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THE LOCAL INDEX FORMULA
IN NONCOMMUTATIVE GEOMETRY

Alain CONNES and Henri MOSCOVICI

Abstract. In noncommutative geometry a geometric space 1s described from a speciral
point of view, as a triple (A, H, D) consisting of a *-algebra A represented in a Hilbert
space H together with an unbounded selfadjoint operator D, with compact resolvent, which
interacts with the algebra in a bounded fashion. This paper contributes to the advancement
of this point of view in two significant ways: (1) by showing that any pseudogroup of
transformations of a manifold gives rise to such a spectral triple of finite summability
degree, and (2) by proving a general, in some sense universal, local indezx formula for an

arbitrary spectral triple of finite summability degree, in terms of the Dizmier trace and its

residue-type extension.

Many of the tools of the differential calculus acquire their full power only when formulated
at the level of variational calculus, where the original space X one is dealing with is replaced
by a functional space F(X) of functions or fields on X. The space X itself is involved only
indirectly in F(X), for instance to write down the right hand side F(¢) of a nonlinear

evolution equation,

d
L =Fp), ¢eFX)

with the right hand side usually involving the pointwise product of functions ¢ on X and
partial differentiation.

The essence of noncommutative geometry is the existence of many situations in which
F(X) makes perfectly good sense, while X itself is no longer an ordinary space, described
set-theoretically by means of points p € X and coordinates. When X is given by a set,
the basic structure on the space F(X) of (real or complex valued) functions on a set X is

the pointwise product of functions. Given two functions f, f, one forms a new function

f1f2 by:

(1) (fif2)(p) = fi(p) f2(p), VpeX.
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In noncommutative geometry one still has a product on F(X) but the commutativity

property of (1)

(2) hf:=fafi,  Vf; € F(X).

is dropped. It is precisely this commutativity property which signals that X is an ordinary
set. When dropped, one no longer deals with just a set X, but essentially with a set
endowed with relations between different points. For instance, if one considers a set ¥
consisting of two points {1,2} and the relation which identifies 1 and 2, then F(Y,rel) is
the space M3(C) of 2 x 2 complex matrices with the product

(3) (Fif2)(6,5) = filis k) fak,j)
1.e. the usual product of matrices.

In this simple example the ordinary space {1,2}, given by the two points without any

relation, is described by the subalgebra of diagonal matrices. It is the “off-diagonal”

1 0 0 ) . ) .
0 0 1 0}, which describe the relation. This type

of construction of an algebra F(X) is rather general. It extends to a pseudogroup of

matrices, such as ej = [ or €3y =
transformations of a manifold and also to the holonomy pseudogroup of a foliation (see
[Co]). The resulting noncommutative algebra encodes the structure of the “space with

relations”. We shall later discuss in detail the case of a smooth manifold together with its

full diffeomorphism group.

As another simple example we can consider the case of a single point divided by a discrete
group I'. Then the corresponding algebra F is the group ring attached to I', whose elements

f are functions (with finite support) on T,
(4) g — fg € C,

with the product given by linearization of the group law g1, g2 — ¢192 in I':

(5) (fif2)g= Y frg fre -

g192=g9

So far, in describing the functional space F(X) associated to an ordinary space X we have
ignored the degree of regularity of the elements f € F(X) as functions of p € X. To various

degrees of regularity correspond various branches of the general theory of noncommutative
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associative algebras. The latter are assumed to be algebras over C, which moreover are

involutive, i.e. endowed with an antilinear involution

(6) f=f  (hfR)=f .

The two kinds of regularity assumptions for which the corresponding alzebraic theory is
satisfactory are:
measurability, which corresponds to the theory of von Neumann algebras;

continuity, which corresponds to the theory of C*-algebras.
y g

In both theories the Hilbert space plays a key role. Indeed, both types of algebras are
faithfully representable as algebras of operators in Hilbert space with suitable closure
hypothesis. One can trace the role of Hilbert space to the simple fact that positive complex

numbers are those of the form
(7) A=z"z.

In any of the above algebras, functional analysis provides the existence, via Hahn-Banach

arguments, of sufficiently many linear functionals L which are positive
(8) L(f*f) =20

From such an L, one easily constructs a Hilbert space together with a representation, by

left multiplication, of the original algebra.

Next, many of the tools of differential topology, such as the de Rham theory of differential
forms and currents, the Chern character etc..., are well captured (see [Co]) by cyclic
cohomology applied to pre C*-algebras, i.e. to dense subalgebras of C*-algebras which are

stable under the holomorphic functional calculus:

(9) Foh(f) = — [z g,

2im ) f—z

where h is holomorphic in a neighbourhood of Spec(f). The prototype of such an algebra
is the algebra C°°(X) of smooth functions on a manifold X. The cyclic cohomology
construction then recovers the ordinary differential forms, the de Rham complex of currents
and so on. More significantly, this construction also applies to the highly noncommutative
example of group rings, in which case the group cocycles give rise to cyclic cocycles with
direct application to the Novikov conjecture on the homotopy invariance of the higher
signatures of non-simply connected manifolds with given fundamental group. (For a more

thorough discussion, see [Co}).



If one wants to go beyond differential topology and reach the geometric structure itself,
including the metric and the real analytic aspects, it turns out that the most fruitful
point of view is that of spectral geometry. More precisely, while our measure theoretic
understanding of the space X was encoded by a (von Neumann) algebra of operators .4
acting in the Hilbert space H, the geometric understanding of the space X will be encoded,

not by a suitable subalgebra of A, but by an operator in Hilbert space:
(10) D = D", selfadjoint unbounded operator in H .

In the compact case, i.e. X compact, the operator D will have discrete spectrum, with

(real) eigenvalues A, |A,| — oo, when n — oo,

Formulating the precise conditions to which the triples (A, H, D) should be subjected is
tantamount to devising the axioms of noncommutatjve geometry. If we let F' and |D| be

the elements of the polar decomposition of D.

(11) D=F|D| . |IDP=D* | F=SignD

then the operators F' and |D| play a similar role to the measurements of angles and,
respectively, of length in Hilbert’s axioms of geometry. In particular the operator F =

Sign D captures the conformal aspect while D describes the full geometric situation.

Considering F alone, the quantized calculus was developed (cf. [Co]) based on the following

dictionary.

Classical Quantum

Complex variable Bounded operator in Hilbert space H

Real variable Selfadjoint operator

Infinitesimal Compact operator
Infinitesimal of order Compact operator whose characteristic
a>0 values p,, satisfy p, = O(n=)
Differential dl = [F\T)=FT - TF
Integral of infinitesimal of order 1 Dixmier trace Tr,(T)

We refer to Appendix A for a thorough treatment of the Dixmier trace. For a host of

applications of the quantized calculus, including Julia sets, the quantum Hall effect and
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the analysis of group rings, the reader is referred to [Col]. A further application, namely
the construction of a 4-dimensional conformal invariant analogue of the 2-dimensional

Polyakov action, is discussed in [C,].

Our goal in the present paper is to use the quantized calculus to develop geometry from a
spectral point of view. In more precise terms, our initial datum will be a triple (A, H, D)
where A is an involutive algebra represented in the Hilbert space H and D is a selfadjoint
operator in ‘H with compact resolvent, which almost commutes with ary a € A, to the

extent that
[D, a] is bounded for any a € A .

The basic example of such a triple is provided by the Dirac operator on a closed Riemannian
(Spin) manifold. In that case, H is the Hilbert space of L? spinors on the manifold M,
A is the algebra of (smooth) functions acting in ‘H by multiplication operators and D is
the (selfadjoint) Dirac operator. One can easily check that no information has been lost

in trading the geometric space M for the spectral triple (A4, H, D). Indeed (see [Co]), one

recovers

(¢) the space M, as the spectrum Spec(A), of the norm closure of the algebra A of operators
in H;

(22) the geodesic distance d on M, from the formula:

d(p,q) = Sup{|f(p) — (@)l ; D, fIl<1} , VYpgeM.

The right hand side of the above formula continues to make sense in general and the
simplest non-Riemannian example where it applies is the 0-dimensional situation in which
the geometric space is finite. In that case both the algebra A and the Hilbert space H are
finite dimensional, so that D is a selfadjoint matrix. For instance, for a two-point space,
one lets A = C @ C act in the 2-dimensional Hilbert space H by

feAo [f((;‘) f(“b)],

and one takes D = {2 g} . The above formula gives d(a,b) = 1/u.

As a slightly more involved 0-dimensional example, one can consider the algebraic structure
provided by the elementary Fermions, i.e. the three families of quarks. Thus, one lets H
be the finite dimensional Hilbert space with orthonormal basis labelled by the left-handed
and right-handed elementary quarks such as u?, ub, ... The algebra A is C @ H, where
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the complex number )\ in (A, q) € A acts on the right-handed part by A on “up” particles
and X on “down” particles. The isodoublet structure of the left-handed (up, down) pairs
allows the quaternion ¢ to act on them by the matrix

[_(% E} ¢g=a+p8) ; a,BeC.

«

Then the Yukawa coupling matrix of the standard model provides the selfadjoint matrix
D.

In [C-L] the theory of matter fields was developed in the above framework, under the
finite-dimensionality hypothesis that the characteristic values of D~! are O(n=Y%), for

some finite d.

This allows to define the action functional of Quantum Electrodyramics at the same level
of generality (cf. [Co]). The striking fact there is that if one replaces the usual picture of
space-time by its product by the above 0-dimensional example, the QED action functional
gives the Glashow-Weinberg-Salam standard model Lagrangian with its Higgs fields and
symmetry breaking mechanism. In the development of this theory, the tools of the quan-
tized calculus, in particular the Dixmier trace as the substitute for the Lebesgue integral,

played an essential role.

The matter field Lagrangian involves the metric guv but does not involve any derivative
of g,,. This indicates that the difficulty involved in developing the analogue of gravity in
the above context is of a different scale. In order to overcome it, one needs both a good
list of examples of spectrally defined spaces and a difficult mathematical problem to solve.
By a spectrally defined space we mean a triple (A, H, D) as above; the involutive algebra

A is not necessarily commutative. We shall also refer to them as spectral triples.
Before running through the list of examples, let us state the mathematical problem:
compute by a local formula the cyclic cohomology Chern character of (A, H,D).

More specifically, the representation of A in H together with the operator D allows to set
up an index problem:

Indp : Kj(A) - Z

where j = 0 in the Z/2-graded (or even case) and j = 1 otherwise. The index map turns
out to be polynomial and given, in the above generality, by the pairing of K;(.A) with the
following cyclic cocycle

m(a®,al,. .., a") = Trace (a°[F,a]. .. [F,a™), Va’ € A
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where n has the same parity as j and n > d — 1. In the even case, one replaces the trace

by the supertrace, i.e. one uses the Z/2-grading v of H to write
7(a’%d’,...,a") = Trace (va°[F,d']...[F,a"]), Vol € A )

The class of 7 in the cyclic cohomology HC™(A) is the Chern character of (A, H, D). We

refer to [Co] for more details as well as for the appropriate normalizatiors.

The general problem is to compute the class of 7 by a local formula. A partial answer
to this problem was already obtained in [Co], by means of a general local formula for the
Hochschild class of 7 as the Hochschild n-cocycle:

(12) ¢(a®,...,a") = Tr, (a°(D,a']...[D,a"] |D|™"), Va’ € A,
where n is as above and, in the even case, with v inserted in front of a° .

In the above formula Tr,, is the Dixmier trace, which when evaluated on a given operator
T only depends upon the asymptotic behavior of its eigenvalues. More precisely, for T > 0,

with 1, (T) the nth eigenvalue of T in decreasing order, one has (cf. Appendix A):

N
. 1
Trw(T) = 113’1 Eé——ﬁ ZO: ;l.n(T),

this is insensitive to the perturbation of u, by any sequence ¢, = o (%) , i.e. such that

2=

ne, — 0, n — oo.

