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Hepatitis B virus-related acute liver failure (HBV-ALF) is a common type of liver failure, associated with high short-term
mortality and morbidity rates. However, the immune landscape of HBV-ALF and its correlation with cell death are currently
unknown. Based on 3 Gene Expression Omnibus data sets, infiltrated immune cells were quantified by single-sample gene set
enrichment analysis method. The expression levels of immune genes and the abundance of immune cells in liver failure were
compared with those in normal liver. The enrichment scores of cell death gene sets from Kyoto Encyclopedia of Genes and
Genomes (KEGG) were calculated by gene set variation analysis method, and a protein-protein interaction (PPI) network was
constructed using Cytoscape. Besides 21 differentially expressed immune genes, we identified 11 types of differentially
infiltrated immune cells in HBV-ALF compared with normal liver. Enriched pathways of these immune genes mainly consisted
of chemokine receptors, chemokine binding, interleukin-10 signaling, and TNFs bind their physiological receptors by
Reactome pathway analysis. In addition, the enrichment scores of apoptosis and necroptosis pathway instead of autophagy and
ferroptosis were increased in liver failure compared with normal liver. PPI network and gene cluster analysis of immune genes
and apoptosis and necroptosis genes suggested that hub genes were mainly related to immune response and apoptosis. In
summary, our study offers a conceptual framework to understand the immune landscape of HBV-ALF, which might help to
improve prognosis.

1. Introduction

Acute liver failure (ALF), a life-threatening illness, is referred
as a clinical syndrome with acute and massive hepatocellular
destruction within 4 weeks. The features of ALF include
acute development of jaundice, multiple organ failure, and/
or encephalopathy in patients without a history of liver
disease [1, 2]. The short-term mortality of ALF can reach
up to 40-50%, and the main death causes in patients with
ALF are largely ascribed to sepsis with multiple organ failure
and cerebral herniation due to increased intracranial pres-
sure [1, 3].

Hepatitis B virus (HBV) is the main cause of ALF in
Eastern countries [4]. According to World Health Organiza-
tion (WHO) report, 257 million people were infected with
chronic hepatitis B in 2015 [5]. Reportedly, more than
0.1%-0.5% patients with HBV infection would develop
ALF [6, 7]. However, current available treatments for
HBV-related acute liver failure (HBV-ALF) are very limited
and inconvenient, such as antiviral therapy and artificial
liver treatment; liver transplantation is effective but expen-
sive, and liver grafts are very limited [7, 8]. A comprehensive
understanding of the etiology of HBV-ALF, improvement of
treatments, and intensive care support will shed more light
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on dramatically improving the prognosis of HBV-ALF
patients.

Although the therapeutic potential of cell death in cancer
has attracted increasing attention, the change of apoptosis,
autophagy, ferroptosis, and necroptosis pathways are still
unknown. Cell death is at the center of virtually every acute
and chronic liver disease [9]. Necroptosis depends on kinase
activities of receptor interacting proteins (RIPs) with necrotic
morphology, regulated by RIPK1, RIPK3, and mixed lineage
kinase domain-like protein (MLKL) [10]. Ferroptosis, a novel
type of necrosis, is characterized by the accumulation of
intracellular iron ions, rise of lipid peroxidation, mitochon-
dria, and mitochondrial membrane density [11]. Elevated
levels of oxidative stress in ALF could promote disease pro-
gression [12]. Therefore, simultaneously inhibiting multiple
cell death pathways may be required to alleviate ALF.

So far, the pathological mechanisms of HBV-ALF are not
well illustrated. Previous ALF-related studies mainly focused
on the function of a single gene or a cell type, viral itself or
interactions between viral and host [6, 7, 13–19]. For
instance, during the development of ALF, upregulation of
IL-1α, IL-1β, and IL-18 activated NF-κB pathway by down-
regulating inhibitor of kappa B levels, promoted the secretion
of IL-6 and TNFα, which resulted in apoptosis, and ulti-
mately to massive hepatocellular destruction [13–15]. Huadi
et al. found a fierce immune response in HBV-ALF. How-
ever, they obtained the differentially expressed genes (DEGs)
by intersecting DEGs from individual gene sets. In this
research, based on 3 datasets, we integrated the raw data
and comprehensively displayed the immune landscape of
HBV-ALF and identified the upregulated activities of apo-
ptosis and necroptosis pathway in liver failure compared
with normal liver. PPI network analysis revealed the enrich-
ment of immune response and apoptosis.

2. Materials and Methods

2.1. Dataset Collection. All gene expression profiling data
with GPL570 platform (GSE14668, GSE38941, and
GSE96851) [20–22] were obtained from Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) data-
base. We got 89 samples, found 45 duplicates, and finally
got 44 samples (control = 27, LF = 17). Besides, all the 17
LF samples were from 4 patients. Healthy liver samples were
from HBV-negative liver donors. After removing duplicated
data, we integrate raw data performed the quality control
and adjustment using simpleaffy and affyPLM R package.
Moreover, we performed Principal Component Analysis
(PCA) analysis on these datasets. The optimal number of
clusters (K) was generated according to “wss” (for total
within sum of square) and visualized by “factoextra” package
of R. We first conducted PCA analysis on all the dataset and
found that they can be divided into two categories, liver fail-
ure and control group (Supplementary figure 1 A and B).

Immune genes encoding immunomodulators and che-
mokines were downloaded from TISIDB—an integrated
repository portal for tumor-immune system interactions
[23]; gene signatures for calculating immune cell types
were from Charoentong et al. research [24]. Metagenes

are characterized by nonoverlapping sets of genes that
are representative for specific immune cell subpopulations
[24]. Moreover, metagenes are neither expressed in tumor
cell lines nor in normal tissue [24]. The expression of
these metagenes was then used during gene set enrichment
analysis [24]. Thus, these calculations were less sensitive to
noise resulting from sample impurity or sample prepara-
tion compared with deconvolution methods.

2.2. Functional Enrichment Analysis and Protein-Protein
Interaction Network Analysis. As previously described, the
gene ontology analysis and Reactome pathway analysis were
done by R package “clusterProfiler,” and a p value < 0.05 was
significant [25, 26]. The differentially expressed immune
genes were loaded to STRING database to construct the
PPI diagram, and then, cytoscape plug-in, Molecular Com-
plex Detection (MCODE), and CytoHubba were utilized to
develop PPI network. The default settings of MCODE were
degree = 2, node score = 0:2, K core = 2, and a maximum
depth of 100. The value of “degree” was used to estimate
hub genes by CytoHubba.

2.3. Statistical Analysis. The difference between HBV-ALF
and normal control was analyzed using t-test. All statistical
analyses were performed by R (version 4.0.1). Heatmaps
were constructed using Complexheatmap R package, and
the correlation plot was developed using corrplot R package.

3. Results

3.1. Immune Interface of Immune-Related Molecular and
Cells in Liver Failure. To comprehensively analyze the
immune landscape in HBV-ALF, we first obtained immune
genes encoding immunomodulators and chemokines from
TISIDB, gene signatures for calculating immune cell types
from previous research [24], and 3 gene expression profiling
data (GSE14668, GSE38941, and GSE96851) from GEO
database. The flowchart of our study is depicted in
Figure 1. Using single-sample gene set enrichment analysis
(ssGSEA) method and integration of these GEO arrays, we
obtained 24 types of infiltrated immune cells, which
included innate immune cell types and adaptive immune
cell types. Then, we further mined the difference in those
abovementioned immune genes and cells between normal
liver tissues and samples from HBV-ALF patients. As
shown in Figure 2, genes encoding chemokine, immunoin-
hibitor, immunostimulator, and cells from innate immunity
and adaptive immunity were frequently upregulated in liver
tissues of patients with HBV-ALF.

Next, we screened for the most significantly differentially
expressed immune genes and infiltrated immune cell with
parameters such as fold change cutoff of 1.5 and p value
cutoff of 0.05 for t-test (Figure 3). The expression levels of
chemokines were upregulated in HBV-ALF tissues, such as
CCL5, CCL16, CCL18, CCL20, CXCL5, CXCL6, and
CXCL8, while immunoinhibitors levels of CD244, CSF1R,
CTLA4, HAVCR2, and VTCN1, immunostimulators such
as CD27, CD28, CD48, CD86, ENTPD1, IL2RA, TMEM173,
TNFRSF17, and TNFSF15. Furthermore, the number of
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infiltrated adaptive immune cell types and innate immune cell
type, for instance, Tgd, B cells, T cells, and iDC, greatly
increased. Furthermore, we conducted PCA analysis base on
these genes and cells and found that they can divide cases into
two categories, liver failure and control group (Supplemen-
tary figure 2 A and B). Based on these genes and immune
cells, we observed that even in HBV-ALF, different patients
presented with differentially expressed genes and infiltrated
immune cell composition (Figures 4(a) and 4(b)). Among
the patients, somebody had the highest expression of
immunostimulators (TNFRSF17, ENTPD1, CD28, CD48,
CD86), TFH, Tgd, Tem, iDC, cytotoxic cells, T cells, and B
cells, implying an “immune-hot” status, while somebody had
the lowest expression of immunostimulators but relative
high expression of chemokines (CCL5, CCL20), indicating
an “immune-cold” status.

3.2. Function and Pathway Enrichment Analyses of
Differentially Expressed Immune-Related Genes. To dig deep
into the biological functions of the differentially expressed
immune-related genes, we performed Molecular Function
(MF) enrichment analyses of gene ontology term enrich-
ment and Reactome pathway analysis (Figure 5). MF term
was mostly linked to chemokine activity, chemokine recep-
tor binding, cytokine activity, cytokine receptor binding,
and G protein-coupled receptor binding (Figure 5(a)). Reac-
tome pathway analysis showed enriched pathways of these
genes mainly consisted of chemokine receptors bind chemo-
kines, interleukin-10 signaling, signaling by interleukins, and
TNFs bind their physiological receptors (Figure 5(b)).

3.3. Correlation between Cell Death and Immune in Liver
Failure. Although the therapeutic potential of cell death in
cancer has attracted increasing attention [27], the change
of apoptosis, autophagy, ferroptosis, and necroptosis path-
way is still unknown. Hence, we further systematically ana-
lyzed its correlation with HBV-ALF. Based on apoptosis,
autophagy, ferroptosis, and necroptosis gene sets from

KEGG (hsa04210, hsa04140, hsa04217, hsa04216), we esti-
mated enrichment score (ES) of these gene sets by gene set
variation analysis (GSVA) (Figure 6(a)). The activities of
apoptosis and necroptosis pathway were increased in liver
failure compared with normal liver. Consistent with these
results, enrichment score of apoptosis and necroptosis path-
way correlated with differentially expressed immune genes
and immune cells (Figure 6(b)), such as CXCL6, CD28,
and T cells.

To identify the core genes from apoptosis and necroptosis
gene sets and the differentially expressed immune genes in the
HBV-ALF tissues, we performed a protein-protein interaction
network (PPI) construction and imported its results into
Cytoscape for further module analysis by the MCODE plug-
in. The top 3 clusters were selected, and its hub genes in each
cluster were calculated by values of degree (Figure 7). The top
3 hub genes from cluster 1 were FAS, FADD, and TP53,
mainly related to apoptosis (Figure 7(a)); cluster 2 was STAT3,
RELA, and NFKB1 closely related to inflammation and apo-
ptosis (Figure 7(b)); cluster 3 was CHMP4C, VPS4A, and
CHMP4A, mainly linked to biosynthesis of endosomes
(Figure 7(c)).

4. Discussion

The immune system plays a crucial role in the fate of HBV-
ALF patients. In this study, we utilized bioinformatical strat-
egies to offer a thorough view of immune-related molecular
and cells, to significantly improve understanding of the
immune landscape of HBV-ALF and refine current treat-
ment strategies. The activities of apoptosis and necroptosis
pathway were increased in liver failure compared with nor-
mal liver. PPI network analysis revealed the enrichment of
immune response and apoptosis. Therefore, these pathways
might play an important role in the pathogenesis of HBV-
ALF.

Previous ALF-related studies mainly focused on the func-
tion of a single gene or a cell type, viral itself or interactions

Differentially expressed
immune-related genes 

Correlation between cell death
and immune subtypes

PPI network 

Apoptosisa and 
necroptosis genes

�e activities of cell death pathways
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HBV related ALF datasets from GEO:
GSE14668, GSE38941, GSE96851
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Figure 1: Flowchart of our research.
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between viral and host, while our study comprehensively
evaluated overall immune level in HBV-ALF. Reportedly,
during development of ALF, upregulation of IL-1α, IL-1β,
and IL-18 activated NF-κB pathway by downregulating
inhibitor of kappa B level, promoted secretion of IL-6 and

TNFα, and then thus resulted in apoptosis and ultimately
to massive hepatocellular destruction [13–15]; TNF-α/
HMGB1 inflammation signaling pathway played an impor-
tant role in pyroptosis during ALF [16]. In addition, macro-
phages and NK cells distributed more in HBV-ALF liver
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tissues compared with normal liver [7]. A number of viral
factors have been identified to be associated with the pro-
gression of ALF, for example, increased variability in

HBsAg preS2 region and HBV core, and host factors, such
as the presence of certain human leukocyte antigen (HLA)
class II locus alleles also related HBV-ALF progression [6,
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Figure 4: Immune status of HBV-ALF. Different patients in HBV-ALF presented with differentially expressed genes and infiltrated immune
cell composition. Heatmaps of immune-related genes (a) and immune cells were depicted in HBV-ALF.
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17–19]. Unlike the above studies, we identified differen-
tially expressed genes (7 chemokines, 5 immunoinhibitors,
9 immunostimulators) and the distinct abundance of
immune cells in HBV-ALF compared with normal control.

Simultaneous activation of both pro- and anti-
inflammatory mediators plays an important role in the early
response to liver injury in ALF; the balance of these media-
tors determines the degree of liver injury. Following peak
hepatotoxicity, the cytokine milieu is altered in order to
favor the resolution of acute inflammation and promote
regeneration. Interestingly, in our study, the expression of
immunoinhibitors and immunostimulators was simulta-
neously increased in HBV-ALF. We speculated that in order
to counteract the overactivated immune response, the body
initiated a negative feedback by increasing the expression
of immunosuppressive molecules, thereby reducing the
immune-induced death of hepatocytes. Cell death is at the

center of virtually every acute and chronic liver disease [9].
Our study implies that the balance of immune in liver failure
should be taken into account in further study and clinical
practice. The discovery of novel modes of cell death such
as ferroptosis and necroptosis explains the lack of wide-
spread use of caspase inhibitors in clinical hepatology to
some extent [9]. Another intriguing result was the increased
activities of apoptosis and necroptosis pathway in liver fail-
ure instead of autophagy and ferroptosis, implying the
important role of necroptosis.

We also observed that even in HBV-ALF, different
patients presented with differentially expressed genes and
infiltrated immune cell composition. Somebody had the
highest expression of immunostimulators (TNFRSF17,
ENTPD1, CD28, CD48, CD86), TFH, Tgd, Tem, iDC, cyto-
toxic cells, T cells, and B cells, implying an “immune-hot”
status, while somebody had the lowest expression of
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Figure 5: Molecular Function (MF) enrichment and Reactome pathway analysis. Molecular Function (MF) enrichment analyses (a) and
Reactome pathway analysis (b) of differentially expressed immune genes.
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immunostimulators but relative high expression of chemo-
kines (CCL5, CCL20), indicating an “immune-cold” status.
Each status might prelude to a distinct outcome, and hence,
the need for different treatment strategies depends on the sta-
tus present.

In a study by Farci et al. [20], liver tissue was collected
at the time of liver transplantation in two patients with
HBV-associated ALF, characterized by an overwhelming
B cell response apparently centered in the liver. Similarly,

in our study, we also found significant difference B cell
scores between the LF group and the control group. How-
ever, in the study by Farci et al., gene expression analysis
was performed on data from only 2 cases while our bioin-
formatics analysis was performed on a relatively greater
sample size. Moreover, in our study, we found 8 types of
differentially expressed adaptive immune cells, and hub
genes were found to be associated with the immune sys-
tem and apoptosis.
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Figure 6: The correlation between immune and cell death. According to the apoptosis, autophagy, ferroptosis, and necroptosis gene sets
from KEGG (hsa04210, hsa04140, hsa04217, hsa04216), we estimated the enrichment score (ES) of these pathways by gene set variation
analysis (GSEA). (b) The correlation between immune genes, cells, and enrichment score of cell death. p > 0:05 was blanked from the plot.
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Figure 7: Continued.
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Our study had some shortcomings. First, the liver sam-
ples with HBV-ALF were very hard to collect. Therefore,
sample size was not large. Second, we did not verify the dif-
ferential expression of genes and composition of immune
genes. And we did not compare the data with the simple
HBV group; some of the immune changes from HBV infec-
tion may affect the result. Also, we did not utilize other
methods to estimate immune cell. Hence, more studies with
large sample size will be needed to further validate our
findings.

In summary, we identified the differentially expressed
immune genes and infiltrated immune cells in liver samples
of HBV-ALF compared with normal liver and discovered
the increased activities of apoptosis and necroptosis pathway
in liver failure. PPI network analysis revealed the enrichment
of immune response and apoptosis. Our findings highlight
that greater emphasis should be placed on the immune land-
scape of HBV-ALF to improve prognosis.
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ssGSEA: Single-sample gene set enrichment analysis
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