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Abstract. An Arctic and Antarctic sea ice area and extent

dataset has been generated by EUMETSAT’s Ocean and Sea

Ice Satellite Application Facility (OSISAF) using the record

of microwave radiometer data from NASA’s Nimbus 7 Scan-

ning Multichannel Microwave radiometer (SMMR) and the

Defense Meteorological Satellite Program (DMSP) Special

Sensor Microwave/Imager (SSM/I) and Special Sensor Mi-

crowave Imager and Sounder (SSMIS) satellite sensors. The

dataset covers the period from October 1978 to April 2015

and updates and further developments are planned for the

next phase of the project. The methodology for computing

the sea ice concentration uses (1) numerical weather predic-

tion (NWP) data input to a radiative transfer model for re-

duction of the impact of weather conditions on the measured

brightness temperatures; (2) dynamical algorithm tie points

to mitigate trends in residual atmospheric, sea ice, and water

emission characteristics and inter-sensor differences/biases;

and (3) a hybrid sea ice concentration algorithm using the

Bristol algorithm over ice and the Bootstrap algorithm in

frequency mode over open water. A new sea ice concentra-

tion uncertainty algorithm has been developed to estimate

the spatial and temporal variability in sea ice concentration

retrieval accuracy. A comparison to US National Ice Center

sea ice charts from the Arctic and the Antarctic shows that

ice concentrations are higher in the ice charts than estimated

from the radiometer data at intermediate sea ice concentra-

tions between open water and 100 % ice. The sea ice con-

centration climate data record is available for download at

www.osi-saf.org, including documentation.

1 Introduction

The Arctic sea-ice-covered area and extent has decreased

since the 1970s (Cavalieri and Parkinson, 2012). In Antarc-

tica there are large regional differences in trends but over-

all the sea ice extent is increasing because of chang-

ing atmospheric circulation patterns and regional cooling

(Comiso et al., 2011; Holland and Kwok, 2012). The climatic

trends in sea ice extent have been documented using mod-

els (Zhang and Walsh, 2006; Goosse and Zunz, 2014), ice

charts (Rayner et al., 2003) and in particular the passive mi-

crowave data record from US satellite microwave radiome-

ters (Parkinson and Cavalieri, 2008; Cavalieri and Parkinson,

2012). Throughout this paper the sea ice extent is defined as

ice-covered waters with ice concentrations derived from mi-

crowave radiometer data greater than 30 % and at a grid res-

olution of 12.5km × 12.5km.

The brightness temperatures measured by the satellite ra-

diometers at the atmospheric window channels are domi-

nated by surface emission. However, the measured bright-

ness temperatures are also affected by weather conditions

such as wind roughening of the ocean surface, water vapour,

and cloud liquid water (Wentz, 1983, 1997; Andersen et

al., 2006b). These parameters have trends over the observ-

ing period (Wentz et al., 2007). Even though the sensitivity

to these parameters is minimized in ice concentration algo-

rithms in general, different algorithms still have different sen-

sitivities (Andersen et al., 2006b). Here we define the noise

as the ice concentration fluctuations caused by the instrument

electronic components, ice and water surface emissivity vari-

ability, and weather conditions, i.e. estimated ice concentra-
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tion variability not caused by changes in the actual ice con-

centration.

Because of the algorithms’ different sensitivities to the

noise, and because the noise has climatic trends, the dif-

ferences also appear as trends in the sea ice extent trends

(Andersen et al., 2007). To minimize these artificial trends

caused by noise we must (1) find algorithms with low sensi-

tivities to the atmospheric and surface emissivity variability,

(2) correct the brightness temperatures for the properties that

we are able to quantify (numerical weather prediction (NWP)

data: near-surface wind and air temperature and columnar

atmospheric water vapour content), (3) calibrate the algo-

rithms to the actual ice and water signatures using dynamical

tie points, and finally (4) quantify the residual uncertainties.

The EUMETSAT sea ice concentration climate data record

(ESICR) is generated according to these principles, (1)–(4),

and is based on the NASA’s Nimbus 7 Scanning Multi-

channel Microwave Radiometer (SMMR) (1978–1987), the

Defense Meteorological Satellite Program’s (DMSP) Spe-

cial Sensor Microwave/Imager (SSM/I) (1987–2009), and

the DMSP’s Special Sensor Microwave Imager and Sounder

(SSMIS) (2003–today) radiometer data. It uses a combina-

tion of the Bristol (Smith, 1996) and the Bootstrap (Comiso,

1986) algorithms with dynamical tie points and explicit at-

mospheric correction using NWP data for error reduction,

and it comes with spatially and temporally varying sea ice

concentration uncertainty estimates describing the sea ice

concentration accuracy.

Dynamical tie points are typical signatures of sea ice and

water required to compute the sea ice concentration from

the measured brightness temperatures. These are derived on

a daily basis for each hemisphere and therefore adjust the

algorithms to the current signatures of ice and water (see

Sect. 2.1).

The sea ice concentration uncertainty estimates are needed

when the ice concentration data are compared to other

datasets or when the ice concentrations are assimilated into

numerical models. The mean accuracy of some of the more

common algorithms used to compute ice concentration from

SSM/I data, such as the NASA Team and Bootstrap, is re-

ported to be 1–6 % in winter (Steffen and Schweiger, 1991;

Emery et al., 1994; Belchansky and Douglas, 2002). The

overall accuracy of the SMMR total ice concentrations is

estimated to be ±7 % (Gloersen et al., 1992). During sum-

mer the uncertainties are larger than during winter (Ivanova

et al., 2015).

The ESICR data are available at the EUMETSAT’s Ocean

and Sea Ice Satellite Application Facility (OSISAF) home

page (osisaf.met.no), including the validation report (Ton-

boe et al., 2015b) and the product user manual (Eastwood

et al., 2015).

1.1 Description of the Nimbus 7 SMMR instrument

and data

The SMMR instrument on board the Nimbus 7 satellite

operated from October 1978 to August 1987 (Gloersen et

al., 1992). The instrument had 10 channels at five frequencies

(6.6, 10.7, 18.0, 21.0, 37.0 GHz) and vertical (v) and horizon-

tal (h) linear polarization. Each of the channels has different

spatial resolution on the ground spanning from 148 × 95km

at 6 GHz to 27 × 18km at 37 GHz. The across-track scan-

ning was accomplished by tilting the reflector from side to

side while maintaining a constant incidence angle on the

ground of about 50.2◦. The scan track on the ground formed

a 780 km wide arc in front of the satellite (Gloersen and

Barath, 1977). Because of the satellite orbit inclination and

swath width there is no coverage polewards of 84◦. SMMR

data were acquired every second day because of satellite

power limitations. Data were provided by the National Snow

and Ice Data Center (NSIDC) as brightness temperatures in

swath projection (Meier, 2008).

1.2 Description of the SSM/I and SSMIS instruments

and data

The SSM/I instruments onboard the DMSP satellites are con-

ically scanning instruments with seven channels at 19.35v,

19.35h, 22.2h, 37.0v, 37.0h, 85.5v, and 85.5h. The spa-

tial resolution on the ground is 69 × 43km at 19 GHz and

15 × 13km at 85 GHz. The incidence angle is 53.1◦ and the

swath width on the Earth’s surface is about 1400 km. There

is no coverage polewards of 87◦ for the same reason as for

SMMR (Sect. 1.1). The different satellites and their opera-

tion periods are listed in Table 1. The SSM/I data (version 6

and not the newer version 7) were purchased by EUMETSAT

from Remote Sensing Systems (RSS) as antenna tempera-

tures and converted to brightness temperatures using RSS

software. The RSS SSM/I version 6 post-processing includes

geolocation correction, sensor calibration and quality control

procedures, and intercalibration between the different satel-

lites from overlapping periods. These procedures are docu-

mented in the RSS SSM/I user manuals (Wentz, 1991, 1993,

2006).

The SSMIS is a continuation of the SSM/I series of instru-

ments onboard the DMSP satellites but with an extension in

the number of channels. SSMIS has 24 channels between 19

and 183 GHz. The 19 and 37 GHz channels which are used in

the ESICR have identical frequencies on SSM/I and SSMIS.

However, SSMIS has a swath width of about 1700 km which

gives near-complete daily coverage of the Arctic Ocean. The

SSMIS data are from the L2B near-real-time data stream

issued via EUMETCast and processed at the US National

Ocean and Atmospheric Administration (NOAA).
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Table 1. The satellite missions carrying the SMMR, SSM/I, and

SSMIS instrument and the periods they cover.

Sensor Launch End

Nimbus 7 SMMR October 1978 August 1987

DMSP F8 SSM/I June 1987 December 1991

DMSP F10 SSM/I December 1990 November 1997

DMSP F11 SSM/I November 1991 May 2000

DMSP F13 SSM/I March 1995 November 2009

DMSP F14 SSM/I May 1997 August 2008

DMSP F15 SSM/I December 1999 –

DMSP F16 SSMIS October 2003 –

DMSP F17 SSMIS November 2006 –

1.3 Meteorological data

The NWP model meteorological data are used for reduction

of the brightness temperatures for atmospheric noise with a

radiative transfer model. European Centre for Medium-range

Weather Forecast (ECMWF) ERA-40 data are used for the

period from 1978 to 2002, and ECMWF data from the op-

erational models are used from 2002 onwards. A description

of the ERA-40 meteorological data archive and the reanalysis

can be found in Kållberg et al. (2004).

1.4 Moderate Resolution Imaging Spectroradiometer

(MODIS) data

The coarse resolution of the passive microwave brightness

temperature measurements gives rise to an additional un-

certainty when sea ice concentration is computed at finer

grid spacing. We call this the smearing uncertainty and

it is estimated using a smearing model (see Sect. 2.4.2).

High-resolution ice concentration data are used as in-

put to the smearing model: cloud-free and non-calibrated

MODIS scenes from the NASA image gallery archive (http://

rapidfire.sci.gsfc.nasa.gov/cgi-bin/imagery/gallery.cgi) were

selected manually for their different sea ice conditions: low,

medium, and high concentrations. Parts of the image with

cloud cover were cut out manually. The band 1 (620–670 nm)

brightness (given as pixel values between 0 and 255) is high

– typically greater than 220 for sea ice and less than 60 for

open water. These two upper and lower values are used for

scaling pixels between 100 and 0 % ice concentration respec-

tively. Pixels with intermediate brightness are assigned in-

termediate concentrations linearly. Pixels with a brightness

above 220 and below 60 are assigned sea ice concentrations

of 100 and 0 % respectively. The 250 m spatial resolution is

resampled to 1 km pixel resolution.

1.5 Ice chart data for comparison

The operational sea ice charts from the US National Ice Cen-

ter (NIC) are used for comparison with the ESICR sea ice

concentration. The ice charts, intended for aiding naviga-

tion, are produced on a weekly basis covering all seasons and

both the Southern and Northern Hemisphere, and the time se-

ries cover the entire climate record period except for the pe-

riod December 1994 to January 2006 in the Southern Hemi-

sphere. The ice charts used for comparison are a combina-

tion of three datasets: (1) the NIC ice charts for the Northern

Hemisphere in 1972–2007, available at NSIDC in gridded

format (Fetterer and Fowler, 2009), (2) the NIC ice charts

for the Southern Hemisphere in 1973–1994, available at the

NSIDC (Fetterer, 2006), and (3) the NIC ice charts for both

hemispheres from 2006 to 2015, available from NIC.

The more recent ice charts are based partly on satellite

Synthetic Aperture Radar (SAR) data, e.g. RADARSAT 1

since 1995 and ENVISAT since 2002, and various scat-

terometers together with visual/infrared line scanners, e.g.

Advanced Very High Resolution Radiometer (AVHRR),

MODIS, and Operational Linescan System (OLS), when-

ever possible for daylight and cloud cover conditions. Also,

the passive microwave data from SMMR and SSM/I used

in this reprocessing of ice concentrations have been exten-

sively used for making the ice charts, in particular before the

launch of wide-swath SAR instruments in 1995. In addition

to the satellite data, ice charts are based on information from

ships and aircraft reconnaissance. For an ice chart different

sea ice categories are delineated manually by polygons and

assigned a range of sea ice concentrations, thicknesses, type,

etc. found within the polygon by an ice analyst. This informa-

tion is represented on the satellite pixel grid by averaging the

range of ice concentrations and other properties given within

the polygon (Dedrick et al., 2001).

2 Methodology

2.1 Dynamical tie points

Tie points are typical signatures of ice and open water which

are used in the ice concentration algorithms as a reference.

The tie points are derived by selecting brightness tempera-

tures from regions of known open water and ice.

During winter, in the consolidated pack ice well away from

the ice edge, the ice concentration is very near 100 %. This

has been established using high-resolution SAR data, ship

observations, and by comparing the estimates from differ-

ent ice concentration algorithms (Andersen et al., 2007). The

apparent fluctuations in the derived ice concentration in the

near-100 % ice regime are primarily attributed to variations

in snow/ice surface emissivity and temperature around the

tie-point signature and only secondarily to actual ice con-

centration fluctuations. In the marginal ice zone at inter-

mediate ice concentrations and over open water the atmo-

spheric emission and wind-induced water surface roughness

and smearing dominates as error sources. The ice concentra-

tion algorithm sensitivity to atmospheric and surface emis-

sion is systematic, meaning that different algorithms with
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different sensitivity to atmospheric and surface emission can

provide very different trends in sea ice extent on seasonal

and decadal timescales (Andersen et al., 2007). This means

not only that does the estimated sea ice extent has a cli-

matic trend but also that the atmospheric and surface con-

stituents affecting the microwave emission are changing. In

an attempt to compensate for the influence of these artifi-

cial trends, the tie points are derived dynamically using a

window of width ±15 days centred at the day of the actual

sea ice concentration retrieval. It is assumed that ice concen-

trations greater than 95 % from the NASA Team algorithm

(Cavalieri et al., 1984) are in fact a representation of near-

100 % ice. The NASA Team algorithm has different sensi-

tivities to artificial trends than the two algorithms used in

combination here (Andersen et al., 2007). The ice tie point is

the mean brightness temperature value of all data points with

greater than 95 % NASA Team sea ice concentration within

the ±15-days window. The static NASA Team tie points for

SMMR are found in Gloersen et al. (1992) and for SSM/I

the tie points are found in Andersen (1998). Geographically,

the sea ice tie point is excluding data of both the SMMR

and the SSM/I instruments polewards of 84◦ for consistency

between the SMMR and SSM/I periods. The open water tie-

point data were selected geographically along two belts in the

Northern and Southern Hemisphere (between 53 and 75◦ N

and between 65 and 80◦ S respectively). A land mask includ-

ing the coastal zone and sea ice maximum extent climatology

ensures open water data only.

There is no attempt to compensate explicitly for sensor

drift or inter-sensor calibration differences (even though the

SSM/I data have been intercalibrated by RSS) or possible

biases in the NWP fields used for atmospheric noise reduc-

tion of the brightness temperatures. The dynamical tie-point

method is in principle compensating for these problems in a

consistent manner.

2.2 Atmospheric noise reduction of the brightness

temperatures using NWP data

Using an emission model, the brightness temperatures are

corrected for the influence of water vapour in the atmo-

sphere and open water surface roughness caused by wind.

The emission model used for atmospheric noise reduction of

the SMMR brightness temperatures, Tb, with NWP input is

(Wentz, 1983)

Tb = f
(

Ts,u
∗,V ,L,Ta

)

, (1)

where Ts is the physical surface temperature, u∗ is the sea

surface wind friction velocity, V is the integrated atmo-

spheric water vapour column, L is the atmospheric liquid

water column, and Ta is the surface (at 2 m) air tempera-

ture. A similar model is used for the SSM/I and SSMIS data

(Wentz, 1997). Over areas with both ice and water the influ-

ence of open water roughness on the brightness temperatures

and the ice emissivity is scaled linearly with the ice concen-

tration. The emissivity of ice is given by standard tie-point

emissivity values and the total ice concentration is solved by

iteration with a first guess of the ice concentration from the

NASA Team algorithm (Cavalieri et al., 1984) with static tie

points. The correction procedure is described in detail in An-

dersen et al. (2006b). The NWP model grid points are co-

located with the satellite swath data in time (maximum 3 h)

and space using linear interpolation and a correction to the

brightness temperatures using Eq. (1) is applied. The poten-

tial inconsistencies between the ERA-40 and the operational

ECMWF models are minimized by the dynamical tie-point

adjustment later in the processing and eventually the residual

error is included in the error estimate.

The representation of atmospheric liquid water column in

the NWP data is not suitable to use for brightness tempera-

ture correction because of the spatial and temporal variabil-

ity of clouds, which is higher than the model grid cell size

and model time step size. The brightness temperatures are

therefore not corrected for the influence of atmospheric liq-

uid water. Assuming a neutral atmospheric temperature pro-

file, the wind speed at 10 m, given by the numerical weather

prediction model, is converted to the surface friction velocity

using the factor 0.047 for use in the SMMR radiative transfer

model. The other NWP variables are used directly.

2.3 The ice concentration algorithm

The analysis of atmospheric sensitivity in Andersen et

al. (2006b) showed that the Comiso Bootstrap frequency-

mode (CF) algorithm (Comiso, 1986; Comiso et al., 1997)

had the lowest sensitivity to atmospheric noise at low ice con-

centrations. Furthermore, the comparison to high-resolution

SAR imagery in Andersen et al. (2007) indicated that among

the algorithms using 19 and 37 GHz channels available

on both SMMR and SSM/I–SSMIS, the Bristol algorithm

(Smith, 1996) had the lowest sensitivity to ice surface emis-

sivity variability. In addition the Bristol algorithm had low

sensitivity to atmospheric emission in particular at high ice

concentrations.

Consequently, we use a combination of the Bristol algo-

rithm and the CF algorithm – a so-called hybrid algorithm.

The CF algorithm uses T19v and T37v. The algorithm as-

sumes only two surface types: ice and open water. The linear

relationship yields the following formulation for the total sea

ice concentration, ic:

icBootstrap =
(

Tb − T W
b

)

/
(

T I
b + T W

b

)

, (2)

where Tb is the measured brightness temperature, T W
b is the

open water tie point, and T I
b is the ice tie point.

The Bristol algorithm (Smith, 1996) is conceptually simi-

lar to the Bootstrap algorithm. In a three-dimensional scatter

plot spanned by T19v, T37v, and T37h the ice points tend to

fit a plane surface. The only difference to the Bootstrap al-

gorithm is that instead of viewing the data in the T19v, T37v

space, the Bristol algorithm views the data perpendicular to
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the data plane that contains both the ice line and the water tie

point, i.e. in a transformed coordinate system:

1. axis : T37v + 1.045T37h + 0.525T19v, (3a)

2. axis : 0.9164T19v − T37v + 0.4965T37h. (3b)

The remaining analysis is identical to the Bootstrap algo-

rithm.

The Bootstrap algorithm is used over open water and the

Bristol algorithm is used over ice. At intermediate concen-

trations up to 40 % (from the Bootstrap ice concentration es-

timate) the ice concentration is an average weighted linearly

between the two algorithms, i.e.

ic = (1 − wc) · icBristol + wc · icBootstrap, (4a)

where

wc =

(

∣

∣t − icBootstrap

∣

∣+ t − icBootstrap

)

/(2 · t) , (4b)

where t is the threshold of 40 %.

2.4 The sea ice concentration uncertainties

The uncertainties described in the following sections are gen-

erally independent and the squared sum of the two estimated

components of uncertainty is assumed to represent the total

uncertainty squared. Each of the components is quantified

as the standard deviation (SD) of sea ice concentration. The

tie-point uncertainty εtie point, including residual atmospheric

noise, sensor noise, and ice surface emissivity variability, is

derived from measurements as the first component of uncer-

tainty. The representativeness error, εsmear, is simulated using

a model as the second component of uncertainty, i.e.

ε2
total = ε2

tie point + ε2
smear. (5)

In addition to these two sea ice concentration uncertainty

components there is the geolocation error. It occurs when the

satellite is not exactly oriented (Poe et al., 2008). Simulations

show that because of the large footprints (see next section for

footprint sizes) compared to the typical geolocation errors of

the SSM/I (about ±5 km, Hollinger et al., 1990), the ice con-

centration uncertainty due to geolocation errors is small and

neglected here. There may be regions along the ice edge and

along coastlines where the geolocation errors may be signifi-

cant. However, we have not been able to include these errors

in the sea ice concentration uncertainty estimate.

2.4.1 First component: instrument noise, algorithm,

and tie-point uncertainties

Both the water surface and ice surface emissivity variabil-

ity and emission and scattering in the atmosphere affect the

brightness temperatures and the computed ice concentra-

tions. To reduce the uncertainties due to atmospheric noise,

the brightness temperatures are corrected using NWP data for

atmospheric water vapour, near-surface air temperature, and

open water roughness caused by wind. The remaining tie-

point uncertainties are given as the tie-point ice concentra-

tion standard deviation in regions with open water or 100 %

ice.

Random instrument noise also results in ice concentration

uncertainties. The SSM/I instrument noise results in an ice

concentration uncertainty of 1.4 % for the Bristol algorithm

and 1.7 % for the Bootstrap algorithm in frequency mode

(Andersen et al., 2006a). Systematic sensor drift is critical

issue for ice concentration algorithms using static tie points.

Here we use inter-sensor calibration and dynamical tie points

intended for alleviating problems with sensor drift.

2.4.2 Second component: the representativeness error

Footprint sizes for the channels used for ice concentration

mapping are uneven and range from about 50–70 km for the

19 GHz channels to about 30 km for the 37 GHz channels.

The ice concentration data are normally represented on a

finer grid (typically 12.5 or 25 km) than the sensor footprint

sizes (30–70 km). This effect is called smearing. The combi-

nation of footprints of uneven size in the ice concentration al-

gorithm results in an additional smearing effect. This we call

the footprint mismatch error. The smearing and the footprint

mismatch error cannot be estimated separately. However, the

combined error can be estimated if all other error sources and

the ice cover reference are known a priori. It can also be sim-

ulated using high-resolution ice concentration reference data

and a model for the satellite measurement footprint patterns.

Here we use the model.

The smearing simulation model uses high-resolution

brightness temperature input to compute the brightness tem-

peratures as would be measured by the coarse-resolution ra-

diometers on board the satellite. The high-resolution input is

compared to the coarse-resolution output and realizations of

ice concentrations in the hybrid sea ice concentration algo-

rithm.

Reference SIC is derived from the brightness of cloud-free

MODIS scenes resampled to 1km×1km pixel size described

in Sect. 1.4. The MODIS pixel brightness across the image

may vary slightly as a function of solar angle and albedo

(snow type and sea ice type), leading to uncertainties in the

derived ice concentration. However, here it is the reference

and it does in fact provide a realistic spatial distribution of

ice at the right scale for input to the model and as a reference

for comparison. Each of these 1km × 1km ice concentration

pixels is assigned a microwave brightness temperature using

standard tie points (Comiso et al., 1997) and linear mixing

between 0 and 100 %. For each 1km × 1km brightness tem-

perature pixel elliptical Gaussian-shaped antenna patterns

(Drusch et al., 1999) are used to simulate brightness tem-

peratures at 19v and 19h and 37v and 37h as it would be

measured with SMMR and SSM/I or SSMIS on the satellite.

The simulations of brightness temperatures are used as input

www.the-cryosphere.net/10/2275/2016/ The Cryosphere, 10, 2275–2290, 2016
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Table 2. The SD of the difference between the simulated SSM/I–

SSMIS satellite ice concentration and the reference ice concentra-

tion resampled to different grid resolutions in percent.

1 km 5 km 10 km 12 km 25 km 50 km

CF 18 16 14 13 10 7

Bristol 17 15 13 12 10 6

OSISAF 17 15 13 12 9 6

to the CF and Bristol algorithms using standard tie points.

The resulting ice concentration estimate is then compared to

the ice concentration reference from MODIS sampled to dif-

ferent resolutions, i.e. 1, 5, 10, 12, 25, and 50 km (see Ta-

ble 2). The SD between the truth at a certain pixel resolu-

tion and the simulated satellite image is the smearing uncer-

tainty. The smearing uncertainty is assumed uniform between

0 % + εtiepoint and 100 % − εtiepoint. At 0 and 100 % it is zero.

Table 2 shows the smearing uncertainty for the CF, Bristol,

and average hybrid OSISAF algorithm SDs at different grid

resolutions. The final grid resolution of the ESICR obtained

with the OSISAF algorithm is 12 km and has a smearing

uncertainty of 12 % (Table 2). The smearing uncertainty is

nearly the same for the CF and the Bristol algorithms.

The MODIS image used for estimating the smearing un-

certainty is shown in Fig. 1. The image has regions of open

water, intermediate concentrations, and 100 % ice cover. The

simulated SSM/I sea ice concentration using Fig. 1 as input

to the hybrid OSISAF algorithm is shown in Fig. 2.

2.4.3 The sea ice concentration uncertainty algorithm

The representativeness uncertainty is computed as a function

of ice concentration using a model. The other error sources

are computed using the hemispheric standard deviation of the

ice concentration estimates over open water and over near-

100 % ice respectively. The ice concentration algorithm pro-

vides ice concentrations which are greater than 100 % and

less than 0 % because of the natural variability of the mea-

sured brightness temperatures around the ice and open wa-

ter tie points. These unphysical concentrations are truncated

in the processing. ic is the ice concentration calculated by

the algorithm and α is the truncated ice concentration (con-

strained to the interval 0–100 %):

if ic ≤ 0 then α = 0, (6)

if 0 < ic < 1 then α = ic, (7)

if ic ≥ 1 then α = 1. (8)

Using Eq. (2) and assuming the uncertainty for the ice and

water part is independent leads to a total tie-point uncertainty

Figure 1. The 1 km cloud-free MODIS image 3000km × 2200km.

The scene is situated north of McMurdo Station and east of the Ross

Sea, Antarctica. Ice concentrations between 0 % (black) and 100 %

(white). The scene is recorded at 03:30 UTC 24 February 2008 by

the Aqua satellite. The scene centre is at 69.5◦ S, 165◦ W.

Figure 2. The simulated ice concentrations using the SSM/I sen-

sor specifications and the OSISAF hybrid ice concentration algo-

rithm and the data in Fig. 1 as input. Ice concentrations between

0 % (black) and 100 % (white).

of

εtie point (α(ic)) =

√

(

1 − α(ic)
)2

ε2
water + α2(ic)ε2

ice, (9)

where εwater = ε
(

IC(Pwater)
)

. (10)

Open water is determined from open water measurements

near the ice edge, IC is the functional mapping of the ice

concentration algorithm, and Pwater denotes the set of open

water swath pixels for all swaths (used for calculating the

daily product).
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The SD of the ice concentrations where NASA Team ice

concentrations are greater than 95 % is

εice = ε (IC(PNT>0.95)) . (11)

The ice concentration uncertainty is a function of sea ice

concentration (Fig. 3) where the total uncertainty squared

is the sum of the two uncertainty components squared (see

Eq. 5). The smearing uncertainty is zero for open water and

for 100 % ice and at these two points on the curve the total

uncertainty equals the tie-point uncertainty (including sen-

sor and residual atmospheric noise) for open water and ice

respectively (see Eqs. 6 and 7). The smearing uncertainty

reaches a maximum at intermediate concentrations between

(0 % + εtiepoint) and (100 % − εtiepoint). Because the sea ice

concentration is provided on a relatively fine grid of about

12.5 km compared to the actual resolution of the sensor the

smearing uncertainty is the component which is dominating

the total uncertainty for most of the sea ice concentration

range (Fig. 3). When the grid resolution is comparable to the

footprint size of the sensor, i.e. in our case about 50 km, the

smearing uncertainty (see Table 2) becomes comparable in

magnitude to the tie-point uncertainty which is where the to-

tal uncertainty is at a minimum.

2.5 From level 2 swath projection data to interpolated

level 4 maps

The transition from level 2 swath projection data to the fi-

nal level 4 daily predefined EASE grid includes the gridding

of the swath data, the filtering of coast line grid cells, the

maximum ice extent masking and spatial and temporal inter-

polation of data gaps. Whenever a pixel is altered by any of

these processing steps it is indicated with a flag value in the

product file.

The time window of 24 h is centred at 12:00 UTC. The ice

concentration swath data are averaged for each grid cell using

the simple weighting function:

weight = 1 − 0.3 · (dist/inflrad) , (12)

where dist is the distance between the data point centre

and the grid cell centre and inflrad is the radius of influ-

ence (18 km). All data from overlapping missions are in-

cluded in the gridding except the overlap between SMMR

and SSM/I. Only the SSM/I data are used during the overlap

of 1.5 months between SMMR and SSM/I.

2.5.1 Statistical filtering of ice concentration near the

coastline

Due to the coarse spatial resolution of the radiometers the

data may be influenced by land up to 70 km from the coast-

line. The emissivity of land along the coastline is comparable

to sea ice emissivity and much higher than water emissivity.

This means that in the coastal zone, if there is open water or

Figure 3. The total uncertainty in blue and its two components: the

smearing uncertainty in red and the tie-point uncertainty in green as

a function of ice concentration.

intermediate concentrations, the sea ice concentration will be

overestimated. The statistical method which is described by

Cavalieri et al. (1999) is used for filtering the ice concentra-

tion near the coast.

2.5.2 Climatological maximum sea ice extent masking

Occasionally spurious sea ice is detected in open water re-

gions far from the ice edge due to atmospheric noise affecting

the ice concentration estimate. These spurious sea ice detec-

tions are masked out using the monthly maximum extent cli-

matology by the NSIDC (http://nsidc.org/data/smmr_ssmi_

ancillary/ocean_masks.html). Within a month the position of

the daily sea ice edge can fluctuate substantially and it might

cross the border of the maximum extent climatology used.

Therefore, in order to not generally limit the ice extent to this

climatology and allow detection of real sea ice also outside of

the climatology, we added a zone of additional 100 km into

the open water.

2.5.3 Level 4: gap filling by spatial and temporal

interpolation

Grid cells with missing data are filled with interpolated val-

ues in the level 4 processing and the affected pixels are

flagged. Daily data coverage is never complete due to the

observation gap near the North Pole (see Sects. 1.1 and 1.2)

and occasionally there are missing scan lines and missing or-

bits. Spatial interpolation can fill small gaps, e.g. one or two

missing scan lines but it is deceiving when large areas are

missing and filled with interpolated values. To overcome this

issue, and also implement a general approach for all cases,

both temporal and spatial interpolation is used.
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The weighting parameters are computed as follows:

wD
i,j = 1/(σD

i,j )
2 (2Nmax + 1) , (13)

WD(kl; ij) = 1/(σD
k,l)

2
× exp

(

−0.5

(

1(k, l; i,j)

Ri,j

)2
)

, (14)

where σ is the standard deviation associated to each

ice concentration estimate, 1 is the distance between a

given (k, l) neighbour and cell (i, j ), and R is an auto-

correlation radius. The spatial interpolation weight is thus

based on an isotropic Gaussian distribution, and almost all

(> 99.9 %) of the interpolation weight is concentrated in-

side a [−3R;+3R]×[−3R;+3R] km2 area, which translates

into a [−Nmax;+Nmax]×[−Nmax;+Nmax] grid cells squared

area. It was found by testing that R is proportional to the ab-

solute latitude in degrees, i.e. R = latitude of (i, j ).

The interpolation on a given date, D, uses data from the

day before and the day after, i.e. D − 1 and D + 1.

The interpolated value at grid cell (i,j) for day D is given

by

XD
i,j

= K
(

wD−1
i,j

XD−1
i,j

+ wD+1
i,j

XD+1
i,j

+ 6k,lW
D(kl; ij)XD

k,l

)

,

(15)

where X is the sea ice concentration value and K is a nor-

malizing factor given by

wD−1
i,j + wD+1

i,j + 6k,lW
D(kl; ij) = 1/k. (16)

The spatial interpolation from neighbours of cell (i, j ) in

Eq. (13) is only using values from date D, while the temporal

interpolation is concerned with the value from the exact (i, j )

cell and from dates D − 1 and D + 1. This ensures that the

interpolation will be efficient in the two following extreme

scenarios. (1) In a region where we never have satellite ob-

servations, e.g. the data coverage gap near the North Pole,

the spatial interpolation term will be the only contribution.

(2) Conversely, in the case of several missing swaths on day

D only (nominal coverage on D − 1 and D + 1), the inter-

polated values will be computed from the previous and next

days, taking advantage of the persistence of sea ice concen-

tration over relatively short periods. The interpolation for in-

termediate cases (when both spatial and temporal neighbours

exist) is a compromise of those extreme situations.

For the SMMR, which was operated every second day, the

temporal interpolation is D − 2 and D + 2 instead of D − 1

and D + 1 for SSM/I and SSMIS.

3 Results and discussion

We compared the ESICR to sea ice charts for reference dur-

ing the period from October 1978 to April 2015 in both hemi-

spheres. There is a gap in the comparison in the Southern

Hemisphere between 1994 and 2006 (see Sect. 1.5). The

overlap period during July and August 1987 between the

SMMR and the SSM/I instruments is analysed in more de-

tail in Sect. 3.2.

The ice charts are produced to support ship and offshore

operations and not to monitor sea ice as a climate parame-

ter. However, they do well in identifying areas of open water

and ice and the comparison does in fact reveal trends in the

ESICR noise levels.

3.1 The ice concentration comparison to sea ice charts

The NIC ice charts and the ESICR are gridded onto the

12.5 km EASE grid and compared pixel by pixel. The total

concentration in the ice chart is given as the average of the

range of sea ice concentrations, e.g. 10–30 %, describing the

variability within each ice chart polygon. The bias and SD

between ice chart and the ice concentration are computed for

ice (ice chart concentration greater than 0 %) and for open

water (ice chart concentration equal to zero).

The ESICR ice concentration is higher than the ice chart

over open water by 5–15 % in the Northern Hemisphere

(Fig. 4). This is due to the fact that the radiometer ice concen-

tration is affected by atmospheric noise and smearing near

the ice edge, which increases the ESICR ice concentration

above zero, while the ice charts have a nominal value of zero

over open water. Actually, the mean open water ESICR ice

concentration is zero at swath level (level 2). However, all

negative ice concentration estimates are truncated to zero,

which leaves the small positive bias in the final product

(level 4). The uncorrected noise from, in particular, cloud liq-

uid water, but also atmospheric water vapour and wind over

open water, gives a positive bias in the ESICR ice concentra-

tions. The SMMR to SSM/I transition in 1987 is hardly seen

even though the SSM/I 19.35 GHz is affected more by wa-

ter vapour than the 18.0 GHz SMMR instrument. Apparently

not all the noise due to atmospheric water vapour and wind

is removed successfully in the brightness temperature cor-

rection scheme and there is a trend from the beginning to the

end of the comparison. This trend is interpreted as a gradual

improvement of the NWP data, especially since 2002 when

the operational model is used instead of ERA-40. Trends in

the amount of cloud liquid water, which is not included in the

Tb correction, could also result in the trend which is seen in

Fig. 4. The ice bias has a clear seasonal cycle and a negative

winter bias around −5 to −15 %. The negative summer sea

ice bias sometimes reaches −20 %.

Both the standard deviation of open water and ice has a

clear seasonal cycle with higher standard deviations during

summer than during winter (Fig. 5) and the standard devi-

ation of open water has a decreasing trend during the latter

part of the record. This could be a result of higher-quality

wind and water vapour data in the recent part of the ERA-40

reanalysis and in the operational ECMWF model used since

2002.
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Figure 4. The Arctic ESICR–NIC ice chart mean difference (bias) for areas of ice in red and for areas of open water in black.

Figure 5. The Arctic ESICR–NIC ice chart standard deviation of the difference for areas of ice in red and for areas of open water in black.

Figure 6. The Antarctic ESICR-NIC ice chart mean difference (bias) for areas of ice in red and for areas of open water in black. No ice

charts were available to us from 1994 to 2006.

There is also a small positive bias over open water in

the Southern Hemisphere due to the truncation of spurious

sub-zero ice concentrations in the ESICR (Fig. 6). Over ice,

the ESICR and NIC ice chart difference is negative around

−10 % during Antarctic winter. During the Antarctic sum-

mer the difference over ice is near −20 %.

The standard deviation of the difference between the

ESICR and the NIC ice charts (Fig. 7) is higher and has more

interannual variability in Antarctica than in the Arctic, except

for the comparison over open water where the difference is

between 0 and 5 % from 2006 onwards.

3.2 The SMMR and SSM/I overlap

The overlap period between SMMR and SSM/I during July

and August 1987 is short because 15 days prior and after

the actual date are needed in order to establish the tie points

properly. Subtracting 15 days in each end of the overlap pe-

riod leaves only a few days where the tie points are fully

established. For the periods where the tie points are not fully

developed the tie points for SMMR and for SSM/I cover dif-

ferent time periods and they are therefore expected to differ.

In the Northern Hemisphere (Fig. 8) the bias is below 4 %

and this may be due to melt ponds with diurnal variability in
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Figure 7. The ESICR and NIC ice chart standard deviation of the difference around Antarctica. The red curve is for ice and the black curve

is for water. No ice charts were available to us from 1994 to 2006.

Figure 8. The overlapping SMMR–SSM/I difference in the Arctic during summer melt. The red curve shows the ice bias.

Figure 9. The overlapping SMMR–SSM/I difference around Antarctica during austral winter. The red curve shows the ice bias.

their signatures and the two instruments’ different orbits and

data coverage.

The SMMR and SSM/I overlap period coincides with the

ice maximum in the Southern Hemisphere, which is ideal for

comparison (Fig. 9), and the bias is even smaller than in the

Northern Hemisphere (less than 2 %). Inspecting the differ-

ences geographically (not shown) indicates that when envi-

ronmental conditions have not changed significantly during

SMMR and SSM/I passes the SSM/I is slightly higher over

open water while over ice the two estimates are close to each

other.

3.3 Ice chart and ESICR comparison discussion

The uncertainties in the NIC sea ice charts are described in

Dedrick et al. (2001). Another study of the differences be-

tween ice charts from Greenland and Norwegian ice centres

covering the same region shows relatively large (up to 30 %)

discrepancies in ice concentration SD of the difference es-

pecially at intermediate concentrations (Breivik et al., 2015).

Compared to microwave radiometer ice concentrations (the

OSISAF operational algorithm in Andersen et al., 2006b) the

ice concentration in Greenland ice charts is systematically

about 30 % higher at intermediate concentrations. Trials with

the ice concentration model described in Sect. 2.5.3 show
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that the estimates from most sea ice concentration algorithms

including the Bootstrap and the Bristol agree very well with

the actual ice concentration and that there are very small

differences between the overall response of different algo-

rithms (ice concentration differences < 1 % on 1000 km scale

not including noise). The different algorithms thus yield the

same ice concentrations given the same tie points and bright-

ness temperature input. We did not find a similar investiga-

tion comparing NIC and other overlapping and coincident ice

charts. However, we note that the methodology for making

the Greenland, Norwegian, and NIC ice charts is similar.

The bias between ice charts and radiometer ice concentra-

tions at intermediate concentrations, i.e. near the ice edge and

in the marginal ice zone, can be caused by two effects: (1) the

estimated radiometer ice concentrations are lower than real

ice concentration for new ice and lower when the surface is

melting or refrozen after melting. Both new ice and melt-

ing/refreezing is abundant in regions with intermediate ice

concentrations and this will thus lead to the radiometer un-

derestimating the real ice concentration. A hybrid algorithm

such as OSISAF mitigates biases due to melting/refreezing

to some extent but usage of hemispheric tie points cannot

account for existing regional differences in melt progress.

(2) The ice charts’ ice concentration is a subjective estimate

which is made for the safety of navigation and an overesti-

mation of the ice concentration in the ice chart, particularly

near the ice edge and in the marginal ice zone, might stem

from “better-safe-than-sorry” practices within the ice chart-

ing community.

3.4 The ESICR comparison to the NSIDC Sea Ice

Index monthly sea ice extent

The differences between sea ice climate data records from

the same set of satellite microwave radiometer data (SMMR,

SSM/I and SSMIS) are primarily due to different spatial res-

olution, land masks and land spill over correction method-

ologies, and different ice concentration thresholds for delin-

eating the sea ice extent. The choice of sea ice concentra-

tion algorithms and atmospheric correction methods also in-

fluences the sea ice extent estimate (Kern et al., 2014). The

NSIDC sea ice extent uses the NASA Team sea ice concen-

tration algorithm and a 15 % threshold for delineating the sea

ice extent. The land masks are similar to the ones used in the

ESICR. The mean monthly sea ice extent from the NSIDC

is shown together with the ESICR in Table 3a and b for

comparison. In the Arctic (Table 3a) the differences between

the NSIDC and the ESICR data records are small (less than

0.4 millionkm2). In the Southern Hemisphere the differences

are up to 1.5 millionkm2 (in December). These differences

in sea ice extent are due to the different sea ice concentration

thresholds which are used for delineating the ice extent in the

ESICR (30 %) and the NSIDC (15 %), the different methods

for atmospheric correction, the different sea ice concentra-

tion algorithms, and the different tie points which are used

for generating the two datasets (Fetterer et al., 2016).

3.5 The ESICR metrics

In the following we give examples of the ESICR dataset for

estimating sea ice climate statistics and trends. The applied

climate period here is the full length of the ESICR from Oc-

tober 1978 to the end of 2014. We give examples for both

hemispheres.

In this context, the sea ice extent is defined as the area

covered by sea ice within the ice edge. The ice edge is de-

fined as the 30 % contour. Ice concentrations greater than

30 % are considered as ice covered while concentrations less

than 30 % are considered open water. This threshold is higher

than e.g. the 15 % threshold used in Parkinson and Cavalieri

(2008). The higher threshold is needed here because we are

not using weather filters in the processing and therefore there

may be more noise over open water resulting in an unwanted

overestimation of the ice extent. The noise level over open

water depends on the success of the Tb correction, i.e. partly

on the quality of the NWP data, and the levels of cloud liquid

water, which we cannot yet correct for.

For the Arctic there is a negative trend in the monthly mean

extent for all months of the year (Table 3a). The negative

slope is largest in September (−94 000 ± 9700 km2 yr−1) and

smallest in May (−32 000 ± 4600 km2 yr−1). For the Antarc-

tic there is a positive trend in the monthly mean extent for all

months of the year (Table 3b). The positive slope is largest in

the months April, October, and December (33 000 km2 yr−1)

and smallest in February (13 000 ± 5400 km2 yr−1).

The mean sea ice extent for the Arctic for years 1979

through 2014 is shown in Fig. 10 together with the Septem-

ber 2012 sea ice extent. The lower two panels display the

seasonal variability of the sea ice extent and the long-term

mean monthly sea ice extent in March and in September, the

months with maximum and minimum extent respectively. In

this panel we have included the extent for the most recent

11 years of ESICR (2004–2014) for comparison. September

2012 was the lowest sea ice extent on record in the Arc-

tic since beginning of the satellite era. Over the 35 years

of ESICR there is a negative trend in sea ice extent for all

months of the year with the largest negative trend during the

summer and the beginning of autumn (July–October).

The mean sea ice extent for the Antarctic for years 1979

through 2014 is shown together with the September 2012 sea

ice extent in Fig. 11. The lower two panels show the sea-

sonal variability of the sea ice extent and the long-term mean

monthly sea ice extent in March and in September. The sea

ice extent has experienced an overall positive trend around

Antarctica, especially along the ice edge in the Weddell and

Ross Seas downstream of the northward branches of the cy-

clonic atmospheric circulation.

In order to assess the length of the ice season for a given

pixel, the annual spatial distribution of dates of freeze-up and
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Table 3. (a) The mean monthly sea ice extent 1978–2014, long-term trend, and standard error of the trend in the Arctic. All figures are in

millions of square kilometre. The right-hand column shows the mean monthly NSIDC Sea Ice Index Arctic sea ice extent (1978–2014) for

comparison (Fetterer et al., 2016). (b) The mean monthly sea ice extent 1978–2014, trend, and standard error of the trend in the Antarctic. All

figures are in millions of square kilometre. The right-hand column shows the mean monthly NSIDC Sea Ice Index Antarctic sea ice extent

(1978–2014) for comparison (Fetterer et al., 2016).

Month Mean Trend Trend SE NSIDC Sea Ice Index mean

(106 km2) (106 km2 yr−1) (106 km2 yr−1) (106 km2)

(a)

January 14.641 −0.045 0.0040 14.589

February 15.505 −0.045 0.0043 15.407

March 15.620 −0.041 0.0042 15.572

April 14.772 −0.036 0.0048 14.838

May 13.403 −0.032 0.0046 13.434

June 11.899 −0.053 0.0044 11.908

July 09.667 −0.079 0.0060 09.641

August 07.458 −0.084 0.0083 07.144

September 06.881 −0.094 0.0097 06.395

October 09.053 −0.077 0.0089 08.821

November 11.138 −0.055 0.0052 10.983

December 13.241 −0.044 0.0043 13.107

(b)

January 04.566 0.022 0.0092 05.295

February 02.911 0.013 0.0054 03.148

March 04.105 0.022 0.0072 04.461

April 06.860 0.033 0.0099 07.459

May 10.135 0.032 0.0089 10.843

June 13.229 0.029 0.0072 14.018

July 15.622 0.022 0.0055 16.523

August 17.129 0.022 0.0059 18.214

September 17.684 0.029 0.0089 18.909

October 17.278 0.033 0.0070 18.460

November 15.164 0.020 0.0065 16.388

December 09.932 0.033 0.0115 11.412

break-up were calculated using a simple methodology, the

results of which are comparable to Parkinson (2014). The

freeze-up date for a given point is defined as the date when

the sea ice concentration exceeds 30 % and remains so for at

least 5 days. Similarly, the break-up date for a given point is

defined as the date when the sea ice concentration falls from

above to below 30 % and remains so for at least 5 days.

Since the sea ice does not retreat and expand com-

pletely every year, not all areas experience the same num-

ber of freeze-ups and break-ups over an equal period of

years. Therefore, some regions may experience relatively few

freeze-ups and break-ups, thus reducing the confidence in the

trend of the region. As a consequence, only areas having ex-

perienced more than six freeze-ups/break-ups are considered.

The open water days are calculated as the difference in

days between freeze-up and break-up and the decadal trends

in the open water days are shown in Fig. 12 for the Arctic

and in Fig. 14 for the Antarctic.

In the Arctic, over the record of 35 years the number of

open water days has been increasing by at least 60 days in

the Davis Strait and in large parts of the Barents Sea. The ice

season (the opposite of open water days) has been shortening

consistently all over the Arctic except in the Bering Strait re-

gion and the Greenland Sea (Fig. 12). The negative trend in

the Greenland Sea is not significant and based on an insuf-

ficient number of data points. In fact, the large areas with

new ice formation which used to characterize the ice cover

in Greenland Sea have appeared rarely since 2000 (Tonboe

and Toudal, 2005; Rogers and Hung, 2008). The shortening

of the ice season in the Arctic in general is due both to a de-

lay of the freeze-up and earlier break-up in combination (not

shown). This is consistent with e.g. Close et al. (2015).

The significance of the trends in the number of open water

days is shown in Figs. 13 and 15 for the Arctic and Antarc-

tic, respectively, as a test of the null hypothesis, i.e. testing

the probability of no trend. This means that a low probabil-

ity indicates that the trend is in fact significant. It is noted

that the trend is significant in most Arctic regions (Fig. 13).

There is a negative decadal trend in the number of open wa-

ter days around Antarctica in regions with a seasonal sea ice

cover (Fig. 14), except in the Bellingshausen Sea/Amundsen

Sea and the Indian Ocean. The trend is significant in large

regions in the Weddell Sea and in the Ross Sea (Fig. 15).

The negative trend in the number of open water days in the

Ross and in the Weddell Seas indicates that the ice is staying

longer in these areas now than before.
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Figure 10. The upper panel: the September 2012 sea ice extent in

the Arctic compared to the mean extent shown with the red line.

The blue lines on either side of the mean extent line (red) are the

5 and 95 percentiles of ice extent. The lower two panels show the

annual cycle of sea ice extent. The shaded areas are the 5 and 95 %

percentiles of the interannual and daily variability respectively. The

lower panel show the long-term (1978–2014) Arctic sea ice extent

near its maximum in March and near its minimum in September.

4 Conclusions

A sea ice climate record covering the period from autumn

1978 to the end of 2014 has been produced based on past

satellite microwave radiometer data from SMMR, SSM/I,

and SSMIS. The climate record has been produced accord-

ing to four principles to ensure consistency and to minimize

the sensitivity to noise sources:

1. Finding algorithms with low sensitivities to geophysical

noise. Two algorithms have been selected in combina-

tion based on the evaluation in Andersen et al. (2007),

the Bristol over ice, and the Bootstrap in frequency

mode over open water. An independent evaluation of

Figure 11. The upper panel: the September 2012 sea ice extent in

the Antarctic compared to the mean extent shown with the red line.

The blue lines on either side of the mean extent line are the 5 and 95

percentiles of ice extent. The lower two panels show the annual cy-

cle of sea ice extent. The shaded areas are the 5 and 95 % percentiles

of the interannual and daily variability respectively. The lower panel

show the long-term (1978–2014) Antarctic sea ice extent near its

maximum in March and near its minimum in September.

algorithms in Ivanova et al. (2015) pointed at the same

two algorithms.

2. Regional error reduction correcting the brightness tem-

peratures for water vapour in the atmosphere and wind

over open water. The scheme described in Andersen et

al. (2006b) is used to reduce the noise over both ice and

water.

3. Calibrate the algorithms to the actual ice and water sig-

natures and sensor drift using dynamical tie points. The

result of using dynamical tie points has been demon-

strated here at the transition from SMMR to SSM/I with

satisfactory results. In addition, we do not see any jumps

at sensor transitions in the comparison to the indepen-

dent ice chart dataset.
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Figure 12. The linear trend in open water days in the Arctic (1978–

2014).

Figure 13. The probability that the trend in Fig. 12 is not significant

(test of the null hypothesis). A low value (< 5 %) indicates that the

trend is significant.

Figure 14. The linear trend in open water days in the Antarctic

(1978–2014).

Figure 15. The probability that the trend in Fig. 14 is not significant

(test of the null hypothesis). A low value (< 5 %) indicates that the

trend is in fact significant.
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4. Quantify the residual uncertainties. A forward model for

the residual uncertainties has been developed and ap-

plied. The total uncertainty as a combination of the tie-

point variability and the representativeness uncertainty

is a function of the ice concentration and it is applied on

each individual measurement.

It is clear that the sea ice covers in both hemispheres have

undergone large changes over the 35-year period. In the Arc-

tic the linear trend at sea ice minimum month in September

is −94 000 km2 yr−1.

Around Antarctica there has been an increase of the total

sea ice extent during all months especially downstream of

the Weddell Sea and in the Ross Seas. However, there are re-

gional differences and the ice extent has decreased along the

Antarctic Peninsula in the Bellinghausen and the Amundsen

Seas.

Future work

The sea ice climate record will be updated at irregular in-

tervals. The next update is planned for autumn 2016. It will

include development from the ESA sea ice climate change

initiative project working towards improved sea ice climate

record methodologies (Ivanova et al., 2015).

In addition, the daily near-real-time OSISAF sea ice con-

centration product and the ESICR are using the same algo-

rithms and similar methodologies. One of the differences

is related to the tie-point selection period, which is either

the last 30 days (near-real-time) or 15 days before and after

(ESICR).

In order to extend the sea ice climate record with past

data the possibility of to retrieving the Nimbus 5 Electrically

Scanning Microwave Radiometer (ESMR) 19 GHz swath

data from 1972 to 1977 is being investigated. These sin-

gle channel data are significantly different from SMMR and

SSM/I–SSMIS data and a new sea ice algorithm would have

to be used.

5 Data availability

The sea ice concentration climate data record is available for

download from Tonboe et al. (2015a, www.osi-saf.org), in-

cluding documentation.

Acknowledgements. We would like to thank Irene Rubinstein,

Walter Meier, and Georg Heygster for their constructive and helpful

comments on the manuscript. The work was completed with sup-

port from EUMETSAT’s Ocean and Sea Ice Satellite Application

Facility. Stefan Kern acknowledges support given by the Center of

Excellence for Climate System Analysis and Prediction (CliSAP).

The SMMR data were provided by the NSIDC, the SSM/I data

by Remote Sensing Systems, the numerical weather prediction

model data by the ECMWF, and the SSMIS data were processed

at NOAA. The ice chart data are from the US National Ice Center

and NSIDC and the sea ice extent data used for comparison were

provided by the NSIDC.

Edited by: C. Haas

Reviewed by: G. Heygster, W. Meier, and I. Rubinstein

References

Andersen, S.: Monthly Arctic sea ice signatures for use in passive

microwave algorithms, Danish Meteorological Institute, Techni-

cal Report 98-18, 29 pp., 1998.

Andersen, S., Tonboe, R. T., and Kaleschke, L.: Satellite thermal

microwave sea ice concentration algorithm comparison, in: Arc-

tic Sea Ice Thickness: Past, Present and Future, edited by: Wad-

hams, P. and Amanatidis, G., Climate Change and Natural Haz-

ards Series, 10, EUR 22416, 2006a.

Andersen, S., Tonboe, R., Kern, S., and Schyberg, H.: Improved

retrieval of sea ice total concentration from spaceborne pas-

sive microwave observations using Numerical Weather Predic-

tion model fields: An intercomparison of nine algorithms, Re-

mote Sens. Environ., 104, 374–392, 2006b.

Andersen, S., Toudal Pedersen, L., Heygster, G., Tonboe, R., and

Kaleschke, L.: Intercomparison of passive microwave sea ice

concentration retrievals over the high concentration Arctic sea

ice, J. Geophys. Res., 112, C08004, doi:10.1029/2006JC003543,

2007.

Belchansky, G. I. and Douglas, D. C.: Seasonal comparison of sea

ice concentration estimates derived from SSM/I, OKEAN, and

Radarsat data, Remote Sens. Environ., 81, 67–81, 2002.

Breivik, L.-A., Eastwood, S., Karvonen, J., Dinesen, F., Fleming,

A., Hamre, T., Pedersen, L. T., Saldo, R., Buus-Hinkler, J., Hack-

ett, B., Ardhuin, F., and Jensen, M. B.: Quality information doc-

ument for OSI TAC sea ice products, MyOcean ref. MYOF-OSI-

QUID-SEAICE, 1.10, 62 pp., 9 March 2015.

Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and

trends, 1979–2010, The Cryosphere, 6, 881–889, doi:10.5194/tc-

6-881-2012, 2012.

Cavalieri, D. J., Gloersen, P., and Campbell, W. J.: Determination

of Sea Ice Parameters with the NIMBUS-7 SMMR, J. Geophys.

Res., 89, 5355–5369, 1984.

Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C., and

Zwally, H. J.: Deriving long-term time series of sea ice cover

from satellite passive-microwave multi-sensor data sets, J. Geo-

phys. Res., 104, 15803–15814, 1999.

Close, S., Houssals, M.-N., and Herbaut, C.: Regional depen-

dence in the timing of onset of rapid decline in Arctic sea

ice concentration, J. Geophys. Res.-Oceans, 120, 8077–8098,

doi:10.1002/2015JC011187, 2015.

Comiso, J. C.: Characteristics of arctic winter sea ice from satel-

lite multispectral microwave observations, J. Geophys. Res., 91,

975–994, 1986.

Comiso, J. C, Cavalieri, D. J., Parkinson, C. L., and Gloersen, P.:

Passive microwave algorithms for sea ice concentration: A com-

parison of two techniques, Remote Sens. Environ., 60, 357–384,

1997.

Comiso, J. C., Kwok, R., Martin, S., and Gordon, A. L.: Variability

and trends in sea ice extent and ice production in the Ross Sea,

www.the-cryosphere.net/10/2275/2016/ The Cryosphere, 10, 2275–2290, 2016

www.osi-saf.org
http://dx.doi.org/10.1029/2006JC003543
http://dx.doi.org/10.5194/tc-6-881-2012
http://dx.doi.org/10.5194/tc-6-881-2012
http://dx.doi.org/10.1002/2015JC011187


2290 R. T. Tonboe et al.: The EUMETSAT sea ice concentration climate data record

J. Geophys. Res., 116, C04021, doi:10.1029/2010JC006391,

2011.

Dedrick, K. R., Partington, K., Van Woert, M., Bertoia, C. A., and

Benner, D.: U.S. National/Naval Ice Center Digital Sea Ice Data

and Climatology, Can. J. Remote Sens., 27, 457–475, 2001.

Drusch, M., Wood, E. F., and Lindau, R.: The impact of the SSM/I

antenna gain function on land surface parameter retrieval, Geo-

phys. Res. Lett., 26, 3481–3484, 1999.

Eastwood, S., Jensen, M. B., Lavergne, T., Sørensen, A. M., and

Tonboe, R.: Global Sea Ice Concentration Reprocessing. Prod-

uct User Manual, EUMETSAT OSISAF, Document version: 2.2,

Data set version: 1.2, August 2015.

Emery, W. J., Fowler, C., and Maslanik, J.: Arctic sea ice concentra-

tions from special sensor microwave imager and advanced very

high resolution radiometer satellite data, J. Geophys. Res., 99,

18329–18342, 1994.

Fetterer, F.: A Selection of Documentation Related To National Ice

Center Sea Ice Charts in Digital Format, National Snow and Ice

Data Center (NSIDC), Boulder, Colorado, USA, NSIDC Special

Report # 13, 2006.

Fetterer, F. and Fowler, C.: National Ice Center Arctic sea ice charts

and climatology, NSIDC, Boulder, Colorado, USA, 2006, up-

dated 2009.

Fetterer, F., Knowles, K., Meier, W., and Savoie, M.: Sea Ice In-

dex, version 2. 1978–2015, NSIDC, Boulder, Colorado, USA,

doi:10.7265/N5736NV7, 10 August 2016.

Gloersen, P. and Barath, F. T.: A scanning multichannel microwave

radiometer for Nimbus-G and SeaSat-A, IEEE J. Oceanic Eng.,

2, 172–178, 1977.

Gloersen, P., Campbell, W. J., Cavalieri, D. J., Comiso, J. C., Parkin-

son, C. L., and Zwally, H. J.: Arctic and Antarctic sea ice, 1978–

1987: satellite passive-microwave observations and analysis, Na-

tional Aeronautics and Space Administration, Washington, DC,

NASA SP-511, 319 pp., 1992.

Goosse, H. and Zunz, V.: Decadal trends in the Antarctic sea

ice extent ultimately controlled by ice-ocean feedback, The

Cryosphere, 8, 453–470, doi:10.5194/tc-8-453-2014, 2014.

Holland, P. R. and Kwok, R.: Wind-driven trends in Antarctic sea

ice drift, Nat. Geosci., 5, 872–875, 2012.

Hollinger, J. P., Peirce, J. L., and Poe, G. A.: SSM/I instrument eval-

uation, IEEE T. Geosci. Remote, 28, 781–790, 1990.

Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heyg-

ster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G.,

Brucker, L., and Shokr, M.: Inter-comparison and evaluation

of sea ice algorithms: towards further identification of chal-

lenges and optimal approach using passive microwave obser-

vations, The Cryosphere, 9, 1797–1817, doi:10.5194/tc-9-1797-

2015, 2015.

Kållberg, P., Simmons, A., Uppala, S., and Fuentes, M.: The ERA-

40 archive, ERA-40 Project Report Series, ECMWF, Reading,

2004.

Kern, S., Bunzel, F., Debernand, J., Heiberg, H., Killie, M. A.,

Koldunov, N., and Lavergne, T.: ESA Sea Ice Climate Change

Initiative: Phase 1, D4.2 Climate Assessment Report, Document

Ref.: SICCI-CAR, Version 1, 26 November 2014.

Meier, W.: Scanning Multichannel Microwave radiometer (SMMR)

reprocessing for EUMETSAT, OSI SAF Visiting Scientist Re-

port, 9 pp., 2008.

Parkinson, C. L.: Spatially mapped reductions in the length of the

Arctic sea ice season, Geophys. Res. Lett., 41, 4316–4322, 2014.

Parkinson, C. L. and Cavalieri, D. J.: Arctic sea ice variabil-

ity and trends, 1979–2006, J. Geophys. Res., 113, C07003,

doi:10.1029/2007JC004558, 2008.

Poe, G., Uliana, E. A., Gardiner, B. A., vonRentzell, T. E., and Kun-

kee, D. B.: Geolocation error analysis of the Special Sensor Mi-

crowave Imager/Sounder, IEEE T. Geosci. Remote, 46, 913–922,

2008.

Rayner, N. A., D. E., Parker, Horton, E. B., Folland, C. K. Alexan-

der, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global

analysis of sea surface temperature, sea ice, and night marine air

temperature since the late nineteenth century, J. Geophys. Res.,

108, 4407, doi:10.1029/2002JD002670, 2003.

Rogers, J. C. and Hung, M.-P.: The Odden ice feature of the Green-

land Sea and its association with atmospheric pressure, wind, and

surface flux variability from reanalyses, Geophys. Res. Lett., 35,

L08504, doi:10.1029/2007GL032938, 2008.

Smith, D. M.: Extraction of winter sea ice concentration in the

Greenland and Barents Seas from SSM/I data, Int. J. Remote

Sens., 17, 2625–2646, 1996.

Steffen, K. and Schweiger, A.: NASA team algorithm for sea ice

concentration retrieval from Defense Meteorological Satellite

Program special sensor microwave imager: Comparison with

Landsat satellite imagery, J. Geophys. Res., 96, 21971–21988,

1991.

Tonboe, R. and Toudal, L.: Classification of new-ice in the Green-

land Sea using Satellite SSM/I radiometer and SeaWinds scat-

terometer data and comparison with ice model, Remote Sens.

Environ., 97, 277–287, 2005.

Tonboe, R. T., Eastwood, S., Lavergne, T., Sørensen, A. M., Rath-

mann, N., Dybkjær, G., Pedersen, L. T., Høyer, J. L., and Kern,

S.: OSI SAF global sea ice concentration data record – OSI-409a,

doi:10.15770/EUM_SAF_OSI_0005, 2015a.

Tonboe, R., Pfeiffer, R.-H., Jensen, M. B., Howe, E., and Eastwood,

S.: Validation report for Global sea ice concentration reprocess-

ing, EUMETSAT OSISAF Products OSI-409, Osi-409a, OSI-

430, Document version: 2.0, 30 pp., April 2015b.

Wentz, F. J.: A model function for ocean microwave brightness tem-

peratures, J. Geophys. Res., 88, 1892–1908, 1983.

Wentz, F. J.: User’s Manual, SSM/I Antenna Temperature Tapes,

Revision 1, Remote Sensing Systems, Santa Rosa, California,

USA, RSS Technical Report 120191, 1991.

Wentz, F. J.: User’s Manual, SSM/I Antenna Temperature Tapes,

Revision 2, Remote Sensing Systems, Santa Rosa, RSS Techni-

cal Report 120193, 1993.

Wentz, F. J.: A well-calibrated ocean algorithm for SSM/I, J. Geo-

phys. Res., 102, 8703–8718, 1997.

Wentz, F. J.: User’s Manual, SSM/I Antenna Temperature, Ver-

sion 6, Remote Sensing Systems, Santa Rosa, RSS Technical

Memo 082806, 2006.

Wentz, F. J., Ricciardulli, L., Hilburn, K., and Mears, C.: How much

more rain will global warming bring?, Science, 317, 233–235,

doi:10.1126/science.1140746, 2007.

Zhang, X. D. and Walsh, J. E.: Toward a seasonally ice-covered

Arctic Ocean: Scenarios from the IPCC AR4 model simulations,

J. Climate, 19, 1730–1747, 2006.

The Cryosphere, 10, 2275–2290, 2016 www.the-cryosphere.net/10/2275/2016/

http://dx.doi.org/10.1029/2010JC006391
http://dx.doi.org/10.7265/N5736NV7
http://dx.doi.org/10.5194/tc-8-453-2014
http://dx.doi.org/10.5194/tc-9-1797-2015
http://dx.doi.org/10.5194/tc-9-1797-2015
http://dx.doi.org/10.1029/2007JC004558
http://dx.doi.org/10.1029/2002JD002670
http://dx.doi.org/10.1029/2007GL032938
http://dx.doi.org/10.15770/EUM_SAF_OSI_0005
http://dx.doi.org/10.1126/science.1140746

	Abstract
	Introduction
	Description of the Nimbus 7 SMMR instrument and data
	Description of the SSM/I and SSMIS instruments and data
	Meteorological data
	Moderate Resolution Imaging Spectroradiometer (MODIS) data
	Ice chart data for comparison

	Methodology
	Dynamical tie points
	Atmospheric noise reduction of the brightness temperatures using NWP data
	The ice concentration algorithm
	The sea ice concentration uncertainties
	First component: instrument noise, algorithm, and tie-point uncertainties
	Second component: the representativeness error
	The sea ice concentration uncertainty algorithm

	From level 2 swath projection data to interpolated level 4 maps
	Statistical filtering of ice concentration near the coastline
	Climatological maximum sea ice extent masking
	Level 4: gap filling by spatial and temporal interpolation


	Results and discussion
	The ice concentration comparison to sea ice charts
	The SMMR and SSM/I overlap
	Ice chart and ESICR comparison discussion
	The ESICR comparison to the NSIDC Sea Ice Index monthly sea ice extent
	The ESICR metrics

	Conclusions
	Data availability
	Acknowledgements
	References