For a classical pseudodifferential operator P with distributional kernel k(z, y) the Dixmier

trace is given by the Wodzicki residue

Tr(T) = / o()
where k(z,y) has an asymptotic expansion near the diagonal of the form
k(z,y) = a(z)log(d(z,y)) + b(z,y),
with b bounded.

In particular, when one evaluates Tr,, on a product Tj ... T, of such operators the result is
expressed as an integral in a single variable x of a local quantity. This is in sharp contrast
with what happens for the ordinary trace, which when evaluated on T ...T, involves a

multiple integral, of the form

/ ki(x1,x2) ko(ze,23) ... kn(Tn, 1),
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where the z;’s vary arbitrarily in the manifold.

While the expression (12) of the Hochschild cocycle ¢ is local in full generality, it only
accounts for the Hochschild class of the Chern character of (A, H, D), which is not sufficient
to recover the index map. In the manifold case for instance, it only gives the index of D

with coefficients in the Bott K-theory class supported by an arbitrarily small disk

In Section II of this paper we shall obtain a general local formula for all the components
of the cyclic cocycle 7. This will be achieved by adapting the Wodzicki residue, the unique
extension of the Dixmier trace to pseudodifferential operators of arbitrary order, to all
our examples. For spectrally defined spaces (A, H, D), we shall see that the usual notion
of dimension is replaced by a dimension spectrum, which is a subset of C. Under the
assumption of simple discrete dimension spectrum, the Wodzicki residue makes sense and
defines a trace on the algebra of the pseudodifferential operators of (A, H, D). The latter
algebra is obtained by analysing the one-parameter group o, = |D|** . |D|™* in a manner
very similar to Tomita’s analysis of the modular automorphism group of von Neumann
algebras. When the dimension spectrum is discrete but not simple, the analogue of the
Wodzicki residue is no longer a trace: it satisfies, however, cohomological identities which

relate it to higher residues.

Under the sole hypothesis of discreteness of the dimension spectrum, we shall obtain a
unwersal local formula for the Chern character of a spectral triple (A, H, D), expressing
the components of the Chern character in terms of finite linear combinations, with ra-
tional coefficients, of higher residues applied to products of iterated commutators of D2
with [D,a?], a’ € A. A noteworthy feature of the proof is the use of renormalization
group techniques to remove the transcendental coefficients which arise when the dimen-
sion spectrum has multiplicity. In the manifold case, this formula reduces, of course, to the
classical local index formula. In general however it is necessarily more intricate, in several
respects, because of its large domain of applicability, which encompasses for instance the

diffeomorphisms-equivariant situation described in Section I.

We conclude the introduction with a list of spectral triples corresponding to geometric or

group-theoretic spaces.

1. Riemannian manifolds (with some variations allowing for Finsler metrics and also for
the replacement of |D| by |D|*, « € ]0,1]).

2. Manifolds with singularities. For this, the work of J. Cheeger on conical singularities is
very relevant. In fact, the spectral triples are stable under the operation of “coning”,

which is easy to formulate algebraically.
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. Duscrete spaces and their product with manifolds (as in the discussion in [Co] of the

standard model). The spectral triples are of course stable under products.

. Cantor sets. Their importance lies in the fact that they provide examples of dimension

spectra which contain complex numbers (cf. Section II).

. Nilpotent discrete groups. The algebra A is the group ring of the discrete group
I, and the nilpotency of T is required to ensure the finite-summability condition
D™t € L) We refer to [Co] for the construction of the triple for subgroups of Lie
groups.

. Transverse structure for foliations. This example, or rather the intimately reiated
example of the Diffequivariant structure of a manifold will be treated in detail in

Section I of this paper.



I. Diffeomorphism invariant geometry

1. Diffeomorphism invariant geometric structures

Let W be a smooth manifold and Diff (W) its group of diffeomorphisms. Given an arbitrary
subgroup I' of Diff(W) one can form the crossed product of the algebra of functions on W
by the action of I' (cf. [Co]) and describe in this way the measure theory and topology of

the noncommutative space encoding the identifications of points in W by the action of T.

The basic idea which we developed in [C,], in order to obtain invariants of K-theory of
the C*-algebra Co(W) > T, is to relate the general case of an arbitrary I’ acting on W to

a “type II” situation, in which the action of I' preserves a certain G-structure which we

shall describe and use at great length below.

In general, and for instance if we take I' = Diff(W), the action of I' on W preserves no
structure at all. Thus, if we take W = S! there is no I'-invariant measure in the Lebesgue
measure class, and even at the measure theory level the crossed product L>(8')>T is of
type II1. The basic structure theory of type III factors, as crossed products of type II by an
action of R}, is easy to interpret in this example (cf. e.g. [Co]) as the replacement of the

manifold W = S by the total space P of the R’ -principal bundle of (positive) 1-densities
on S,

On this total space P the group Diff(W) is still acting and now there ison P a tautological
invariant measure for the action of Diff(W), so that the crossed product of P by T is of
type II. Furthermore the group R* acts on this crossed product and gives back (up to

Morita equivalence) the original crossed product of W by T.

Even though T' acting on P preserves a natural density, it does not preserve a Riemannian
geometry, since it would then have to be contained in the Lie group of isometries of that
geometry. Let us describe the natural geometric structure on P preserved by the action
of Diff(S'). By construction, P is an R principal bundle over S! and we let 7 : P — S1
be the canonical projection. Given x € S, a point p € #7'{z} is the same thing as a unit
of length in the tangent space T,(S'). Moreover, the canonical action of R on P also

specifies a unit of length in T, (7 ~'{x}), given by the vertical vector field & (e p).

We thus have a natural integrable subbundle V' of the tangent bundle of P together with
Euclidean metrics on both V and N = T/V, where at any p € P we use the identification
of N, with T,(S!), ¢ = n(p), to define the metric at p.

Since this construction is completely canonical it is invariant under the action of Diff(S1).
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If we make the (non canonical) choice of section df of P we can label the points of P by
(6,)), 6 € S', )\ € R% or equivalently (8,s), s € R, A = e®. In these coordinates, the
vertical metric is ds? and the transverse one is (¢* df)?. A diffeomorphism ¢ of S! acts in

the obvious way, namely:

2(6,5) = (p(8),s +log '(6)) .

If we perform the measure theory construction of the principal R’ bundle in higher di-
mension, we obtain the correct description of the corresponding type II algebra but since
we use only the (absolute value of the) determinant of the Jacobian matrix of ¢ we only

control the volume distortion by ¢ but not the geometric distortion.

To describe the latter, we take for P the bundle over W whose fiber P, at each z € W
is the space of all Euclidean metrics on the vector space T,(W). Thus, a point p of P is
given by a point x € W together with a non-degenerate quadratic form, Guv dz# dz¥ in
local coordinates, on T,(W). Equivalently, we can describe P as the quotient of the frame
bundle of W, whose fiber at z € W is the space of linear isomorphisms R™* — T, W, by
the action of the subgroup O(n) C GL(n,R). On the symmetric space GL,/O(n) we use
the natural invariant Riemannian metric, which on the tangent space at the unit matrix,
identified with the space of symmetric matrices, is given by the Hilbert-Schmidt norm.
Once transported to the fiber P,, z € W, this metric gives an Euclidean structure on the
vertical bundle V C TP. Given a vertical path p(t), p(0) = p its square length at t = 0 is
simply the trace of (p~! p)2.

Also, exactly as above, we can identify the transverse space N, = T, P/V, with the tangent
space T;(W), z = n(p), so that the quadratic form p provides us with a natural Euclidean

structure on N,. In order to have a convenient terminology, we introduce the following

definition:

Definition I.1. By a triangular structure on @ manifold M we mean an integrable subbun-

dle V of the tangent bundle TM together with Euclidean metrics on both V and N = T/V.
We can summarize the above discussion as follows:

Proposition 1.1. Given a manifold W, the space P of all metrics on W, defined above,

has a canonical triangular structure, invariant under the action of Diff(W).

This construction was used in [C;] to prove analytic properties of cyclic cocycles such

as the transverse fundamental class or Gelfand-Fuchs cohomology classes. We refer to
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[C4] for purely geometric corollaries of this technique. To obtain them, it was crucial to
relate the K-theory of the C*-algebras obtained (from crossed products by subgroups I'
of Diff W) using W and using P. This followed from the “dual Dirac” construction of
a bivariant Kasparov class (cf. [Cy]). In [H-S] M. Hilsum and G. Skandalis went further
and constructed the transverse fundamental class in K-homology for the space P, using
hypoelliptic operators. They did this at the level of homotopy classes of Fredholm modules
and the central theme of the first part of this paper will be to refine their construction in
order to describe the geometry of the crossed products (of P by I') by a spectral triple
(A, H, D) satisfying all the conditions of our general spectral geometry.

Thus, we shall now free ourselves from the particular features of the example P above

and discuss, in the context of triangular manifolds, the construction of the corresponding

spectral triple.

One of the new features will be the gquartic aspect of the discussion, as opposed to the

quadratic feature of Riemannian geometry.

Finally one should keep in mind that the crossed product of P by a given subgroup I' of
Diff(W) is only the “type II” counterpart of the crossed product of W by I". To obtain the
latter from the former, one needs to take a crossed product by “GL,/O(n)”, operation in
which the non amenability of the Lie group GL,, n > 1 comes into play. In this paper we

shall content ourselves with the type II discussion.

2. The spectral triple (4, H, D) of a triangular structure on a manifold

We let M be a smooth (not necessarily compact) manifold together with an integrable
subbundle V' of its tangent bundle. We let N = TM/V be the transverse bundle and

assume that both N and V are oriented Euclidean even dimensional vector bundles.

Our first aim is to construct a hypoelliptic differential operator Q corresponding to the
signature of M, which modulo lower order only depends upon the Euclidean structures of
both V and N but not upon a choice of Riemannian metric on M. This will be done by
combining a longitudinal signature operator of order 2 with the usual signature operator
in the transverse direction. Then, using @, we shall define a first-order operator D by the

equation

(1) Q = D|D| .



Let us first see how one can replace the usual signature operator by an equivalent operator
of order 2.

«) Second order signature operator

Let V be a smooth (and, for simplicity, compact) oriented even-dimensional Riemannian
manifold. On the bundle AT¢ of exterior differential forms on V' one has a natural Z/2-

grading v, 72 = 1, v = v* , given by the x-operation, such that
(2) d*= -y d~:
thus, the signature operator d + d* anticommutes with +. Let
A = (d+d*)?* = dd* + d*d.
It commutes with both d and d* and we can thus consider, for A € [0, 1], the operators
(3) Uy=AY2 4 \d=d*) , Ur=AYV24d*-4d).

One has
U\Uy=A -2 (d-d)? =1+ 2)A

and similarly

UiUs = (1 + MDA,

Lemma I.1. 1) Uy commutes with the Z/2-grading v.
2) Ua(d + d*)U} = 2AY2%(dd* — d*d) for X = 1.

Proof. 1) Both A and d — d* = d + ydy commute with 7.
One has
(AY? 4 (d—d*)) (d+d") (A? —(d—d")) =

A(d 4 d*) + (d — d*) (d + d*) A2 + AV2(d 4 d*) (d* —d) — (d — d*) (d + d*) (d — d*) .
On the other hand,
(d—d*) (d+d*) = —d*d + dd*, (d+ d*) (d* — d) = —d*d + dd*
and
~(d—d*) (d+d*) (d — d*) = (dd* — d*d) (d* — d) = —dd*d — d*dd* = —A(d + d*). g
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It follows, ignoring finite rank operators and using the operators U, A~'/? which are
bounded, that one gets a homotopy between the signature operator and the operator
ATYV2(dd — d*d) with the same Z/2 grading. This latter operator is an elliptic pseudo-
differential operator of order 1 defined by the equation:

(4) ‘ D|D| = dd* - d*d .

The second order operator dd* — d*d, with the Z /2-grading 7, thus represents the signature
class on M.

