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ABSTRACT

T he connection matrix of the human brain (the human
‘‘connectome’’) represents an indispensable
foundation for basic and applied neurobiological

research. However, the network of anatomical connections
linking the neuronal elements of the human brain is still
largely unknown. While some databases or collations of large-
scale anatomical connection patterns exist for other
mammalian species, there is currently no connection matrix
of the human brain, nor is there a coordinated research effort
to collect, archive, and disseminate this important
information. We propose a research strategy to achieve this
goal, and discuss its potential impact.

Introduction

To understand the functioning of a network, one must
know its elements and their interconnections. The purpose of
this article is to discuss research strategies aimed at a
comprehensive structural description of the network of
elements and connections forming the human brain. We
propose to call this dataset the human ‘‘connectome,’’ and we
argue that it is fundamentally important in cognitive
neuroscience and neuropsychology. The connectome will
significantly increase our understanding of how functional
brain states emerge from their underlying structural
substrate, and will provide new mechanistic insights into how
brain function is affected if this structural substrate is
disrupted. It will provide a unified, time-invariant, and
readily available neuroinformatics resource that could be
used in virtually all areas of experimental and theoretical
neuroscience.

Recent research in neuroscience has resulted in a rapid
proliferation of neuroscience datasets and in the arrival of a
new discipline, neuroinformatics [1–4]. Despite considerable
advances in experimental techniques and computational
paradigms, we still have an incomplete understanding of how
human cognitive function emerges from neuronal structure
and dynamics. Here, we focus on the relative lack of
information about the different types of neural elements and
their neural connections in the human brain. While a larger
number of anatomical studies of the human brain have been
carried out at the macroscopic (cerebral lobes, surface
landmarks, and white matter tracts) or microscopic
(cytoarchitectonics, myeloarchitectonics,
chemoarchitectonics, etc.) anatomical level, there is virtually
no information on the finer connectivity patterns, including
neuronal connection densities or laminar projection patterns
in relation to anatomically segregated cortical areas or
intraregional differentiation. Furthermore, none of the
available information is deposited in a single standardized
data format, nor can it be accessed through a public database.

Experimental approaches to human cognition have been
significantly enhanced by the arrival of functional
neuroimaging [5], a set of techniques that can be applied to
study a broad range of cognitive functions, with ever-
increasing spatial and temporal resolution. But the
mechanistic interpretation of neuroimaging data is limited,
in part due to a severe lack of information on the structure
and dynamics of the networks that generate the observed
activation patterns. A potential theoretical framework for
conceptualizing cognition as a network phenomenon is based
on two main organizational principles found in the cerebral
cortex, functional segregation, and functional integration
[6,7]. Emerging network theories of cognition emphasize the
contextual [8], distributed [9], dynamic [10], and degenerate
[11,12] nature of structure–function mappings in the brain.
To successfully map structure to function in the human brain,
we urgently need a comprehensive, detailed structural model
of neuronal units and their connections. Connectional
models of the human brain are scarce and poorly defined
[13], and they are largely based on extrapolating anatomical
information from other primate species such as the macaque
monkey, an approach that is problematic [14], in part,
because of our incomplete understanding of evolutionary
changes.
Our proposal to assemble the human connectome has

several components. First, we attempt to define a level of
scale at which a first draft of the human connectome might be
assembled. We consider several potential experimental and
neuroinformatics approaches for creating this first draft. We
then discuss potential problems and limitations of the
connectome, including the central issues of individual
variability and development. Finally, we sketch out the
potential impact of the connectome in computational and
cognitive neuroscience.
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Scales and Levels of Structural Description

The human genome is composed of approximately 3 3 109

base pairs, containing around 20,000–30,000 genes [15]. The
compilation of the genome was aided by the fact that base
pairs and genes are relatively straightforward choices as basic
structural elements. The connectome will consist of two main
descriptors defining its network architecture: neural elements
and neural connections. Data fields for these elements specify
superordinate or subordinate structures, a normalized
position within a standard coordinate system, and additional
parameters such as physiological/biophysical metadata that
are crucial for specifying neural dynamics. The set of all N
elements constitutes the columns (targets) and rows (sources)
of an N2–N connection matrix A, whose aij entries represent
connections between individual elements i and j. In keeping
with conventions adopted by other authors [16,17], confirmed
absence of a connection is denoted by aij¼ 0, while confirmed
presence of a connection (irrespective of its strength or
physiological characteristics) results in aij ¼ 1. Once a
connection is confirmed to be present, its nonzero matrix
element receives additional data entries cataloguing a range
of structural and physiological parameters, such as fiber
direction, connection density, strength, sign (excitatory/
inhibitory), conduction delay, potential modulatory effects
(voltage dependence), etc. The union of the binary
connection matrix and connection-specific physiological data
then results in a structural description that combines
connection topology and biophysics.

