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Abstract

The principal components of both MHC class I and class II antigen processing and presentation

pathways are well known. Within dendritic cells, these pathways are tightly regulated by Toll-like

receptor signalling and include features, such as cross-presentation, that are not seen in other cell

types. The exact mechanisms involved in the subcellular trafficking of antigens remain poorly

understood and in some cases are controversial. Recent data suggest that diverse cellular machineries

including autophagy participate in antigen processing and presentation, though their relative

contributions remain to be fully elucidated. Here, we highlight some emerging themes of antigen

processing and presentation that we believe merit further attention.

Since the discovery that T-cell immunity relies on ‘denatured, unfolded, sequential

determinants’1 of proteins, whereas B-cell (that is, antibody) recognition of the same protein

antigen is determined by its tertiary structure, immunologists have been fascinated with antigen

processing and presentation. Decades of work have elucidated the pathways that generate

peptide–MHC complexes. As a result, we can now explain most of the fundamental differences

between T- and B-cell antigen recognition2,3 and such knowledge informs vaccine design and

other immune-based interventions.

Central to T-cell activation, specific T-cell receptors recognize antigens in the peptide-binding

groove of surface-expressed MHC class I and class II molecules. To fulfil their physiological

function, MHC proteins must first acquire peptide antigens. The two major classes of MHC

molecules execute this function differently. For MHC class I molecules, the goal is to report

on intracellular events (such as viral infection, the presence of intracellular bacteria or cellular

transformation) to CD8+ T cells4. MHC class I molecules are composed of heavy chains and

an invariant light chain, known as β2-microglobulin. The events of the biosynthesis of MHC

class I molecules may be summarized in six steps: one, acquisition of antigenic peptides; two,

tagging of the antigenic peptide for destruction by ubiquitylation; three, proteolysis; four,

delivery of peptides to the endoplasmic reticulum (ER); five, binding of peptides to MHC class

I molecules; and six, display of peptide–MHC complexes on the cell surface (Figure 1). For

MHC class II molecules, the goal is to sample the extracellular milieu and present antigens to

CD4+ T cells4. Similar to MHC class I molecules, the α and β chain of MHC class II molecules

are synthesized in the ER and associate with the invariant chain (Ii; also known as CD74) for

proper folding, trafficking and protection of the antigen binding groove5. Newly assembled

MHC class II molecules are then delivered by vesicular transport to endolysosomal
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compartments that supply peptide antigens. Following peptide loading, peptide–MHC class II

complexes are delivered to the cell surface. Despite the involvement of different molecules

and cellular compartments, the generation of peptide–MHC class II complexes can be stratified

into the same six steps as for peptide–MHC class I complexes.

The molecular expression of MHC class II molecules is mostly restricted to professional

antigen-presenting cells (APCs), including macrophages and dendritic cells (DCs). DCs

possess many unique features of antigen processing and presentation not seen in other cell

types. Immature DCs reside in the tissue (for example, in the skin, lungs and gastrointestinal

tract) and undergo remarkable transformation upon exposure to pathogens. Pathogen-

associated molecular patterns and their vertebrate receptors, including Toll-like receptors

(TLRs)6,7 influence the dynamics of antigen acquisition, cytoskeletal rearrangements and

regulation of MHC biosynthesis, all of which affect antigen processing and presentation8,9.

Likewise, the machinery of protein translation and degradation, which is required for

generating antigenic peptides for presentation, is carefully regulated following DC

activation10. Finally, DC activation by TLR ligands is required for the formation of

endolysosomal tubules, which contain numerous proteins including MHC class II molecules,

and deliver these proteins to the cell surface, where they are available to CD4+ T cells for

potential activation11–13.

DCs have a central role in the activation of naive T cells and therefore direct the adaptive

immune response against invading microorganisms. But how do DCs participate in the immune

response to intracellular microorganisms that do not directly infect APCs? First, whole

microorganisms may transiently exist in the extracellular space and be taken up by DCs into

the endocytic pathway, where relevant antigens are loaded onto MHC class II molecules in

endolysosomes. In addition, DCs possess the capacity to take these antigens and transfer them

to the MHC class I pathway, a process referred to as cross-presentation, but the details of this

process remain controversial. Another relevant question is how do antigens from the

extracellular environment gain access to the MHC class I pathway, which is normally restricted

to the presentation of intracellular antigens? Here, we review the evidence for hypotheses that

invoke the involvement of the ER dislocation machinery and channel-independent pathways.

The generation of peptides for both MHC class I and class II pathways had been viewed as the

exclusive domains for the proteasome and lysosomal-associated proteases, respectively.

Recent data indicate that additional pathways can participate in this process. The role of

autophagy, a ubiquitous process by which cells remove damaged organelles, in the generation

of peptides for MHC molecules will also be discussed. The pathways of antigen processing

and presentation have been extensively reviewed recently4,14 and therefore, we focus here on

aspects of antigen processing and presentation that are less well understood or that remain

controversial.

MHC class II processing and presentation

Focused on the extracellular environment, the MHC class II antigen presentation pathway

intersects with the endocytic pathway to sample antigens. Extracellular antigen is taken up by

APCs and placed into a membrane-delimited compartment, known as the phagosome. This

phagosomal compartment undergoes a series of modifications, in part dictated by its content,

and finally fuses with lysosomes to form phagolysosomes, where this compartment interacts

with MHC class II molecules (FIG. 2). Peptide-loaded MHC class II molecules are then

transported to the cell surface where they engage antigen-specific CD4+ T cells. Despite the

apparent simplicity of this pathway, important questions remain, including the nature of

modifications made to the phagosome, modes of delivery of MHC class II molecules to the

cell surface and the contribution of autophagy to the MHC class II pathway.
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Phagosome maturation

Phagocytosis is restricted to professional APCs, responsible for the uptake of various particles,

including microorganisms and apoptotic bodies, and serves as an important mechanism for

antigen acquisition15. These particles are shuttled into phagosomes, which are then subjected

to numerous modifications that serve to guide the recruitment of other proteins and subsequent

fusion events with other vesicles16 (Fig. 2). The formation of phagosomes has been extensively

reviewed16,17. Cellular membrane protein recruitment to the phagosome — and therefore the

fate of the phagosome — appears to be regulated in part by the capacity to engage TLRs early

in the course of phagosome formation. Indeed, antigen that is complexed with the TLR4 ligand

lipopolysaccharide (LPS) and presented by DCs more potently activate T cells than antigen

alone. Both MHC class II molecules and the tetraspanin member CD63 are specifically

recruited to pathogen-containing phagosomes but not to phagosomes that contain polystyrene

beads18 (many investigators use the term latex bead to refer to polystyrene beads; however,

latex and polystyrene are distinct compounds). In addition, TLR4 signalling by LPS triggers

the efficient loading of MHC class II molecules with peptide, whereas phagosomes devoid of

LPS fail to contribute to the activation of antigen-specific T cells19. The connection between

TLR signalling and the efficiency of MHC class II antigen presentation shows that the use of

pathogens, rather than polystyrene beads, to induce phagocytic uptake will inform us on the

pathways relevant for antigen processing and presentation.