Let us now combine it with d + d* in the above context.

B) The mized signature operator

Welet M,V C TM and N = TM/V be as above. We consider over M the hermitian
vector bundle E with fiber

(5) E=AN"VE®A* NE.

Its metric comes from the metrics of V and N , together with the orientations these yield

Z/2-grading operators vy and v~. It also yields a natural volume element, i.e. a section

of
N V@A N* = A T*M
where v =dimV, n =dim N, d = dim M = v+ n.

Thus the Hilbert space L*(M, E) of sections of E has a natural inner product, independent
of any additional choice.

Using the canonical flat connection of the restriction of the bundle N to the leaves of the
foliation by V', we can define the longitudinal differential d;, as an operator of degree (1,0)

with respect to the obvious bigrading, satisfying

(6) d: =0.

The operator d3 is, by definition, the adjoint of dp. It is of the form
(7) d} = —yv dp vy + Order 0

with the additional term of order 0 uniquely prescribed without any extra choice.
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This means that the following operator is a well defined longitudinal elliptic operator:
(8) QL =did; —didy .

By the discussion of section a) this operator describes at the K-theory leve! the longitudinal
signature class. To obtain the full signature of M we need to combine it with a transverse

signature operator, which is of order 1 as a differentjal operator.

Our next step will thus be to define the operator dy + dj;, where dy is of degree (0, 1)in

the bigrading of E and corresponds to transverse differentiation.

This step will require an additional choice of a (non integrable) subbundle H of TM
transverse to V, dim H = n. It is crucial that such a choice does not affect the principal

symbol of the operator as a hypoelliptic operator (see below).

The choice of H provides a natural isomorphism
(9) JH: AVIQANY — AT, Ve € M,

and for w € C°(M,A" V*®A® N*) we define dr(w) as the component of bidegree (r,s+1)
of

(10) in dGnw).

To understand the ambiguity in the choice of H we consider locally a function f which is
leafwise constant, i.e. dif = 0. Then d Hf is independent of H and given as a section of

N*. We can then define the transverse symbol of dy using its commutation with such f:
(11) du(fw) — fdu(w) =df A\w  Vf,dy, f=0;

in the right hand side we use the natural algebra structure for AV* @ AN*.

Thus, (11) means that the transverse symbol is independent of the choice of H. We let:
(12) Qn=dy+dy

where the * is taken relative to the inner product in L?*(M, E). We now combine Q1 and
QH, using the parity (—1) in the transverse direction which commutes with ¢; and

anticommutes with Qp, to define

(13) Q=QL (-1 +Qpg .
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We ‘should remark that one can use (—1)°V instead of 1 ® v, without changing the

homotopy class of the operators, since these two gradings are homotopic among operators
which anticommute with Qp.

The selfadjoint operator D is now uniquely defined by the equation:
(14) DID|=Q .

Note that @ is formally selfadjoint by construction. We shall not discuss here the prob-
lem of selfadjointness of 2 in the noncompact case. This issue will need to be adressed

eventually, in connection with our main example, i.e. the total space P in I.1.

The following theorem shows that the operator D constructed above gives rise to a spec-
tral triple (A, H, D) for the crossed product A = C(M)>T, where I is any group of

diffeomorphisms preserving the triangular structure.

Theorem 1.1. 1) [D, f] is bounded for any f € C®(M), and both f and [D, f] belong to
Nn>1 Dom 6", where 6 = [|D},-].

2) If M 13 compact D has compact resolvent, in all cases
f(D =X s compact feC (M), \¢R.

3) Changing the choice of H only affects D and |D| by bounded operators (locally in the

noncompact case).

4) Let v € Diff(M) preserve the foliation V and be isometric on both V and N. Let U,
be the corresponding unitary in H. Then [D, fU,)] is bounded, and both fU, and [D, fU,]
belong to Np>1 Dom 6" for all f € C(M).

We shall also give the precise summability in 2) by showing that f(D — X)~! € £#:>),
p = v + 2n, and compute the Dixmier trace of the product f|D|™? (cf. [Co]).

3. Preliminaries on the Y DO’ calculus

As a technical tool in the proof of Theorem 1.1, we shall describe the pseudodifferential
calculus which is adapted to the situation. It is just a special case of the pseudodifferential
calculus on Heisenberg manifolds (cf. [B-G]), which is however sufficiently different from
the ordinary ¥ DO calculus to deserve a careful treatment. The reader familiar with [B-G]

can skip this section.
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Recall that M is foliated by the integrable subbundle V. We shall only use charts, i.e.

local coordinates z*, which are foliation charts, that is

(15) V' is generated by 3—27 =0;,7=1,...,v.

Thus the plaques, i.e. the leaves of the restriction of the foliation, are R” x pt. In such
coordinates we shall use the ordinary formula to pass from a symbol o(z,£) to the cor-

responding operator:
(16) P, = (27)™™ /e"“’—ym o(z,6)d™¢ m=v+n.

One has £ € (R* x R")* = R, x R,, and one defines a (coordinate dependent) notion of
homogeneity of symbols using

(17) /\62(/\ {v’/\2 {n) for 62(61!3611_)7 ’\ERT}- .
The natural length for £ which is homogeneous of degree 1 is

, /s
(18) €N = (&l + f1al®) "

Let us start with a symbol o, smooth on R™ x R \{0} and homogeneous of degree ¢ for
the dilations (17), i.e.

(19) o(z, - €)= A o(2,§) .

In order to control the operator P, defined in (16), one needs to control the partial deriva-

tives

a2 8f o(x,6) .

When we apply 07, the homogeneity property (19) is preserved. The action of aiv, 1=
1,...,v, lowers ¢ by 1 while the action of Bin, t=1,...,n, lowers it by 2. Thus, if we let

(20) (B) =D B:i+2> Busy

we see that 02 (95 o 1s homogeneous of degree ¢ — (3). It follows that, for z in a compact

subset of R™ and «, 3 fixed,
(21) 07 0 o(2,6)| < Cap (1 +[1€])"™ .
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To employ the usual classes of ¥ DO one needs to relate the right hand side to the expression

(1+flglpe2l .
With a = |&,]], b = ||€,]|, one has
€I =a® + 6%l = a* + 82,
so that
eI < (L 0gl®) ™ <1 Qe 1+ eyt = e,
(22) I < 1+ Jle) < 2+ ey

It thus follows that, if ¢ > 0, a homogeneous symbol o of degree ¢ is of class Sq 1/27 Le.

(23) 07 0 a(2,6)| < Cay (14 flEf)— 418

while for ¢ < 0 it is of class Sg/]z/z.
This implies in particular that for ¢ < 0 the operator P, is bounded in L? (cf. [B-G]).

We can now introduce the relevant class of symbols for the proof of Theorem I.1. We

consider symbols o such that:

there exists a sequence (o4) of homogeneous symbols,

24 o4 of degree ¢, with ¢ ~ o
g q
7<qo

where ~ means that for any N the difference

satisfies the inequalities (21) for g=N.

Definition 1.2. We shall say that an operator P is a YDO' if it is a P,, with ¢ as in
(24).

Let us now describe the composition P, o P, of two UDQ’. Denoting as usual
(25) Dy = (-l g,
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the action of P, can be formally expanded as

1
P, = Za—' d¢ o(x,&) DY .

Let us consider the expansion:

1
(26) > o7 9% o0(2,6) DS 0y, (2,8) .

The degree of homogeneity of each of the terms is

q1 + q2 — (O/>,

where (a) is defined in (20).

This shows that (26) makes sense as an asymptotic expansion and corresponds to the
product P, o P,.

Note that every differential operator P is a ¥ DO'; the only difference is in the notion
of degree, since while 9/8z; = 9; has degree 1 for j = 1,...,v it has degree 2 for
J=v+1,...,v+n. It is not true however that an ordinary ¥YDO is a YDO', even in the

order 0 case.

We need to define the notions of principal symbol and ellipticity for ¥DO’. To this end

we shall first consider what happens under a change of foliation chart.

Let ¢ be such a change of charts. It defines a local R* diffeomorphism ¢, in such a way

that, with the notations « = (2,,2,), ¥ = (y», Yn ), one has

(27) @(z) = (oo, Tn), ©n(zn)) -

Similarly, » = ¢! is of the same form, 3 = (¥Yv,%n). Given a covector £ € T} the

corresponding covector at y = o(x) is

(28) n = 1.(£)

ie. (0,Y) = (64.(Y)), VYT,

With o = o(y,n) a homogeneous symbol, let us consider the composition
(20) 5(z,6) = o (p(2), % 40 (©)) -
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To compare it with &(z, A - £) we just need to understand the linear map ¢! at p(z) = y.
This map, L, preserves the natural subspace N* C T* of covectors orthogonal to the leaves.

On the subspace N* = {(0,£,,)} one has A - € = A2¢. Thus

L, 0

With obvious notation, we have
o(L€) = 0 (Lyn(€0), Lan(En) + Lnal€0)) = 3 = 85, 0 (LuulE)s Lnn(a)) (LmalE))°

which gives the desired expansion of o o L as a sum of homogeneous symbols. This shows

that formula (29) defines a transformation of symbols.

"To obtain the symbol of the operator P, in the new coordinates one writes its kernel as
(30) k(:r,a:') — (zw)—mfei(¢(1)—¢(fl),ﬂ> U(SO(‘T),U) dmn .

One first changes variables from n to ¢ using (28) and the fact that k is a 1-density, so
that no Jacobian enters in the change of variables, due to the invariance of the symplectic

Liouville measure. Thus,
(31) k(z,2') = (2n)™™ / ez =2" Otz 0) 5y £) dme,
where a(z,z’',£) is the non linearity at = of the map o:

(32) (p(e) = ple"),n) = (z ~ 2',€) + a(z,2',€) .

The variable { appears linearly in a and the coefficient of £, only invokes p,(zn) — @n(z')
and not z, or z;. By construction, « and its first derivatives in z' vanish at z' = z. This

implies that the Taylor expansion at 2’ = z of e**(#:#'€) ig of the form

(33) e = N Py(a, £)(a — '),

where Pg(z,£) is a polynomial in ¢ whose degree, in the sense that ¢ has degree (a), is
smaller than 1(3). Thus, using ('9? ez =218 — 418l (7 — z')# e*=7".8&} and integrating by
parts, one gets the full symbol for P,:

(34) o(z,&) =Y i VI 8] (Py(x,€) (x,6)) .
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In particular, at a given z the value of o(z,§) only involves & restricted to T* and not its
restriction to any Ty, y # z. To this restriction & one applies a differential operator with

polynomial coefficients.

Let us now turn to the principal symbol. Let o be a symbol of order ¢; then its principal
part is

(35) lim A% oz, £).

A— 00

We see that it gives a well defined function on the bundle
V*e N*,

the direct sum of the subbundle N* C T* and of V* — T*/N*. The above limit exists and

under a change of coordinates it behaves, in view of the above formulae, as a function on
V¥ N*.

As an example, let us compute the principal symbol of
[1D], Ps]
where o is of order 0 and where the principal symbol of |D| is

(36) oi(z, &) = llgl"  (cf. 18).

We can use formula (26) in local coordinates. It gives

(37) >_ (08 01(2,€) D2 o(,6) — 8¢ a(,€) D* o,(z,¢)) .

(a)=1

Note that since (a) = 1, this formula only involves the longitudinal differentiation D7 .

4. Proof of Theorem I.1.

The operator D is defined by equation (14), where @ is a selfadjoint differential operator
by construction. We shall first show that D is a ¥ DO’ of order 1.

As noted before, any differential operator is DO’ in the above sense , but the notions of
degree and of princjpal symbol differ from the usual ones. In particular, @ is elliptic of

degree 2 and its principal symbol is, for £, € V*, &n € N*, the endomorphism of AV*QAN*

02(€us€n) = (eg, tg, —ig, €6,)® (~1)° + 1@ (3 e, + (i €¢,)*) .
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The two sides anticommute, so that when we square o5 we get

03(€v: En) = (1El1* +11€all®) - 1,

which shows that Q? is a ¥ DO’ of order 4, elliptic and with principal symbol a multiple
of the identity.

