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Abstract
Many questions about the social organization of medicine and health services involve
interdependencies among social actors that may be depicted by networks of relationships. Social
network studies have been pursued for some time in social science disciplines, where numerous
descriptive methods for analyzing them have been proposed. More recently, interest in the analysis
of social network data has grown among statisticians, who have developed more elaborate models
and methods for fitting them to network data. This article reviews fundamentals of, and recent
innovations in, social network analysis using a physician influence network as an example. After
introducing forms of network data, basic network statistics, and common descriptive measures, it
describes two distinct types of statistical models for network data: individual-outcome models in
which networks enter the construction of explanatory variables, and relational models in which the
network itself is a multivariate dependent variable. Complexities in estimating both types of models
arise due to the complex correlation structures among outcome measures.
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1. Introduction
Social network analysis studies structures of relationships linking individuals (or other social
units, such as organizations) and interdependencies in behavior or attitudes related to
configurations of social relations. Since many medical and health-related phenomena involve
interdependent actors (e.g. patients, nurses, physicians, and hospitals), networks are of
increasing interest to health services researchers. Among many other examples are social
support networks that may serve to improve individual well-being by providing psychosocial
or tangible resources (Berkman and Syme 1979); peer group influence networks that may
heighten—or protect against—the risk of substance abuse (Unger and Chen 1999) or shape
decisions about contraceptive use (Valente et al. 1997); familial and friendship networks that
may influence dietary practices, exercise habits, and other behaviors affecting the risk of
obesity (Christakis and Fowler 2007) or of smoking (Christakis and Fowler 2008); sexual
partnership networks that may raise or reduce the risk of contracting sexually transmitted
diseases (Laumann and Youm 1999); and discussion networks among professional colleagues
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that may influence treatment protocols or decisions to prescribe novel drug regimens (Coleman,
Katz, and Menzel 1966).

Five principal mediating pathways through which social relationships may influence the health
of individuals have been posited (Berkman and Glass 2000). Prominent among these is social
support, which has emotional, instrumental, appraisal (assistance in decision making), and
informational aspects (House and Kahn 1985). Beyond social support, networks may also offer
access to tangible resources such as financial assistance or transportation. They can also convey
social influence by defining norms about such health-related behaviors as smoking or diet, or
via social controls promoting (for example) adherence to medication regimes (Marsden
2006). Networks are also channels through which certain communicable diseases, notably
sexually transmitted ones, spread (Klovdahl 1985), and some contend that certain network
structures reduce exposure to stressors (Haines and Hurlbert 1992).

Christakis (2004) has recently suggested that health interventions may have “collateral” effects,
including not only the individual targeted by an intervention, but others in the target’s social
network. Such direct and indirect (or multiplier) health effects of interventions could be of
interest to both doctors and patients in the selection of treatments, and merit attention from
policy makers and public health practitioners when assessing the value of interventions. Social
network models of how individuals influence one another offer one approach toward measuring
the presence and magnitude of such collateral health effects, and a path toward assessing the
total effects of interventions.

Social network analysis measures relationships among social actors, assesses factors that shape
their structure, and ascertains the extent to which they affect health-related outcomes. It is
related to but distinct from analyses of the mechanisms through which social support affects
health. Social support studies often assess only the aggregate receipt or availability of support,
not necessarily configurations of ties among specific actors, while only some social network
analyses focus on health outcomes—many take the network itself as the object of study.

Several social science disciplines, especially anthropology and sociology, have long engaged
in social network analyses (Freeman 2004). Many techniques and descriptive measures of
networks have developed there. More recently, interest in network analysis has risen among
statisticians. Advances in computing power have made possible solutions to previously
intractable problems, leading to a number of new models and methods for analyzing networks.
In tandem with the recognition that networks are integral components of many research
questions involving the co-existence and functioning of individuals, communities, policy
domains, workplaces and schools, this has led to expanded application of social network
analysis.

Two distinct types of network models are common. We shall refer to these here as individual-
and relational-level models, respectively. In the first, the analysis focuses on an individual-
level outcome, and the network data are used to define explanatory variables. The second type
of application models the relationships between individuals in a network, in essence treating
it as a multivariate dependent variable with individual linkages (or ties) as its elements. Such
relational analyses account for network structure using both network statistics corresponding
to regularities in relational properties (i.e. dependencies among network ties) and covariates
such as characteristics of the units within the network. Thus, while individual-level models
make inference about attributes of the individuals, relational-level models make inference
about the ties linking the individuals. Individual-level models resemble standard regression
models that seek to predict the distribution of some outcome measured on a focal individual
or ego, but differ in that predictors may involve characteristics measured on other individuals
(often known as “alters”) in a way that involves network structure, permitting hypothesis tests
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about social influence. In relational models, the dependent variable measures an aspect of the
relationship between individuals in the network and hypotheses of social selection are tested.
In both types of problems, a major challenge is accounting for a complex correlation structure
among outcomes that arises due to the network. If there are N individuals in a data set, this is
of order N2 in an individual-level analysis, but of order N2 × N2 in a relational-level analysis.

The next section reviews some foundations of social network analysis, introduces a network
we use as an illustration throughout the article, and describes how network data sets are
represented numerically and visually. Section 3 introduces basic network statistics such as
density and degree, some fundamental descriptive network measures including centrality
indices, and approaches to the detection of subgroups within networks. These measures provide
important insights into network typology, which can be used to develop models. Our review
gives particular attention to recent developments in the statistical modeling of networks.
Section 4 describes statistical models for individual-level outcomes that use network data to
construct explanatory variables, while in Section 5 the focus is on relational-level network
models. Section 6 calls attention to some recent innovations in social network methodology
and Section 7 concludes.1

2. Background
2.1. Defining Social Networks

A social network consists of one or more sets of units—also known as “nodes,” “actors,” or
“vertices”—together with the relationships or social ties among them. The units or nodes are
usually individual persons, e.g. patients or clinicians. They may, however, also be other social
units (such as hospitals) or objects (such as texts). Relationships often represent
communication, influence, trust or affect (e.g. friendship), but can also refer to conflict (e.g.
disputes). Most social network studies also include attribute data describing the nodes/actors,
the relationships, or both.

Certain subnetworks are often of interest. A pair of actors is known as a dyad and a triple as a
triad. A star consists of an actor and all relationships incident to it. An egocentric network
consists of an actor, the other actors in its immediate locality or neighborhood, and the
relationships among them.

When—as is most typical—attention centers on relationships that link elements within a set
of units/actors, a network is known as one-mode. Most of the discussion in this article pertains
to the one-mode case. Networks may involve more than one set of units/actors, however. In
particular, many studies involve two distinct types of units, such as patients and physicians, or
physicians and hospitals. In these two-mode networks, the elementary relationships of interest
usually refer to affiliations of units in one set with those in the other—e.g. of patients with the
physician(s) responsible for their care, or of physicians with the hospital(s) at which they are
admitted to practice. Hence two-mode networks are also known as affiliation networks.

While most network studies focus on a single relationship or type of tie observed on one
occasion, both multirelational and longitudinal social network data exist. Multirelational data
recognize the multistrandedness in many social ties; the relationship between two physicians,
for example, may involve both professional collaboration and personal friendship.
Longitudinal data permit the study of the creation, transformation, and dissolution of social
ties. Most often, measured relations are binary-valued (present/absent), but they may also be
ordinal or quantitative.

1To aid readers in applying these methods, we provide some references to network software throughout, but our coverage of software is
not comprehensive. Huisman and van Duijn (2005) review software resources available earlier in this decade.
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2.2. Network Study Designs
Though a few network experiments have been conducted (e.g. Friedkin and Cook 1990, Travers
and Milgram 1969), most social network data are observational. Studies typically measure
networks using survey and questionnaire methods. Analysts also exploit data recorded in
archives, including records maintained by electronic communication systems (Marsden
1990).

“Whole network” studies seek to assemble data on relationships in a theoretical population,
that is, on the ties linking all units/actors within some bounded social collective, such as all
physicians within a medical practice. In such studies, it is essential that clear boundaries or
rules of inclusion for units/actors be specified (Laumann, Marsden, and Prensky 1983).

Statistical models such as exponential random graph models (see Section 5.3) are usually
employed to analyze whole-network data (such as those on the physician network) that provide
information on relationships among all units/actors within a closed population. Inferences
therefore pertain to the model postulated as having generated those data, rather than to the
design used to sample relationships for study from some larger network. Most applications of
such methods examine networks of modest order—including between 10 and 50 actors—
though analyses of much larger-order networks have been reported (e.g. Goodreau 2007).

2.3. Example: Influential Discussions among Physicians within a Primary Care Practice
A physician influence network in a primary care practice (Keating et al. 2007) will be used as
an example throughout this article. The network was measured as part of a study examining
how social networks influence physicians’ beliefs and the use of therapies such as hormone
replacement therapy (HRT). It exemplifies a one-mode, cross-sectional, whole-network study.
The actors are physicians in the practice, and the relationships are influential discussions about
women’s health issues. Of 38 physicians, 33 responded to a survey, reporting the number of
influential discussions about women’s health issues (measured ordinally, as 0, 1–3, or 4+) they
had with each other physician in the practice during the prior six months. Our illustrative
analyses treat these data as binary-valued, distinguishing between reports of no discussions
and of one or more discussions. The survey gathered attribute data for each physician, including
vignette items measuring the propensity to recommend HRT, self-assessed areas of medical
expertise, and the fraction of women in her/his panel of patients. Administrative records
provided information on physician gender and number of clinical sessions per week.

We create two binary-valued versions of the physician influence network using these data. In
the “directed” network, a relationship from physician i to physician j is said to be present if i
cites j as a partner in one or more influential discussions. Such citations need not be
reciprocated. In the “undirected” network, a relationship between i and j is present if either
cites the other as someone with whom an influential discussion took place. Here, the
relationship is either present or absent for each dyad, lacking directionality.

2.4. Representations of Networks
Two ways of representing networks are common (Freeman 1989): as matrices, and as graphs.
In a matrix representation, rows and columns correspond to units/actors; the matrix is square
for a one-mode network, and rectangular for a two-mode network. Multiple matrices are
required for multirelational or longitudinal data. Cell entries contain the value of the
relationship linking the corresponding units/actors, so that the ijth cell represents the
relationship from actor i to actor j. With binary-valued ties (1s indicating the presence of a tie),
the matrix representation is known as an adjacency matrix. Table 1 displays the adjacency
matrix for the first ten physicians in the directed women’s health influence network. The
network appears to be quite sparse, since there are many more 0s than 1s.
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Networks are often represented using graphs in which actors/units are vertices and non-null
relationships are lines. Undirected relationships are known as “edges” and directed ones as
“arcs”; arrows at the end(s) of arcs denote their directionality. Graphical representations are
often binary, but value-weighted graphs can also be constructed by displaying non-null tie
values along arcs/edges, or by letting thinner and thicker lines represent line values. Such
graphic imagery is a hallmark of social network analysis (Freeman 2004); early graphical
depictions of networks were known as “sociograms.”

Graphs of networks are abstract in the sense that they do not have underlying coordinate axes.
Many such drawings are ad hoc renderings, constructed using aesthetic criteria (e.g.,
minimizing the number of crossing lines). Algorithms including multidimensional scaling
(Bartholomew et al. 2002) and spring embedders (Fruchterman and Reingold 1991) now are
often used to position units/actors in Cartesian space by optimizing some function of the
network data and the spatial coordinates for units. For example, the Fruchterman-Reingold
algorithm locates units/actors such that those connected by an edge/arc are near—but (to avoid
visual clutter) not too near—one another, while unconnected ones lie further apart. Graphs can
be enhanced by letting the sizes, shapes, colors or labels of vertices represent differing values
of attributes for units/actors.

Figure 1 displays the directed physician influence network, as rendered by the Fruchterman-
Reingold algorithm programmed in the statnet software package (Handcock et al. 2003).
Except for omission of the directional arrows, the graph for the corresponding undirected
network is identical. The 33 actors (physicians) are labeled from 1 to 33. In general, physicians
who often cite, or are cited by, others as influential conversation partners (such as physicians
21 and 27) tend to appear nearer the center of the graph.

Graphic representations of networks are visually appealing and evocative, but it is important
not to over-interpret them. Plotted distances do not directly correspond to measured “social
distances.”2 Distinct, but formally equivalent, spatial arrangements based on the same network
data can influence perceptions of structural characteristics (McGrath, Blythe, and Krackhardt
1997). The many vertices and lines in graphs of large, dense networks can render them
unreadable. In general, graphs are most useful for identifying distinct regions or clusters within
a network, distinguishing central and peripheral nodes, and revealing intermediary nodes that
link distinct regions of the network. Careful analyses of networks usually focus on their
mathematical and statistical features, however, as discussed in the sections that follow.

Network visualizations can be constructed using numerous software packages. Among these
are the R package sna (Butts 2007), NetDraw (Borgatti 2008), and Pajek (Batagelj and Mrvar
2003).

3. Descriptive Properties of Networks
Analysis of network data often begins by examining both actor- and network-level descriptive
statistics and measures. This section reviews many of the most common of these. Wasserman
and Faust (1994) provide a comprehensive introduction to descriptive network measures.

2The extent to which distances in a graphical representation correspond to the data on which they rest—dyadic measurements of social
distance or proximity—depends on the objective function that serves as a fitting criterion. when the plot is constructed. The most widely-
used “nonmetric” multidimensional scaling algorithm requires an ordinal correspondence between data and plotted distances; “metric”
scaling uses a stronger (linear) criterion. Objective functions used by many spring-embedder methods involve a “node repulsion” term
that simplifies the visual representation by discouraging co-location of vertices within a plot, but simultaneously limits the extent to
which data and plotted distances correspond. Moreover, a low (ordinarily 2)-dimensional Cartesian plot may do more or less well in
representing data on the relationships among N actors, which may in principle be (N − 1)-dimensional.
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We use the symbol yij to refer to a network variable recording data on the relationship from
actor i to actor j. A matrix y includes all such variables. In many applications yij is binary-
valued, taking the value 1 if i is tied to j and 0 otherwise; in this article, we take yij to be binary-
valued unless indicated. Self-relations yij are usually undefined. When relations are binary-
valued, y is the adjacency matrix.

3.1. Size and Density
Perhaps the very simplest property of a network is its number of units/actors (N), known as its
order. For binary-valued networks, the corresponding relation-level statistic is the number of
ties, known as size (L = Σi, j yij). A widely cited statistic is network density, defined as size
relative to the number of possible ties and equal to L /(N(N − 1)) for directed networks. More
generally, for quantitative data on relations, density could be defined as the mean strength of
a tie.

The 33-physician influence network is of order 33. The directed influence network has size
163, i.e., 163 nonzero ties were observed. Since 33*32=1056 ties were possible, network
density is 0.154.

3.2 Degree and the Degree Distribution
In an undirected network, an actor’s degree is the number of other actors to which it is directly
connected. Analyses of directed networks distinguish between incoming and outgoing ties.
The number of arcs oriented toward an actor is that actor’s in-degree (y+j = Σi yij), sometimes
termed popularity or attractiveness; the number of arcs emanating from an actor is its out-
degree (yi+= Σj yij), also known as expansiveness. Often actors having greater degrees have
prominent roles in the network; indeed, the simplest measures of centrality (Section 3.6) are
based on degree (Freeman 1979).

The degree distribution is the frequency distribution giving the number of actors having
particular numerical degrees. Its variance measures the extent to which direct connectedness
varies across actors (Snijders 1981). Barabási and colleagues have focused on degree as their
fundamental analytic interest (Barabási 2002; Wolfram 2002), showing that many network
properties are shaped by the degree distribution. As the examples in Figure 2 illustrate,
networks with the same overall density but different degree distributions may have quite
different structures. A “circle” network—in which actor degree is constant (and hence, degree
variance is 0)—and a “star” network—in which one actor has degree N − 1 while all others
have degree 1—lie at opposite ends of the spectrum with respect to degree variation.

Histograms of the degree distributions for the directed physician influence network are shown
in Figure 3. The out-degree distribution is more uniform than the in-degree distribution, which
is markedly skewed toward the right. The standard-deviation among in-degrees is 5.20, while
that among out-degrees is only 3.29. Many physicians are rarely cited by others as influential
discussion partners, while one has an in-degree of 24. A list of actor-level network statistics
(Table 2) shows that physician 27 has out-degree 24 but in-degree of only 2. This physician
directly influences most of the other physicians but is influenced by few of them. Three
physicians do not influence others (have indegree 0) while two are not influenced by any others
(have outdegree 0).

3.3 Paths and Geodesic Distance
Actors in networks are connected to one another indirectly via intermediaries as well as directly.
Nonzero ties in the adjacency matrix give direct connections. An indirect connection is present
when one or more multi-step paths exist from one actor to a second, in which case the latter is
said to be reachable from the former. A length-2 path from actor i to actor j exists when there
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is a third actor h such that i is adjacent to h and h in turn is adjacent to j. Paths may involve
multiple adjacencies; the length of a path is the number of relationships or lines it contains. A
geodesic path is a shortest-length path between a given pair of actors. Geodesic distance—the
length of a geodesic path—is perhaps the most widely-used network-based measure of the
social distance separating units/actors.

Matrix multiplication of an adjacency matrix y by itself yields the number of paths of a given
length between any two actors. For example, the ijth element of yk contains the number of paths
of length k from actor i to actor j. The geodesic distance from i to j is given by the smallest
positive integer k for which the ijth entry in yk is nonzero. If no path from i to j exists, the
geodesic distance from i to j is said to be infinite. In directed networks, the geodesic distance
from i to j need not equal that from j to i.

For the directed physician network, the number of paths of length 2 and length 3 that begin
and end with actors 1 through 10 are displayed in Tables 3 and 4, respectively. There is a rapid
decrease in the number of nonzero cells and a rise in the number of distance-k paths connecting
most pairs of physicians as path length (k) increases. Some directly-connected pairs of
physicians are not indirectly linked, however. For example, there is a direct tie from physician
2 to physician 3 (Table 1), but no path of length 2 or 3, indicating that no sequence of ties via
one or two intermediary physicians leads from physician 2 to physician 3.

Table 5 displays the geodesic distances between actors 1–10 in the directed physician network.
Values of −1 indicate that no path of any length exists from one physician to the other, i.e. that
the geodesic distance between them is “infinite.” For example, there is no path to physician 2
from any of physicians 1–10. Similarly, physician 10 cannot reach physicians 1–9. The longest
geodesic distance shown is 5, from physician 6 to 10 and from physician 7 to 10.3 The geodesic
distances are not symmetric; for example, from physician 1 to 4 the distance is 3, but from 4
to 1 it is 2.

3.4. The dyad census and reciprocity
In binary-valued directed networks, three types of dyadic relationships may exist: mutual
dyads, in which a tie from i to j is accompanied by one from j to i; asymmetric dyads in which
there is a relationship between i and j in one direction, but not the other; and null dyads in
which there is no tie in either direction. The dyad census is the set of three network statistics
giving the number of each dyad type found within a given network; for example, the number
of mutual ties is M = Σi<j yij yji.

If all ties in a binary network are either mutual or null, the network is said to be symmetric, in
which case the adjacency matrix y and its transpose yT are identical; an undirected network is
symmetric by construction. The presence and magnitude of a tendency toward symmetry or
reciprocity in a directed network can be measured by comparing the number of mutual dyads
to the number expected under a model in which ties are reciprocated at random. If the number
of mutuals is lower than expected, there is a tendency away from reciprocation.

The dyad census for the directed physician network includes 26 mutual dyads (encompassing
52 directed ties), 111 asymmetric dyads, and 391 null dyads. The distribution of the number
of mutual ties across physicians is right-skewed (Figure 3), with mean 1.45 and standard
deviation 1.68. Because the proportion of mutuals among non-null dyads, 26 /(26 + 111) =
0.190, exceeds the network density (which estimates the probability that any tie is present in
a purely random network), 0.154, there appears to be a tendency toward reciprocity in this
network. A formal test requires information about the distribution of the expected number of

3Note that some or all of the intermediaries along these geodesic paths may be physicians 11–33.
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mutuals under the hypothesis of random reciprocation; more powerful tests condition on
observed features of the network such as the degree distribution (Holland and Leinhardt
1981;Snijders 1991). Tests for reciprocity may also be conducted using regression models that
control for other network effects; Section 5 presents a regression-based test for reciprocity in
the physician influence network.

3.5. The Triad Census, Transitivity, and Closure
Triads in undirected, binary networks may include 0, 1, 2, or 3 relationships. Triads having 3
relationships are said to be closed or transitive, in that each pair of units/actors linked by a
direct tie is also linked by an indirect path through the third unit/actor. For directed binary
networks, 16 distinct triad types exist, distinguished by the number and orientation of the
directed ties they include (Wasserman and Faust 1994). Of these, triad types including
transitive substructures—in which the presence of a direct tie from i to j is accompanied by the
presence of an indirect path from i to j via h—are indicative of network closure. The triad
census is the set of network statistics giving the number of triads of each possible type in an
observed network. The triad census is related to the mean and variance of the degree
distribution, and holds strong implications for overall network structure, especially for
networks of low order (Frank 1981).

One indication of transitivity can be obtained by considering the subset of triads in which one
actor is connected to both of the others, and comparing the proportion of such triads that are
closed (i.e., the proportion in which j and k are connected, given that both j and k are connected
to i) to the network density (which estimates the probability that such a triad is closed in a fully
random network). The undirected physician influence network4 includes 1429 triads in which
one actor has ties to the two others, and 624 transitive triads. The proportion of transitive triads
among those including at least two ties is 0.437 which far exceeds the undirected network
density of 0.256, implying that such triads occur more often than expected by chance. This
comparison is not a formal statistical test, however, as it does not consider the distribution of
the number of closed and non-closed triads, nor does it condition on the dyad census, the degree
distribution, or other network statistics. The papers referenced earlier describe formal tests for
transitivity while Section 5 tests for it within a regression framework.

3.6. Centrality
Measures of centrality reflect the prominence of actors/units within a network. They are among
the most widely-used actor-level measures that derive from network data.

Distinct centrality measures (Freeman 1979; Wasserman and Faust 1994) are sensitive to
different aspects of an actor’s network location. The simplest is based on an actor’s degree.
Separate in-degree and out-degree centrality measures exist for directed networks. Degree-
based centrality reflects an actor’s level of network activity or involvement. A second common
measure rests on betweenness: the frequency with which an actor is found in an intermediary
position along the geodesic paths linking pairs of other actors. In networks of communication
or exchange, actors with high betweenness centrality have high capacity to broker or control
relationships among other actors. A third major centrality measure, closeness, is based on the
sum of geodesic distances from a given actor to all others; closeness-based network prominence
is inversely proportional to this sum. Actors linked to others via short geodesics have
comparatively little need for intermediary (broker) units, and hence have relative independence
in managing their relationships. Closeness measures are defined only for networks in which
all actors are mutually related to one another by paths of finite geodesic distance; this condition
holds for the undirected physician network but not the directed one.

4Recall that the undirected physician network is identical to that shown in Figure 1, except that ties lack directionality.
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Another centrality index is sensitive to the presence and/or strength of connections, as well as
the centrality of those actors to which a focal actor is linked. It assumes that connections to
central actors indicate greater prominence than do similar-strength connections to peripheral
actors. Measures based on this conceptualization involve the eigenvector corresponding to the
largest eigenvalue of a matrix representation of a network, and hence are known as
eigenvector centrality measures (e.g. Bonacich 1987). The different centrality measures are
often—though not always—well-correlated, but embody different aspects of network
prominence.

The centrality measures for the directed physician network (Table 2) show that physician 19
claims to be influenced by the most others, having the largest outdegree (13), while physician
27 (with the largest indegree of 24) influences the most others.5 The betweenness measure
reported in Table 2 has been scaled so that scores indicate betweenness as a percentage of its
maximum possible level. Physicians 9 (scaled betweenness 27.6) and 27 (scaled betweenness
20.1) are most central by this definition. We do not report closeness scores for the directed
network, because not all pairs of physicians are linked by finite geodesic paths.

The closeness scores for the undirected network (Table 6) are standardized for the number of
physicians in the network (Beauchamp 1965); values lie between 0 and 1 with higher values
reflecting greater centrality. Physician 27 (closeness 0.8) is by far the most central actor
according to this measure and physicians 14, 20, and 25 are the least. Note that physician 25
is less central in terms of closeness than physician 26 although physician 25 has higher degree.
Eigenvector centralities for this network6 also show physician 27 (0.35) to be most central,
followed by physician 9 (0.29); these are scaled here such that each actor’s eigenvector
centrality equals the corresponding element of the first eigenvector of the adjacency matrix.

Centrality measures are often taken as indicators of an actor’s network-based “structural
power”; the suitability of such an interpretation depends, of course, on the substance of any
particular application. Such measures are often used as explanatory variables in individual-
level regression models, but such applications do not always fully account for
interdependencies among the actors in whole-network data sets.

Centralization indices (Freeman 1979) are network-level statistics that resemble the degree
variance, growing larger to the extent that all relationships involve a single actor (as in the
“star” network shown in Figure 2).

3.7. Cliques, Components and Clusters
Descriptive analyses often use network data to assign actors to subgroups, reasoning that certain
patterns in relationships reveal salient social distinctions. Often this involves a search for
locally dense regions within a network, that is, subsets of actors that have strong relationships
with one another. For binary-valued networks, an idealized model of such a solidary subgroup
is the clique, a maximal subset of actors having density 1.0. This subgroup density requirement
is very stringent, and analyses of empirical network data rarely find cliques of appreciable size.
Other approaches to identifying cohesive subgroups relax that standard in various ways
(Wasserman and Faust 1994).

Components are a much weaker subgroup concept. In a directed network, strong
components are subsets of actors mutually linked to one another by paths of finite length. Strong
components partition the actors in a network into mutually exclusive and exhaustive subsets,

5We calculated centrality scores using the software package UCINET 6 (Borgatti, Everett, and Freeman, 2002).
6Eigenvalue centrality can in principle be calculated for a nonsymmetric matrix, but the routine in UCINET 6 handles only the symmetric
case.
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which themselves are partially ordered. Weak components are defined similarly, except that
the directionality of relationships is ignored when assessing whether two actors are connected;
by construction, weak components are isolated from one another. Many networks consist of
one large component, sometimes together with several smaller ones and singleton actors. A
Colorado Springs study of persons at risk for HIV (Rothenberg et al. 1998) documented an
overtime decline in the size of components in networks of risky (sexual, drug-using, needle-
sharing) ties, connecting this to a fall in personal risk-taking.

Still another cohesion concept is the k-connected component (White and Harary 2001): a
maximal subset of actors mutually linked to one another by at least k node-independent paths
(i.e., paths that involve disjoint sets of intermediary actors who also lie within the subset). This
notion emphasizes robustness of connections among the elements within subgroups. The
mapping of actors to k-connected components is not mutually exclusive, and k-components
for higher k are nested within those for lower k.

The physician network appears to be relatively cohesive. In the directed network, one main
strong component includes 27 of the 33 actors. The remaining six are singletons: four of them
cite physicians in the main component but receive no citations from it, while the other two are
cited by main-component physicians but do not cite anyone. The undirected network consists
of a single connected (weak) component. Indeed, the entire undirected network is a bi-
component, since all pairs of physicians are connected via at least two node-independent paths.
The undirected network is centered on a 7-physician clique (physicians 9, 16, 19, 21, 24, 27,
and 33 in Figure 1), which is part of a 6-connected component that includes 17 physicians.

3.8. Homophily
The tendency for relationships to form between people having similar attributes is known as
homophily (McPherson, Smith-Lovin, and Cook 2001). Homophily involves three-way
statistical interactions between actor attributes and the presence of relationships, or
equivalently, subgroup-specific network density statistics. With high homophily according to
some attribute, networks tend toward segregation by that attribute, contributing to network
closure.

Empirical studies in the network literature often report tendencies toward homophily. In their
analysis of the physician network, Keating et al. (2007) documented strong tendencies toward
homophily by organizational location: influential discussions tended to be held with others in
a physician’s clinic (subpractice) within the practice. By contrast, they found a weak and
insignificant tendency toward homophily by gender.

3.9. Descriptive Properties for Egocentric Networks
Numerous properties of network structure in an actor’s locality can be measured using data on
that actor’s egocentric network (Marsden 1987). Two very common ones are the actor’s degree
(often termed egocentric network size) and local network density—the extent of connectedness
among the pairs of alters within a given egocentric network. High local density indicates closure
within the neighborhood surrounding an actor. A betweenness centrality measure for
egocentric network data is available (Marsden 2002). Actor-specific statistics summarizing the
distribution of alter characteristics in an egocentric network—such as the mean and standard
deviation of the ages of alters—measure network composition and heterogeneity. Burt
(1992) presents a refined set of indices that measure egocentric network closure.

Such properties of egocentric networks can be derived from whole-network data, and can also
be based on egocentric network data obtained within representative sample surveys. Once
constructed, such indices are often used as explanatory variables in regression analyses that
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seek to explain variations in some individual-level outcome such as well-being, or as dependent
variables in analyses concerned with determinants of local structure. With egocentric network
measures based on whole-network data (as in the physician network), however, analyses should
recognize the complex pattern of interdependence between egocentric networks due to the
clustering of actors. However, no special analytic problems arise when such data are assembled
within sample surveys—since the alter actors in an egocentric network usually are not among
the ego units sampled, so assuming independence among observations on different egocentric
networks is reasonable.

Hierarchical models are often used to analyze egocentric data since observations are grouped
by ego. This model uses both between-ego covariates and within-ego covariates measured on
the alters or on ego-alter ties (Van Duijn, Van Busschback, and Snijders 1999). Due to the
independence between egos, multilevel models whose within-ego covariance matrix captures
the association between alters tied to each ego and among themselves can be applied to such
data. Wellman and Frank (2001) provide an example of hierarchical modeling of this type of
data in the context of social network capital. Standard hierarchical models cannot be used to
analyze the data structures described in Sections 4 and 5.

3.10 Software for Descriptive Network Analysis
Most current network software is found in stand-alone programs rather than integrated software
packages such as SAS or Stata, though such packages can construct many measures for
egocentric network data. UCINET 6 (Borgatti et al. 2002) is relatively comprehensive and
widely used in managing network data and conducting descriptive analyses. The R package
sna (Butts 2007) likewise can perform most analyses discussed in this section. See Huisman
and Van Duijn (2005) for other, often more specialized, network software.

4. Individual outcome regression models
Individual-outcome regression models are, as usual, primarily concerned with how the
distribution of some dependent variable (e.g. an attitude or opinion) measured on a focal actor
is related to one or more explanatory variables. When such attitudes or opinions are formed in
part as the result of interpersonal influence, the outcomes for actors are not statistically
independent as assumed by many regression models. Instead, the outcome for one actor will
be related to those for the other actors who influence her or him, leading to a complex
correlation structure. In theory each actor might directly or indirectly influence each other
actor. Individual-outcome analyses use network data to model this correlation structure.
Networks may enter through either the construction of explanatory variables or the modeling
of covariances among errors.

Let Z be a vector containing measures of an outcome on the N actors in a network, X be a
matrix whose ith row contains a vector of exogenous predictor variables (e.g. gender) for the
ith actor, and W be an N × N matrix whose elements Wij measure the extent to which actor i is
influenced by actor j, larger values indicating greater influence. In individual-outcome
analyses, the covariates X typically measure attributes of individual actors. These may include
actor-level network statistics such as a focal actor’s degree, centrality, or local density (see
Section 3). If an analysis is based on data for actors within multiple, disjoint networks, network-
level statistics such as global density or network centralization could vary among the actors
and thus be used as predictors. Elements of W are measured via some function of the network
data (e.g., adjacency, tie strength, or inverse geodesic distance); ordinarily diagonal terms
Wii are set to 0. Typically, the rows of W are scaled to sum to 1, so that Wij is interpretable as
a measure of the relative influence of j on i.
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Network-related interdependence among the outcomes Z may be incorporated in two distinct
ways. First, one actor’s outcome may depend directly on the outcomes of the alters to whom
s/he is linked. The vector Z̄W = WZ contains, for each focal actor, the (weighted) average value
of the outcome measure for those other actors to whom that actor is linked by nonzero influence
Wij; as such, outcomes for other actors contribute to Z̄W in proportion to their influence on the
ego. Thus, Z̄W is a network-lagged outcome. For the special case in which W is a scaled
adjacency matrix (i.e.  if yij = 1 and 0 otherwise, where yi+ is the outdegree of—i.e.,
number of actors that influence—actor i), Z̄W is a vector whose ith element is the unweighted
average value of the outcome for alters in actor i’s egocentric network.

An autoregressive outcome model accounts for interdependence between outcomes by directly
including Z̄W as a predictor. Such a regression model is

(1)

where ε denotes a vector of stochastic errors, here taken to be independent of one another,
parameter α measures the magnitude of the network effect, and β is a vector of regression
parameters.

Alternately, the errors ε, rather than the outcomes Z themselves, may be interdependent. Such
network autocorrelation can be modeled via inclusion of a term ε ̄W = Wε in specifying the
distribution of the error term. The vector ε ̄W contains, for each focal actor, the (weighted)
average stochastic error for those other actors to whom that actor is linked by nonzero influence
Wij, again in proportion to their network-based influence on the ego. The relationship between
ε ̄W and ε is a second-order effect reflecting a component of correlation among elements of Z
due to unobserved factors. Observe that under the common assumption that the errors ε are
stochastically independent of the explanatory variables X, the network autocorrelation term
ε ̄W is likewise independent of X, while the network lagged term Z̄W will in general be correlated
with X. A regression model incorporating ε ̄W may be written as

(2)

where υ is a vector of independent random perturbations and parameter ρ measures the strength
of the network autocorrelation. The implied mean vector and covariance matrix of ε are 0 and
var(υ){(I − ρWT)(I − ρW)}−1 respectively. Model (2) may be rewritten as:

(3)

Equation (3) reveals that model (2) differs from (1) only by the addition of the network-lagged
covariate term ρWXβ, which measures the effect of other actors’ covariates on the outcome
for an actor. Because the network-lagged outcomes and covariates have equal (though
opposite) effects under model (2), model (1) is not nested in model (2). If, however, model (2)
were extended by allowing different coefficients for the autocorrelation terms for the lagged
outcomes Z and the covariates X, then both (1) and (2) would be special cases of that more
general model; see Friedkin (1990) for an example.

Individual outcome models may also be specified using both Z̄W and ε ̄W. The following
regression model contains both autoregressive outcomes and network autocorrelation (Anselin
1988; Burt and Doreian 1982), allowing for different weight matrices for the two:
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(4)

where W1 and W2 are the weight matrices for the spatially lagged network effects and network
autocorrelation effects, respectively. This model includes two sources of correlation in Z and
one source of correlation in Xβ.

Several authors in the network literature (e.g., Doreian 1980, Dow 1984, Doreian 1989,
Friedkin 1990) have introduced models (1) and (2), which are related to models used to account
for autocorrelation in spatial data analysis. Model (2) is commonly known as a simultaneously
autoregressive (SAR) model (Banerjee, Carlin, and Gelfand 2004; Waller and Gotway 2004).
In purely spatial contexts, an alternative to the SAR model known as the conditional
autoregressive (CAR) model is often used (Waller and Gotway 2004). The CAR model
specifies the conditional probability distribution of each Zi given all components of Z other
than Zi and then uses the Hammersley-Clifford Theorem (Besag 1974) to derive the joint
distribution of Z, whereas the SAR model and the autoregressive outcome model in (1) specify
the joint distribution of the error term ε and then induce the joint distribution of Z. However,
the CAR model has to date not been used in social network analysis as much as the SAR model
or variants thereof.

Ordinary least squares (OLS) techniques are not suitable for estimating models (1), (2), and
(4). OLS is inconsistent in the case of models (1) and (4) because Z appears on both sides of
the equation. In model (2), or equivalently (3), OLS is inefficient because the covariance matrix
of ε is not diagonal. These models can be estimated by generalized least-squares or maximum
likelihood (Waller and Gotway 2004) or instrumental variables (i.e., moment-based) methods
(Anselin 1988,1990;Land and Deane 1992). Deciding how to use network data to construct
the weight matrix (or matrices) is an important step in the application of these models (Leenders
2002).

4.1. Illustrative Analysis
To illustrate the use of individual-outcome models for the physician network, we examine
possible network effects on a physician’s propensity to recommend HRT; denoted RecHRT,
this is a summary score that averages responses to several vignette items. We hypothesized
that RecHRT would increase among physicians strongly tied to others with high propensity to
recommend HRT. In the autoregressive outcome model (1), the key explanatory variable
(denoted AltHRT) is the average value of RecHRT among the other physicians linked to each
focal physician through influential conversation ties. We constructed AltHRT and tested for
network autocorrelation using two different versions of the weight matrix W, one based on
direct network adjacencies, the other on scaled inverse geodesic distances.7 Physician gender,
percentage of women in a physician’s patient panel, and the focal physician’s outdegree serve
as additional covariates.

We fit both the autoregressive outcome model and the network autocorrelation model using
each of the weight matrices. For a given W, the autoregressive outcome model is

(5)

7Because two actors have outdegrees of 0, the associated rows of W sum to 0 as opposed to 1. Therefore, although these actors contribute
to the estimation of β and σ2, they do not directly contribute any information about the autocorrelation parameters α and ρ. We retained
these actors in the analysis because they were cited by other physicians as influencing them and so removing them would omit information
about how other actors were influenced.
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where ε ~ N(0, σ2I), and the network autocorrelation model is

(6)

where ε ~ N[0, σ2{(I − ρWT)(I − ρW)}−1].

The models in (5) and (6) may be fit by directly maximizing the respective likelihood functions
of the data. When constructed using the directed network data, W is asymmetric even before
its rows are standardized to sum to 1. This required extending the expressions for the usual
asymptotic covariance matrices of the maximum likelihood estimator of the model parameters
(see Doreian (1981) and Waller and Gotway (2004), in the case of the autoregressive outcome
and network autocorrelation (SAR) models respectively) to accommodate asymmetric W.

The estimates for model 5A and model 5B in Table 7 suggest that AltHRT has a modest positive
effect on a physician’s propensity to recommend HRT. However, because the p-value for the
effect of AltHRT on RecHRT is well above 0.05, further study is required before a firm
conclusion can be drawn. The estimated effect size is roughly the same for the two versions of
the weight matrix W. The estimates for models 6A and 6B in Table 7 suggest that the residual
network autocorrelation is weaker than the direct effect of AltHRT on RecHRT. Outdegree
has a moderate negative coefficient in all models, suggesting that focal physicians influenced
by a greater number of other physicians might be less likely to recommend the use of HRT.

The extent to which these results can be extended to other physicians and clinics depends on
the similarity of the physicians, their clinics, and the extent to which differences (e.g., due to
clinic characteristics or environments) affect physician behavior. If the data generating process
is the same as, or at least is exchangeable with, that which generated the physician influence
network, then the inferences will have relevance. However, there is no way of knowing the
similarity of the clinics and their physicians without conducting a study that draws data from
multiple practices (e.g. a cluster design).

4.2. Software for Individual-Outcome Analyses
Although the models fitted in Section 4.1 are non-standard in the sense that the covariance
structure is a function of an unknown parameter, we found it easy (and instructive) to write
our own R procedures to fit them (see Appendix). Alternatively, the lnam procedure in the sna
package (Butts 2007) in R may be used to fit the autoregressive outcomes and the network
autocorrelation models (see Appendix) as well as models containing both terms. Some models
can also be estimated using existing software available for spatial analysis. For example, the
S+SpatialStats package in SPlus can be used to fit SAR and CAR models, and the GeoBUGS
package in WinBUGS will fit models with CAR terms. When applying existing packages to
network data, or developing one’s own code, appropriate care must be taken to accommodate
the asymmetric weight matrices that commonly arise with network data.

5. Relational or dyad-level models
Relational analyses of network topology model the relationships in a social network
simultaneously, recognizing the interdependencies among them. They posit that global
network properties are the result of a set of localized regularities that create correlations
involving subsets of network ties, e.g. within actors, dyads, triads, or tetrads (Robins, Pattison,
and Woolcock 2005). Examples of such regularities are actor-level tendencies to produce and/
or attract ties, dyadic tendencies toward reciprocity, and triadic tendencies toward closure or
transitivity. Relational models may also incorporate attribute data on actors or relationships.
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For instance, certain types of actors may tend to attract ties, actors having the same or similar
attributes may tend to be linked (homophily), or actors linked in one network may also tend to
be related in a second.

A relational model, in essence, specifies a set of micro-level rules governing the local structure
of a network. When applied to relationships among an entire set of actors, such rules could
generate many random realizations. A successful model for an observed network should
produce realizations with typical properties that match the corresponding observed properties.
Hence, the capacity to reproduce observed network properties—especially properties that are
not explicitly modeled—signals that a model fits well. If a model does not capture a given
feature of an empirical network, it surely omits some consequential rule governing network
formation.

Since the 1930s, a variety of statistical methods have been used to analyze social network data
(Wasserman and Faust 1994). Early models generally relied on conditionally uniform null
distributions, positing that an observed network is drawn from a set of possible networks known
to have particular features. Initially, models tested for reciprocity and transitivity, conditioning
on lower-order network statistics. For example, Katz and Powell (1957) derived the distribution
of the dyad census for a directed network given the distribution of outdegrees. Holland and
Leinhardt (1976) proposed tests for transitivity (and other properties reflected in linear
combinations of counts in the triad census) against a null model asserting that the distribution
of networks is conditionally uniform given the dyad census. Few such distributions are
analytically tractable, however. The probability mass function for a uniform distribution of
networks given both the outdegrees and indegrees, for instance, cannot be written down, though
it would clearly be desirable to condition on both when testing for reciprocity.

Computing power now allows enumeration (for networks of small order, say N<10) or
simulation of networks from heretofore intractable distributions (Snijders 1991), permitting
nonparametric tests for certain network properties. To illustrate, we simulated 10,000 random
binary-valued networks having the in- and outdegree distributions shown in Table 2 for the
directed physician network. In these simulated networks, the mean number of mutual dyads
was 15, with a maximum of 24 and a 99th percentile of 20. Since the dyad census for the actual
physician network includes 26 mutual dyads, its level of reciprocity appears to be quite unusual
given its degree distributions.8

Beginning in the 1970s and accelerating in the past decade, statisticians have formulated new
parametric statistical models for relational data that can incorporate multiple network
properties, as well as attribute data. The forthcoming sections review such models. We begin
by defining notation. The binary random variable Y ij = 1 if there is a network tie from actor
i to actor j and Y ij= 0 otherwise. An adjacency matrix Y includes all such variables. Lower-
case letters, yij and y, respectively, denote realizations of these variables.

5.1. Fixed-Effect Dyad Independence Models
Some statistical models for entire networks are equivalent to models for individual ties Yij or
dyads (Yij, Yji). They emphasize degree distributions and reciprocity as features shaping
network structure. Among the first statistical models to be formulated for network data, such
models are comparatively simple to estimate and interpret. They specify that network variables
in different dyads are conditionally independent given covariates, so the likelihood function
for an observed network is the product of the probability distributions for dyads. Hence, these
models can be estimated using regression techniques with ties or dyads as cases.

8Computations were performed using the StOCNET software package (Boer et al., 2006).
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One of the simplest models corresponds to the independence digraph (Erdös and Rényi
1959) in which the presence of each possible tie is independent with Yij ~ Bernoulli(pij), where
μij = log(pij) denotes the logarithm of the probability of a tie from i to j. Enforcing a homogeneity
assumption μij = μ for all i and j simplifies this to a single-parameter model, under which the
probability distribution of possible networks

depends only on the network statistic t1(y) = Σi, j yij, the total number of ties.

More general models for directed graphs specify that dyads, rather than ties, are independent.
This allows the pair of ties within a dyad (Yij,Yji) to be correlated (positively so, in the case of
reciprocity). Such models usually allow for correlations among ties having a source (Yij,Yik),
j ≠ k or target (Yij,Yhj), i ≠ h in common by introducing “sender” effects αi and “receiver” effects
γi, thereby fitting the degree distributions.

As a dyad has four possible states, a four-component multinomial distribution serves as the
basis of a model, taking the pair of arcs in a dyad (Yij,Yji) as an independent multinomial random
variable with

(7)

where κij (θ) = 1 + exp(μij + αi + γj) + exp(μji + αj + γi) + exp(μij + αi + γj + μji + αj + γi + ρij)
is a normalizing constant and θ is a vector containing all model parameters. For the physician
influence network, parameter μij is a constant term reflecting the overall probability that
physician i reports an influential conversation with physician j (i.e., network density), the
sender effect αi reflects the propensity for physician i to be influenced by others, the receiver
effect γj reflects the propensity for physician j to influence others, the reciprocity parameter
ρij accounts for within-dyad dependence, and κij (θ) = κji (θ) is a normalizing constant. Model
(7) is fully saturated; ordinarily it is simplified by enforcing homogeneity conditions on μij and
ρij.

Holland and Leinhardt (1981) introduced the p1 probability density including the homogeneity
conditions μij = μ and ρij = ρ for all i and j, and treating the sets of parameters {αi } and {γj }
as fixed effects. This leads to the probability density function

(8)

where network statistics t2i (y), t3 j (y), and t4 (y) refer to the outdegree of actor i, the indegree
of actor j, and the number of mutual dyads, respectively, and K(θ) is a normalizing constant.
Under this model, the probability distribution of possible networks is conditionally uniform
given the two degree distributions and the dyad census.
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We estimated the p1 model for the physician network data by maximum likelihood using
methods for fitting log-linear models (Fienberg and Wasserman 1981), imposing the
identifying constraints Σi αi = 0 and Σj γj = 0 on the sender and receiver parameters, respectively.
Estimates of these latter parameters generally correspond to the degree distributions shown in
Table 2; for example, physician 27 has the largest indegree (24) and also the largest estimated
receiver parameter (γ ̂24 = 4.12).9 The estimated reciprocity parameter (ρ) is 1.91. Interpretable
as a log-odds ratio, it indicates that the predicted odds of a tie from physician j to physician i
are nearly 7 times larger (exp(1.91) = 6.75) if a tie from physician i to physician j is present.
A likelihood ratio test statistic for reciprocity is 20.3 with 1 df. The distribution of this statistic
appears to approach χ2(1) as the number of actors (N) increases (Holland and Leinhardt
1981), suggesting (in accord with the previously-presented nonparametric test) a statistically
significant tendency toward reciprocity.

Variations on the fixed-effect version of model (7), sometimes known as a priori stochastic
blockmodels, accommodate categorical attribute data on actors. Such models may restrict
model (7) by requiring that actors sharing an attribute value have identical
“expansiveness” (αi) and “attractiveness” (γj) parameters (Fienberg and Wasserman 1981); for
example, the tendency to produce ties might be identical across male actors. Additionally,
stochastic blockmodels may extend p1 by relaxing the homogeneity constraints imposed on
the density parameters μij or the reciprocity parameters ρij, for example by estimating separate
density and/or reciprocity effects for pairs of actors who share an attribute value and those
differing on the attribute (Fienberg and Wasserman 1981;Wang and Wong 1987); the density
of contact or the tendency toward reciprocation might be greater for same-gender than for
different-gender pairs. Such specifications imply inclusion of subgroup-specific network
statistics in the p1 density function shown above. When constraints on parameters imply that
two actors have identical vectors of probabilities for their ties to others in the network, that
pair of actors is said to be stochastically equivalent (Holland, Laskey, and Leinhardt 1983).

5.2. Mixed-Effect Dyadic Independence Models
As an alternative to the fixed effects in the p1 model, structure may be introduced into the
framework of model (7) by modeling the sender and receiver parameters using random effects
together with actor-level covariates. The density and reciprocity effects remain fixed and
subject to homogeneity conditions; they may, however, depend on dyadic covariates. For
binary-valued network data, these specifications lead to a mixed-effect model known as p2
(Van Duijn, Snijders and Zijlstra, 2004).10

Let vectors x1ij, x2i, x3 j, and x4ij denote covariate sets that contribute to the density effect
μij, the sender effect αi, the receiver effect γj, and the reciprocity effect ρij, respectively; x2i and
x3j are actor-level, while x1ij and x4ij are dyadic. The p2 model assumes the following
hierarchical structure for the parameters in (7):

(9)

where ai and bj are mean-0 random effects assumed to have a multivariate normal distribution
and an unrestricted covariance matrix. Wong (1987) studied a related Bayesian model that does

9Under p1, the estimate of a receiver parameter is infinitely small for actors with indegree 0; likewise, the estimate of a sender parameter
is −∞ when the corresponding outdegree is 0.
10The p2 model is closely related to a social relations model developed by Kenny and La Voie (1984) for quantitative network variables.
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not allow for the dependence of parameters on measured covariates. Gill and Swartz (2004)
generalize the framework to other situations including a priori stochastic blockmodels and
multirelational networks.

Estimation of the mixed-effect model specified by (9) requires methods for fitting hierarchical
generalized linear models with crossed random effects. Van Duijn et al. (2004) outline an
iterative generalized least squares algorithm, while Zijlstra, Van Duijn and Snijders (2006)
take a Bayesian approach and suggest Markov Chain Monte Carlo (MCMC) methods for
simulating the posterior distribution of the parameters in p2.

Keating et al. (2007) analyzed the physician network data using the p2 model and MCMC
estimation with diffuse priors. With no covariates, the median of the posterior distribution for
the reciprocity parameter was 1.77 (95% credible interval (CI) 1.01 to 2.55), quite comparable
to the estimate (ρ̂ = 1.91) from p1. Introducing covariates, they found that receiver effects were
larger for physicians whose panels of patients included large percentages of women, who were
self-reported experts in women’s health, and who had larger numbers of patient sessions per
week. The density parameter μij was significantly larger (median 1.61, 95% CI 1.13 to 2.12)
for pairs of physicians located in the same clinic within the practice. The estimated reciprocity
parameter became smaller (median 1.29, 95% CI 0.50 to 2.17) after adjusting for the covariates.
The residual random sender effects ai and receiver effects bj were uncorrelated (median
covariance −0.22, 95% CI −0.83 to 0.28)

Both the p1 and p2 models are restrictive because they consider only network statistics
corresponding to configurations of one or two actors. However, an advantage of dyad-
independence models is that the network consists of multiple independent configurations
(namely dyads) and so there is a clear notion of how a sample can be drawn from the population
of actors. This allows inferences and asymptotics to be treated in the usual manner. More
complicated models are required to incorporate network effects involving dependencies
involving multiple dyads, such as transitivity or closure. Recently-developed exponential
random graph models permit such analyses of network data, although methods for sampling
such data are still in their infancy (Section 6.3).

5.3. Exponential Random Graph Models (ERGMs)
ERGMs (Anderson, Wasserman, and Crouch 1999; Frank and Strauss 1986; Pattison and
Wasserman 1999; Robins, Pattison, and Wasserman 1999), also known as p* models, allow
much more general forms of interdependency among network variables than those incorporated
in dyadic independence models. ERGMs model the probability that a random network Y is
realized by an observed network y as:

(10)

where κ (θ) = Σ y ∈ Ψ exp(Σk θk Sk (y)) is a normalizing constant that makes the probabilities
sum to 1 across possible networks, and Ψ is the set of possible networks.11 The right-hand side
of (10) describes a formula for producing random networks based on network statistics Sk that
correspond to network features; its parameters indicate the sensitivity of the network-
generating formula to particular features. A positive θk indicates that the rule for producing
networks favors networks with feature k, while a negative value indicates that such networks
tend to be avoided.

11The large number of terms in κ(θ) complicates the estimation of ERGMs. There are 2N (N − 1) possible directed binary-valued networks;
for example, with N=10, the number of possible networks—hence terms in κ(θ)—is 1.238×1027.
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In principle, any network statistic Sk (y) may appear on the right-hand side of (10), and any
subset of the N (N − 1) network variables may be conditionally dependent on one another.
Many applications emphasize statistics corresponding to specific local network
configurations consisting of small numbers of ties yij, so that Sk (y) = Π yij∈ k yij is the binary
network statistic denoting presence of configuration k. The most general ERGM allows a
unique parameter for each distinct configuration (i.e., each subset of ties that takes the form of
interest). Typically, however, models are simplified by imposing homogeneity constraints on
parameters for isomorphic configurations, in which case the pertinent network statistics are
sums over all such configurations.

Since (8) takes the form of (10), the fixed-effect p1 model is an ERGM with parameters for
configurations consisting of single directed ties yij themselves and mutual ties yij yji, as well
as actor-level network statistics for outdegrees Σi yij and indegrees Σj y ij. Homogeneity
constraints on the effects for ties and mutuality lead to the terms S1 (y) = Σi, j yij and S 2 (y) =
Σi< j yij yji on the right side of (10). Under p1, network variables are conditionally dependent
if they share a sender, share a receiver, or involve reciprocity.

More general ERGMs add higher-order terms. Frank and Strauss (1986) introduced the notion
of Markov dependence, under which two network variables yij and ykl may be conditionally
dependent if the two ties have any actor in common, i.e. if i = k, i = l, j = k, or j = l. This approach
models degree distributions through the inclusion of statistics for “k-stars.” A k-star is a
configuration in which k ties are incident to a particular actor; k-star configurations are nested
within one another, so that an actor with degree m contributes k-stars for k < m; 12 a positive
regression parameter for such a configuration indicates a tendency for ties to cluster around a
particular actor. Distinct k-out-star and k-in-star configurations exist in directed networks. For
example, an indicator for the presence of a particular 2-out-star configuration is yij yih. Imposing
a homogeneity constraint on parameters for all k-out-star configurations (for a given k) leads
to the following network statistic for k-out-stars:

13

An analogous definition holds for k-in-stars. Models typically include a small number of lower-
order k-star terms rather than fitting degree distributions exactly, for parsimony and because
the terms for different k are often highly collinear.

An additional configuration admissible for directed network data under Markov dependence
is a “2-path” (or indirect tie), under which a given actor j is the receiver of one tie and the
sender of a second; an indicator for the presence of a 2-path is the product of network variables
yij y jh, h ≠ i. Very important in modeling networks are triadic configurations (products of three
ties involving three distinct actors). In directed networks, the two triadic configurations of
greatest interest are the transitive triad and the 3-cycle. With homogeneity constraints, these
imply the following network statistics in (10):

12For example, an actor with degree 3 contributes 1 3-star, 3 2-stars, and 3 1-stars; 1-stars are equivalent to individual edges.
13The set of k-star statistics is equivalent to the set of degree statistics (the number of nodes of degree k, k = 1,2,3,…) in that a bijection

exists between the two sets of the statistics (Snijders et al. 2006).
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The transitive triad is the key term for testing for tendencies toward closure in a network.
Analyses of undirected networks use a single triadic “triangles” statistic.

Under Markov dependence, ties are conditionally independent unless they share at least one
actor. This implies that dyads separated by at least one tie are conditionally independent given
the rest of the network. An important theoretical result, the Hammersley-Clifford theorem
(Besag 1974), shows that if all isomorphic graphs have the same probability under a model,
then a random undirected graph is a Markov graph if and only if its probability distribution
can be written as

(11)

where S3:k (y) is the number of k-stars and S4 (y) is the number of triangles. Using appropriate
network statistics recognizing directionality, model (11) generalizes to directed networks.

The assertion that isomorphic network configurations have homogeneous effects is often
unduly restrictive. One way to relax it is by permitting the effects of a given configuration to
vary with characteristics of actors. Under Markov attribute dependence (Robins et al. 2007),
a configuration’s effect may depend only on attributes of those actors involved in it, so that
(e.g.) the parameter for the density configuration yij may depend on attributes of actors i and
j, but not on those of actors k ≠ i, j. The effect of any network configuration may depend on
actor attributes, but applications focus on the density effect. For example, the probability that
a tie is present may be greater when the receiver (j) has a particular gender or socioeconomic
status xj, implying the following network statistic for (10):

14

Higher-way interactions between actor attributes and density are also common. For example,
homophily effects (Section 3.8) can be assessed using a cross-product statistic between the
density configuration and an indicator for attribute similarity:

An ERGM model becomes non-Markovian when its network statistics involve configurations
in which at least one pair of ties does not share an actor. Such configurations involve four or
more actors. The number of potential statistics then escalates rapidly. One non-Markovian
network configuration is a k-path (indirect path of length k); for example, an indicator for the
presence of a 3-path is yij y jk ykh, i ≠ j ≠ k ≠ h. Among many others is the k-cycle (k >3), in
which a sequence of k ties involving k distinct actors begins and ends with the same actor; the
product yij y jk ykh yhi, i ≠ j ≠ k ≠ h indicates that a 4-cycle is present.

ERGMs with third-order and higher terms become much more difficult to make inference about
as they are essentially estimated from a sample size of 1, the observed network, which for the
validity of inferences is assumed to be the whole network. If the observed network is the whole
network, then inferences are to a super-population of networks that resemble the observed

14An analogous “sender covariate” statistic allows the density effect to depend on an attribute of the sender (i).
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network. However, if the observed network is only a sample of the network, the model that
generated the network may not have the same properties or even resemble the observed
network. This incongruity between the sample network and the full network arises because
there is no general way of decomposing networks into disjoint components whose sampling
distribution is that of the full network (the population of interest in this context). As a
consequence, some researchers advocate that only those models that can be constructed from
generative processes (i.e., from assumptions about how two individual actors interact and form
connections) should be used in modeling relational network data.

5.4. Model Estimation and Checking
Estimation, interpretation, and simulation for ERGMs is aided by the fact that (10) implies the
following expression for the log-odds that a tie is present given the remainder of the network:

(12)

where  is the realization of the network when the complement relation is applied to yij, and
 is the vector of changes in network statistics that occur if Yij is 1 rather

than 0.15 Multiplying a particular change statistic by the associated parameter value gives the
change in the log-odds that the tie is present associated with the statistic in question, conditioned
on the rest of the network (Snijders et al. 2006). For example, if a model includes the mutuality
statistic S2 (y) and the tie from j to i exists, then the presence of a tie from i to j would create
an additional mutual tie, and the log-odds of observing Yij = 1 would increase by θ2, the
regression coefficient for reciprocity.

Initially ERGMs were estimated using a pseudolikelihood function defined as the product of
the conditional distributions implied by (12) over ordered pairs (for directed networks) or dyads
(in the undirected case) (Besag 1975;Strauss and Ikeda 1990;Wasserman and Pattison 1996).
Because the pseudolikelihood has the same form as the likelihood function for a logistic
regression model, parameter estimates are easily obtained. However, unless dyadic
independence holds, the pseudolikelihood differs from the true likelihood function, so
inferences based on it can be unreliable.

Estimates with better properties can be obtained via the exact likelihood function for (10).
Because the normalizing constant κ(θ) involves summation across the 2N N (− 1) possible
(directed) networks, however, direct computation becomes intractable as the number of actors
N increases. Recently developed Markov chain Monte Carlo (MCMC) methods now allow
inferences to be based on the true likelihood function. One approach (Handcock 2003) relies
on MCMC integration (Geyer and Thompson 1992). It is implemented in the R package Statnet
(Handcock et al. 2003), which can fit models to moderate-sized networks (involving hundreds
of actors). This algorithm simulates a sample of networks using a set of provisional parameter
estimates; it then updates the estimates, approximating κ(θ) using the sampled networks and
maximizing the associated likelihood function. An alternative approach (Snijders 2002)
available in StOCNET (Huisman and Van Duijn 2004,2005) relies on a stochastic
approximation algorithm. Obtaining convergence can be difficult using either approach
because the likelihood surface based on (10) often has a highly irregular shape such that the
estimation procedures become trapped at local maxima, fail to converge, or converge to
inappropriate “degenerate” solutions (Handcock 2003). As an example below demonstrates,
great care must be exercised when fitting ERGMs.

15  is the realization of the complement network with yij = 1, while  is the realization of the complement network with yij = 0.
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Before interpreting or making inferences based on models fitted using MCMC, it is important
to ensure that the Markov chain has converged to its stationary distribution by allowing a
sufficiently long burn-in phase, and draw enough post burn-in samples to ensure that simulation
error is below a specified threshold so that inferences are sufficiently precise. The coda package
(Best, Cowles, and Vines 1995) in R can conduct the necessary checks in conjunction with
Statnet (Handcock et al. 2003). We found that the default settings in Statnet— allowing 10,000
burn-in iterations and drawing 10,000 post-burn-in samples separated by intervals of 100, for
a total of 1,010,000 iterations— were usually sufficient for models that did not contain triadic
terms; the latter required longer simulations.

The overall fit of an ERGM may be quantified using statistics such as the deviance and the
Bayesian information criterion (BIC). The deviance reflects the amount of variability explained
by a model and so increases as terms are added. The BIC decreases as the deviance rises,
tempered by a penalty reflecting the dimension (number of parameters) of the model.

Once estimates are obtained and convergence is assured, goodness of fit may be assessed by
simulating a sample of networks implied by a model and then comparing observed and
predicted distributions of network statistics. For statistics Sk (y) included in the model, such
comparisons are an additional diagnostic for convergence, since they tell whether the likelihood
equations are satisfied stochastically. Comparisons involving statistics not in the model are
signals of the adequacy of model specification. Statistics commonly used (and available in
Statnet) for assessing model fit include the degree distribution, the distribution of geodesic
distances between actors, and the numbers of contacts shared by dyads of actors or by those
pairs linked by edges. See Hunter, Goodreau, and Handcock (2008) for a detailed discussion
of methods for assessing model fit.

5.5. Illustrative Analysis: Directed Network
Our application fits models to the physician network including the density, mutuality and
transitive triad configurations; we do not include k-star parameters to model the degree
distributions in this illustrative analysis. We allow the density term to depend on three receiver
covariates: women’s health expertise (indicator variable), percentage female in a physician’s
panel of patients, and the number of clinical sessions per week. We estimated models using
the Statnet software.

Table 8 presents estimates for four models. The first, a Bernoulli model, includes only the
density (edges) statistic; its estimated coefficient is −1.701. The associated inverse logit, 0.154,
equals the overall network density. The second model adds the mutuality statistic, which has
a positive (1.187) and highly significant (p<0.0001) coefficient. Using (10), we see that the
log-odds that a tie is present rise if the reciprocal tie is observed, in accord with earlier
observations about a tendency toward reciprocity in this network. Physicians in this practice
evidently tend to regard their conversations with colleagues about women’s health as being
mutually influential. The estimated coefficient for the density (edges) term here (−1.952, with
inverse logit 0.124) is indicative of the density of ties in the absence of reciprocation; when a
tie is reciprocated, however, predicted density rises to 0.318, the inverse logit of the sum of
the estimated density and mutuality parameters.

In many applied settings, substantive interest will focus on how attribute variables are
associated with aspects of network structure. The third model illustrates this by letting the effect
of the density configuration vary with the three receiver covariates. Estimates suggest that
physicians with expertise in women’s health, high proportions of female patients, and more
clinical sessions per week were more apt to be cited as influential by their peers.

O’Malley and Marsden Page 22

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2009 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



When we attempted to add the transitive triad term to the second model, we encountered
difficulty in estimating model parameters by maximum likelihood. Although the resulting
regression coefficients are finite and the deviance indicates that model fit improved, networks
simulated using the estimated parameters tend to be extreme, often exhibiting a bimodal
distribution including only fully dense or null networks. The proportions in each of the modes
are such that the average simulated values of the model’s three network statistics (edges,
mutuality, and transitive triad) are close to the observed ones, suggesting good model fit, but
this is misleading: the inability to simulate networks that resemble the observed network signals
a radical discrepancy between model and data. This condition is commonly known as
degeneracy, and is often encountered when fitting ERGMs including k-star and triadic terms.
Degeneracy may arise because the network contains a high degree of structural heterogeneity
(e.g., dense regions with many triangles mixed or high degree nodes mixed with low density
regions), making it difficult (and perhaps impossible) to find parameter values that describe
the entire network.

Because of the degeneracy with the fit of the model with the transitive triad term, Table 8
reports pseudolikelihood estimates based on (12). These estimates suggest a tendency toward
network closure; i.e., that if one physician influences a second indirectly through a third, the
first physician also tends to influence the second directly. Because properties of the pseudo-
likelihood estimates are poorly understood, interpretation and inference based on these
estimates can be only tentative and cautious.

The degeneracy encountered in our attempt to fit the last model may indicate that a single
homogeneous transitivity effect does not describe this network well; we note from Figure 1
that it appears to contain one or two very dense regions. Such clustering may indicate that
transitive triads tend to be proximate to one another, so that higher-order terms are necessary.
The following section introduces some recently developed network statistics that capture such
phenomena and can be helpful when degeneracy is encountered.

5.6. Overcoming Estimation Problems: New Parameterizations
For simplicity, in this section we consider only models for undirected networks. There, the
extreme lack of fit known as degeneracy is commonly confronted when fitting ERGM models
including k-star or triadic terms. Attempting to model the degree distribution using a single 2-
star term often leads to problems like those illustrated by the last model in Table 8, which
included the transitive triad statistic.

Models including higher-order stars often yield more satisfactory estimates (Robins et al.
2005). In such models, the magnitude of the coefficients for successive star terms often declines
as the order of the stars rises; moreover, the signs of these coefficients tend to alternate, so that
a negative 3-star parameter tempers the tendency of ties to concentrate on particular actors
implied by a positive 2-star parameter. Since the multiple k-star terms usually exhibit
substantial collinearity, imposing linear restrictions on their coefficients simplifies estimation,
leading to the alternating k-star statistic proposed by Snijders et al. (2006):

where λ1 is a parameter (ordinarily greater than 1) governing the rate at which the magnitude
of the regression coefficients for k-star terms declines as k rises.16

A similar statistic has proved useful in addressing degeneracy problems encountered when
attempting to fit models to undirected networks that include a parameter for “triangle”
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configurations yij yik yjk. A higher-order configuration that captures a tendency of triangles to
cluster in the vicinity of one another—as may occur in Figure 1—is known as the “k-
triangle”: a set of k triangles resting on a common base. For example, an indicator for the
presence of a 2-triangle resting on the base yij is yij yik yjk yih yjh; two triangles (involving actors
i, j, and k, and actors i, j, and h) overlap in yij The k-triangle terms may be combined into a
statistic for clustering of transitive configurations that is not linear in the triangle count but
instead gives lower probability to highly clustered structures. Paralleling the alternating k-star
statistic, this alternating k-triangle statistic is defined as

where S4:k (y) is the number of k-triangles (S4:1 (y) = S4 (y) is the regular triangle statistic) and
λ2 > 1 again governs the rate at which the regression coefficients of k-star terms decline as the
order of k-triangles rises. Models including the alternating k-star and/or alternating k-triangle
parameters may fix the λ parameters or estimate them; in the latter case, the model does not
take the form of (10) but becomes a curved exponential model (Hunter 2007).

The alternating k-triangle statistic may be rewritten using the fact that in a k-triangle, the two
“base” actors have k common neighbors or “partners”. This leads to the geometrically weighted
edgewise shared partner (GWESP) statistic

where EPk (y) = Σi<j yij I(spij = k) is the number of pairs of linked actors who share k partners,
spij = Σk yik yjk is the number of partners shared by actors i and j (Goodreau 2007; Hunter
2007) and parameter ρ controls the rate at which the weights assigned to configurations having
k shared partners decline with k.

5.7. Illustrative Analysis: Undirected Network
Table 9 reports estimates for five models fit to the undirected physician influence network.
The first is again a Bernoulli model including only the edges term; its estimated coefficient of
−1.049 has an associated inverse logit of 0.259 equal to the density of the undirected network.
The second model adds the GWESP term S 10 (y, ρ) with a fixed coefficient ρ of 1.2.17 The fit
of the model was nondegenerate, and the positive regression coefficient for the GWESP term
offers evidence of transitivity in the undirected network.

The third model, a curved exponential model, adds 2- and 3-star terms to model the degree
distribution, and also estimates parameter ρ in the GWESP term. The coefficients for the two
k-star terms have opposite signs, but both are insignificant; hence there appears to be no

16An equivalent statistic based on the degree distribution itself is known as the “geometrically weighted degree” statistic; see Hunter
and Handcock (2006).
17No mutuality term is included, since this is redundant with the edges term in an undirected network. Constraining the value of ρ when
fitting the model with the GWESP term is often helpful; attaining adequate convergence is more difficult when it is estimated as a free
parameter. We found that setting ρ=1.2 served well here; the likelihood surface is relatively flat, so that using a value between 1.0 and
1.5 did not affect inferences about other parameters. Note, however, ρ was estimated at 0.93 when we left it as a free parameter in the
third model in Table 9.
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tendency, after adjusting for clustering, for ties in this network to concentrate on particular
actors.

No actor-level covariates were directly associated with the density of ties in this network;
because the Keating et al. (2007) p2 analysis of the directed network found that actor covariates
influenced the tendency to receive but not to make citations, the absence of covariate effects
here may be due to the fact that the directionality of ties was removed when we constructed
the undirected version of network. In common with Keating et al. (2007), however, we did find
evidence that physicians of the same gender and in the same clinic within the practice tended
to cite one another. In addition to the edges and GWESP terms, our fourth model introduces
dyadic covariates for pairs of physicians of the same gender and in the same clinic; the “same
clinic” coefficient is constrained to be the same for each of the four distinct clinics within the
practice. Coefficient estimates suggest a significantly higher density among physicians of the
same gender, but net of the general clustering effect modeled by the GWESP term, no similar
tendency is evident for physicians in the same clinic. When we instead allow the “same clinic”
effect to vary across the four distinct clinics, in the fifth model, we find a significantly elevated
density within the fourth practice, which includes physicians who specialize in women’s health.
Estimated parameters for density within the other three clinics are also positive, but have p
values larger than 0.10. The p value for the coefficient of the “same gender” statistic in model
5 exceeds 0.3, though its estimate (0.433) is only somewhat smaller than the corresponding
one in model 4 (0.532, p value 0.002); the difference may reflect a tendency for male and
female physicians to be based in different clinics.

Indicators of goodness of fit point to different conclusions about which of these models best
corresponds to the data. BIC prefers the more parsimonious models, taking its smallest values
for models 2 and 4. Comparison of the deviance for nested models 4 and 5 suggests, however,
that the latter has a better fit (difference in deviance=12.5, 3 df), and thus that the tendency
toward homophily differs significantly across clinics. Observed network statistics are best
reproduced via simulations based on models 4 and 5, indicating that homophily by clinic and
gender play an important role in structuring this network.

5.8. Software for Relational Models
While some elementary statistical models for networks such as p1 can be estimated via routines
in standard software packages, most require specialized programs. Statnet (Handcock et al.
2003) is a suite of R packages for statistical network analysis; its “ergm” package conducts
MCMCMLE estimation of ERGMs. Modules in StOCNET (Boer et al. 2006) implement
several models covered here, including nonparametric tests based on enumeration or
simulation, p2, and stochastic a posteriori blockmodels (see below). Its SIENA module
estimates ERGMs as well as a model for longitudinal data introduced in the next section. PNET
(Wang, Robins, and Pattison 2008) estimates ERGMs via the stochastic approximation
algorithm used in SIENA.

6. Recent Developments for Modeling Networks
This article introduced and illustrated representations of network data, descriptive measures
of networks and the two main types of statistical network models. Though we covered many
widely-used network methods, we cannot be comprehensive here. We briefly touch on some
additional developments in network analysis, including latent-variable models, longitudinal
network analysis, and methods for network sampling.
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6.1. Latent Variable Models for Network Data
Models such as ERGMs specify that interactions among observed ties, together with measured
covariates, underlie observed network structures. An alternative is to posit unobserved actor-
level covariates that account for observed network patterns. Such latent covariates may be
either categorical or quantitative. Nowicki and Snijders (2001), for example, develop a
posteriori stochastic blockmodels which seek to assign actors to classes of a latent categorical
variable such that actors within a class exhibit stochastically equivalent relational patterns.

Latent position models (Hoff, Raftery, and Handcock 2002) introduce latent quantitative
variables. One latent-position specification asserts that observed binary-valued ties Yij are
conditionally independent given the locations of actors i and j in a latent space and that ties are
more likely when pairs are close in the latent space. A common measure of distance is the

Euclidean distance , where zi = (zi1,…, zik)T is a latent variable
locating actor i in a K-dimensional Euclidean space. The presence of ties may also depend on
a vector of measured covariates, xij, leading (in the case of a logit link) to a model of the form

(13)

Because latent distances for a triple of actors must obey the triangle inequality, this formulation
models the tendencies toward transitivity commonly found in social networks. A latent cluster
model (Handcock, Raftery, and Tantrum 2007) is a variation on (10), specifying that latent
positions for individual actors are mixtures of patterns associated with two or more latent
categorical groups of actors. The LatentNet package in R (Handcock et al. 2007) uses Bayesian
methods to fit such models.

A related generalized bilinear mixed-effect model developed by Hoff (2005) also assumes
conditional independence among ties, but uses an inner-product specification for the effect of
the latent quantitative variable, adds actor-level random effects for senders and receivers, and
includes a hierarchical structure like that in the p2 model (see (9)) for the effects of measured
covariates. For binary-valued network data, this model takes the form:

(14)

and  with zi ~N(0, Σz). The random-effect variances  and  (respectively) quantify
dependence among observations having a common sender or a common receiver, γij represents
an unconstrained sender-receiver interaction, and ρ represents reciprocity, the correlation of
values of γij within a dyad. The inner-product interaction ξij involving latent scores zi and zj
implies that the probability of a tie between actors i and j rises to the extent that the latent
vectors zi and zj have similar direction and magnitude. Inclusion of ξij —in (14) interpretable
as a mean-0 random effect—models transitivity by constraining the extent to which the inner

products  and  can differ from one another. The magnitude of network transitivity

may be summarized by , which reduces to  in the special case
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where . The greater the magnitude of Σz, the greater the variation of the zi and thus
of their inner products; hence, the greater the potential for transitivity (or other third-order
effects such as cyclical patterns). To test for the presence of such third order effects one could
compare the fit of the model with and without the inner-product term (e.g. using the deviance
information criterion).

The latent locations z estimated under the latent-position and generalized bilinear mixed effects
models provide a statistically-grounded foundation for network visualization. Moreover, plots
of MCMC-simulated values of the latent locations represent uncertainty in a spatial
representation that is not captured by descriptive visualization tools.

An attractive feature of latent-variable models relying on conditional independence
specifications is that they readily accommodate non-binary network data. By altering the link
function on the left-hand side of (13) or (14), these models are readily adapted to the analysis
of relational data in the form of quantitative variables (e.g., linear link) or counts (e.g., log-
link).

6.2. Longitudinal network analysis
The vast majority of past social network research examines data from a single point in time.
However, interest in longitudinal data suitable for studying network evolution is now
increasing rapidly. As usual, over-time observations on a network can help allay concerns about
reciprocal causation and provide a superior basis for isolating causal effects. Furthermore, some
contend that since models for network change condition on the status of a network at baseline,
they may be simpler to fit than that of models seeking to account for how a network came into
existence (Snijders 2005).

Only a few extant models for network evolution (Doreian and Stokman 1997) adopt a statistical
approach. Such models study network change within a continuous-time Markov Chain
framework in which the central construct is an intensity matrix governing the rates at which
ties arise and disappear. Initial efforts modeled change in tie status assuming dyadic
independence (Holland and Leinhardt 1977; Wasserman 1979, 1980). In these, rates of change
were dependent on a single network property such as reciprocity. Due to the simplicity of such
models, closed-form expressions for the transition probabilities often exist, so that maximum
likelihood estimates can be computed using standard optimization procedures. However, such
models seldom provide adequate descriptions of network change.

A much more elaborate statistical model for network evolution is the actor-oriented model
proposed by (Snijders 1996, 2001, 2005). This centers on an objective function for actors which
may be sensitive to multiple network properties including (e.g.) reciprocity, closure,
homophily, or contact with prestigious others. The model assumes that actors control their
outgoing ties and alter them in order to increase their satisfaction with the network in one or
more respects. Estimated parameters indicate whether changes in a given property raise or
lower actor satisfaction. An important distinction from ERGMs is that the relevant network
statistics in the actor-oriented model are actor-specific rather than aggregations across the
network. Apart from the objective function, this model may also include a rate function
describing the rate of change in an actor’s outgoing ties, and a gratification function indicative
of differences in satisfaction flowing from the formation and dissolution of ties.

Estimating the actor-oriented model is in general well outside the scope of standard maximum
likelihood methods. MCMC simulation methods relying on a stochastic approximation
algorithm are available (Snijders 2001) to support inferences via method-of-moments,
maximum likelihood, or Bayesian criteria. Details on these procedures may be found in the
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documentation for the SIENA module in the StOCNET software package (Huisman and Van
Duijn 2004, 2005; Snijders et al. 2007).

Longitudinal modeling will be a major area of growth in network analysis. Recent elaborations
of the actor-oriented model allow actors to join or leave the network over time (Huisman and
Snijders 2003; Snijders 2005), certain ties to be unalterable (e.g., impossible or certainty ties),
and partial imputation18 of missing tie-status over intervals of time (Snijders et al. 2007).
Finally, if both the network and actors’ behaviors are measured, agent-based models that allow
the changing network to influence actors’ behavior— while simultaneously allowing changes
in actors’ behavior to influence the network—can be developed. Such models treat a network
as an endogenous feedback mechanism (Zeggelink 1994). Recent releases of SIENA
implement all of these innovations to some extent.

6.3. Methods for sampling networks
Sampling networks can be divided into two main types: sampling partial networks and
sampling whole networks. In the former the sample typically induces the network (often the
full network is unobservable) while in the latter an underlying network is known but is
infeasible to observe or analyze in its entirety (e.g. internet based networks).

Several schemes for sampling partial networks exist (Frank 1981). A sample-induced network
is obtained by sampling from the set of units/actors, and then assembling data on relationships
among the sampled units. Link-tracing or “random walk” designs randomly sample chains of
relationships in a network.

Another scheme samples stars (Frank 1981). A widely-used variant on this samples from a set
of units/actors and obtains data on the subnetworks surrounding them—including attributes of
the “alter” units/actors to which they are linked directly, and relationships among those alter
units. Such schemes have been implemented within conventional sample surveys of individuals
(e.g. Marsden 1987). Studies using such egocentric network data seek to account for variations
in local network structure, or to explain variations in attitudes or behaviors of the sampled
units/actors using properties of their egocentric networks. Certain properties of whole
networks, including the degree distribution (see Section 3.2), may also be approximated using
egocentric network samples. The National Health and Social Life Survey (Laumann et al.
2004), for example, measured egocentric sexual and social networks.

Administrative data and electronic communication systems increasingly allow assembly of
whole-network data for large networks at modest cost. If data collection is costly, however,
sampling from large networks to learn about network properties is appealing. Foundational
work by Ove Frank (Frank 1971, 1981, 1988) remains key in this field. Frank outlines several
designs for drawing node-induced network samples—e.g. by simple random sampling from a
population of actors (with or without replacement) followed by observation of relationships
among the sampled nodes—and the inferences about network properties available from them.
A node-induced sample, for instance, yields inferences about node, dyad, and triad totals, as
well as the degree distribution (Frank 1978, 1981).

An important use of network sampling is oriented less to estimating network properties than
to locating elements of rare, unlisted and/or hidden populations and estimating properties of
the distribution of attributes of the nodes/actors in such populations. Generally known as
snowball or chain-referral sampling, such designs draw an initial sample of actors and then
trace one or more links to alters of each element in that initial sample; this link-tracing may be

18Although the missing values are replaced with non-missing values during model fitting, the statistics measuring model fit are only
evaluated using actors with non-missing values throughout the corresponding interval of time. Thus, standard imputation is not performed.
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repeated several times. For example, network versions of multiplicity sampling (e.g. Sudman
and Kalton 1986), draw a first-stage sample from a general population by conventional
methods, and then select elements in the special population of interest that are related to the
first-stage elements in some well-defined way (e.g. kinship, co-residence). To develop
appropriate weights, one must measure the degree (egocentric network size) of elements in the
special-population sample that reflect the density of their ties to the general-population sample.
Respondent-driven sampling (Salganik and Heckathorn 2004) begins with “seeds” known to
be within the special population of interest, and encourages them to refer others in the
population via network ties. After several waves of such referrals, this method tends toward a
probability-proportional-to-degree sample from the special population even if the seeds are
arbitrarily and nonrandomly chosen.

Thompson (2006) develops a very general link-tracing approach termed adaptive web
sampling. It may be used to estimate both actor and network properties (such as the degree
distribution). Beginning with a randomly drawn set of seeds, an adaptive web sampling design
may trace a link from an already-sampled actor to a related alter, thus investigating
interconnected segments of a population. With some probability, however, it also may draw
new elements at random. The probability of making each kind of draw may depend on
characteristics of the current sample.

7. Conclusion
Social network analysis has historically been pursued mainly in the social science disciplines,
but its use has grown rapidly in recent years into many other areas. Among recent applications
in health care and medicine are studies of the physician influence network by (Keating et al.
2007), the epidemic spread of obesity described by Christakis and Fowler (2007) and that of
smoking (Christakis and Fowler 2008), the spread of AIDS (Morris et al. 2006), the spread of
knowledge about new medical technology (Miguel and Kremer 2003), patterns of
contraceptive use over time (Behrman, Kohler, and Watkins 2002), and the spread of sexually
transmitted infections via sexual networks by Laumann and colleagues (Laumann et al.
2004). As has been the trend in health, most of the above applications treat the network as fixed
(e.g., as in individual outcomes models) rather than modeling the network as in the analysis of
relational data.

We anticipate that health-related applications of social network analysis will grow rapidly
during the coming decade, since interpersonal relationships and support networks are crucial
to the well-being of most persons, and because appropriate methods for addressing the difficult
analytic problems posed by social network data are increasingly available. Informed
applications of social network analysis in health services and outcomes research will not only
yield new insights into these phenomena, but contribute toward continued improvements in
social network methodology.

There are a wide range of topics that statisticians can address in the future, including some
motivated by the physician network data. These include predicting how a new physician that
joins a clinic will interact with those already there, and extrapolating inferences based on one
network to other networks (e.g., other hospitals). Solutions to the first problem will likely
require dynamic modeling of longitudinal network data to identify the effects of change in the
network. The second problem requires careful consideration of the population to which the
inference is being applied and the conditions under which results for one network can be
extended to another; to some extent this is a sampling problem. Dynamic modeling of networks
and methods of sampling networks are two areas that have not to date been heavily researched
but to which statisticians can and should be heavily involved. Methods for handling missing
data in network analysis are also in their infancy in contrast to mainstream statistics.
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In addition to methodological work, further applied work can be undertaken by developing
new applications of social network analysis. Though on the rise, applications to health care
and medicine are still relatively few. Statisticians will also play an important role by
highlighting limitations of models and potential traps of software packages. For example,
practitioners must be sensitized to such issues as the prospect of degeneracy or poor
convergence of estimation algorithms and be made aware of the need to studiously check
multiple diagnostics to ensure valid interpretation of results.
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Appendix A: R-code for fitting Individual Outcome Model
## Functions used in the analysis ##
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geodist <- function(adj) {

#Derive the geodesic distance between the actors

dist <- matrix(0,nr,nr)

matpow <- diag(1,nr)

for (k in 1:nr) {

matpow <- matpow %*% adj

ind <- ifelse(dist>0,1,0)

dist <- dist*ind + k*ifelse(matpow>0,1,0)*(1-ind)

}

ind <- ifelse(dist>0,1,0)

dist <- dist*ind-1*(1-ind) #-1 indicates of not connected

diag(dist) <- 0 #Always 0 distance on the diagonal!

return(dist)

}

like.auto <- function(al,y,x,w) {

#Evaluate log-likelihood function of outcome autocorrelation model

n <- nrow(x)

icov <- diag(1,n) - al*w

z <- icov %*% y

icov <- t(icov) %*% icov

be <- solve(t(x) %*% x) %*% (t(x) %*% z) #coefficients of exogeneous

vbles

in IV model

ri <- z - x %*% be #residuals

std2 <- as.vector(t(ri) %*% ri)/n #variance of outcome

icov <- icov/std2

return(log(det(icov)) - (t(ri) %*% ri)/std2)

}

parSE.auto <- function(al,y,x,w) {
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#Standard errors of outcome autocorrelation model

n <- nrow(x)

p <- ncol(x)

icov1 <- diag(1,n) - al*w

icov <- t(icov1) %*% icov1

z <- icov1 %*% y

be.be <- (t(x) %*% x)

be <- solve(be.be) %*% (t(x) %*% z) #coefficients of x

ri <- z - x %*% be #residuals

std2 <- as.vector(t(ri) %*% ri)/n #variance of outcome

G <- w %*% solve(icov1)

Gxb <- G %*% x %*% be

#The following derivation is based on Harville (1997, p. 309).

cov <- solve(icov)

wsym <- t(w)+w

wsqr <- t(w) %*% w

dicov.al <- 2*al*wsqr-wsym

dicov.alal <- 2*wsqr

t.alal <- cov %*% dicov.alal

t.al <- cov %*% dicov.al

detterm <- sum(diag(t.alal - (t.al %*% t.al)))/2

#Information matrix - extension of expression on page 370 of

#Doreian (1981) to asymmetric W

be.be <- be.be/std2

std2.std2 <- n/(2*(std2^2))

al.be <- (t(Gxb) %*% x)/std2

al.std2 <- sum(diag(G))/std2

al.al <- sum(diag(t(G) %*% G)) + (t(Gxb) %*% Gxb)/std2 - detterm
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Infm <- matrix(0,p+2,p+2)

Infm[1:p,1:p] <- be.be

Infm[p+2,1:p] <- al.be

Infm[1:p,p+2] <- t(al.be)

Infm[p+1,p+1] <- std2.std2

Infm[p+1,p+2] <- al.std2

Infm[p+2,p+1] <- al.std2

Infm[p+2,p+2] <- al.al

#Estimates and covariance matrix

parms <- c(be=be, std2=std2, al=al)

covar <- solve(Infm)

SE <- sqrt(diag(covar))

names(SE) <- names(par)

tval = parms/SE

pval = 2*(1-pt(abs(tval),n-p))

return(list(estimates=parms,SE=SE,tval=tval,pval=pval))

}

like.sar <- function(rho,y,x,w) {

#Evaluate log-likelihood function

n <- nrow(x)

icov <- diag(1,n) - rho*w

icov <- t(icov) %*% icov

be <- solve(t(x) %*% icov %*% x) %*% (t(x) %*% icov %*% y)

#coefficients of

exogeneous vbles in IV model

ri <- y - x %*% be #residuals

std2 <- as.vector(t(ri) %*% icov %*% ri)/n #variance of outcome

icov <- icov/std2

return(log(det(icov)) - t(ri) %*% icov %*% ri)
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}

parSE.sar <- function(rho,y,x,w) {

n <- nrow(x)

p <- ncol(x)

icov1 <- diag(1,n) - rho*w

icov <- t(icov1) %*% icov1

be.be <- (t(x) %*% icov %*% x)

be <- solve(be.be) %*% (t(x) %*% icov %*% y) #coefficients of x

ri <- y - x %*% be #residuals

std2 <- as.vector(t(ri) %*% icov %*% ri)/n #variance of outcome

G <- w %*% solve(icov1)

#The following computation is based on Harville (1997, p. 309).

cov <- solve(icov)

wsym <- t(w)+w

wsqr <- t(w) %*% w

dicov.rho <- 2*rho*wsqr-wsym

dicov.rhorho <- 2*wsqr

t.rhorho <- cov %*% dicov.rhorho

t.rho <- cov %*% dicov.rho

detterm <- sum(diag(t.rhorho - (t.rho %*% t.rho)))/2

#Information matrix - extension of expression on page 366 of

#Waller and Gotway (2004) to asymmetric W

be.be <- be.be/std2

std2.std2 <- n/(2*(std2^2))

rho.std2 <- su m(diag(G))/std2

rho.rho <- sum(diag(t(G) %*% G)) - detterm

Infm <- matrix(0,p+2,p+2)

Infm[1:p,1:p] <- be.be
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Infm[p+1,p+1] <- std2.std2

Infm[p+1,p+2] <- rho.std2

Infm[p+2,p+1] <- rho.std2

Infm[p+2,p+2] <- rho.rho

#Estimates and covariance matrix

parms <- c(be=be, std2=std2, rho=rho)

covar <- solve(Infm)

SE <- sqrt(diag(covar))

names(SE) <- names(par)

tval = parms/SE

pval = 2*(1-pt(abs(tval),n-p))

return(list(estimates=parms,SE=SE,tval=tval,pval=pval))

}

## Code for loading data and fitting model ##

#Install software on R: Can comment out after first use.

install.packages(“statnet”,

contriburl=“http://csde.washington.edu/~handcock”)

install.packages(“coda”)

#Load functions needed for analysis

source(“NetAnalFns.r”)

#Load network

nr <- 33

adjdata <- scan(“H:/Harvard/Christakis/HSORM/clin33correct.txt”)

adjdata <- matrix(adjdata,nrow=nr,byrow=T)

adjdata[19,19] <- 0 #Tidy up data (self-connected nodes not possible)

iddata <- seq(1,33,1)

#Load node covariate data

covdata <- scan(“H:/Harvard/Christakis/HSORM/nodecov.dat”)
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covdata <- matrix(covdata,nrow=nr,byrow=T)

nodecov <- list(male=covdata[,2], whexpert=covdata[,3],

pctwom=covdata[,4],

numsess=covdata[,5], practice=covdata[,6])

#Directed network

adjdir <- ifelse(adjdata>0,1,0)

#Standardize adjacency matrix so that row sums = 1

numalters <- apply(adjdir,1,sum)

scale=as.vector(numalters^(-1))

noalters <- ifelse(is.infinite(scale)==1,1,0)

scale[noalters*seq(1,nr)] <- 0

on=matrix(1,ncol=nr,nrow=1)

wtadjdir <- adjdir * (scale %*% on)

#Compute mean value of dependent variables for directly connected

# actors - i.e., based on the adjacency matrix

hrtalt <- wtadjdir %*% as.vector(covdata$sumhrt)

regdata <-

data.frame

(covdata,hrtalt=hrtalt,noalters=noalters,numalters=numalters)

#Compute scaled geodesic distances having row sums equal to 1

gdist <- geodist(adjdir)

igdist <- gdist^(-1)

diag(igdist) <- 0 #Always 0 distance on the diagonal!

ind <- ifelse(igdist<0,1,0) #Egos with no influential conversations

igdist <- igdist*(1-ind)

sumigeo <- apply(igdist,1,sum)

scale <- as.vector(sumigeo^(-1))

noalters <- ifelse(is.infinite(scale)==1,1,0)
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scale[noalters*seq(1,nr)] <- 0 #Influence set equal to 0 if no

influential

conversations

wtigeo <- igdist * (scale %*% on)

#Augment analysis dataset with additional variables

hrtgeo <- wtigeo %*% as.vector(covdata$sumhrt)

regdata <- data.frame(regdata,hrtgeo=hrtgeo)

on <- as.vector(rep(1,nr))

x <- as.matrix(cbind(on,regdata[,c(“male”,”pctwom”,”numalters”)]))

#Use maximum likelihood to obtain MLEs for autoregressive outcomes and

network autocorrelation (SAR) models

# - uses optim optimization function in R.

strtval <- 0

#Fit autoregressive outcomes model

#Use scaled adjacency matrix as weight matrix

mle <- optim(par=strtval, fn=like.auto, gr=NULL, method = “BFGS”,

control=list(fnscale=-1, trace=6, maxit=100, reltol=1e-16),

hessian = TRUE, y=regdata$sumhrt,x=x,w=wtadjdir)

#Compute estimates of all parameters and standard errors

Auto.adj <- parSE.auto(mle$par,y=regdata$sumhrt,x=x,w=wtadjdir)

#Use scaled geodesic matrix as weight matrix

mle <- optim(par=strtval, fn=like.auto, gr=NULL, method = “BFGS”,

control=list(fnscale=-1, trace=6, maxit=100, reltol=1e-16),

hessian = TRUE, y=regdata$sumhrt,x=x,w=wtigeo)

#Compute estimates of all parameters and standard errors

Auto.geo <- parSE.auto(mle$par,y=regdata$sumhrt,x=x,w=wtigeo)

#Fit corresponding SAR models

#Use scaled adjacency matrix as weight matrix

mle <- optim(par=strtval, fn=like.sar, gr=NULL, method = “BFGS”,
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control=list(fnscale=-1, trace=6, maxit=100, reltol=1e-16),

hessian = TRUE, y=regdata$sumhrt,x=x,w=wtadjdir)

#Compute estimates of all parameters and standard errors

SAR.adj <- parSE.sar(mle$par,y=regdata$sumhrt,x=x,w=wtadjdir)

#Use scaled geodesic matrix as weight matrix

mle <- optim(par=strtval, fn=like.sar, gr=NULL, method = “BFGS”,

control=list(fnscale=-1, trace=6, maxit=100, reltol=1e-16),

hessian = TRUE, y=regdata$sumhrt,x=x,w=wtigeo)

#Compute estimates of all parameters and standard errors

SAR.geo <- parSE.sar(mle$par,y=regdata$sumhrt,x=x,w=wtigeo)

#Print out all results

print(data.frame(Auto.adj))

print(data.frame(Auto.geo))

print(data.frame(SAR.adj))

print(data.frame(SAR.geo))

##Alternative code using lnam function in Carter Butt’s sna package.

##

library(sna)

library(numDeriv)

lnam1.adj <- lnam(regdata$sumhrt,x,wtadjdir)

lnam1.geo <- lnam(regdata$sumhrt,x,wtigeo)

lnam2.adj <- lnam(regdata$sumhrt,x,NULL,wtadjdir)

lnam2.geo <- lnam(regdata$sumhrt,x,NULL,wtigeo)

#Print out all results

summary(lnam1.adj)

summary(lnam1.geo)

summary(lnam2.adj)

summary(lnam2.geo)
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Appendix B: R-code for Relational Data Model
#Install software on R: Can comment out after first use.

install.packages(“statnet”,

contriburl=“http://csde.washington.edu/~handcock”)

install.packages(“coda”)

#Attached libraries each time use StatNet

library(statnet)

library(coda)

#Load network

nr <- 33

adjdata <- scan(“clin33correct.txt”)

adjdata <- matrix(adjdata,nrow=nr,byrow=T)

adjdata[19,19] <- 0 #Tidy up data (self-connected nodes not possible)

iddata <- seq(1,33,1)

#Load node covariate data

covdata <- scan(“nodecov.dat”)

covdata <- matrix(covdata,nrow=nr,byrow=T)

nodecov <- list(male=covdata[,2], whexpert=covdata[,3],

pctwom=covdata[,4],

numsess=covdata[,5], practice=covdata[,6])

#Make directed network

pnet <- network(adjdata,directed=TRUE,matrixtype=“adjacency”,

vertex.attr=nodecov,

vertex.attrnames=c(“male”,”whexpert”,”pctwom”,”numsess”,”practice”,

“bcma”,”bima”,”bpp”,”wnhlth”,”numcat”,”pctcat”))

#Plot directed network

plot(pnet,mode=“fruchtermanreingold”,displaylabels=T)

#Fit models to directed network
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model1a <- ergm(pnet~edges)

model1b <- ergm(pnet~edges + mutual)

model1c <- ergm(pnet~edges + mutual + ttriad, theta0=“MPLE”,

MPLEonly=TRUE)

model1d <- ergm(pnet~edges + mutual + receivercov(“whexpert”) +

receivercov(“pctwom”) + receivercov(“numsess”))

#Evaluate Goodness of fit with respect to distance and degrees

dist.gof <- gof(model1d~distance, nsim=10, verbose=T)

plot(dist.gof)

ideg.gof <- gof(model1d~idegree, nsim=10, verbose=T)

plot(ideg.gof)

odeg.gof <- gof(model1d~odegree, nsim=10, verbose=T)

plot(odeg.gof)

#Define network using mutual ties.

adjmut <- ifelse(adjdata>0,1,0) + ifelse(t(adjdata)>0,1,0)

adjmut <- ifelse(adjmut>0,1,0); #One possible definition of mutual tie

#Make undirected network

pnetmut <- network(adjmut,directed=FALSE,matrixtype=“adjacency”,

vertex.attr=nodecov,

vertex.attrnames=c(“male”,”whexpert”,”pctwom”,”numsess”,”practice”,

“bcma”,”bima”,”bpp”,”wnhlth”,”numcat”,”pctcat”))

#Plot undirected network

plot(pnetmut,mode=“fruchtermanreingold”,displaylabels=T)

#Fit models to undirected network

model2a <- ergm(pnetmut~edges)

model2b <- ergm(pnetmut~edges + gwesp(1.2,fixed=T),

burnin=10000, MCMCsamplesize=10000, interval=100, maxit=3)

model2c <- ergm(pnetmut~edges + gwesp(1.2,fixed=F) + kstar(2:3),

O’Malley and Marsden Page 44

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2009 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



burnin=10000, MCMCsamplesize=10000, interval=100, maxit=3)

model2d <- ergm(pnetmut~edges + gwesp(1.2,fixed=T) +

nodematch(“male”,diff=F) + nodematch(“practice”,diff=F),

burnin=10000, MCMCsamplesize=10000, interval=100, maxit=3)

model2e <- ergm(pnetmut~edges + gwesp(1.2,fixed=T) +

nodematch(“male”,diff=F) + nodematch(“practice”,diff=T),

burnin=10000, MCMCsamplesize=10000, interval=100, maxit=3)

#Test goodness of fit with respect to espartners statistic

esppart.gof <- gof(model2e~espartners,nsim=10,verbose=T)

plot(esppart.gof)
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Figure 1.
Directed physician influence network when ties defined as 1 or more influential discussions.
Note: With the exception of the omission of the directional arrows, the graph for the
corresponding undirected network is the same as that above.
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Figure 2.
Circle and star networks
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Figure 3.
Degree distributions for directed physician influence network
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Table 2

Node-level statistics for directed physician influence network

Node

Degree

Betweeness CentralityOut In

1 7 3 0.39

2 9 0 0

3 4 1 0.09

4 5 6 4.39

5 2 3 1.18

6 3 6 1.18

7 2 12 0.78

8 8 0 0

9 10 11 27.64

10 0 5 0

11 4 3 0.61

12 6 1 0.09

13 4 6 3.36

14 0 2 0

15 10 3 4.31

16 10 9 10.64

17 4 6 6.22

18 2 2 0.55

19 13 9 14.67

20 2 0 0

21 7 14 15.46

22 2 2 0

23 4 3 4.49

24 6 13 4.04

25 5 1 0

26 1 1 0

27 2 24 20.1

28 4 2 3.02

29 3 3 0.08

30 8 7 7.68

31 8 2 6.11

32 1 1 0

33 7 2 0.44
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Table 6

Node-level statistics for undirected physician influence network

Node Degree Closeness Centrality Eigenvector Centrality

1 8 0.54 0.18

2 9 0.58 0.18

3 5 0.51 0.12

4 10 0.58 0.16

5 4 0.48 0.08

6 7 0.55 0.12

7 13 0.63 0.24

8 8 0.55 0.18

9 16 0.67 0.29

10 5 0.45 0.07

11 6 0.5 0.12

12 7 0.54 0.13

13 7 0.54 0.13

14 2 0.42 0.04

15 10 0.59 0.18

16 13 0.63 0.26

17 7 0.53 0.13

18 4 0.5 0.08

19 17 0.68 0.3

20 2 0.43 0.04

21 17 0.68 0.29

22 3 0.47 0.05

23 5 0.48 0.09

24 15 0.65 0.29

25 5 0.43 0.06

26 2 0.47 0.06

27 24 0.8 0.35

28 6 0.51 0.1

29 6 0.53 0.14

30 12 0.6 0.2

31 8 0.55 0.14

32 2 0.46 0.04

33 9 0.56 0.2
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Table 7

Results for individual-level analyses of directed physician influence network

Model 5A: Autoregressive outcomes, adjacency weight matrix

Term Estimate Std. Error t-value Pr(>|t|)

Intercept 16.078 3.897 4.126 0.000

Male −0.206 2.331 −0.088 0.930

PercentWomenPatients −0.052 0.048 −1.089 0.285

Outdegree −0.353 0.198 −1.780 0.086

α(AdjacencyWeightedHRT) 0.277 0.169 1.635 0.113

Model 5B: Autoregressive outcomes, geodesic weight matrix

Intercept 16.246 3.878 4.190 0.000

Male −0.986 2.422 −0.407 0.687

PercentWomenPatients −0.063 0.049 −1.289 0.207

Outdegree −0.402 0.207 −1.940 0.062

α(GeodesicWeightedHRT) 0.360 0.199 1.806 0.081

Model 6A: Network Autocorrelation, adjacency weight matrix

Intercept 16.471 4.051 4.066 0.000

Male 1.324 2.154 0.615 0.544

PercentWomenPatients −0.023 0.045 −0.506 0.617

Outdegree −0.209 0.189 −1.108 0.277

ρ(AdjacencyWeightedHRT) 0.026 0.297 0.089 0.929

Model 6B: Network Autocorrelation, geodesic weight matrix

Intercept 16.366 4.068 4.023 0.000

Male 1.371 2.160 0.635 0.530

PercentWomenPatients −0.019 0.045 −0.423 0.676

Outdegree −0.229 0.188 −1.220 0.232

ρ(GeodesicWeightedHRT) −0.233 0.771 −0.303 0.764

Note: The residual standard errors in models 5A, 5B, 6A, and 6B are 3.264, 3.248, 3.398, and 3.393 respectively. Outdegree is the number of distinct
physicians cited by the focal physician as a partner in at least one influential conversation about women’s health.
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