Given the importance of phagosome maturation in antigen processing, pathogens have devised

strategies to modify their fate within the phagosome20. Mycobacterium tuberculosis, for

example, blocks phagosomal maturation, thereby enabling its own survival within macrophage

phagosomes, from which it may then escape into the cytosol21. Legionella pneumophila, the

causative agent of legionaire’s pneumonia escapes the degradative lysosomal pathway by

intercepting vesicular traffic from the ER to form an ER-like compartment that avoids fusion

with lysosomes22. Toxoplasma gondii can modify the compartment in which it resides to permit

long-term growth and prevent death of the pathogen by forming a parasitophorous vacuole that

resists fusion with vesicles of the endocytic pathway23,24.

Fusion with lysosomes to form phagolysosomes is the final event in the life of a phagosome.

It seems that the intravesicular conditions of lysosomes found in DCs may be different from

those in other cell types. DCs can be infected with HIV-1 through the cell-surface receptor

DC-specific ICAM3-grabbing non-integrin (DC-SIGN) and HIV1 is internalized by

endocytosis in a form that retains its viability and allows transfer to T cells, possibly through

the immunological synapse25,26. The fact that the otherwise fragile HIV-1 virions remain

infectious testifies to the rather innocuous environment to which they are initially delivered.

The degradation of antigen within the endolysosomal compartment following the lysosomal

acidification of endosomal compartments is tightly controlled in DCs in an activation-

dependent manner10. Acidification of this compartment permits optimal activity of lysosomal

acid hydrolases and cathepsins. RAB27, a protein involved in vesicular docking and secretion,

is rapidly recruited to phagosomes in DCs and controls acidification of this compartment by

the recruitment of the NADPH oxidase and by limiting the production of reactive oxygen

species27. Phosphorylation of extracellular-signal regulated kinases 1 and 2 (ERK 1/2) in DCs

is also controlled by the action of the lysosomal cysteine protease cathepsin K, which has

recently been shown to regulate TLR9-induced signalling, but not that of other TLRs28. The

inhibition or absence of cathepsin K in DCs greatly reduced TLR9-induced secretion of pro-

inflammatory cytokines, linking cathepsin K activity specifically to the TLR9 signalling

cascade and possibly affecting phagosome maturation. Thus, TLR activation serves in part to

control the quality of lysosomes and therefore, the enzymatic activity of its proteases in DCs.
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The contributions of autophagy to the MHC class II pathway

Much of the emphasis on antigen degradation has been on phagosomal maturation through the

endocytic pathway and fusion with lysosomal vesicles. However, additional mechanisms have

been recently implicated in antigen processing and presentation. Autophagy has an important

role in maintaining cell homeostasis: it provides nutrients during periods of starvation and

removes damaged organelles from the cytoplasm. There are at least three different types of

autophagy: chaperone-mediated autophagy, microautophagy, and macroautophagy, of which

the latter is the best characterized. At least thirty autophagy-related genes (ATGs) contribute

to autophagy in yeast, many of which have orthologues in mammalian cells (supplementary

information S1). Autophagosomal membrane formation and expansion is facilitated by two

systems, the ATG8 (known as LC3 in mammals) system and ATG12 system, the details of

which have been reviewed elsewhere29. Autophagy is now considered an important process

for the delivery of antigens to MHC class II molecules.

Autophagy can target pathogens that reside in the cytosol or within phagosomes for lysosomal

degradation and therefore participate in the effective elimination of viruses, bacteria, and

parasites30–32 (Box 1). Autophagy might also contribute to several independent stages of

antigen presentation, including the uptake of antigens from the cytosol or from phagosomes.

This will influence the repertoire of peptides loaded onto MHC class II proteins, the delivery

of antigen to the endolysosomal degradation pathway, the loading of MHC class II molecules

with endogenous peptides, and the generation of functional, self-tolerant effector T cells.

Importantly, TLR-derived signals appear to regulate autophagy in DCs and thus affect antigen

processing and presentation.

Autophagy and TLRs

The signals that induce autophagy during the immune response have only recently begun to

be elucidated. Although professional APCs engage in constitutive autophagy33, cytokines can

modulate this process. In addition to cytokines, TLR ligands, including LPS and the TLR7

ligands imiquimod and single stranded RNA, induce autophagy in macrophages, and enhance

mycobacterial colocalization with autophagosomes and therefore the elimination of this

pathogen34,35. Several other TLR ligands induce the recruitment of the autophagosomal marker

beclin-1 to the phagosome, followed by the ATG5- and ATG7-dependent recruitment of

ATG836. A failure to do so was shown to result in increased survival of engulfed

Saccharomyces cerevisiae, further implicating TLR signalling in the induction of autophagy.

Conversely, autophagy also stimulates TLR signalling by delivery of viral replication

intermediates to TLR7, which is present in the endosomes of plasmacytoid DCs37. TLR

signalling is a well-known maturation stimulus for professional APCs. Autophagy therefore

enhances antigen presentation by delivering TLR ligands to the endosome for functional

maturation of DCs. The interplay between TLR signalling, autophagy, and antigen presentation

merits further investigation.

Autophagy and the phagosome

Autophagosomal proteins participate in the maturation of phagosomes. The autophagosomal

markers LC3 and beclin-1 translocate to the phagosomal membrane during early stages of

phagocytosis in the presence of a TLR ligand36. However, the translocation of LC3 and beclin-1

to the phagosome was not associated with the formation of double-membrane structures36 and

therefore this phenomenon might be distinct from conventional autophagy. A proteomic study

of polystyrene-bead-containing phagosomes derived from cultured Drosophila melanogaster

cells identified ATG9, another autophagosomal marker, as one of 617 phagosomal

proteins38. However, other proteomic studies of phagosomes have not identified the presence
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of autophagosomal proteins on phagosomes39–41, perhaps because their association with the

phagosomal membrane is transient36 or because TLRs might not have been suitably engaged.

Autophagosomes also converge with endosomes42,43 and deliver exogenous peptides to

endolysosomal compartments for loading onto MHC class II molecules33. However, there is

no direct evidence that autophagosomal degradation of pathogens in the phagolysosomal

compartment results in enhanced MHC class II presentation of the corresponding pathogen-

derived peptides and thus these two events have yet to be linked directly. The exact role of the

recruitment of autophagy proteins to phagosomes remains to be determined, but it might affect

antigen processing and presentation and T cell selection in the thymus (Box 2).

Autophagy and endogenous antigens

Autophagy can also deliver endogenous antigens to the MHC class II pathway30, as shown by

its role in MHC class II presentation of a viral antigen (Epstein–Barr virus nuclear antigen 1

(EBNA1)) expressed at physiological levels44. As judged by its colocalization with the

autophagosomal marker monodansylcadaverine (MDC), EBNA1 accumulates in

autophagosomal structures when lysosomal acidification, and therefore autophagosome

maturation, is blocked. In addition, EBNA1 was shown to be presented to MHC-class-II-

restricted EBNA1-specific CD4+ T-cell clones. This presentation was abrogated by inclusion

of 3-methyladenine and knockdown of ATG12, both of which inhibit autophagy. These studies

demonstrate that cytosolic antigens degraded by autophagy can provide peptides to the MHC

Class II pathway.

In addition to viral antigens, MHC-class-II-restricted antigen presentation of certain self45,

tumour46, and model47 antigens depends on autophagy. A substantial number of peptides

recovered in a complex with MHC class II molecules originate from proteins that are usually

found in the cytosol or nucleus48–51 and the size of this fraction of peptides was increased

following starvation-induced autophagy51. Therefore, by means of autophagy, the peptide

repertoire presented by MHC class II molecules is extended from exogenous antigens to include

some endogenous antigens.

Whereas the above examples all rely on macroautophagy, chaperone-mediated autophagy also

contributes to MHC-class-II-restricted presentation of endogenous antigens52. In this case,

lysosome-associated membrane protein 2a (LAMP2a), together with heat shock protein 70

(HSC70), may transport a cytoplasmic antigen to MHC class II molecules and contribute to

antigen presentation52.

How the phagocytic uptake of antigens influences the balance between MHC-class-II-

restricted presentation of endogenous versus exogenous antigens is not fully understood. One

study briefly addressed this issue and showed that exogenous antigen does not compete with

endogenous antigen for MHC–class-II-restricted presentation in mature DCs53. The maturation

status of APCs might also affect their ability to present endogenous antigens. Autophagy is a

constitutive process in both immature and mature human monocyte-derived DCs33. However,

TLR4 and TLR7 stimulation in RAW macrophages increases autophagy34, 35, suggesting that

maturation of APCs may enhance MHC-class-II-restricted antigen presentation of endogenous

proteins. While autophagy is clearly involved in the MHC class II pathway; further work is

needed to define the extent by which autophagy influences the MHC class II peptide repertoire

during an immune response to pathogens.

Delivery of MHC class II molecules to the cell surface

The final step in antigen processing and presentation is the transport of vesicles that contain

MHC class II molecules and proteins usually found in the immunological synapse from the
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endolysosomal compartment to the cell surface (Figure 2). The transformation of MHC-class-

II-containing compartments into tubular structures that are directed towards the site of T-cell

interaction at the plasma membrane has been proposed as a mechanism of transport to the cell

surface as determined by direct visualization of primary DCs (Figure 2)54,55. Tubulation of

MHC-class-II-expressing endosomal compartments requires loading of DCs with antigen,

maturation of DCs in response to a TLR ligand, and T cells specific for the antigen presented

by MHC class II molecules. The direction of the MHC-class-II-containing tubules towards the

interacting T cell is proposed to promote the clustering of MHC class II molecules at the site

of T-cell contact, and might assist in controlling the formation of the immunological

synapse54. MHC-class-II-containing endolysosomal tubules use microtubule-based movement

with RAB7 and RAB- interacting lysosomal protein (RILP) involved in the engagement of the

necessary motor proteins56. The composition of the immunological synapse on the DC side

has not been fully identified. Spinophilin, a scaffolding protein of neuronal dendritic spines

that regulates synaptic transmission, has been found in DCs and is directed dynamically to

contact sites in an antigen-dependent manner57. Other proteins involved in the polarized

movement of these compartments to the cell surface remain to be identified.

At the plasma membrane, MHC class II molecules cluster in lipid rafts or tetraspanin-rich

microdomains58. Although incorporation of MHC class II molecules into these microdomains

is believed to be functionally important, it remains to be defined how exactly microdomains

participate in effective MHC-class-II-mediated antigen presentation. In addition, it is unclear

what controls the incorporation of MHC class II molecules into microdomains. The MHC class

II β-chain cytoplasmic tail is ubiquitylated in mouse immature DCs59,which is essential for

recycling MHC class II molecules from the cell surface in immature DCs. The number of

ubiquitylated MHC class II molecules in DCs decreases following maturation, resulting in the

accumulation of MHC class II molecules at the cell surface. However, no motif in the MHC

class II molecule has been described to date for microdomain sorting and the functional

importance of this ubiquitylation reaction remains to be established. Analysis of mice in which

the endogenous MHC class II β locus is replaced with a mutated version that cannot be

ubiquitinylated should prove informative.

The translocation of MHC class II molecules from tubular compartments to specialized

membrane subdomains (that is, lipid rafts, tetraspanin-rich microdomains and the

immunological synapse) following DC maturation is suggestive of a highly controlled and

polarized transport mechanism. Given its role in polarized exocytosis, the exocyst complex is

an attractive candidate to mediate MHC-class-II-mediated transport to the plasma membrane.

The 743 kD exocyst complex is composed of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70,

and Exo8460 and is involved in the docking of secretory vesicles to specific sites at the plasma

membrane, before soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor

(SNARE)-mediated fusion takes place61. In addition, proteins of the exocyst complex have

been found on phagosomes from the Drosophila melanogaster S2 cell line38. This expression

of the exocyst complex in DCs might also allow for the regulated fusion of this compartment

with the plasma membrane following the completion of the peptide–MHC class II loading

reactions, though direct evidence of this role remains to be established.

MHC class I processing and presentation

Antigenic peptides derived from cytosolic proteins intersect the MHC class I biosynthetic

pathway in the ER where the MHC class I heavy chains and β2-microglobulin are synthesized.

Proteins destined for degradation undergo ubiquitylation and are then processed by the

proteasome. In some viral infections, interferon-γ production leads to the recruitment of distinct

proteins to the proteasome to permit increased production of octamers to decamer peptides,

suitable for binding to MHC class I molecules. These peptides are transported from the
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cytoplasm into the ER via the transporter associated with antigen processing (TAP) molecular

complex where they associate with nascently produced MHC class I molecules and β2-

microglobulin. The trimeric complex of MHC class I heavy chain, β2-microglobulin and

peptide allow for optimal folding, glycosylation and delivery to the cell surface.

Cross-presentation

Important intracellular changes in non-immune cells, which can be induced by events such as

viral infection or malignant transformation, must be reported to the immune system to ensure

the induction of a CD8+ T-cell response. DCs possess the unique capacity to stimulate naive

T cells and can take up and degrade infected non-immune cells or cell-derived fragments and

subsequently delivery the peptide fragments to the MHC class I pathway for display on the

cell surface to CD8+ T cells62. This property is atypical, because most cells exclusively present

peptides derived from endogenous proteins on MHC class I molecules. This process of

presenting exogenous peptides on MHC class I molecules is known as cross-presentation or

cross priming, was first described by Bevan in 197663, 64 and requires that the requisite peptide

precursors gains access to the cytosol for processing by the proteasome, followed by active

transport of peptides into the ER where newly assembled MHC class I molecules are found.

DCs appear to be uniquely equipped for cross-presentation65. Nonetheless, the routes by which

exogenous antigens access newly formed MHC class I molecules remain unclear.

A tool that has been used to examine the delivery of exogenous antigens to the cytosol is ICP47

(infected cell protein 47), which is produced by human herpes simplex virus 1 and is a potent

inhibitor of TAP66,67. ICP47 can be reduced to a 35-residue peptide without loss of its

inhibitory potency67. This ICP47 peptide can freely access the DC cytosol after phagocytic

uptake where it can interfere with the cytoplasmic face of the human TAP complex and thus

inhibit peptide translocation into the ER. Exposure of the human DC-like cell line KG-1 to the

ICP47 fragment blocked TAP-dependent maturation of the mouse MHC class I molecule

H-2Kb introduced into these cells, indicating that extracellular proteins can access the cytosol

in DCs, though the subcellular route remains unclear68.

The lipid bilayer is not a passive barrier that separates one compartment from another but

actively participates in the translocation of substrates. The transport of peptide antigens across

the lipid bilayers can principally occur either in a protein-dependent or -independent manner.

During protein-dependent transport across lipid bilayers, there is a precedent for the

translocation of proteins from the ER into the cytoplasm for the purposes of degradation. The

ER dislocation machinery serves as a quality control complex that is responsible for removing

misfolded proteins for degradation. Alternatively, peptides may be able to pass across

membranes without the need for dedicated protein channels (see later). We explore the possible

role of protein-dependent and protein-independent transport of exogenous proteins across lipid

bilayers to gain access to MHC class I molecules for cross-presentation.

Is the ER dislocon complex involved in cross-presentation?

How do extracellular peptides escape from the phagosome to the cytosol? Delivery of proteins

through a membrane pore to the cytosol may use the same protein complex responsible for

transporting misfolded proteins out of the ER. The ER dislocon is a complex, incompletely

identified collection of ER resident proteins, the principal function of which appears to be

ejection of misfolded proteins from the ER to the cytosol for degradation. Dislocated proteins

are deglycosylated, ubiquitinylated, and eventually degraded by the proteasome in a pathway

known as the ERAD (endoplasmic reticulum associated degradation) pathway69. Some

proteins involved in dislocation are now known (see below and Figure 3), and include several

ubiquitin ligases, members of the derlin family, which are the human homologues of the
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Saccharomyces cerevisiae protein Der1 (degradation in the ER 1) and the AAA (ATPases

associated with various cellular activities) ATPase p97.

Some data exists to suggest that ER-derived proteins may reside on the phagosomal membrane.

Proteomic analysis of the phagosome revealed the presence of several ER-derived proteins,

such as the chaperones calnexin, calreticulin, GRP78 (also known as BIP) and Sec6139 70. In

addition, Gagnon et al. claimed that the ER (or a subcomponent thereof) fused with nascent

phagosomes, referred to as the ER–phagosome fusion model71, and it was proposed that the

presence of ER-derived components in phagosomes would allow the ER dislocon to participate

in cross-presentation at the phagosomal membrane by allowing the escape of proteins from the

phagosomes into the cytosol72–74. While not definitive, these data suggest that the ERAD

machinery may be involved in translocating peptides from the phagosome to the cytosol.

However, the ER–phagosome fusion model70,71 is controversial because potential ER

contamination remains a confounding problem, despite rigorous efforts to purify

phagosomes75. In addition, biochemical experiments that fail to control for post-lysis

associations with ER proteins have limited use in understanding the nature of protein–protein

interactions. Nonetheless, we cannot consider the question of whether the ER fuses with

phagosomes settled without an exact replication of the original report71. Cell-type differences

are a factor worthy of consideration as well.

The ERAD protein Sec61 (also referred to as the translocon) is a protein channel responsible

for the transport of newly synthesized proteins into the ER and also has been proposed to

dislocate proteins from the ER to the cytoplasm with the help of other ERAD proteins76. In

addition, Sec61 has been shown to localize to bead-containing phagosomes in

macrophages71 and therefore, Sec61 might be involved in the dislocation of proteins from the

phagosome into the cytosol that in turn access the cross-presentation pathway. It has been

proposed that the Pseudomonas aeruginosa bacteria exotoxin A inhibits the function of the

Sec61 channel and has been used to block Sec61-dependent protein transport across the ER

and phagosome membranes68,77. Incubation of cells with ovalbumin in the presence of

exotoxin A failed to induce interleukin-2 (IL-2) production by a peptide-specific CD8+ T-cell

hybridoma, suggesting a role for Sec61 in cross-presentation68. However, evidence that

exotoxin A binds to Sec61 is quite indirect and rests on an immunoprecipitation–

immunoblotting protocol that does not exclude exotoxin A targets other than Sec6177,

including the potent inhibitory effect of exotoxin A on protein synthesis. In fact, there is no

evidence for a direct role for Sec61 in the escape of any bacterial toxins from the ER. More

recent work suggests that cholera toxin uses ER luminal proteins that participate in quality

control, as well as a derlin-1-dependent step for escape from the ER78.

The complete molecular composition of the ER dislocon remains to be resolved but several

components of the ER dislocation machinery, in addition to Sec61 and ATPase p97, might

have a role in the cross-presentation of exogenous antigen. For example, mammalian cells

possess several ubiquitin E3 ligases that reside in the ER lumen, such as gp78 (glycoprotein

78), HRD1 (HMG-CoA reductase degradation 1), MARCH VI (membrane-associated ring

finger (C3HC4) 6), SCF (SKP1–cullin–F-box), CHIP (C-terminus of HSC70-interacting

protein), and Parkin (implicated in Parkinson’s disease), all of which are involved in tagging

proteins that are destined for degradation69. Other components of the dislocation machinery

include the homologue of yeast Hrd3p, SEL1L79, signal peptide peptidase (SPP)80 and the

newly identified Ubc6e, Auf1 and UBxD881, but the role of these components in the context

of antigen presentation remain to be investigated.

Proteomic studies of polystyrene-bead-containing phagosomes identified only a small number

of dislocation components on the phagosome38–41. However, the nature of the polystyrene
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bead and the presence or absence of TLR ligands may lead to differential recruitment of the

dislocation machinery to the phagosome. An analysis of the composition and distribution of

components of the dislocation machinery in professional APCs is in its infancy, and no

systematic attempt has been made to link most of these components to cross-presentation.

Even in the absence of ER–phagosome fusion, ER components might participate in the

dislocation of proteins from the phagosome. The ER and the endocytic pathway might be

connected by a specific transport pathway that shuttles cargo between them and in this way

components of the ER could redistribute to phagolysosomal compartments following TLR

stimulation. In primary immature DCs, TLR3, TLR7, TLR9 and TLR13 move from the ER to

endolysosomes82 under the control of UNC93B1 in response to stimulation with TLR

agonists83. This phenomenon, if extendable to other ER proteins, could allow for the activation-

dependent trafficking of the components of the ER dislocon complex to an endosomal or

phagosomal compartment. The evidence that the ER dislocon complex contributes to cross-

presentation is limited and further experiments are needed to address whether the ER dislocon

complex is truly involved and if so, how it arrives at the phagosome.

How do ER resident proteins arrive on the phagosome? One possible mode of transport of

proteins from the ER to the phagosomes may involve lipid droplets. We have proposed a model

whereby lipid droplets may form on the surface of organelles to deliver lipids and other protein

cargo to different destinations within the cell, consistent with the idea that lipid bilayers are

not passive participants in antigen processing and presentation84. In this manner, the lipid

droplets could serve as an escape hatch for both proteins and viruses, such as hepatitis C

virus85. The model does not exclude other protein-based pathways for antigen translocation

and almost certainly requires proteins for its formation. Whether the model is relevant for

antigen processing and presentation remains to be determined. The presence of ubiquitylated

apolipoprotein B (ApoB), a protein that is usually secreted from the cell, on lipid droplets

targets the protein for proteasomal degradation and provides at least one documented example

that would support such a role of substrate transport86.

Alternatives to membrane channels for cross-presentation

In addition to ER-derived protein channels, other hypotheses of how peptides and/or proteins

travel from the phagosome to the cytoplasm for cross-presentation exist. The delivery of

hydrophilic substrates across membranes typically requires protein channels, but this is not

universally true. Here, we present three models by which peptides may traverse the lipid bilayer

and gain access to another subcellular compartment without the need for a conventional energy-

dependent protein channel.

The first model proposes that proteins might ‘leak’ from the phagosomes into the cytosol. The

HIV-1 Tat protein is an example of a polypeptide that can spontaneously traverse a lipid

bilayer87. A decamer of the HIV-1 Tat protein (47YGRKKRRQRR57) can translocate itself —

and cargo of various sizes appended to it — across the membrane in an energy-independent

manner. But how can a highly charged peptide traverse a largely hydrophobic boundary?

Models to explain this transport suggests that charged residues of the Tat decamer interact with

the phosphate groups on either side of membrane, and that the peptide may form small pores

(∼3 nm in diameter) to permit additional peptides to pass through the membrane87. Other

endogenous peptides might have similar features, negating the need for a dedicated peptide

transporter in the plasma membrane. The penetration of non-enveloped viruses88, or the action

of certain microbial peptides89 and proteins90 could also affect host membranes, such that the

permeability barrier for proteins is compromised or lost completely. The effects of such

pathogen-derived products could also be limited to certain intracellular compartments, such as

endosomes or the ER (as reported for listeriolysin91 and papova virus, respectively92,93). Thus,
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peptide antigens might simply leak out of phagosomes and thereby gain access to the

cytoplasm.

A second possibility for peptide escape into the cytosol is the rupture of the phagolysosomal

membrane. Peptides might thereby be released from the phagolysosome and directly interact

with the cytoplasmic processing machinery. Phagosomes that contain Cryptococcus

neoformans lose membrane integrity, which relates in part to the de novo synthesis of the

polysaccharide capsule following phagocytosis94. C. neoformans slips out of these

compartments and is extruded from the cell, leaving the APC intact and the fungal organism

viable95,96. Equally interesting is the proposal that M. tuberculosis may not remain confined

to the endocytic structures in which it initially resides. M. tuberculosis can escape from

phagolysosomes into the cytosol21. Both the C. Neoformans-containing and the M.

tuberculosis-containing compartments, if not perfectly sealed while the microorganisms are in

transit, may release other phagosomal content into the cytoplasm.

In addition, peptides may travel out of the phagolysosomal compartment as a result of rupture

of this compartment. It should not be presumed that the lysosomal membrane is stable. Indeed,

the notion of the lysosome as a ‘suicide bag’ could lead to the assumption that the release of

lysosomal compartments into the intracellular milieu leads to cell death97. Because only a few

hundred protons are sufficient to maintain the topical lysosomal pH in these modestly sized

organelles, the rupture of such a compartment may not be as disastrous as it would seem at

first glance98: the appropriate cytoplasmic pH can be rapidly restored. Indeed, osmotic lysis

of pinosomes is an effective means of introducing endocytosed soluble materials into the

cytoplasm for presentation by MHC class I molecules99 and may mimic normal disruption as

it might occur in the phagolysosomal compartment.

Lysosomal membrane stability may vary. Sphingosine affects lysosomal membrane

permeability in a dose-dependent manner100. Other host proteins such as apolipoprotein L-1

and SRP6 (serpin 6) can also perturb the lysosomal membrane101. SRP6 regulates proteolytic

activity of lysosomal enzymes and hypotonic shock of Caenorhabditis elegans that lack SRP6

results in cell necrosis by release of lysosomal contents101. The extent to which these changes

might occur in a cell-type specific manner (for example in DCs) is not known. In any case,

such perturbations may permit peptides to gain access to the cytosol and therefore to the MHC–

class-I-–peptide-loading machinery.

A third possibility is that MHC class I molecules might be loaded with peptide outside of the

ER. The biosynthetic pathway of MHC class I molecules may intersect with the phagosome,

permitting MHC class I peptide loading in the endolysosomal compartments themselves.

Another pathway may permit internalized antigens to be exported to the cytosol and processed

by the proteasome before translocation back into the phagosomes in a TAP-dependent

manner73,74. In addition, surface MHC class I molecules internalized during phagocytic uptake

of cargo may end up in phagolysosomal compartments (Figure 3).

The idea that MHC class I molecules may traffic to different compartments for peptide loading

is not new102. MHC class I molecules may visit phagolysosomal compartments to acquire

peptides prior to their surface display103–105. The conserved tyrosine residue in the cytoplasmic

tail of the heavy chains of MHC class I molecules is important for the internalization of this

complex and may assist in trafficking MHC class I molecules into the phagolysosomal

compartment106. MHC class I molecules that lack this tyrosine residue were found to be inferior

in their capacity to present antigens to CD8+ T cells during viral infections106. However,

presentation of endogenous antigens to CD8+ T cells was unaffected. In this model, it is

proposed that internalization of MHC class I molecules is therefore a prerequisite for cross-

presentation106.
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Alternate sources of cytosolic peptides

As described above, the bulk of peptides for MHC class I molecules are thought to be derived

from proteasomal breakdown of cytosolic proteins. However, emerging data suggest that this

proteasome-mediated process may not be the exclusive provider of such antigens. Both

intercellular protein channels and autophagy may have a role.

Gap junctions are intercellular channels that connect the cytoplasms of two adjacent cells by

generating a functional channel, composed of six connexins on each side107, and may facilitate

the transport of extracellular peptides to the cytosol. Although the role of these channels in the

translocation of peptides into the cytosol for presentation by the MHC class I pathway is

intriguing, to date the data that support this mechanism is limited108. Gap junctions may serve

to transport peptides from infected cells into neighbouring cells in an effort by the immune

system to inflict damage on adjacent cells and so limit the spread of a viral infection109 (Figure

3). This proposed mechanism for the prevention of viral dissemination is therefore crucially

dependent on adequate levels of peptide–MHC complexes and antigen-specific CD8+ T cells.

A single peptide–MHC complex will suffice to induce the cytotoxic activity of CD8+ T cells

and so the criterion may easily be met110. The availability of gene-targeted mice with defects

in gap junctions will likely clarify their involvement in antigen presentation.

The role, if any, of autophagy in MHC-class-I-restricted antigen presentation remains to be

determined. Autophagy clears ubiquitylated cytoplasmic protein aggregates111. Indeed, in

hepatocytes and neurons of mice deficient for ATG5 or ATG7, such cytoplasmic protein

aggregates accumulate in the cytoplasm112–114. DC aggresome-like structures (DALIS)

contain polyubiquitylated proteins, and peptides derived from DALIS can be presented by

MHC class I molecules115. Aggresome-like structures (ALIS) similar to DALIS are observed

in many immune and non-immune cells in response to stress, and these ALIS serve as substrates

for autophagy116. Thus one might speculate that autophagy-mediated clearance of DALIS may

serve as a source for MHC class I-restricted peptides.

H2–M3a (histocompatibility 2, M region locus 3), a member of the non-polymorphic class I-

b MHC family, presents N-formylated peptides to CD8+ T cells117. These peptides are present

only in mitochondria and in prokaryotes, such as Listeria monocytogenes and M.

tuberculosis. Given that autophagy is implicated in the clearance of these organisms117, 118

(as well as mitochondria), H2–M3a might acquire its peptides by an autophagy-dependent

process.

Presentation of DALIS, ubiquitylated proteins or N-formylated peptides require the access of

autophagosomal degradation products to the MHC-class-I–peptide-loading complex. The

autophagosomal membrane has been proposed to originate from the ER119,120. In addition,

during ER stress and the unfolded protein response (UPR), autophagy is induced and consumes

portions of the ER, serving as an alternative to ER-associated degradation of proteins119,121–

123. The MHC-class-I–peptide-loading complex and/or dislocation machinery may therefore

be present on the autophagosome. Indeed, Brucella abortus, Legionella pneumophila, and

Porphyromonas gingivalis can be found in autophagosomes containing ER proteins, including

Sec61124. Alternatively, peptides might ‘escape’ from autophagosomes, and be transported

into the ER in a TAP-dependent manner.

Although a role for autophagy in MHC class I presentation seems plausible, treatment with

Wortmannin or 3-methyladenine (3-MA), which inhibit autophagy by inhibiting PI3K activity,

as well as knockdown of ATG12 failed to affect MHC-class-I-restricted presentation of an

endogenous antigen by Epstein–Barr virus (EBV)-transformed B cells44,47. In addition,

colocalization between MHC class I molecules and green fluorescent protein-labelled –LC3

was not observed in epithelial cells33. Although B cells and epithelial cells express MHC class
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I molecules, their behaviour and regulation might differ from DCs. In both immature and

mature DCs, the MHC-class-I-restricted presentation of a peptide derived from influenza

matrix protein 1 (MP1) fused to LC3 to direct the peptide–MHC class I complex to

autophagosomes remains unaltered when compared to unfused cytosolic MP133. However, the

cytosolic MP1 is presented very efficiently and almost saturates the MHC class I pathway.

These features may mask any contribution of the autophagosomal MP1–LC3 complex to cross-

presentation.

Several invasive bacteria and parasites that can be cleared through autophagy induce a CD8+

T-cell response. Toxoplasma gondii is cleared after invasion of macrophages through

autophagy in a process that requires either IFNγ-inducible p47 GTPases and disruption of the

parasitophorous vacuole that encloses the parasite, or CD40 ligation125–127. Protective

immunity from this organism requires the induction of a CD8+ T-cell response, and therefore

cross-presentation is essential128. But how do peptides derived from T. gondii gain access to

the MHC class I peptide loading complex? Perhaps, the fusion of ER membrane with the

autophagosome in T. gondii-infected cells might bring the MHC class I loading complex into

close contact with peptides derived from the parasitophorous vacuoles. However, the net

contribution of autophagy to the generation of most of the peptide–MHC class I complexes

found on the surface of an infected cell remains to be determined.

Concluding remarks

The rules that govern antigen processing and processing in DCs are complex. Numerous

important cellular changes take place following exposure of DCs to TLR ligands. Although

the pathways of cross-presentation, autophagy and ER dislocation have been established as

important for antigen processing and presentation, many questions remain unanswered. Future

work that elucidates the molecular details of these pathways in DCs will need to be put into

context with relates to TLR stimulation. The established importance of TLR signals for antigen

processing and presentation requires us to focus on the interaction of whole microorganisms

and their products with DCs to establish relevant insights on the pathways used by antigens to

gain access to MHC molecules. It is likely that the observations summarized in this Review

are just the tip of the iceberg.

Box 1: Pathogen interactions with the autophagy machinery

Autophagy can target pathogens that reside in the cytosol or within phagosomes for

lysosomal degradation. Therefore, autophagy contributes to the effective elimination of

viruses, bacteria, and parasites30–32. As discussed in the text, autophagy eliminates

Mycobacterium tuberculosis-containing phagosomes. Similarly, clearance of pathogens

such as Streptococcus pyogenes129, Salmonella enterica serovar Typhimurium130, and

Toxoplasma gondii125,127 can also occur in an autophagy-dependent manner. Many

pathogens strive to escape the autophagy machinery131,132. The herpes simplex virus type

1 (HSV-1) neurovirulence protein ICP34.5 antagonizes autophagy by interacting with the

autophagy protein beclin-1133. Similarly, IcsB, a type III secretion effector protein from

Shigella flexneri, escapes autophagy by competing with the autophagy protein ATG5 for

binding to S. flexneri VirG134. The ability of pathogens to escape autophagy may permit

survival within host cells and therefore represent a new mechanism for immune evasion.

Understanding the interactions between pathogens and the autophagy machinery will clarify

the role of autophagy in the immune response.

Box 2: Autophagy and T-cell selection and survival
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Professional antigen-presenting cells (APCs) and interferon-γ (IFNγ)-stimulated epithelial

cells show a high level of constitutive autophagy, continuous fusion between

autophagosomes and MHC–class-II-expressing compartments, and efficient delivery of

endogenous antigens to these compartments by autophagosomes33. Of note, the thymic

compartment in transgenic mice in which LC3 was tagged with green fluorescent protein

(GFP–LC3) shows a high level of constitutive autophagy in thymic epithelial cells, even

under nutrient-rich conditions135. Medullary thymic epithelial cells (mTECs), which by

promiscuous expression of tissue-restricted self antigens mirror virtually all tissues in the

body, have an important role in the induction of central tolerance136. These poorly

phagocytic cells might use autophagy for MHC class II-restricted antigen presentation for

positive and negative selection of T cells. Similarly, the recently described autoimmune

regulator (AIRE)+ fibroblast reticular-like cells in peripheral lymph nodes might use a

similar mechanism to present self antigens to peripheral T cells137. Although not formally

shown, in the absence of autophagy, endogenous peptides might not be presented by MHC

class II molecules, and result in a failure to tolerize potentially self-reactive CD4+ T cells.

Deficits in autophagy could therefore result in impaired clonal selection and defects in

central or peripheral tolerance. Indeed, mutations in the autophagy gene ATG16L1, as well

as the potentially autophagy-inducing immunity related GTPase family, M (IRGM) gene (a

member of the p47 GTPases), have been associated with the development of autoimmunity

in patients with Crohn’s disease138,139 140. How ATG16L1 or IRGM mutations influence

autoimmunity is not known, but the possibility of defective presentation of the necessary

self-peptides to allow maturation of CD4+ T cells in the absence of autophagy is a testable

hypothesis. Autophagy influences many steps in the MHC class II pathway and has

profound effects on T cell development, though further work is needed to understand the

molecular interactions between the autophagy machinery and known components of the

MHC class II pathway.

Online summary

• Antigen processing and presentation is the mechanism by which whole antigens

are degraded and loaded onto MHC molecules for display on the cell surface for

T cells.

• Both macrophages and dendritic cells are considered professional antigen

presenting cells, though DCs possess the unique capacity to activate naïve T cells.

• DCs phagocytose antigens and whole microorganisms and places them into

membrane-delimited compartments termed phagosomes. These structures are

modified over time and ultimately fuse with lysosomes.

• Cross presentation permits DCs to take up antigens from the extracellular

environment and present onto MHC class I molecules for CD8+ T cell activation.

While the exact trafficking patterns of antigens are not known, many hypotheses

have been generated including the recruitment of the ER dislocation machinery

and protein-independent passing of antigens into the cytosol.

• The autophagy machinery appears to play an important role in the development of

peptide antigens for MHC molecules. More evidence for MHC class II peptides

exists than for MHC class I molecules.
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Terms

Phagolysosome, An intracellular compartment that results from the fusion of phagosomes,

which enclose extracellular material that has been ingested, and lysosomes, which contain lytic

enzymes.

pathogen-associated molecular pattern, A molecular pattern that is found in pathogens but not

mammalian cells. Examples include terminally mannosylated and polymannosylated

compounds, which bind the mannose receptor, and various microbial products, such as

bacterial lipopolysaccharides, hypomethylated DNA, flagellin and double-stranded RNA,

which bind Toll-like receptors.

endolysosomal tubules, Highly dynamic subcellular structures that eminate from late

endocytic/lysosomal and/or phagolysosomal compartments. They contain, at least, MHC class

II molecules, CD63, CD82 and LAMP1, and require microtubules for movement.

Endocytic pathway, A trafficking pathway used by all cells for the internalization of molecules

from the plasma membrane to lysosomes.

Endosome, A membrane delimited compartment containing material ingested by endocytosis.

Some material will be recycled to the cell surface while some cargo transit to late endosomes

and eventually fuse with lysosomes (endolysosomes). Endosomes may also fuse with

phagosomes to permit maturation of the phagosomal compartment.

Endolysosome/endolysosomal compartment, Endosomes that have fused with lysosomes. This

acidic environment permits degradation of antigens.

Cross-presentation, The ability of certain antigen-presenting cells to load peptides that are

derived from exogenous antigens onto MHC class I molecules. Cross-presentation is important

for the initiation of immune responses to viruses that do not infect antigen-presenting cells.

Autophagy, An evolutionarily conserved process in which acidic double-membrane vacuoles

known as autophagosomes sequester intracellular contents (such as damaged organelles and

macromolecules) and target them for degradation, through fusion to secondary lysosomes. This

process does not involve direct transport through the endocytic or vacuolar protein sorting

pathways.

Phagosome, Phagosomes are membrane-delimited compartments that confine ingested

material such as microorganisms following phagocytosis. Unless counteracted by a pathogen

survival strategy, the phagosome matures into a hostile environment by fusion with lysosomes

that is designed to kill and digest microorganisms.

Tetraspanins, A family of transmembrane proteins that have four transmembrane domains and

two extracellular domains of different sizes, which are defined by several conserved amino

acids in the transmembrane domains. Their function is not known clearly, but they seem to

interact with many other transmembrane proteins and to form large multimeric protein

networks.

Immunological synapse, A region that can form between two cells of the immune system in

close contact. The immunological synapse refers to the interaction between a T cell or natural

killer cell and an antigen-presenting cell. This interface involves adhesion molecules, as well

as antigen receptors and cytokine receptors.

RAB proteins, Cytosolic proteins that have GTPase activity, which, in their GTP-bound form,

associate with membranes. Different RAB proteins associate with different intracellular
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compartments — for example, RAB5 associates with early endosomes, RAB7 with late

endosomes, and RAB11 with recycling endosomes.

Chaperone-mediated autophagy, The import and degradation of soluble cytosolic proteins by

chaperone-dependent, direct translocation across the lysosomal membrane.

Microautophagy, The uptake and degradation of cytoplasm by invagination of the lysosomal

membrane.

Macroautophagy, (Also known as autophagy). The largely non-specific autophagic

sequestration of cytoplasm into a double- or multiple-membrane-delimited compartment (an

autophagosome) of non-lysosomal origin. Note that certain proteins, organelles and pathogens

may be selectively degraded via macroautophagy.

Lysosomal degradation, The digestion of macromolecules in lysosomal organelles, which are

the terminal organelles of degradative pathways, such as phagosomal or endosomal and

autophagy pathways.

Lipid rafts, Lipid rafts are microdomains of the cell membrane that are enriched in

sphingolipids. Several membrane-associated signalling molecules are concentrated in these

rafts.

central tolerance, Deletion of self-reactive T cells in the thymus.

Exocytosis, The release of material contained within vesicles by fusion of the vesicles with the

plasma membrane.

SNARE proteins, (Soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor

proteins). A class of proteins that is required for membrane fusion events that occur in the

course of vesicle trafficking and secretion.

peripheral tolerance, Control of self-reactive T cells in the periphery.

transporter associated with antigen processing, (TAP). TAP1 and TAP2 form a heterodimer in

the membrane of the endoplasmic reticulum. The TAP1–TAP2 complex transports peptides

from the cytoplasm to the endoplasmic reticulum, where peptides can be loaded onto MHC

class I molecules. Without these peptides, MHC class I molecules are unstable and are much

less likely to transit to the cell surface or to remain there.

Aggresome, proteinaceous inclusion body that forms when cellular degradation machinery is

impaired or overwhelmed, leading to an accumulation of protein for disposal.

Unfolded-protein response, A response that increases the ability of the endoplasmic reticulum

to fold and translocate proteins, decreases the synthesis of proteins, and causes the arrest of

the cell cycle and apoptosis.

Cathepsins, Proteases that are mostly located in lysosomes and lysosome-like organelles and

can be divided into cysteine, aspartate and serine cathepsin subgroups according to their active-

site amino acid.

Sphingosine, An amino alcohol that can be linked to a fatty acid via the amino group to form

the basic structure of sphingolipids.

Necrosis, Forms of cell death that result from a decline in cellular ATP or ADP levels below

the concentration that is required to maintain cellular organization and integrity.
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Figure 1. Six steps for loading and trafficking of MHC class I molecules to the cell surface

Antigen processing and presentation by MHC class I molecules can be divided into six discrete

steps. Step 1: acquisition of antigens from proteins with errors (for example, due to premature

termination or misincorporation). Step 2: misfolded proteins are tagged with ubiquitin for

degradation. Step 3: the proteasome degrades these ubiquitylated proteins into peptides. Step

4: the peptides are delivered to the endoplasmic reticulum (ER) by the transporter associated

with antigen processing (TAP) complex. Step 5: peptide is loaded onto nascently formed MHC

class I molecules; this process is facilitated by members of the peptide-loading complex, such

as tapasin and two ‘housekeeping’ ER proteins, known as calreticulin and ERp57. Step 6:
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peptide-loaded MHC class I molecules are transported via the Golgi complex to the cell surface.

The steps for MHC class II–peptide loading conceptually follow this same path.
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Figure 2. Contribution of pathogens and self-peptides to loading of MHC class II in DCs

Following phagocytosis of bacteria, surface-expressed Toll-like receptors (TLRs) become

activated and influence the nature of phagosome maturation. Similarly, viruses engage TLRs

found in endocytic vesicles that recognize nucleic acids. Following the maturation of

phagosomes, these structures fuse with lysosomes to form phagolysosomes. MHC class II

molecules that are contained in the lysosomes are loaded with peptide fragments formed by

lysosomal proteases. Autophagosomes also fuse with lysosomes and serve as an additional

source of peptides, including endogenous peptides, for MHC class II presentation. MHC class

II molecules, as well as a host of other lysosomal proteins including tetraspanins, are

transported in endolysosomal tubules to the cell surface. Surface MHC class II molecules can

be found in microdomains with other co-stimulatory proteins. Phagosomes that contain
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polystyrene beads, which fail to ligate TLRs, do not mature fully and probably contribute less

to the antigen processing pathway for MHC class II molecules.
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Figure 3. Additional pathways that may be relevant for antigen processing and presentation by
MHC class I molecules in TLR-stimulated DCs

How peptides traffic of peptides to MHC class I molecules during cross-presentation in DCs

is unknown. We propose several possibilities that could permit peptides to access MHC class

I molecules. Autophagosomes containing both endogenous peptides and pathogen-derived

proteins could potentially serve as a source of peptides for the MHC class I pathway. Peptides

may transit from the phagosome through leaky membranes, following spontaneous lysis of the

phagosomal compartment or by traversing the lipid bilayer. Components of the peptide-loading

complex and the endoplasmic reticulum (ER) dislocation machinery may be shuttled from the

ER to the phagosome, perhaps involving lipid droplets for transport. Transfer of these
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components to the phagosome may permit loading of MHC class I molecules with peptides at

this site rather than in the ER. Gap junctions may serve as conduits to allow neighbouring cells

to donate peptide epitopes for loading of MHC class I molecules. The yeast ERAD protein

complex is illustrated in greater detail on the panel below.
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