distance for the passengers
and the obtained solutions were compared with the optimal
solution using LP to obtain the deviation in the results.
Haghani and Chen [13] used a heuristic approach to solve the
GAP with the objective of minimizing walking distance for
the passengers. Vanderstraeten and Bergeron [28] developed
a direct assignment of �ights to gates algorithm, named
ADAP; the developed algorithmwas an implicit enumeration
which has been faster by carefully applying some variables
selection criteria, which are the concept of “main chain,”
the assigned weights to variables, and the single assignment
constraints. Bolat [30] used branch and trim heuristic to
solve the GAP with the objective of minimizing the slack
times range. Bolat [34] used the HBB and SPH heuristics to
solve the models that he has developed for the GAP. �e �rst
approach (HBB) is a B&B approach that has been utilized by
some restrictions on the number of the nodes that has to be
branched in a search tree while the second approach (SPH)
developed a heuristic that a	er U iterations builds only one
solution.�e used heuristics assigned �ights one at a time by
considering all available gates and for determining the most
permissible gate a priority function was utilized.

3.3. Metaheuristic Algorithms. As mentioned before in
Section 3.2, heuristics o	en get stuck in a local optimal solu-
tion, but metaheuristics or “modern heuristics” introduce
systematic rules to deal with this problem. �e systematic
rules avoid local optima or give the ability of moving
out of local optima. �e common characteristic of these
metaheuristics is the use of some mechanisms to avoid local
optima. Metaheuristics succeed in leaving the local optimum
by temporarily accepting moves that cause worsening of the

objective function value. In this section, the research work
that has been done on the metaheuristic approaches for
solving the AGAP is presented.

Gu and Chung [44] introduced a genetic algorithm
model to solve the AGAP. �e developed model has been
implemented in a high-level programming language; the
e�ectiveness of the developed model has been validated by
testing di�erent scenarios and the results showed that the
performance of the developed model was e
cient. Şeker and
Noyan [9] developed stochastic programming models; the
developed model has been formulated as a mixed integer
programming but in large scale. �e developed models were
solved using tabu search (TS) algorithm, and the obtained
results were with high quality.

Cheng et al. [23] studied the performance of several
metaheuristics in solving the GAP. �e metaheuristics were
genetic algorithm (GA), tabu search (TS), simulated anneal-
ing (SA), and a hybrid of SA and TS. Tabu search (TS) out-
performs SA and GA but the hybrid approach outperforms
TS in terms of solution quality. Ding et al. [6, 35] used a
tabu search algorithm to solve the GAP; the starting (initial)
solution was obtained using a designed greedy algorithm. Xu
and Bailey [14] developed a tabu search algorithm to solve
the GAP and compared the result of the developed algorithm
with a branch and bound algorithm. �e results showed that
the two approaches provide optimal solutions for the studied
problems but TS obtained was better in the CPU time.

Zheng et al. [33] developed a model for solving the GAP
(see Section 2) and used a TS algorithm to obtain solutions
for the developed model. Ding et al. [7] used a simulated
annealing and a hybrid of SA and TS to solve the GAP
model that they have developed; the starting (initial) solution
was obtained using a designed greedy algorithm. Lim et
al. [24] proposed TS and memetic algorithms to solve the
GAP. Drexl and Nikulin [3] solved the multicriteria airport
gate assignment using Pareto simulated annealing. Hu and
Di Paolo [36] solved the multiobjective gate assignment
problem (MOGAP) using a new genetic algorithm with
uniform crossover. Bolat [31] used genetic algorithm (GA)
to minimize the variance or the range of gate idle time. Wei
and Liu [16] modi�ed a hybrid genetic algorithm to solve
the fuzzy AGAP model. Table 2 summarizes all the above
solution techniques used recently for the AGAP.

Recently, Bouras et al. [45] approached the AGAP as a
parallel machine-scheduling problem with some priority and
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Table 3: Number of publications per year.