Compiling the connectome faces two significant challenges
not shared by other natural or technological networks. First,
the human brain is a highly complex organ with a great
number of structurally distinct, heterogeneous, yet
interconnected components. Because a primary application
of the connectome will likely be a structural substrate for
understanding human cognitive function and interpreting
neuroimaging studies, a first draft of the connectome may
focus on the structural description of the corticothalamic
system, including all regions of the cortex and their
associated thalamic nuclei. Extensions of this first draft might
include additional connected regions (striatum, cerebellum,
etc.), with the ultimate aim of compiling the connectome of
the whole brain.

A second challenge is that basic structural elements of the
human brain, in terms of network nodes and connections, are
difficult to define. Different kinds of structural descriptions
could target at least three rather distinct levels of
organization. At opposite ends of the scale are the level of
single neurons and synapses (microscale) and the level of
anatomically distinct brain regions and inter-regional
pathways (macroscale). Between these two levels is the level of
neuronal groups or populations (mesoscale). It is important
to determine which level of description is the most
appropriate for a first draft of the human connectome.

Microscale: Single Neurons and Synapses
Attempting to assemble the human connectome at the level

of single neurons is unrealistic and will remain infeasible at
least in the near future. With single neurons as the basic
element, the size of the connectome would be several orders
of magnitude larger than that of the genome, comprising an
estimated 1011 neurons, with 1015 connections between them

(approximately 1010 neurons and 1013 connections in the
cortex alone) [18,19]. Recording or tracing 1015 connections
is not only technically impossible, it may also be unnecessary.
While a genomic mutation in a single base pair can have
dramatic consequences, alterations of single synapses or cells
have not been shown to have similar macroscopic effects.
Instead, there is overwhelming evidence that human cognitive
functions depend on the activity and coactivity of large
populations of neurons in distributed networks, including the
corticothalamic system [20]. Furthermore, individual neurons
and connections are subject to rapid plastic changes. These
changes include synaptic weights as well as structural
remodeling of dendritic spines and presynaptic boutons [21],
possibly switching synaptic connections between large
numbers of potential synaptic sites [22,23]. We suggest that
the vast number, high variability, and fast dynamics of
individual neurons and synapses render them inappropriate
as basic elements for an initial draft of the connectome.

Macroscale: Brain Regions and Pathways
An advantage of single neurons is that the elements

themselves are relatively easily demarcated and well defined.
In contrast, brain areas and neuronal populations are more
difficult to delineate. No single universally accepted
parcellation scheme currently exists for human brain regions
(e.g., areas of the cerebral cortex), posing a significant
obstacle to creating a unified resource such as the
connectome. In the human cerebral cortex, neurons are
arranged in an unknown number of anatomically distinct
regions and areas, perhaps on the order of 100 [24] or more.
Different subdivisions of the human brain (e.g., brain stem,
thalamus, cerebellum, or cortex) may require different
criteria for parcellation.
Nonetheless, anatomically distinct brain regions and inter-

regional pathways represent perhaps the most feasible
organizational level for compiling a first draft of the human
connectome. Several neuroinformatics resources recording
large-scale connection patterns in the cerebral cortex of
various mammalian species already exist, for example, for
most cortical regions of the macaque monkey [16,17,25], cat
[26], and rat [27]. Computational analyses of these datasets
have revealed a broad range of network characteristics [28],
including the existence of clusters of brain regions [29],
hierarchical organization [30,31], small-world attributes
[32,33], distinct functional streams [34], motifs [35], and areal
contributions to global network measures [36].
A broad range of experimental approaches exist at the