As in the ordinary pseudodifferential calculus, this is enough (cf. [Gi] p.52) to construct
an asymptotic ¥DO', R(u) which is an asymptotic resolvent for Q2.

We shall use for D and |D| the following formulas:

V2 [ Q2 .
_ V- -3/4
(39) D=3 [ i w7
V2 [*Q
39 D=21= “14 gy
(39) 27r/0 a7t dy

Let us replace, in these two formulae, (Q? + 1) ~! by the asymptotic resolvent R(u). Then
R(p)(@* + ) — 1 is smoothing of any order, with the corresponding norms controlled by
(1+ p)~*. Thus, when we replace Q2/(Q? + u) by Q?R(y), we use

Q* Q*

1 (1-(Q*+p) R(p)) = I - Q* R(n),

which is therefore also smoothing of any order if 4 > 0. Using the boundedness of

MYLNE

Q? + p

for p >0,

a similar statement holds for

1/2 Q
H/ (m*@—’“#)) .

Since the asymptotic symbol of (Q% + x)~1 is, at the principal level,
-1
Oy = (”él'“4 + ||§n||2 + /‘)
one obtains the principal symbols of the operators
V2 [ _
(40) Dl = 5= [ Q@ R w1 d
<7 Jo
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2 oo
(41) D, = Y2 Q R(p) p='* dp
27 Jo
as the integrals

V2 [ lg)

(42) o ), Tl +n p T du =l
V2 [ 4 - _ o (Q)(¢)
(43) 52 [ @ (e +) " au ey

This is enough to show that both |D| and D are $DO' of order 1 and to give in local

coordinates the asymptotic expansion of their symbol.

Since the principal symbol of |D| is ||¢]|"- 1, a multiple of the identity matrix, it commutes

with the symbol of any ¥ DO’ of order 0. This shows that, with & denoting the derivation
o(T) =D, 1],
one has:

Lemma L.2. Any $DO' of order 0 belongs to Ql Dom 6".

This applies to the multiplication operator f as well as [D, f} and proves Theorem L.1 1).

For assertion 2) of the theorem, we shall prove the more precise result
(44) |D|7 € vH2me)
which in turn will follow from:
Lemma 1.3. Let P be ¢« YDO' of order —(v + 2n). Then
ux(P) = O(k™)
where pr(P) 1s the kh characteristic value of P.

Proof. It is enough to check this locally, so that one can assume without loss of generality
that

v+42n

M=T"xT" and P=(AZ@1+1Q@A,4+1)  *
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One just has to bound the number of eigenvalues A > ¢ of P by C/e for some C < oo.
Equivalently, one has to bound the number of eigenvalues A < ¢~ 5%% of AZR14+1@A,+1
by C/e. But this number is less than N.(E) N,(FE), where E = E“ﬁ, N,(E) is the
number of eigenvalues of A? less than E, while N »(E) stands for the number of eigenvalues

of A, less than E.

One has N,(E) < C, E*/*, N,(E) < C,, E™? and we get the required bound. g

For Theorem 1.1 3), we just note that the choice of H does not affect the principal symbols
of either D or |D|, while any ¥ DO’ of order 0 is bounded.

It remains to prove assertion 4). The operators U, D Uz;', U, |D| UZ! are YDO' of
P w 7] ¥ w

order 1, with the same principal symbols as D and |D| respectively. This shows that the
following are ¥ DO’ of order 0:

(DU, UZ*, (IDI,U,] US* .

In particular, they are bounded and belong to N,>; Dom §". Thus, U, € Dom 3§,
6(U,) U;' € Dom 6, hence U, € Dom §2. By induction, using §(U,)-U-' € Dom 6™, one
gets Uy, € Np>1 Dom 6™ and thus [D,U,] = ([D,U,] U;l) U, € Np>1 Dom 6. g

5. The Dixmier trace of ¥DO’' of order —(v + 2n)

We shall now describe the kernels k(z,y) for operators of order —(v+2n) and compute their

Dixmier trace. As we shall see, the relevant question is that of extending a homogeneous

symbol o(¢), £ € R**"\{0},
(45) a(A-€) =AU g(6)  VAERY

to a homogeneous distribution.

The degree of homogeneity ¢ = —(v+2n) considered in (45) is the limit case for integrability
both near 0 and near oc. Indeed, the Jacobian of € — X-€is AYT2" and on each orbit of

the flow F,
Fs(ﬁ) =e’- ‘57

the measure o(¢) d+™ € is proportional to d—g\. It thus has a logarithmic divergency both at

0 and at co. They turn out to be intimately related and we shall investigate the divergency
at 0, following closely ([B-G]).
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We consider the linear form on the space

{feS®R™™); f(0)=0} =8

given by
L(f) = / £(6) o(€) dm € |

It makes sense because o is bounded at co (polynomial growth would be enough) and

f(0) = 0 takes care of the non integrability at 0.
With fi(€) = f(A~! - £) the homogeneity of ¢ means:

(46) LifA)=L(f) VfeSa.

By the Hahn-Banach theorem the linear form L extends from the hyperplane S; to all of

S as a continuous linear form and we get a one dimensional affine subspace of S':
(47) E={reS8; r|S =1L},

the corresponding linear space is the space of multiples of &, the Dirac mass at 0.
The dilations 8},
(0x(7), f) = (r, f/\>

act on E; since they act trivially on the associated linear space, their action on E is given,

for some constant ¢, by
(48) Oxr=T1+cloghs, VreE, eR:.
To determine c, let ¢ € C2([0, 00[) be identically 1 near 0, and let 7 be given by
(49) ()= LU= O (I = [ (6 - SO w el o(e) de
One has,
== [T 9~ 50 w(lel) oe) de
- [¢©r - 50 v el o(©) de
= 1) [ @ El - Ol o() de

= £(0) < / () = p(w)) %’—‘-
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where ¢, is obtained as the pairing between any transversal cycle [[€]]" = constant to the
foliation of R¥*"\{0} by the orbits of the flow F and the closed de Rham current obtained
as the contraction i.(o d) of the differential form o d¢ by the vector field e = A1 d/dx

generating the flow.

Letting u = e*, A\ = e® one gets

/Ooo(w(#) —¥(Ap)) d_:‘ = /°° (¥(e*) — y(e**?)) du=s=logh .

hade o]

Thus we have shown that ¢ = ¢, is exactly the obstruction to extending o as a homogeneous
distribution on R**" (cf. [B-G]).

We can write, in a formal way,

(50) Co :/ te 0(€) dE .

€l =1
Let us now relate this obstruction to the behavior of the inverse Fourier transform of o
(51) o) = (2m) =) [ 09 o(e) de

We first need to relate the oscillatory integral definition (51) to the Fourier transform for

tempered distributions.

For y # 0, the oscillatory integral is defined as the value of the convergent integral
(52) (27r)-v+"/e"<y7f> (P*o(€))de  k>1

where the symbol ¢(¢) has been smoothed for ¢ small, and P, is a differential operator of

degree 1 in g;a such that

t Y.y — o1 (1,6)
P (e¥8) = eWs)

The smoothing of o near ¢ = 0 introduces an ambiguity of the addition of arbitrary

elements of (Cg°) C S. But this does not affect the behavior at y = 0, which we are after.

Having chosen an extension 7 of o as a distribution, we need to check that the inverse
Fourier transform 7, a tempered distribution, is represented by a locally integrable tem-

pered function h whose behavior at y = 0 is the same as for the oscillatory integral.

Since the Fourier transform of a distribution with compact support is represented by a

nice smooth function, we just need to know that if ¢, is a symbol, smooth on all of Rv+",
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then its Fourier transform as a tempered distribution is given by the oscillatory integral
expression (52).

: 3 o,
To check this, let P (y, 5§> =13y YTzl then

P e¥9.8) lyl|? e (v.8)

With f € S(Ry44)0, we can write:

[ 7€) i(6) de = (2m)=t0 [ [ w09 ay ey ae
= )70 [P ) sy) o(e) dy ae
= (QW)_"”L”)//ei(y’f) Iyl =2 Fy) (Poy)(€) dy d¢
= (2= [ [ 00 1172 poy(e) ae fy) ay

Thus, we know that the distribution # is represented outside 0 by a smooth function with

tempered growth. This function is then unique and the homogeneity property (48) implies,
USing <)‘ : €7y) = (63 A y)a
(53) AT y) = (8a 7)V(y) = #(y) + ¢'log A .
Thus,
#(y) =7 (W/llvll") - ' log ([lyll") , ' = (2m)~"+») ¢
We are now ready to deal with the Dixmier trace of ¥ DO’ of order —(v + 2n).
We let (M, V) be as above, with M compact.

Proposition 1.2. Let T be a« $DO' of order —(v + 2n). Then

1) T is measurable, T € L), with its Dizmier trace Tr(T) independent of w and given

by
1

Lo —(ntv) 7 ' d
Tr, = (27) o /ng”':l o(z,€) i (dz dE) ,

where e 13 the generator of the flow

Fy(€y,6n) = (€° Epue®® &)

and the choice of transversal ||£||' = 1 is irrelevant. Also dz dé corresponds to the sym-

plectic volume form.
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2) The kernel k(x,y) for T has the following behavior near the diagonal

k(z,y) = c(z) log (|l —ylI') +0(1) ,

where the 1-density c(z) is given by the formula

o(z) = (2m) v+ /”E“I_l o(z,€) 1. dE .

Remark I.1. Before beginning the proof, let us note that 1) reduces to the usual formula
(cf. [Co]) for the Dixmier trace of ordinary ¥ DO when either n = 0 or v = 0; in the
latter case the exponent 2s accounts for the 2n. Note also that in 2) the choice of the local

distance function ||z — y||’ has no effect on the value of ¢(z). The statement 2) is a special

case of [B-GJ.

Proof. 1) By Lemma 1.2, one has T € £{1*) so that Tr,(T) is well defined. Since
operators of lower order are (by the argument of Lemma 1.2) of trace class, it follows that

Tr,(T) only depends upon the principal symbol o(T). The map
(54) o — Tr,(Ty)

is then a positive linear form on the space F of homogeneous symbols of order —(v + 2n).

It is therefore given by a positive measure on the (non canonical) unit sphere
(85) S {(z,) eV e N |I¢I'=1} .

The unitary invariance of Tr, together with the use of translations in a foliation chart,
show that this measure is absolutely continuous with respect to the smooth measure dz

on M. The diffeomorphism invariance of the ¥ DO'-calculus shows that the conditional

measures on the fibers of

(56) p:S*—>M

must be, in the appropriate sense, invariant under all maps
(€0:&n) = (Ly oy L &n)

with both L, and L,, invertible.
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Such maps do not act transitively on Ve @ NZ. The only two invariant subspaces are

Vo ®0,08 N} But they do not carry any measure with the correct homogeneity.
This implies that there exists a constant a(w) such that
(57) Tr,(T) = a(w) o(x,€) i, dx df .

flelr=1

To show that this constant a(w) does not depend on w and to determine it, one just needs

to compute Tr,(T) for one specific example for each value of v and n. With the notations
of Lemma 1.2, we take:

_(ut2n
(58) T=(A291+10A,+1) (%)

In order to compute Tr (T'), we just use the following general fact (cf. Appendix A).

(59) Let A be a positive (unbounded) operator such that A~! ¢ £(P.) for somep > 1, and

t? Trace (e™'4) = L.
t—s

Then Tr,(A™P) is independent of w and qven by

L
Tro(A™Py= ——
Fu I(p+1)

We take A= AZ2@1+1Q A, + 1, p= k%. To compute L it is enough to determine

}eré tPv Trace (e—tAf) =L,, p,=v/4,

%irr(l) P Trace (e '**) =L, , p, = n/2
which then gives L =L, L,,.

Using (59) one has Ly, = T(p, +1) Tro(A;"/?) and L, = T(p, +1) Tro(A7™?). Choosing
the standard metric >_df? on both T” and T" gives, with |S*| the volume of the k-
dimensional sphere,

(60) L,,:F<§+1) %]sv“w , anr(gﬂ) %iS"‘ll

and

~1
TYW(A_p):F<v22n+1> L, L.
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The principal symbol of A~? is

(61) a(z.€) = ()~

If we let
SI= [ i),
el =1

we have the equalities

(62) / o(2,€) i, (de dE) = (27)™+ |5
€N =1
and
! - ! > v+2n@
(63) /f(llél!)d€—|5|/0 (o) 2.

whenever both sides make sense.

Using f(p) = e~ > yields

(64) S| = -;- r (” 22">—1 r (2) 1S~ T (g-) Kl

Together with (60) and (62), this gives the normalization:

(65) Tr (A7P) = (27)" (") (y 4 2n) 7! Ag|]/—1 o(z,§) t. (dz dE) .

2) The kernel k(z,y) of T is given by

Kz.y) = (2m) "+ / O o(2,6) dt

so that, for fixed r, it is, as a function of y — , the Fourier transform of o(z,&). Thus,

using (53) we get the required answer. For a more detailed proof, the reader is referred to

[B-G] . n

Proposition 1.2 extends immediately to non scalar operators, with o(z, &) replaced by its
trace tr(o(z,£)) taken in the fiber over z. We can therefore apply it to the operator
|D|~(®*+2m) of Theorem 1.1, whose symbol is the identity matrix (for ||£]|' = 1) on a space
of dimension 2(**™. We get:

(66) Tr., (f |D|‘(”+2")) =7~ () (y 4 2p) 7! |S|’/f(:c) dzx
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where [S|' is given by (64) and dz is the volume form on M corresponding to the given
Euclidean structures on both V and N.

6. The analogue of the Wodzicki residue for DO operators

Let us now go back to the obstruction ¢, (cf. (50)), and exploit its definition involving the

behavior of T near 0 rather than (the ultraviolet behavior) near oo.

Lemma I.4. ([B-G]) Let o ¢ C>®(R™**\{0}) be homogeneous of order g,t.e.0(X-€) =
M o(£) VE#0, VA €RY, with (g€ C).

a)Ifg¢ {—(v+2n)—k; ke N} then o eztends to a homogeneous distribution on R™.

b) If ¢ = —(v + 2n) — k, then the obstruction to homogeneous extension is given by the

Ceag, |a| = k.
Proof. Let 3 be as in (48) and & the integral part of
—Re(¢) —(v+2n)=a.

The size of (¢) for ¢ small is comparable to (Jl€fHRes = €| ~(v+2n+a) - Thys o(§) £~ is

locally integrable if |a| > & and the following is an extension of o:

|l <k

(67) m(f) = / (f(ﬁ)— Y &) ¢(£)) o(€) dt .

One gets then,

|
<k &

—|aleca
T(fa) = ATHOHE £ f) = / (f(rl-s)— > 2 peo) ¢(5)> o () d¢

- arren [ (f(f)— > & ) w(@) o(§) dt

la| <k

— )\t (2n+v) Z L(;(_!Oz </||£||'=1 % o(€) 1. d§> Pa

lo| <k

Pa = /Ooo(w(u) — p(Ap)) pdt IR gy

31



To prove a), it is enough to choose ¥ so that the py all vanish. With Y(p) = h(log p), we
thus look for A’ € C(R), [ h'(s) ds = —1, such that

(68) / R'(s) e** ds =0 Vb=q+ (v+2n)+a|, 0< |a| < k.

— o0

One just lets b’ = TI(d/ds + b)f , f € CX(R), with [ f(s) ds = (IIb)~!. This is possible
since b # 0 by hypothesis.

Assertion b) can be proved in a similar fashion, since for ¢ = —(v + 2n) — k one can get

pa = 0 for any a, |a| < k. g

The ambiguity in the extension of & is, a priori, of the form Y. an 0% &y. By a), if
lo| <k
q ¢ {—(v+2n)— N}, the homogeneous extension exists and is unique, except when ¢ € N.

Corollary I.1. ([B-G]) Let 0 € C®(R"*?) have an asymptotic ezpansion o ~ Y. ok in
k<q
homogeneous symbols (for X-). Then the Fourier transform & (of o smooth at 0) has a

behavior at y = 0 of the form:

0

oy)= > ajy)+cloglyll' +0(1),
~(g+(v+2n))

where a; 1s homogeneous of degree j.

Proof. We can neglect the difference o— > oy since it is integrable at oo and
—(v42n)<k<g
yields a 0(1) contribution for small y. By Lemma 1.4, each oy, k > —(v + 2n) extends to

a homogeneous distribution, so that the Fourier transform &) of oy (smoothed at 0) has

the indicated divergency at 0. The case k = v + 2n follows from (53). g

We see that

(69) the coefficient of log||y||' only depends on O _(v42n) and is equal to

(2m) () /” Ot () e de
=1

One can check directly, using (29) and (34), that the density

(70) (27r)—<"+v)/” ” O —(utan) (2,6) i dE
&l'=1
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is invariantly defined under the action of diffeomorphisms on the YDO' calculus. The

obtained density is the coefficient of log |lz — y||', in the expansion near the diagonal, of
the kernel k(z,y) for P = P,.

Proposition 1.3. The Dizmier trace Try, has a canonical extension to a trace on the

algebra of WDO' operators of arbitrary order. It is given globally by the =quality

Tr (T) = " -}-12n /M c(z)

where ¢(x) is the 1-density occuring in the ezpansion of the kernel k of T near the diagonal,
as a coefficient of log ||z — y||'. In local coordinates it is gwen by (v + 2n)~! times the

ezpression (70).

The fact that the asserted extension is a trace is proved in greater generality in Section II

(cf. Prop. I1.1).

We proceed to show that there is a natural extension, similar to [K-V], of the ordinary

trace of operators to ¥ DO’ of complex order.

To this end, we go back to the space of symbols, where we need to define what is meant by
a holomorphic map z — ¢, with values in the space of symbols. We want the order f(z)
to be holomorphic in z, the bounds in the asymptotic expansion o(z) ~ Y O f(z)—p to be
uniform and the pointwise values of a(z)(€), o(z) € C=(R"*"), to be holomorphic in the

variable z. Then each 7 f(z)-p(£) 1s also holomorphic in z. The functional

(71) L(o) = 5(0) = (2m)~(+m) / o(€) de

is well defined on symbols of order < ~(v + 2n) (for the real part of the order) and it is
holomorphic inasmuch as L(o.) is a holomorphic function of z for any holomorphic map

z— 0,.

Lemma I.5. The functional L has a unique holomorphic extension L to the space of
symbols of non integral order (z ¢ Z). The value of L on o ~ Y 0.—p 18 given by

N

L(o) = (27r)—(v+n)/ (o’ - ZTZ—P> (£)d¢ , N >Re(z)+ (v +2n)
0
where T,_, is the unique homogeneous extension of 0,_p.
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This unique extension 7 of o is given by Lemma 1.4 a).
Proof. First, the value of NV used in Lemma 1.5 is irrelevant, since the Fourier transform
of a homogeneous distribution such as 7._, vanishes at 0 if p > Rez + (v + 2n).

Also the uniqueness is clear since any o of order z can be connected to integrable order by

a holomorphic path.

It remains to show that if = — o(z) is holomorphic, with order f(z) ¢ Z then L(o(z)) is
holomorphic.

N
For large £ the pointwise value of o(z)— 5" o f(z)—p 18 holomorphic in z and has uniformly
0

integrable behavior at co; thus it is enough to control the behavior in z of

N
/(U_ZTf(z)—p> 5‘9(6) d£ 3

0

where ¢ has compact support. In fact we can consider separately the term f Tf(2)—p P(€) dE,

which is holomorphic in z by the very construction of 7 (cf. (67) and (68)). g

Remark L.2. To a symbol of order z and to any given p € N one can assign the number

/H£II’=1 0:—p(€) te d€

and the functional thus obtained is holomorphic, but it does not vanish on o with integrable

order and cannot be added to L to vield another extension.

Let us now return to the (compact) manifold (M, V) as above, and consider the product
U0 x C of the space of ¥DO' of order 0 by C, endowed with the product structure of
complex manifold. We shall adapt the method of [K-V] to our context to obtain:

Proposition I.4. The function (P, z) — Trace( P|D|™*%) is holomorphic on ¥°x{z ; Rez >
(v+2n)} and estends uniquely to a holomorphic function TR on ¥° x (C\Z).

Proof. In a local chart, the trace of a WDO' P = P, of order < —(v 4 2n) is given by
(72) Trace(P,) = (27r)—<"+1"/a(x,§) de d¢

where the total symbol o is smooth.
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Thus, in a local chart, the following formula provides the required extension of Trace to

U DO' of arbitrary order z ¢ Z

(73) TR(P,) = /Z(a(x, Y))dz .

The ambiguity of smoothing operators does not alter the existence of this extension globally
on all ¥DO' of order z ¢ Z and yields the required extension of Trace, provided one knows
that |D|~* is a ¥DO' of order —z and a holomorphic function of z. This follows from the
proof of Theorem 1.1 (see (38)), using the asymptotic resolvent of Q% (cf.[S]). m

Let us now relate the value of Tr,(P), P € ¥DO' to the residue at z = 0 of the function:
(74) (=) = TR (PID|™) .

We can work first at the level of symbols and consider a fixed symbol o of integral order
q. Welet 0., 0.(¢) = (&) (Jlé]') " and investigate the behavior of L(c,) near z = 0. Let
N > g+ (v+2n), then

_ N
L(o:) = (277)_“’+”)/ (U—Zaq—k) (&) (e~ de
0

where a,_¢(£) ||€]]' 7 is replaced near 0 by its unique extension as a homogeneous distri-

bution.

The singularity at z = 0 comes from £ in the neighborhood of 0. When ¢ —k > —(v + 2n),
04-k(€) d€ is integrable at 0 and the unique extension of o,_(¢) ||€]| ~% d€ is holomorphic

in z at z = 0. Thus none of these terms contribute to the singularity of z(az) at z = 0.

We can choose N = ¢ + (v + 2n) since, by Lemma 1.5, any larger value gives the same

answer. We thus need to understand the behavior at z = 0 of
(75) | omraml® Nl ae
igl <a

where 0 _(y420)(€) (JI€]I')”° dE€ is extended uniquely as a homogeneous distribution at
£ = 0. But for Rez < 0 one has integrability near 0 so that this unique extension is the

obvious one and one can write (75) as

(76) ( /” REGL dé) ( / e %") .
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z]a

As fop== & = [LJ

F4

= —a”*/z, one gets that the singularity of z(az) at z=01sa
0

simple pole with residue:

(77) (27)~(vt2n) /“5”1—1 T _(vt2n)(€) te dE .

Next, when we investigate (74) the situation is more complicated since in a local (foliation)

chart we have an intricate expression for the total symbol of |D|~=.

Let us first remark that the above discussion of the behavior of z(az) continues to hold

when o, is of the form

(78) o =0a(&z) (I,

where z — (-, z) is a holomorphic map to symbols of fixed order q. Moreover, the residue
at z = 0 is given by (77), with ¢(£,0). Using this, we should be able to replace |D| by the

operator |D;| which in the given (foliation) chart involves the flat metric

(79) N = [I€)1* + [I€a]1%

independently of ¢ = (z,,z,).

Since the total symbol of D, assumed to be given by (79), does not involve z, the corre-
sponding (differential) operator is translation invariant. So are the complex powers | D, |?

and their total symbol is given by (a smoothed version of )

(80) o-(z,8) = (llgf)”

The computation of the total symbol of P|D;|~* for any ¥D0', is then obvious, by (26),
and the above discussion shows that the function ¢;(z) = TR (P|D; | %) has a simple pole
at z = 0, which is given by (77). This continues to hold for any holomorphic map z — P,
to symbols of fixed order q.

We can now write

(81) PID|™* = PU()ID:|™* , U(z) = |D|~% | Dy

and it just remains to show that U(z) is a holomorphic map to operators of order 0, with

U(0) = 1.

Thus, the principal symbol of U(z) will be o(¢)~*/* 5,(£)/%. By construction, U(z) is the
¥ DO’ product of two holomorphic maps and hence is holomorphic. We thus proved the
following result:
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Theorem 1.2. Let P be a Y DO’ of integral order ¢. Then the function 2 — Trace (P|D|~?)
18 holomorphic for Rez > g+ (v +2n) and admits a (unique) analytic continuation to C\Z
with at most simple poles at integers k < g+ (v+2n). Its residue at z := 0 is given by

Res.=¢ Trace (P|D|™%) = (v + 2n) Tr,(P),

where Tr,, 1s defined in Proposition L. 3.
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II. The universal local index formula

1. Dimension spectrum

In this section, we shall describe a general local index formula in terms of the Dixmier

trace, extended to operators of arbitrary order, for our spectral triples:
(1) (A,H,D) .

Contrary to the standard practice, we shall focus on the odd case, the point being that
in the even case there is a natural obstruction to express the (cyclic cocycle) character
(cf. [Co]) of the triple (1) in terms of a residue or Dixmier trace. Indeed, the latter
vanishes on any finite rank operator and thus will give the result 0 whenever H is finite
dimensional. Since it is easy to construct finite dimensional (i.e. dim’H < 00) even triples
with Ind(D) # 0 one cannot expect to cover this case as well. However, one can convert
any even triple into an odd one by crossing it with S, i.e. with the triple

(2) (CO"(SI), L*SY), D _! 3) :

: 06

Thus, there is no real loss of generality in treating the odd case only.

The next point is that the usual notion of dimension (cf. [Co]) for spectral triples, provided

by the degree of summability
(3) D~'e clpeo)

gives only an upper bound on dimension and cannot detect the dimensions of the various
pieces of a space constructed as a union of pieces of different dimensions (A, Hi, Di) bk =
1,..,.N,

(4) A=®Ar, H=&Hr, D= @Dy .

In [Co] we gave a formula for the p-dimensional Hochschild cohomology class of the cha-

racter, namely:
(5) r(a’,...,a?) = Tr, (a°[D,d']...[D,a”] |D|™?) .

Clearly, this Hochschild cocycle cannot account for lower dimensional pieces in a union
such as (4).

38



As it turns out, the correct notion of dimension is given not by a single real number p but
by a subset

(6) SdccC

which shall be called the dimension spectrum of the given triple. We shall assume that Sd
is a discrete subset of C, condition which can be incorporated in the definition of Sd, as

follows:

Definition II.1. A spectral triple (1) has discrete dimension spectrum Sd, if Sd C C is
discrete and for any element of the algebra B generated by the §™(a), a € A, the function

Cs(2z) = Trace (b|D|7%)
extends holomorphically to C\Sd.

Here 6 denotes the derivation §(T) = [|D|,T] and we assume that A C Qo Dom 6™ (see
also Appendix B). The operator b|D|~* of Definition II.1 is then of trace class for Re z > p,

with p as in (3). On the technical side, we shall assume that the analytic continuation
of (p is such that I'(z) (4(z) 1s of rapid decay on vertical lines z = s + it, for any s with
Re s > 0.

It is not difficult to check that Sd has the correct behavior with respect to the operations

of sum and product for spectral triples:

(7) Sd (Sum of two spaces) = USd(Spaces)

(8) Sd (Product of two spaces) = Sd(Space, ) + Sd(Space,) ;

more precisely, (8) holds with the exception of Sd N —N.

According to Theorem 1.2 of Section I, the dimension spectrum of the hypoelliptic triple

considered there is contained in
9) {¢eN; ¢g<v+2n}.

It is easy to give many examples of spectral triples with discrete dimension spectrum, but

we shall now concentrate on the general theory of such spaces.
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Our first task will be to extend the Wodzicki residue to this general framework, or equiv-
alently, to extend the Dixmier trace to operators P |D|~* of arbitrary order, where P is
an element of B. In fact it is more convenient (cf. Appendix B) to introduce the algebra

U*(A) of operators which have an expansion:

(10) P ~b,|D|? + by _4|D|9" ... | b,€B,

where the equality with Y. b, |D|* holds modulo OP~N,

—N<n<q
To see that it is an algebra one uses Theorem B.1 of Appendix B, which gives an identity
of the form:

o0

(11) DI b2 " ca 6%(b) [D]°7*,

0

where cq & is the coefficient of €F in the expansion of

(12) (1+6)"=ia(a_1)”,;!(a_k+l)ek,

with (b) = 6(b) |D|~".

We shall say that the dimension spectrum Sd is simple, when the singularities of the
functions (3(z) of Definition IL.1 at z € Sd are at most simple poles. Similarly, we say that
Sd has finite multiplicity k& when ¢, has at most a pole of order k. We shall assume for
simplicity that Sd has finite multiplicity in this section.

Proposition IL.1 Let p < oo be the degree of summability of D.
a) For P € W*(A) the function h(z) = Trace (P|D|=%%) is holomorphic for Rez >

2(Order P + p) and extends to a holomorphic function on the complement of a discrete
2 P

subset of C.
b) Let 74(P) be the residue at 0 of z* h(z), k > 0; then

_1\yn—-1
(PP - By =Y SV (py L),

n>0

where L 1is the derivation L = 2log(1 + ¢).

Proof. a) The state-rnent follows immediately from Definition II. 1, for any finite sum of
operators b, |D|". Furthermore, if P is of order less than —N then h(z) is holomorphic if
Rez > -;—(p — N), and for any given z this is achieved for N large enough.
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b) First, the derivation I = 2log(1 + ) makes sense as a power series in ¢ and can be

viewed at the formal level as implemented by log |D|2.

One has, for any P, an expansion near 0

(13) Trace (PID|7%) = Y " r(P) =~ *+D 4 0(1) .
k>0

We can then write

(14) Trace (P2 Py|D|™%*) = Trace (Pi(l+e)72%% (Py) |D|~%%)
and, since
(15) (1+¢)7* =exp(—=zL) ,
we get

-2z (:—Z)n n —2z
(16) Trace (P,Py|D|7*) = —— Trace (P; L"(Py) |D|7%*) .

By (13) we can expand:
Trace (Py L™(Py) [DI7%) = 3" 7, (Py L™(Py)) 2=+) 4 0(1)

and, when multiplied by 2", we sce that we get the exponent z~(¥+1D) for 5 — qg = —k.

Thus, the coefficient of z=(*+1) i the expansion (16) is

(‘?!)" (PP =S B Ly

n n!

n=q—k
Therefore, we obtain:

(_1)71

n!

(17) k(P2P) = Ti(PiPy) =
n>0

Ttk (P1 L™(Py)) .

It follows, of course, that if ¢ is the multiplicity of Sd, i.e. the highest order of poles, then
T4 1S a trace.

By Appendix A, in the case of simple spectrum the trace 7 = 73 is an extension of the
Dixmier trace, the latter being defined only when the operator P € ¥*(A) belongs to
OP7?,
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2. Local formula for the Chern character

Before giving the general local formula for the Chern character of a triple (A, H, D) with

discrete dimension spectrum, we need to recall a few basic definitions from [Co].

First the cyclic cohomology HC™(A) is defined as the cohomology of the complex of cyelic
cochains, i.e. those satisfying

(18) ¢(a1,...,a",a0):(——1)” (a®,...,a"), Val € A ,
under the coboundary operation b given by:
(19) (by)(a®,...,a"t) =

Z(—l)j »(a®,... aj+1,...,a’”’l)—%(—l)"+l Pa"t a®, .. .,a™), Val e A.
0

Equivalently, HC"(A) can be described in terms of the second filtration of the (b, B)

bicomplex of arbitrary (non cyclic) cochains on A, where B : C™ — C™ 1 is given by

(20)  (Bog)a’,...,a" ) = p(L,a’, .. ™) = (=)™ (a®,...,a™ 1),
B=ABy , (Ay)(d®,...,am )= Z(_l)(m—l)j P(al,. .. ,al™1).

To an n-dimensional cyclic cocycle 3 one associates the (b, B) cocycle ¢ € ZP(F1 C),

n = p — 2q given by

(21) (=DM () g =,

where ¢, , is the only non zero component of .

Given a spectral triple (A, H, D), with D=! € L) its Chern character in cyclic coho-

mology is obtained from the following cyclic cocycle 7, n > p, n odd,
(22) ma(a®,...,a") = X, Tr' (a°[F,a"]... [F,a™) , Val € A,
where F = SignD, A, = V2 (=1)*% T (£ + 1) and

(23) Tr'(T) = = Trace(F(FT + TF)) .

b | =

In [Co] we obtained the following general formula for the Hochschild cohomology class of

Tn 10 terms of the Dixmier trace :
(24) ¢n(a®,...,a") =\, Tr, (a°[D,d}]...[D,a"] ID|™") , Val € A.
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Our local formula for the cyclic cohomology Chern character, i.e. for a cyclic cocycle
cohomologous to (22), will be expressed in terms of the (b, B) bicomplex. Bearing this in
mind we see that if we want to regard the cochain p, of (24) as a cochain of the (b, B)

bicomplex, we should use, instead of \,,, the normalization constant

r(z+1

n!

(25) i = (=D (0= A, = V2 (for n odd) .

Let us now state the result. We let (A, H, D) be a spectral triple with discrete dimension

spectrum and D~ € £(P>°) We shall use the following notations:

(26) da = [D,a] , Va operator in H ,
(27) V(a)=[D*a] ; a'*¥) =V*a). Va operatorin H .
Theorem II.1. a) The following formula defines a cocycle in the (b, B) bicomplez of A:

(@, a") =V Y g 7y (a®(dat)O L (dam) ) | D}~ (m+22k) )
¢20,k; >0

bl

where
Cnkig = (=155 (el BT T (ke kot g) x
1 _
7 ((+ 1)0e +ke +2) (b 4 4 k) g
with T the qth derivative of the T function.

b) The cohomology class of the cocycle (0n), n odd, in HC°(A) coincides with the cyclic
cohomology Chern character ch, (A, ' H, D).

Before starting the proof let us note that the term 7¢(Ty ) with coefficient ¢, & 4 in the

above sum vanishes when
(28) 71+ij>p,

since the operator T, x is in ,Cf)l‘w) when (28) holds. This implies that for fixed n the sum
involved contains only finitely many terms. (We assume that Sd has finite multiplicity so

that only finitely many ¢’s are involved.) It also implies that
(29) on =0, if  n>p.
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Assertion b) is the cyclic cohomology analogue of Theorem IV.2.8 of [Co]. It implies in the
same way that if the cyclic homology is Hausdorff then ¢, is cohomologous to ch, (A, H, D).

Note also that all the operators T, ; involved in the above formula are homogeneous of

degree 0 in D, i.e. they are unaffected by the scaling

(30) D — \D , AeRL .
Finally, let us remark that assertion a), i.e. the equality
(31) bon+ B pniz =0, Vn ,

is actually a consequence of our proof of b). However, it is an instructive exercise to check

it directly. We shall do so by making use of the following properties (with 7 =19) :

(32) D da+daD=V(a), Vaoperatorin M
(33) . ((da)(k) |Dl_‘1) =0, VacA,Vk>0, Vg
(34) T(V(T) [DI7*) =0, VT, Vq

o (1)
(35) Dy b= i b9 Dyoy, VbEB,

0

where by definition D) = I'(k) |D| 2.