Year Number of publications References

1974 1 Steuart [1]

1985 1 Mangoubi and Mathaisel [11]

1988 1 Vanderstraeten and Bergeron [28]

1990 1 Bihr [12]

1998 1 Haghani and Chen [13]

1999 2 Bolat [30], Gu and Chung [44]

2000 1 Bolat [34]

2001 3 Bolat [31], Xu and Bailey [14], Yan and Huo [2]

2002 2 Lam et al. [15], Yan et al. [29]

2003 1 �engvall et al. [43]

2004 2 Ding et al. [6, 35]

2005 3 Ding et al. [7], Lim et al. [24], Al-Khalifah [19]

2007 4 Diepen et al. [25], Dorndorf et al. [20, 22], Yan and Tang [10]

2008 4 Diepen et al. [26], Drexl and Nikulin [3], Li [5, 32]

2009 4
Wei and Liu [16], Hu and Di Paolo [36], Tang et al. [27], B.A.C.o.E.B. Team and A.I.C.o.E. Team

[17]

2010 4 Dorndorf et al. [8], Genç [42], Zheng et al. [33], Li [39]

2011 2 Prem Kumar and Bierlaire [18], Genç et al. [38]

2012 5
Li [39], Şeker and Noyan [9], Diepen et al. [41], Maharjan and Matis [40], Kaliszewski and

Miroforidis [37], Cheng et al. [23]

2014 1 Bouras et al. [45]

eligibility. �ey solved the problem with the aim of mini-
mizing the following objectives: total cost, total tardiness,
andmaximum tardiness.�ey developed three heuristics and
used three metaheuristics (simulated annealing, tabu search,
and genetic algorithms). �e evaluation was conducted over
238 generated instances but only 50 instances were presented
in the report. �e results showed that simulated annealing
was the most e
cient metaheuristic to solve the problem.

4. Conclusion and Research Trends

In this survey, we have presented the very recent publications
about the airport gate assignment problem. �e collected
literature has the aim of identifying the contributions and the
trends in the research using exact or approximate methods.

An abundant literature is listed to describe mathematical
formulation on AGAP or other related problems. �ey have
been grouped in such a way that the user is guided to
identify each problem speci�cation. For single objective,
integer/binary models are described along with mixed inte-
ger ones. Nonlinear formulations are also described for
mixed/integer models. Rare are the authors who really came
out with exact solutions using existing commercial opti-
mization so	ware or their own exact methods (branch and
bound. . .). Heuristics were suggested to build feasible solu-
tions and improve the latter solutions using metaheuristics.

For multiobjective optimization, several models have
been formulated as nonlinear objectives with little success in
solving such problems with exact methods in a reasonable
time.

1
1
1
1
1

2
1

3
2

1
2

3
4
4
4
4

2
5

1

0 1 2 3 4 5 6
1974
1985
1988
1990
1998
1999
2000
2001
2002
2003
2004
2005
2007
2008
2009
2010
2011
2012
2014

Number of publications

Figure 1: Number of publications per year.

Related problems to AGAP have also been introduced in
the survey. Some cases of AGAP have been formulated as
some well-known combinatorial optimization problems such
as QAP.

Since 2005 (Table 3, Figures 1-2), most of the people
started to consider using heuristics/metaheuristics as tools to
solve AGAP since the problem is NP-hard, and the issue of
time solving was still unresolved by the existing tools.

In practice, major airlines may have more than 1000 daily
�ights to handle at more than 50 gates, which results in
billions of binary variables in formulation. B&B based MIP
solvers (i.e., CPLEX) will not be able to handle such huge size
problems within a reasonable time bound.
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Table 4: Number of publications per research area.

Area
Number of
publications

References

Integer linear
programming (IP)

3 Lim et al. [24], Diepen et al. [25], Diepen et al. [26]

Binary integer
programming

6
Mangoubi and Mathaisel [11], Yan et al. [29], Vanderstraeten and Bergeron [28],

Bihr [12], Tang et al. [27], Prem Kumar and Bierlaire [18]

Mixed integer linear
programming (MILP)

3 Bolat [30], Bolat [31], Kaliszewski and Miroforidis [37]

Mixed integer nonlinear
programming

3 Li [5, 32], Bolat [31]

Quadratic programming
(QP)

6 Bolat [34], Zheng et al. [33], Xu and Bailey [14], Ding et al. [6, 7, 35]

Multiple objective GAP
formulations

5
Hu and Di Paolo [36], Wei and Liu [16], B.A.C.o.E.B. Team and A.I.C.o.E. Team

[17], Yan and Huo [2], Kaliszewski and Miroforidis [37]

Stochastic models 3 Yan and Tang [10], Genç et al. [38], Şeker and Noyan [9]

Quadratic assignment
problem (QAP)

2 Drexl and Nikulin [3], Haghani and Chen [13]

Scheduling problems 1 Li [39]

Clique partitioning
problem (CPP)

1 Dorndorf et al. [8]

Network representation 1 Diepen et al. [41]

Robust optimization 1 Maharjan and Matis [40]

Exact algorithms 7
Mangoubi and Mathaisel [11], Bihr [12], Yan and Huo [2], Bolat [30, 34]; Xu and

Bailey [14]; Li [39]

Heuristic algorithms 16

�engvall et al. [43], Yan and Tang [10], Ding et al. [6, 35], Lim et al. [24], Diepen et
al. [25], Dorndorf et al. [8], Mangoubi and Mathaisel [11], Vanderstraeten and
Bergeron [28], Yan et al. [29], Bolat [30, 34], Haghani and Chen [13], Genç [42],

B.A.C.o.E.B. Team and A.I.C.o.E. Team [17], Bouras et al. [45]

Metaheuristic algorithms 14
Ding et al. [6, 35], Ding et al. [7], Lim et al. [24], Hu and Di Paolo [36], Drexl and
Nikulin [3], Xu and Bailey [14], Bolat [31], Şeker and Noyan [9], Zheng et al. [33],

Wei and Liu [16], Gu and Chung [44], Cheng et al. [23], Bouras et al. [45]

OPL 4 Li [5, 32], Tang et al. [27], Prem Kumar and Bierlaire [18], Maharjan and Matis [40]
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A growing interest in metaheuristics (Table 4, Figure 3)
has been observed in the recent papers on AGAP. TS, SA,
and GA are the most used improvement methods. Some
hybridizedmethods combining thesemethods have also been
suggested.

It is quite understandable that researches move towards
the use of such methods. Airport managers usually face
changes on their plans and need to change their plans due
to uncertainties.

With a lack of studies on robust methods or stochastic
methods, where only few papers appeared on these subjects,
researchers have at their disposal a battery of methods such
as evolutionary methods, parallel metaheuristics, and self-
tuning metaheuristics to apply on this interesting problem.

With the actual trend of heuristics use, it would be
interesting to work on a combination of these algorithms

In the framework of a hyperheuristic approach, many
hard combinatorial optimization problems have already been
tackled using heuristics (Burke et al. [46]), which motivates
our recommendation of this approach. Strengthening weak-
nesses is the essence of hyperheuristics since they smartly
work with search spaces of heuristics. �e idea is, during a
process of exploring new solutions, to choose the adequate
metaheuristic where the currently used one is failing to
improve or to generate new heuristics by using the compo-
nents of existing ones (Soubeiga [47]; Burke et al. [48]).
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�ere is an alternative to these approximate methods,
which could be explored: the use of e
cient exact methods
(branch and bound. . .) with the introduction of tight lower
bounds. In our review, we found that only Tang et al.
[27] developed a lower bound and used a classical branch
and bound algorithm, while other authors combined special
heuristics with their method (Bolat [30, 34], Li [39], and Yan
and Huo [2]).

We have also noticed the absence of a data set for AGAP. It
could be interesting to have a set of instances of di�erent sizes
that can be shared by researchers, with benchmarks (optimal
and best-known values) and CPU times to help comparing
methods as it is the case for known problems: quadratic
assignment problem and travelling salesman problem.
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Güleryüz, “A stochastic neighborhood search approach for
airport gate assignment problem,” Expert Systems with Appli-
cations, vol. 39, no. 1, pp. 316–327, 2012.

[39] W. Li, “Optimized assignment of civil airport gate,” in Proceed-
ings of the International Conference on Intelligent System Design
and Engineering Application (ISDEA ’10), pp. 33–38, Changsha,
China, October 2010.

[40] B. Maharjan and T. I. Matis, “Multi-commodity �ow network
model of the �ight gate assignment problem,” Computers and
Industrial Engineering, vol. 63, no. 4, pp. 1135–1144, 2012.

[41] G. Diepen, J. M. van den Akker, and J. A. a. Hoogeveen,
“Finding a robust assignment of �ights to gates at Amsterdam
AIRport Schiphol,” Journal of Scheduling, vol. 15, no. 6, pp. 703–
715, 2012.
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