macroscale. Cerebral white matter has traditionally been
taken as a marker of the amount of connectivity within a
cortical system. The relative contribution of cerebral white
matter has increased throughout phylogeny to such an extent
that its volume and metabolic requirements may present a
limitation to further increases in connectional complexity
[37]. The structural organization of white matter has been
investigated by dissection, histological staining, degeneration
methods, and axonal tracing [38]. Axonal tracing methods are
the main basis for existing mammalian large-scale connection
matrices [16,25–27], and their systematic compilation is
currently being refined [17,39] to extract more sophisticated
data, perhaps with the help of automated text analysis. In the
human brain, postmortem tracing with carbocyanine dyes has
provided details of connectivity within and between adjacent
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areas [40,41]. However, because of the slow transport and the
length of fibers in the human brain, this method fails to reveal
more remote connections. Another tracing method employs
the in vivo detection by magnetic resonance imaging of high-
contrast rare earth ions (e.g., manganese [42]) that have been
injected into fiber tracts or inhaled, and taken up by neurons.
The invasive nature and potential toxicity of the procedure
makes it an unlikely candidate for human connectivity
analyses.

Recent noninvasive imaging methods (diffusion tensor
imaging [DTI] in its several variants, commonly followed by
computational tractography) have been shown to produce
results that are consistent with known pathways formed by
major fiber tracts in the human brain [43–45], although there
continues to be some limitations in data acquisition and
processing algorithms [46]. To disambiguate signals produced
by crossing or intersecting fibers, advances in diffusion
imaging technology may allow the resolution of multiple
axonal pathways within a single image voxel [47,48]. Despite
the promise of diffusion imaging, a systematic atlas of DTI-
based neuroanatomy, including probabilistic data gathered
from individual brains, has not yet been produced, and the
relationship among tensor fields, fiber tracts, and neuronal
connections remains controversial. This controversy is likely
to be resolved only through a combination of anatomical
tracing techniques with noninvasive diffusion and functional
imaging.

Perhaps the most promising avenue for compiling the
human connectome originates from the notion that
individual brain regions maintain individual connection
profiles. What defines a segregated brain region is that all its
structural elements share highly similar long-range
connectivity patterns, and that these patterns are dissimilar
between brain regions. These connectivity patterns
determine the region’s functional properties [49], and also
allow their anatomical delineation and mapping. Diffusion
imaging can be used to identify borders between cortical
areas [50], most clearly on the basis of differences in long-
range connections to the thalamus [51,52]. The idea that
patterns of connectivity can be used to identify areal
boundaries has also been tested in a combination of
functional imaging and DTI/tractography in the human
medial frontal cortex [53]. First, connection probabilities
from voxels within the medial frontal cortex to all other
voxels in the rest of the brain were obtained. Binarized
connection patterns were then used to calculate a cross-
correlation matrix, which was examined for the existence of
distinct clusters of voxels with shared connection patterns.
Such clusters were taken to represent anatomically
segregated areas corresponding to human supplementary
motor area and pre- supplementary motor area, respectively.
Functional mapping revealed close correspondence between
DTI and functional activation patterns. While this combined
structural–functional approach is computationally intensive,
nothing prevents its application to the entire corticothalamic
system. We suggest that the correlated use of noninvasive
structural and functional imaging methods offers the most
promising experimental route toward the human
connectome.

Structural connection data obtained using this combined
methodology can in principle be validated by histological or
tracing methods. Likely, no single method will turn out to be

sufficiently powerful or comprehensive. A systematic
application of sophisticated diffusion-weighted imaging
combined with spatially registered high-resolution
anatomical or spectroscopic imaging, regional activation, and
coactivation data (e.g., electroencephalography,
magnetoencephalography) obtained within the same
individual subject, may offer the most feasible strategy for
mapping the human connectome at the macroscale. This first
draft of the human connectome would take the form of a
probabilistic map of voxel-by-voxel connectivity embedded
within standard coordinates containing approximately 104–
105 elements and approximately 105–107 structural
connections. It would not only provide information on the
large-scale connection patterns within the corticothalamic
system, but also on parcellation of human cortex into distinct
areas based on a combination of structural and functional
data in the same individual. Since this connectivity matrix is
voxel-based, it can be cross-referenced with existing
reference templates and with population-based brain atlases.

Mesoscale: Minicolumns and Their Connection Patterns
A first draft of the corticothalamic connectome at the

macroscale might provide a comprehensive dataset
comprising several hundred brain regions and thousands of
pathways, but it does not incorporate information on
functional subdivisions or segregated subcircuits within each
brain region. While such a macroscale description will
provide many fundamental insights into the large-scale
organization of human cortex, it is an insufficient basis for a
complete understanding of the human brain’s functional
dynamics and information processing capacities. A further
step in this direction involves the characterization of
connection patterns among elementary processing units,
corresponding to local populations of neurons such as
cortical minicolumns. Mountcastle [54,55] originally
proposed the cortical minicolumn as a basic functional unit
of mammalian cerebral cortex. While details of minicolumn
architecture are likely to vary across different brain regions
[56–58], minicolumns generally contain approximately 80–
100 neurons, spanning all cortical layers, with a diameter of
approximately 30–50 lm [55]. Minicolumns may possess
relatively stereotypic internal processing, and maintain
generic patterns of inputs and outputs with minicolumns in
other regions [56–59].
Recent studies have provided evidence for functionally

specialized and precisely wired subnetworks of neurons
coexisting within single cortical columns [60,61]. These
studies have shown that cortical columns may contain
segregated subnetworks, corresponding to minicolumns,
which promote greater intracolumnar functional
independence and informational heterogeneity. The
members of such subnetworks are selectively interconnected
with each other, indicating that connections within and
between minicolumns follow more complex rules than simple
random patterns or Gaussian (distance-dependent)
connection profiles.
Minicolumns may be a sensible choice for neural elements

at the mesoscale of the connectome because they may
represent basic functional elements that are crucial for
cortical information processing. While tracing or recording
all minicolumns in an individual brain is still impossible, it
may be feasible to collect data on minicolumn anatomy for
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selected brain regions, which can then be ‘‘fit’’ into the
appropriate positions within the macroscale connection
matrix. Functional imaging at columnar resolution has been
carried out in animal experiments using high field strength
[62], and may be facilitated in the future through selective
imaging of fast and spatially precise capillary cerebral blood
flow response components [63]. Especially important for
determining functional responses of brain regions are
connection patterns between each region’s constituent
elements. Axonal tracing methods have revealed specific
patterns of horizontal connections between individual cells
and cell populations within a brain region, which are often
found to preferentially link cells with similar response
characteristics [64,65], resulting in clustered intra-areal
connectivity. Such patterns might also be accessible in the
human brain [40], and regional variations in such patterns
may provide important clues regarding the way in which
information is processed within each region.

The axonal tracing approach delivers minicolumn maps for
each distinct brain region, including information on their
functional segregation and local (intra-areal)
interconnectivity. While parcellated brain regions at the
macroscale can be identified across individuals, we have no
means to resolve the locations of corresponding minicolumns
across different brains. The mapping of smaller-than-
macroscopic units, therefore, requires coordinate-
independent mapping approaches [66], which preserve the
anatomical relationships and basic physiological properties
of these units. Thus, macroscale and minicolumn descriptions
deliver complementary datasets that need cross-level
integration to achieve a single mesoscale version of the
connectome. Effectively, minicolumn maps need to be
mapped onto brain region–specific voxel sets rather than
individual voxels, with voxel sets providing spatial embedding
and probabilistic long-range connections, and minicolumn
maps providing local connectivity, processing, and coding
information. The minicolumn description provides a
functionally heterogeneous architecture that is unique to
each parcellated brain region, with specific (probabilistic)
patterns of intra-areal and interareal minicolumn
connections. A crucial task will be to convert long-range,
nondirected voxel-by-voxel connectivity into directed,
functionally heterogeneous long-range minicolumn
interconnectivity. This requires intermediate descriptive
levels such as stripes, bands, and blobs in the early visual
system, for which specific connection patterns have been
demonstrated across areal boundaries. When accomplished,
this cross-level integration will result in a mesoscale
connection matrix of the human brain that might comprise
as many as 107–108 structural elements (comparable in size to
the 2005 World Wide Web), with minicolumn elements
directly cross-referenced to voxels in the macroscale map.

Individual Variability and Development

The large-scale connectivity structure of the brain above
the synaptic level represents a relatively invariant
characteristic of our species. Once the elements and
connections in the human brain are recorded, this dataset
will remain stable, essentially forever. However, as in the case
of the genome, the precise combinations and patterns of

elements and their connections exhibit significant variations
between individuals, at all levels of scale. Some individual
variations may be due to genetic differences, others may be
the result of developmental and experiential history, gender
differences, pathologies, or responses to injury. To
complicate matters further, the human connectome
undergoes development through time, from early stages of
the embryo to adolescence to adult age. Incorporating
individual variations and developmental stages is absolutely
crucial in rendering the connectome an effective resource.
Anatomical and imaging studies have revealed significant

interindividual variability in the size and location of brain
areas, as well as in the relationship between macrostructures
(e.g., the cortical gyrification pattern) and microstructures
(e.g., cytoarchitectonics and cytochemistry). Statistical
analysis of variations in macroscopic surface features of the
human brain, for example its sulcal geometry [67],
demonstrates the extent to which even large-scale features of
cortical morphology vary between individuals, possibly as a
result of genetic differences [68]. An anatomical study of
Broca’s area in ten postmortem human brains revealed
significant variations in size as well as in the area’s relation to
sulcal landmarks [69]. Applying structural magnetic
resonance imaging to map the boundaries of the planum
temporale has demonstrated significant variations in its size
and position across 50 individuals [70]. Functional
neuroimaging studies have also revealed significant
interindividual differences, for example, in the location and
extent of area MT/V5 [71] and other visual cortical areas [72].
These functional differences are presumably due to
variations in underlying structural (cytoarchitectonic and
connectional) substrates.
The presence of significant interindividual variability in

structural connection patterns, even at the macroscale level,
and the fundamentally probabilistic nature of connectivity
datasets provided in the connectome may be viewed as
fundamental weaknesses of the proposal, undermining its
comprehensive goal of a definitive structural description of
the human brain. However, we should consider the fact that
there is also clear interindividual variability in the human
genome. Nevertheless, the first draft with a DNA sequence
obtained from cells from only a few individuals [15] has
proven immensely useful for gaining insights into general
organizational features of the human genome. Mapping of
interindividual variability in the connectome is a necessary
further step, but does not detract from the potential insights
gained from a first draft that does not yet systematically
incorporate these differences.

Steps Toward the Human Connectome:
Its Compilation, Assembly, and Integration

Based on a combination of functional and diffusion-
weighted imaging, we outline the following five-step strategy
for compiling a first draft of the human connectome at the
macroscale.
Step 1 is to perform diffusion-weighted imaging followed

by probabilistic tractography of thalamocortical tracts as well
as corticocortical interareal pathways, using correlations in
connectivity profiles to assist in parcellating human cortical
regions. The end result is a voxel-wise probabilistic all-to-all

PLoS Computational Biology | www.ploscompbiol.org September 2005 | Volume 1 | Issue 4 | e420248



structural connectivity matrix for the human brain. Step 2 is
to perform a correlation analysis of spatially registered,
equally resolved resting activity and/or multistimulus/
multitask activation data (functional magnetic resonance
imaging and/or magnetoencephalography) recorded in the
same person [73], emphasizing strong functional
relationships that are consistent across tasks [74]. The end
result is a voxel-wise all-to-all functional connectivity matrix
for the human brain. Step 3 is to perform a cluster analysis of
correspondences between the structural and functional
connectivity matrix obtained under steps 1 and 2, with the
goal of identifying regions of consistent structure–function
relationships in the human brain, possibly involving indirect
projections [75]. Step 4 is to compare the results obtained by
cluster analysis (step 3) with macaque data in order to identify
correspondences (e.g., in visuomotor pathways) and
deviations (e.g., in structures such as the fasciculus arcuatus).
Step 5 is to validate the strongest predictions generated by
assembling the final combined structural–functional
connectivity matrix using custom-designed stimuli and
perturbational techniques such as transcranial magnetic
stimulation.

The following three steps represent additional stages
designed to further test and verify the human connectome,
including population analyses of individual variability and
pathology. Step 6 is to perform a population analysis of
healthy subjects and spatial registration to standard brain
coordinates for probabilistic statements about data from
steps 1–5. Step 7 is to compare population data on clustered
brain regions to histologically identified regions in a
probabilistic human brain atlas to assess correspondence.
Step 8 is to compare population data between healthy
individuals and patient groups with specific pathologies, to
identify connectional differences.

Ultimately, the connectome will likely describe
connectivity patterns at multiple levels of scale, for example,
by incorporating linkages between the macroscale of brain
regions and pathways in more elementary mesoscale
functional units such as minicolumns and their patterns of
interconnectivity. As experimental techniques mature, the
connectome will gradually evolve through different stages of
assembly as it is refined, updated, cross-validated, and ‘‘filled
in.’’ Standardization of parcellation schemes, elimination of
unreliable data, and incorporation of additional structural
levels above and below the one chosen for the initial draft will
drive this effort. An additional driving force is the continued
innovation in data acquisition and analysis techniques,
particularly in diffusion-weighted imaging and tractography,
which will result in progressive revision, refinement, and
extension of the connectome. To become a useful research
tool, the connectome must be linked to other databases
(compiled in parallel efforts) that record additional
information mapped across the human brain, such as
receptor distributions or gene expression patterns. We
expect that assembling even the first draft of the connectome
will require significant experimental and computational
resources over an extended period of time. Compilation,
assembly, and integration efforts are likely to be extensive
tasks, requiring large-scale collaboration, coordinated data
collection and dissemination, and the establishment of new
computational methods, data standards, and mechanisms for
controlled validation and quality assurance.

Conclusions: The Potential Impact
of the Connectome

How can the connectome be used to map brain structure to
function? The step from structure to function is essential for
understanding how cognitive processes emerge from their
morphological substrates. Our central motivating hypothesis
is that the pattern of elements and connections as captured in
the connectome places specific constraints on brain
dynamics, and thus shapes the operations and processes of
human cognition. In turn, data recording the activity of the
human brain in combination with the structural model
provided by the connectome will help to discern causal
interactions in large-scale brain networks (e.g., [76–78]). We
emphasize that structure–function relationships are not
directly evident from the connectional dataset itself. Rather,
their elucidation will require further intense empirical and
computational study. Depending on sensory input, global
brain state, or learning, the same structural network can
support a wide range of dynamic and cognitive states. This
should not, however, discourage the effort to assemble the
connectome. Similar difficulties in mapping structure to
function exist in the case of the genome, although they
generally were not foreseen when the project was initiated.
Highly complex transcriptional regulatory networks,
signaling pathways, mechanical forces, and elaborate
mechanisms of gene expression all play essential roles in
translating base sequences into functioning cells, tissues, and
organisms. Both genome and connectome constitute complex
networks [79], whose functions are not fully understood even
if their structural substrates are fully catalogued.
An obvious and related use of the human connectome

would be providing structural information that can be
implemented as part of large-scale computational models
[80,81]. If the connectome is sufficiently comprehensive and
accessible, it could also provide a set of structural
benchmarks that might facilitate the comparison and
integration of the numerous specialized and structurally
based models that have already been proposed in
computational neuroscience. Drawing upon human
connectional datasets would help ground modeling efforts
aimed specifically at brain mechanisms of human cognitive
function (e.g., language). Other computational applications of
the connectome are topological analyses of network structure
[28], perturbational studies aiming at mapping structural
disruption to functional defects, and synthetic brain imaging
[82–84].
The human connectome could potentially have a major

impact on our understanding of brain damage and
subsequent recovery. The effects of developmental variations
or abnormalities, traumatic brain injury, or
neurodegenerative disease can all be captured as specific
structural variants of the human connectome. The functional
consequences of network perturbations will allow a better
understanding of structural causes of dysfunction, and may
permit the design of strategies for recovery based on network
analysis. Understanding the basic network causes of brain
diseases may also open new avenues for therapy and
prevention by harnessing inherent network mechanisms that
ensure robustness and compensation.
There are many structural and functional aspects that the

human connectome, as envisioned in this article, does not
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contain or address. For example, it does not explicitly
capture or catalogue the rich variety of neuronal
morphologies, the diversity of physiological and biochemical
neural subtypes, glial cells, or brain vascularization. Its first
draft does not capture synaptic plasticity and remodeling,
nonsynaptic communication, hormonal regulation, or
degenerative processes. We do not view these issues as
shortcomings that fundamentally undermine the usefulness
or potential impact of the connectome. Rather, they illustrate
the open-ended, integrative nature of the proposed research
effort. The connectome will represent a foundational
resource and a central reference point for a broad range of
specialized databases [85], thus making federating these
databases more effective. Most importantly, the connectome
will provide an important tool for mechanistic modeling and
interpretation of human functional brain data. &
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