The meaning of (32) is that, if we view the graded commutator with D as a graded
derivation in the appropriate way, then d*> = V. The meaning of (33) and (34) is that
integration by parts is possible, since both d and V are derivations. Finally (35) follows
from Theorem B.1 of Appendix B and will be used only under the trace 7 so that only

finitely many non zero terms of the sum of the right hand side will appear.

Proof. a) We shall perform the computations under the simplifying assumption of simple

spectrum. Only minor modifications will be required to treat the general case.

Let us first show that B ¢; = 0. One has (up to the overall factor V27 which we shall

ignore) :

(36) (Bo e1)(a) = 3 erp 7 ((da)® | D712+
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hence, using (33), one gets
By o1 =0 and By, =0.

We shall now compare b ¢, and — B 3. The Leibnitz rule gi;/es, in general,

(37) (b b = Y A
g ! gn!
E;j—=q
One has
(38) v1(a’,a )—Z (k+1)' (ao(dal)(k) D(k+§)) , Val € A .

To compute b ¢ we need to apply 7, for each k, to
(aoal(daz)(k) —a’ d(alaz)(k)) D(k+%) + a®(dat)® D(k_{_%) a?

Using d(a'a?) = a! da? + (da')a?, (37) and (35) we thus get
a2)(k2)

Oal(kl)d
o TG R

ki +ko=k : ki +ko=k
k1 #0

(dal)(kl) (a?)(k2)
- 2 e Rl D(k+1)

+Z( 1)f a® (da')® (a) D(

k+6+3)
£>0

Thus, if we introduce the cochains
(89) Lk, ky) (a0l a) = (—)Fhe 7 (0@ B (da?)®) Dy L))
7(2,k1, k) (a®,al,a?) = (=1)kthe 4 (aO(dal)("‘) (a®)(F) D(k1+kz+§)) )

we can express b ¢ as follows:

(k1 +ky + 1)1
(40) b =— Z ! k1!2k2! 7(1, k1, k2)
35
(k1 + )71 = (ky + ko + 1))
+ Z kl' kg' T(2a k17k2) :
k; >0

We shall now express B ®3 1n a similar manner, as a linear combination of the cochains

(39). We have
(41)  Bopala’ a,a?) = 3 Tesi 7 ((da®) M) (da!) 4 (da?)(ke) |DI=+RD)
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where |k| = ky + ko + k3.

The cochain B ¢j3 is the sum of the three cochains obtained from By 3 by cyclic permu-
tations,

(42) B @3 = By @3 + (Bo w3) +(Bo v3)" ,

where

(Bo ¢3)'(a® a',a?) = (By ¢3)(a’, a2,a®) and (Bj s)"(a’ a',a?) = (Bo ©3)(a?, a’ a').

Using integration by parts (i.e. (33) and (34)), we can express By @3 as

S ! 1 1 1
43 -1 ki+1 L L " Ly
. k; >0 e>0( : U (k= 0 ky! Ky T(Lkz + 1+ & ks + k1 —£)
}: 1 1 1 1
kl s - B
+ > (=)™ ax 7 e [ (2, ky 4+ L ks +1+ ki — ),

where

ap= (k1 +1)7" (ki + k2 +2)7" (k1 + ko + ks +3)7

Let us now compute (Bp ¢3)' :

(44) (BO 993)’(a0>a1va2) =
Z(_I)IH ag _1_ _}_ _1_ - ((dal)(kl) (da2)(k2) (dao)(k“) D(3 /a4 1k ) )
k! ko k3! (3/241k1)

In order to obtain terms of the form (39) we must move (da®)*3) in front, using (35), and

then integrate by parts. We use the trace property of T and apply (35), for each term,
with

(45) b= (da' ) (da?)¥2) .

Thus, we get

(46) (Bo #3)'(a®,a',a®) =

11 11 ®
—1)IkI+£ [ 0\(ks) 1y(k1) 2y (k2)
DV o ia T <(da ) ((da)™ (da) ) D(%+Ikl+f)> '
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Integration by parts gives:
0y (ka) (k) (g2} O
r ((da®)® ((da")*) (da®)*)) " D prgipian
(€+k3)
= (—1)k3 T (dao ((dal)(kl) (da2)(k2)) D(3/2+|k|+€))
(£+k3)
= (=1)kst! 7 (ao ((al)(klﬂ) (daz)(h)) D(3/2+|k|+e;)

(€+k3)
+ (—1)k3 r (a() ((dal)(kl) (a2)(k2+1)) D(3/2+|k[+€)> .

We then use (37) to get

((a )(k1+1) (da (ks ))(H-ka)

(£ + k3)! 1y(k1+14m) (.7.25(ko+84ks—
— m) (dq? ) k2 +l+ka—m)
Z m!(€ + k3 — m)! @) (da”)

. (0+k3) 0+ k3! o i e
((dal)(kl) (a2)(k2+1)) — Z m!(é+ k33—) — (da‘)("1+ ) (a2)(k2+1+£+ka )

This gives the following formula for (Bp 3)":

1 1 1 1 1

47 B e -1 ka+1 e ———

(47 (Bo #s) k.>§m>0( e S T Rl A
£+ k3)!

G 1 1 1 1 1  (C+ky)
T T Kl O ml (o g —m)!

(2, ks +myky+ 14+ L€+ ks —m) .

The computation of (B ¢3)" is completely similar and gives:

1 1 11 1
48 B "= -1 k2+1 _
( ) ( 0(193) Z ( ) akL k‘ 2 m! (k’2 )
k; 20,6,m>0
T(l,k3+1+m,k1+€+k2—-m)+
1 1 1 1
z:(—l)k2 ap — — L — = (ks +m, k1 + 1+ 0+ ky —m) .

kil sl 8 m! (kg — m)!

In order to compare b ¢, with By w3 + (By ¢3)' + (By ¢3)" = B 3 we just need to
compare the coefficients of 7(j, k1, k2) in the formulae (40) and (43) + (47) + (48). The
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most convenient way to proceed is to introduce generating functions filz,y),7=12,n

which we replace 7(J, k1, k2) by ki yke,

Let us first compute f;(x,y) for the expression (40); we get

b - $k1 yk2
(49) filz,y) = —Z(k1+k2+1) 767 ET»
k1 #0
b -1 —1 zh yk2
fZ(m’y):Z((kl+1) —(ky + k2 +1) ) —kaz—'
Thus, fi(z,y) = - fol(e“(rﬂ’) — ¢e"¥) du, hence
— ety e¥v -1
(50) flz,y) = +
Tty Y
Similarly,
1 ety er —1
51 b L eV _
Gy ey = 0 e (S22)
Let us next compute f; and f; for the expression (43); we get
1 1 1 1
2 —_ . ky+1 S I k2+]+f k3+k1—l

1 1 1 1
= —_1 ky U, ko +€ k3+k1+1—£ .
fa(z,y) = D (-D)" ax 5 (i 0) gl Kt~ 7

In order to compute them, we introduce the function

ky k? k3
(53) f(:vaya" Zak _T ' .
1' 2 3-
With this notation,

fa(z,y) = f(=(z +y) 2 9)y -
With the selfexplanatory notation f;, f3 for (47), we have

1 1 1 1 1  (£+ky) _
! . _ k3+l _____ k1+l+m k2+£+k3 m
file,w) = D (=D @k 1 = T A Tl Tt ! Y

—m)!
(85)

1 1 1 1 1  (£+ky)

ks - __ - - __ * ki+m k2+l+€+k3—m .
fiay) =3 (D® o gy e w el ¢
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It follows that

(56) ’ f{(l.y) = - €(z+y) f(lv Y, _(‘T + y)).?f
falz,y) = ™ fla,y,—(z +y))y .

Similarly, for f', ), we have

) 1 1 1 1 1
'(z,y) = _1ykett - - L ks+1+m |k +b+k,—m
{y) = 3 (-1 kil Fal 8 md (g —m)l © y
(57)
‘ 11 11 1
) = B ks+m  ki+14€4+ky—m
@y = (<) ay kU k! @ oml (b —myt © Y
which gives
(58) , 1(zy) = —¢ f(y,—(z +y),2)z

2,’1(1" y)=e’ fly, —(z + ), z)y .
We can thus express the generating functions for B ¢3 as follows:
f@y) = = (F(~@ +y)e,9) + e fla,y,~(z +9) + ¢ f(5,—(z +y),2)) 2
(59)
f(2,9) = (F(=(2 +y)2,9) + €Y fla,y,—(z +y)) + " fly,=(z+y),2)y .

Let us compute f(z,y, z); one has

flz,y, 2) =/ el ruavtuss) gy duy dug
OS‘ILlS’ILgSugSl

since
ks k

/ uf‘ uy® ug® duy dug dus = ay, .
0<u; <uy<uz<i

We then obtain:

ertyts _q -1  (e¥i_1) (ef-1)

(60)  flesy,2) = o Wety+z) 2etye  eyly+z) |y

Since only the restriction of f to the hyperplane z + y + z = 0 is involved, we can use the
eaa—l = 1for a = 0, to handle the first term. We get

equality

(61) f=(z+y)z,y) =
1 (emtv — 1)

- 1 1
—(fc+y)(—y)+(:v+y):c(x+y)+(e 1)(-~(:v+y):vy ($+y)y2) ’
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erty e¥ — erty e*ty _ 1

. ;N B
(62) e flz,y,~(z +y)) = z(z +y) t z?y * (z+y)%y’

(63) ! fly,—(a+y) ) =~y L L Z e
Y, Yy),r) = Ty y2($+y) -T2($+y) .

Let us first compute the coefficient of ¢**¥ in the sum (61) + (62) + (63). We have

L ..t r . _r .1
(z+y)? z(z+y) =2y (z+ N2y 22z +y)
1 -
ey (e*y(z +y)*) 7" (2y— (3 + )2 + 22 +y(z +v))
1

z(z+y)
The coeflicient of e¥ is given by

1 1 N 1 1 N 1 1
(z+yy? wyle+y) 2%y zy  yie+y) 2%z +y)

1 _
= —w—y+($2y2(w+y)) D (—2?— oy +yla+y) +2f —y?)
1

_;_?;'

The rational term which remains is then

1 1 N 1 N 1 ~ 1 _ 1
(z+y)y z(z+y)? zy(z+y)  y(z+y) ylz+y)? v z+y)
= (m_—:_y)_y + (zy2(:c + y)z)-l (_y2 +y(z + y)+ z(z + y) —zy — :c(m + y))
1
Tty

Thus, the sum (61) + (62) + (63) is equal to

ety e¥y 1
64 — 4=
(°4) ) W)

When we multiply (64) by —z we get

1 — Tty 1 —e¥
(65) < - ( ¢ ) .
Tty y
When we multiply (64) by y we get:
y 1 r+y
(66) S .

+ .
r Tty 2@ty
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Comparing these expressions with (50) and (51) we then obtain
(67) R+fP=0 . f+fl=0.

This shows that in the expression for b ¢, + B ¢, the coefficient of any of the 7(j; k1, k2)
vanishes for j = 1,2 and any ky, k.

We have thus shown that B ¢; = 0 and that b v1 + B @3 = 0. The proof for the general
identity

bon+B pnt2=0
is based on a similar computation.

The above discussion only covers the case of simple poles. The general case follows in

exactly the same way, by introducing the expression
D) =T(2)|D|~*2,

for complex values of z, and performing the above manipulations with 7 and Dy replaced
respectively by the usual trace Trace and by D (4, where € is a small complex number.

Taking the residue at € = 0 gives the desired identities.

b) With a% ..., a" € A fixed, we let
(68)  ((z°,...,2") = Trace (a® |D|™%* da' |D|72% da®...|D|"2*»~* da” |D|72) .

This expression makes sense if > Re z; > E and we shall first express it in terms of the

following functions of a single complex variable:

(69) hi(z) = Trace (ao(dal)(kl) (da®)*2) | (da™)kn) D_22kj_2z)

3

where k = (ky,...,k,) is a multi-index.

As in (35), one has

2, —1)* e
(70) |ID|™%* da = z(_k')_ 2 (k) (da)® |D|~2:-2k

where 20 = 2(z +1) .. (2 4+ k — 1).

We can then write the expansion

(71) C(Z()v---,zn) = ZPk(Zo,...,zn_l) hi (Z Zj) s
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where the polynomial Py is given by

(_1)k1+"'+kn
kil k!

(zo+ky+ 21 +ho+22) 5 (zo+ ki +21+ ko + 20+ ks -+ 2a) )

(72) Pk(207 e 'azn—l) = z(()kl) (Z() + kl + 21)(k2)

In the expansion (71), if we sum the terms for which |k| > p, they contribute by a function
of (zo,...,2n) which is holomorphic and bounded for ) Re z; > 0. This follows from the

Holder inequality and the control (Theorem B.1 of Appendix B) of the remainder in the
Taylor expansion (70).

Let A€ Ry, A > W%T; then using the equality

1 ° ‘ ,
(73) e D" = -2;/ T(A +1is) | D720+ o~ gg © Yu >0,
we obtain:
(74) Trace (ao e~u0D” gl emD* gg? | emun-1D? ggn e—“"Dz)

= (27i)~ "tV / N T'(z0)...T(2n) u=7 {(20y...,2n) d2g...dzq,
Cn 1

A
20

where uj; > 0, u™* =uy *...u;*, and Cx = {A +is; s € R}.

We let 6(ug,uy,...,un) be the function defined by (74) and we want to compute the
coefficient of e~™/? in the expansion of

(75) 9(600,601,...,61)"),Zv,-:l,e—+0.

From (71) and the hypothesis on the dimension spectrum we see, using the boundedness

of T(z0)...T(2n) T(20 + -+ 2,) "' on C}™', that except for finitely many values of A the
function

P(Z()) [N F(Zn) C(Zo, ey Zn)
is integrable on C}*! (for A > 0 say). It follows then that the right hand side of (74),

when evaluated for such a A, at (e v;) is a O(e™(»*D*). It is not equal to (75) because of

the contribution of the residues of the differential form

(76) w=T(z0)...T(2p) u"? ¢(20,..-,2n) dzg...dzy .
Using the expansion (71), we let

(77) o(k, q) = coeff of €7 in hy (% +e) ate=0
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and concentrate on the contribution of the residue of the differential form

—q n
(78) w=T(20)...T(20) Pr(2z0,...y2n-1) u" " (Zo+"'+2n“g) l(')Idzi
(which then needs to be multiplied by ¢(k, ¢)).
If we denote by X the differential operator
i 1 < 0
(79) XY=l
the contribution of the residue is given by
80 X ¢ [(za) P %) 1d
( ) /Ez'_:%Zq——l)! ( (Z())... (Zn) k(Zo,...,Zn_.l)’u, ) i FARN

where Re z; = )\ = ﬂnn_ﬂj

n

Thus, with uj = e v;, 3 v; = 1, the coefficient of e~/2 is given by (80) with v instead of
0

u, since the derivatives of e *% contribute by terms involving e~*/?(log €)*.

Introducing an additional variable ¢ € R we can rewrite (using the Fourier expansion of

the 6 function) the result as
ti—! Sz -2)

(81) (2r)~* / (——1)—'- [(z0)...T(2n) Pr(z0y...y2n-1) v " €~ (B=-3%) l(;[ dz; dt
g—1)!

where Re z; = A = D) and one integrates in the n + 2 remaining variables.

Before taking care of the polynomial Py, we can already compute, for fixed ¢,
(82) / T(20)...T(zp) v~ % 712 I(')I dz; = (2m)("tD l;)I e7vic ot% ,
Rez;=A

which holds for any value of v; > 0.

Next, we have

a\* k)  —(zo+k)
(s3) (5) v =042 o0,
or better
o\* k
(54) (5) tw) = (¥ 49 umtors®) g
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'This means that the effect of Pi(zo,..., zn—1) In the above integral is obtained as follows,

for the term

(—I)Ekj Zékl) (z0 + k1 + 21)(k’) co(zo+ky+21 4+ -+ Zn_l)(kn).

One starts with the integral (82) written as f(vo,...,v,), then one applies

a\"
(85) (%) fluvg,v1,...,vn) = fi(u,vo, v1,y...,05)

and one continues with
o\"*

(86) _ fl(u,vo,uvl,vg,...,vn):fg(u,vo,...,vn) y
Ou

a\"
(8_u> f2(uﬁl’0,U1,U02, . 7Un) = fs(U,Uo,---,Un) ,

a\*
(%) fn—l(uaU07 s auvn-—lavn) - fn(uvaa s avn) ’

which is finally evaluated at v = 1.

Using (82), we are just applying this rule to

f(l)(), . ,Un) = e—(zvj)e' .
We get

fi(u,vo, ... v0) = (—vg eD® Fluvg, vy, ... 2y Un)

Fa(u,vo,...,v0) = (—vg et)k1 (—(vo + vl)et) k2 fluvg,uvi,ve,...,v0) , ,

fa(u,vg,. .. v) = (—vg €)M (—(vo + vl)et)k2 (—(vo + v1 + va)e?) ks
fluvg, uvy, uvy,vs,...)

fa(l,00,...,0,) = (=1)%5 !Bk v(l;‘(vo + vl)k2 co(vo+ -+ vn_l)k"

flvo, ... v,) .

We can thus write (81) as

7)1 (9rs )L ( 1) =k t(Ek +3)
(87) (27) ™ (2m) [

e—(Evj)e‘ dt v(’;l(v0+v1) 2 ”.(UO_*_ ...+vn_1)kn .
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We then have to integrate the result on the simplex ) v; = 1. The first task is thus to
compute

R tq_l t n
88 — el T It = k. — .
(88) /oow—l)!e ¢ ca=) kit

It 1s obtained from the Taylor expansion at « of

/ et e gt = I'a)
and 1s given by
(¢—1)
(89) R C))
(¢ —1)!

The remaining part of the integral is

/Zn: vgl(vo+vl)k2...(vo+---+vn__1)k" II dv;
v; =1

=i+ )7 (it ke +2)7 (ki k)7L
We can now complete the proof of 3 b).

We use the Chern character of (A, H, D) in entire cyclic cohomology (cf. [Co]) given in
the most efficient manner by the JLO formula, which defines the components of an entire

cocycle in the (b, B) bicomplex:

(90) Yula®, ... a") = \/Z/l
Zv;:l,v,ZO

2 2 _ 2 _ 2 :
Trace (ao e P [D,al] e P emvn-aD [D,a"] e~v P ) , Val € A
where n is odd.

We introduce a parameter € by replacing D? by eD?, which yields a cocycle 3¢ which is

cohomologous to ¥,. One has moreover

(91) Po(a®, ... a") = V2 /n 8(e vo,...,e vy) wdv; | €V?
Zv;:l

0

where 6 was defined by (74). The coefficient €"/? comes from the n terms [D,a’] in

the formula (90). Since n is odd, n/2 # 0. The above computation of the behavior of
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€2 B(e vo,... € vn) from the residues of the differential form w (76) gives an expansion
as a finite sum of terms:

(92) 6(6 Voy...,€ Un) = Z oy, G*Pm(log G)I + O(E—n/2) :

where the p,, correspond to the poles of h; whose real part is larger than 3+ Moreover
we have computed above the coefficient of €="/2 in this expansion, after integration of the

result in v; we get:

(93) Pi(a®,... a") = Z Bm.e €27 (log )t +0(1),

- , 1
Poo=v2i > (-1)%k T B DT it ke +2)7 (b R )
kl,...,kn,q et n-

P(q)(k1+...+kn+g)

(94) 3

c(k,q) .

When we pair the (b, B) cocycle ¢¢ with a cyclic cycle ¢ = (¢,) in entire cyclic homology
(cf. [Co]), the pairing gives a scalar independent of € and written as a sum of terms of the

form (93). The total contribution of the terms Y5, 1 > p converges to 0 by the argument
of [C-M].

Thus, we can assert that

(95) ‘ > (¥nren) = (ch(H,D)c).

n<p
Using (93) this is possible only if the asymptotic expansion of the left hand side in terms
of e7Pm(log €)%, Re p,, < 0, only contains a constant term, and by (94) we know the value

of this constant term, it is given by the pairing (g, ¢} of the cyclic cocycle of Theorem II.1
a) with c.

To prove that the class of (,,) actually coincides with ch.(A, H, D), we need to recall that

there is a canonical transgressed cochain (zzk) such that

d e e e
(96) p Yo =bY_y + By,

and to note that (Q,Zk) also has an asymptotic expansion of the form (93). It then follows
from [CM2, §4] that (1,,) is cohomologous with the finite part of (y%), which in turn, from

the above discussion, can be seen to give precisely the cocycle (,). g
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3. Renormalization

There is one unpleasant feature of the formula II.1. a) for the cyclic cocycle , namely
the occurence of the transcendental numbers which enter in the Taylor expansion of the '

function at the points T (% +¢), ¢ € N. Also the sum
(9)
T (Jkl+ %)
(97) > — o Res (s7((s))

1s an infinite sum when ( is not meromorphic at s = 0. We can of course rewrite it as
n
(98) Res T (|k| e s) C(s) .
9=

We shall however proceed to show how to obtain a modified cyclic cocycle ¢, giving the

same result Thm. IL1. b) as ¢, but involving a finite linear combination with rational

coefficients of the terms
NoH 1 00 1 17(ky) ny(kn) —25kj—n
(99) 2T (5 Tq<a (da')*V) .. (da")*=) | D|~25ks ) .

To achieve this, we shall exploit the freedom of replacing the operator D by u~!D, p € R

without affecting Thm. II.1. b). The effect of this transformation on the functionals Tq 18

as follows:
. 10 H m
(100) =3 (_i_!)— S

This implies that for any integer m > 1 the following formula defines the components of a

cyclic cocycle which pairs trivially with cyclic homology:
(101) Soslm)(aoa .at) = Z Cnkg Tgtm (ao(dal)(k‘) o (dan)(kn) lDl—(n+2|k|)) .

What we shall do now is add a suitable linear combination of counterterms (™) in order to
cancel all the transcendental coefficients occuring in the Taylor expansion of I'(1/ 2)7IT(s)
at half integers. Even though we could right away write down the list of the coefficients

Bm needed in front of (™) we shall rather explain carefully how they are obtained.

To begin with, there is no problem at all if Sd is simple, i.e. if one has at most a simple

pole. In that case one simply writes

(102) T (% + q) =



and since all 7,’s with ¢ > 1 vanish one gets the desired answer.

Let us see what happens when Sd has multiplicity two, i.e. when we have at most a double
pole. In that case by Proposition II.1 we know that 7, is a trace, while 7, = 0 for ¢ > 2.

This means that the formula for ¢,, involves the combination
n , n
(103) DIk +5) mo()+ T (k1 +5) m(4),

where A is some operator. Now since the Hochschild coboundary b 7q is given rationally in

terms of 7, (cf. Proposition II.1) we do not expect to need the transcendental coefficient

(104)

in order to compensate for the lack of trace property of 7. If we replace the term
T (k| + 2) 71(A) by T (Jk| + 2) 71(A), then we get exactly the components of cpg,l) which
we can subtract from ¢ without affecting Thm. II.1. b). Thus, we shall look for a
coefficient A such that

1 1 1
(105) F'<§+m>:)\F(—2—+m)+cmP(-2-+m>,mEN,
where the ¢,, are rational numbers.

To obtain (105) one just uses the equality

—

+e)
+€)

Etm+e &1 I (
(106) F(%—+m+e)_z%+a+e+P(

b

(5] L PRYTS

a=0
which we write with € for later use.

Thus, the constant A is

= —(7g +2log2),
where g is Euler’s constant.

If we replace ