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The gut flora as a forgotten organ
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The intestinal microflora is a positive health asset that crucially
influences the normal structural and functional development of
the mucosal immune system. Mucosal immune responses to resi-
dent intestinal microflora require precise control and an
immunosensory capacity for distinguishing commensal from
pathogenic bacteria. In genetically susceptible individuals, some
components of the flora can become a liability and contribute to
the pathogenesis of various intestinal disorders, including inflam-
matory bowel diseases. It follows that manipulation of the flora to
enhance the beneficial components represents a promising thera-
peutic strategy. The flora has a collective metabolic activity equal
to a virtual organ within an organ, and the mechanisms underlying
the conditioning influence of the bacteria on mucosal homeostasis
and immune responses are beginning to be unravelled. An
improved understanding of this hidden organ will reveal secrets
that are relevant to human health and to several infectious, 
inflammatory and neoplastic disease processes.
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Introduction
Host–microbe interactions occur primarily along mucosal sur-
faces, and one of the largest interfaces is the human intestinal
mucosa . The intestine is adapted to bi-directional host–flora
exchange and harbours a diverse bacterial community that is sep-
arated from the internal milieu by only a single layer of epithelial
cells. Resident bacteria outnumber human somatic and germ cells
tenfold and represent a combined microbial genome well in
excess of the human genome (Shanahan , 2002). Collectively, the
flora has a metabolic activity equal to a virtual organ within an
organ (Bocci , 1992).

Most bacterial species cannot be cultured, but modern molecular
methods, such as broad-range sequencing of 16S ribosomal RN A
from amplified bacterial nucleic acid extracted from faeces or
biopsies, indicate evolutionary divergence that can be used to
identify and classify bacteria . The availability of bacterial

sequence data has facilitated the development of molecular
probes for fluorescence in situ hybridization , D N A microarrays
and gene chips that can identify and enumerate specific species.
These molecular approaches have been used to examine the indi-
viduality and stability of the flora over time and to detect shifts in
its composition after weaning, exposure to antibiotics or dietary
changes. A lthough the intestinal flora of an adult alters with
lifestyle, diet and age (Hopkins et al, 2001), the prevailing influence
of the host genotype over environmental factors on an individual’s
microbial diversity has been shown in a comparative study of the
flora of adults with varying degrees of genetic relatedness
(Zoetendal et al, 2001).

The structure and composition of the gut flora reflects natural
selection at both the microbial and host levels, which promotes
mutual cooperation within and functional stability of this complex
ecosystem. Although bacteria predominate, archaea and eukarya
are also represented. Acid, bile and pancreatic secretions hinder
the colonization of the stomach and proximal small intestine by
most bacteria. However, bacterial density increases in the distal
small intestine, and in the large intestine rises to an estimated
1011–1012 bacteria per gram of colonic content, which contributes
to 60% of faecal mass (Fig 1A). In addition to variations in the com-
position of the flora along the axis of the gastrointestinal tract, sur-
face-adherent and luminal microbial populations also differ
(Eckburg et al, 2005), and the ratio of anaerobes to aerobes is lower
at the mucosal surfaces than in the lumen.

The fetal gut is sterile but colonization begins immediately after
birth and is influenced by the mode of delivery, the infant diet,
hygiene levels and medication (Gronlund et al, 1999). Enterobacteria
and bifidobacteria represent early colonizers, although differences in
gut microflora composition and the incidence of infection occur
between breast- and formula-fed infants (Mountzouris et al, 2002). It
seems that these pioneering bacteria can modulate gene expression
in the host to create a suitable environment for themselves and can
prevent growth of other bacteria introduced later to the ecosystem
(Xu & Gordon, 2003).

Lessons from a life without intestinal microflora
Enteric bacteria form a natural defence barrier and exert numerous
protective, structural and metabolic effects on the epithelium
(Fig 1B). Their influence on intestinal physiology has been shown in
comparative studies of germ-free and colonized animals. Germ-free
animals are more susceptible to infection and have reduced vascu-
larity, digestive enzyme activity, muscle wall thickness, cytokine
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production ands serum immunoglobulin levels, smaller Peyer’s
patches and fewer intraepithelial lymphocytes, but increased entero-
chromaffin cell area (Shanahan, 2002). However, reconstitution of
germ-free mice with an intestinal microflora is sufficient to restore
the mucosal immune system (Umesaki et al, 1995). Indeed, colo-
nization of germ-free mice with a single species, Bacteroides
thetaiotaomicron, affects the expression of various host genes that
influence nutrient uptake, metabolism, angiogenesis, mucosal barrier
function and the development of the enteric nervous system (Xu &
Gordon, 2003). Moreover, ligands from commensal bacteria and
commensal-derived symbiosis factors influence the normal devel-
opment and function of the mucosal immune system (Mazmanian 
et al, 2005; Rakoff-Nahoum et al, 2004). Commensal bacteria pro-
foundly influence the development of humoral components of the
gut mucosal immune system (Weinstein & Cebra, 1991) and also
modulate the fine-tuning of T-cell repertoires and T-helper (Th)-cell
type 1 or type 2 cytokine profiles (Cebra, 1999; Shanahan, 2002). Thus,
it is possible that the composition of the colonizing flora influences
individual variations in immunity.

The intestinal microbiome has a metabolic activity that is both
adaptable and renewable (Bocci, 1992). Through the production of
short-chain fatty acids, resident bacteria positively influence

intestinal epithelial cell differentiation and proliferation, and
mediate other metabolic effects (Fig 1B; Shanahan, 2002).
Together, this complex metabolic activity recovers valuable energy
and absorbable substrates for the host, and provides energy and
nutrients for bacterial grow th and proliferation. Colonization
increases the uptake of glucose in the intestine and, compared
with colonized mice, germ-free mice require a greater caloric
intake to sustain a normal body weight (Backhed et al, 2004). This
implicates gut bacteria as modulators of fat deposition in the host.

Host–flora communication at the mucosal surface
Host defence requires an accurate interpretation of the micro-
environment to distinguish commensal organisms from episodic
pathogens and a precise regulation of subsequent responses. The
epithelium provides the first sensory line of defence and active sam-
pling of resident bacteria, pathogens and other antigens is mediated
by three main types of immunosensory cell (Fig 2). First, surface
enterocytes serve as afferent sensors of danger within the luminal
microenvironment by secreting chemokines and cytokines that
alert and direct innate and adaptive immune responses to the
infected site (Shanahan, 2005). Second, M cells that overlie lym-
phoid follicles sample the environment and transport luminal 
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antigens to subadjacent dendritic cells and other antigen-presenting
cells. Third, intestinal dendritic cells themselves have a pivotal
immunosensory role and can directly sample gut contents by either
entering or extending dendrites between surface enterocytes with-
out disrupting tight junctions (Rescigno et al, 2001). Dendritic cells
can ingest and retain live commensal bacteria and travel to the
mesenteric lymph node where immune responses to commensal
bacteria are induced locally (Macpherson & Uhr, 2004). Thus, act-
ing as a gatekeeper, the mesenteric lymph node prevents access of
commensal bacteria to the internal milieu.

The ability of immunosensory cells to discriminate pathogenic
from commensal bacteria is mediated, in part, by two major host
pattern recognition receptor (PRR) systems—the family of Toll-like
receptors (TLRs) and the nucleotide-binding oligomerization
domain/caspase recruitment domain isoforms (N O D/CARD; Cario,
2005). These PRRs have a fundamental role in immune-cell activa-
tion in response to specific microbial-associated molecular patterns.
For example, TLR2 is activated by peptidoglycan and lipotechoic
acids, TLR4 by lipopolysaccharide, TLR5 by flagellin, and N O D1/
CARD4 and N O D2/CARD15 function as intracellular receptors of
peptidoglycan subunits.

TLRs and N O D proteins are expressed by surface enterocytes and
dendritic cells (Abreu et al, 2005), and in the gut PRRs seem to be
crucial for bacterial–host communication. Decreased enterocyte
proliferation and levels of cytoprotective factors have been observed
in TLR-defective mice, and TLR signals mediated by commensal bac-
teria or their ligands are essential for intestinal barrier function and
repair of the gut (Fukata et al, 2005; Rakoff-Nahoum et al, 2004).

Many PRR ligands are expressed by commensal bacteria, yet the
healthy gut does not evoke inflammatory responses to these bacteria.
Conversely, some commensal bacteria exert protective effects by
attenuating pro-inflammatory responses induced by various
enteropathogenic bacteria (Kelly et al, 2004; Ma et al, 2004; O ’Hara
et al, 2006). The host and bacterial mechanisms that underpin these
effects are being explored.

Host systems that contribute to homeostasis. In the healthy gut, TLR
expression profiles contribute to homeostasis. Normal enterocytes
express low levels of TLR2, TLR4 and the co-receptor M D-2, and lack
membrane-bound C D14, which is a co-receptor for lipopolysaccha-
ride (Abreu et al, 2001; O tte et al, 2004). There have been conflicting
reports relating to the restricted expression of certain TLRs in the gut
(Kelly et al, 2005). In particular, expression of TLR5 in vitro seems to
be basolateral (Gewirtz et al, 2001), but TLR5 is expressed on both
the apical and basolateral poles in vivo. This illustrates that intestinal
epithelial cell lines might express different levels, or have a different
cellular distribution, of TLRs compared with normal gut mucosa. In
gastric epithelial cells, TLR5 can redistribute to a predominantly
basolateral localization in response to Helicobacter pylori infection
(Cario & Podolsky, 2000; Schmausser et al, 2004), suggesting that
under certain conditions TLR5 redistributes to the basolateral mem-
brane where it is ideally positioned to detect translocated flagellin. In
addition, intestinal enterocytes constitutively or inducibly express
high levels of the TLR inhibitor Toll-interacting protein (Tollip; O tte 
et al, 2004). Tollip expression correlates directly with the luminal
bacterial load in vivo and is highest in healthy colonic mucosa.
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Fig 2 | Immunosensory detection of intestinal bacteria. Surface enterocytes secrete many immune mediators in response to antigens, including antibacterial
peptides, immunoglobulin A (IgA) and chemokines. Specialized epithelial cells, termed M cells, transport and deliver antigens to antigen-presenting cells, which
subsequently process antigens and present them to naïve T cells. Antigen-presenting dendritic cells (DCs) also survey and sample the mucosal microenvironment.
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Surface enterocytes also express high levels of a Toll/interleukin-1
receptor-containing inhibitory molecule referred to as single
immunoglobulin IL-1R-related molecule (SIGIRR). SIGIRR-deficient
animals are more susceptible to experimentally induced colitis, sug-
gesting a role for SIGIRR in tuning mucosal tolerance towards com-
mensal flora (Garlanda et al, 2004). Additional TLR suppressors, such
as A20 and TRIA D3A , have been identified in other systems (Boone
et al, 2004; Chuang & Ulevitch, 2004), but whether these mediators
regulate TLR signalling in the gut is unknown.

Recent evidence suggests that, similar to Tollip, N O D2 might
suppress inflammatory cascades, and mutations of N O D2 are
associated with Crohn’s disease (Bairead et al, 2003). N O D2 can
modulate signals transmitted through TLR3, TLR4 and TLR9 (Netea
et al, 2005; van Heel et al, 2005). Although wild-type N O D2 acti-
vates pro-inflammatory signals, stimulation of N O D2 with
peptidoglycan has been shown to inhibit TLR2-driven Th1 cytokine
responses, and in the absence of N O D2 peptidoglycan triggers
imbalanced TLR2-mediated cytokine production (Watanabe et al,
2004). Conversely, peptidoglycan induces a pro-inflammatory
phenotype in mutant mice expressing dysfunctional N O D2
(Maeda et al, 2005), suggesting that in some situations N O D2
mutations might lead to a gain-of-function and elevated pro-
inflammatory cytokine production. In the healthy gut, excessive
Th1 responses to the resident flora are also inhibited by the 
controlling influence of regulatory T cells and tolerance-inducing
dendritic cells (Rook & Brunet, 2005).

Effector mechanisms of the commensal flora. Host inflammatory
responses to pathogenic bacteria and other stress signals are 
pivotally controlled by the transcription factor nuclear factor
(NF)-!B. Most commensal bacteria do not activate NF-!B, but rather
certain species can restrain inflammatory signals in response to
Salmonella typhimurium and its flagellin through pathways that
seem to involve NF-!B (O ’Hara et al, 2006). Several distinct mecha-
nisms by which commensal bacteria limit NF-!B signalling have
been elucidated (Fig 3). These include inhibition of epithelial protea-
some function, degradation of the NF-!B counter-regulatory factor
I!B" or nuclear export of the NF-!B subunit, p65, through a peroxi-
some proliferator-activated receptor (PPAR)#-dependent pathway
(Kelly et al, 2004; Neish et al, 2000; Petrof et al, 2004). Some com-
mensal bacteria might inhibit specific signalling via TLR4 by elevating
PPAR# expression and uncoupling NF-!B-dependent target genes in
a negative-feedback loop (Dubuquoy et al, 2003). Induction of
transforming growth factor-$ and nerve growth factor, and mitogen-
activated protein kinase and protein kinase B pathways have also
been implicated in the anti-inflammatory effects mediated by various
commensal bacteria (Ma et al, 2004; Yan & Polk, 2002). Moreover,
probiotic D NA has been shown to restrain cytokine-induced 
pro-inflammatory responses in intestinal enterocytes ( Jijon et al,
2004), but the precise immunomodulatory impact of bio-available
commensal D NA in vivo requires investigation.

Molecular mimicry of host molecules, whereby bacteria display
surface molecules resembling those of the surface of the host, could
contribute to immune hyporesponsiveness to some resident bacteria.
It has been shown that the synthesis of fucosylated surface mol-
ecules by the commensal strain Bacteroides fragilis confers a com-
petitive survival advantage, which allows these bacteria to reside in
close contact with intestinal enterocytes that are covered with simi-
lar fucosylated glycoproteins and glycolipids (Coyne et al, 2005).

Commensal-derived metabolites and the composition of bacterial
surface structures can also have various impacts on the host immune
system (Grangette et al, 2005; Menard et al, 2004). Recent compara-
tive genomic analysis and bioinformatic data mining have revealed
the presence of type III and type IV secretion systems in commensal
bacteria (Nagai & Roy, 2003; Tampakaki et al, 2004). H itherto such
secretion systems had only been described for pathogenic bacteria
(Backert & Selbach, 2005), and now warrant studies to determine
whether commensal bacteria use analogous secretion systems to
deliver effector molecules that subsequently mediate evasion of host
immune surveillance mechanisms in the gut.

The silent partner in disease manifestation
The gut flora is normally a health asset, but in genetically susceptible
individuals some components of the flora can become a liability.
Aberrant immune responses to luminal antigens underlie the mani-
festations of inflammatory bowel disease (IBD), which comprises
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Fig 3 | Schematic illustration of the mechanisms by which some commensal
bacteria limit pathogen-induced nuclear factor (NF)-!B signalling.
Pathogenic bacteria such as Salmonella typhimurium trigger I!B kinase
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Crohn’s disease and ulcerative colitis, and in susceptible individuals,
tissue damage results from immunological misperception of danger
within the indigenous flora or from failure of normal tolerance to
enteric bacteria (Shanahan, 2002). It remains unclear whether the
inflammatory responses in IBD are elicited in response to a specific
subset of intestinal microbes or whether tolerance to commensal 
bacteria in general is affected.

Innate immune responses to the commensal flora educate the
immune system and influence adaptive responses to exogenous
antigens. With increased sanitation and hygiene in developed
nations, genes that were once survival factors in an earlier era
could become risk factors for immune-hypersensitivity disorders in
a modern sanitized environment (Rook & Brunet, 2005). Under
certain circumstances, commensal bacteria have been shown to
fuel the progression towards colorectal malignancy by generating
reactive metabolites, converting pro-carcinogens to carcinogens
and altering host carbohydrate expression (Hope et al, 2005).
Recent reports suggest that the gut microbiota of an individual has
a specific metabolic efficiency, and differences in gut flora compo-
sition between individuals might regulate energy storage and even
a predisposition to obesity (Backhed et al, 2004). Moreover, the
microflora itself is a substantial consumer of energy, and increas-
ing adiposity has been shown to mediate changes in the diversity
of the gut flora (Ley et al, 2005).

Conventional therapies for IBD and atopy primarily target
mucosal inflammatory responses, but the contribution of the
indigenous flora to certain clinical manifestations underpins the
rationale for therapeutic manipulation of enteric bacteria using
pharmabiotics. Pharmabiotic is a generic term to encompass any
form of therapeutic exploitation of the commensal flora, including
the use of live probiotic bacteria, probiotic-derived biologically
active metabolites, prebiotics, synbiotics or genetically modified
commensal bacteria. Indeed, there is evidence supporting a thera-
peutic role for probiotic strategies for treating mucosal inflammatory
disorders such as IBD, atopy, infection, diarrhoea, cancer and
arthritis (Shanahan, 2005; Yan & Polk, 2004). The concept that gut
microbial diversity is linked to obesity deserves extensive explor-
ation, and the assessment of energy-efficient species in lean com-
pared with obese individuals might yield new treatment strategies
for chronic obesity.

Conclusions
The 2005 Nobel prize in Physiology and Medicine awarded to
Robin Warren and Barry Marshall is a reminder that the solution to
some human diseases does not reside solely within the host but
rather might be found at the interface with the microbial environ-
ment. Manipulation of the flora is becoming a realistic therapeutic
and prophylactic strategy for many infectious, inflammatory and
even neoplastic diseases within the gut. However, the promise of
pharmabiotics is unlikely to be completely fulfilled without greater
attention to the secrets held within the forgotten inner organ repre-
sented by the enteric microflora. The flora might be a rich repository
of metabolites that can be exploited for therapeutic benefit.
Elucidating the molecular details of host–flora interactions is, therefore,
a pre-requisite for a ‘bugs to drugs’ programme of discovery.
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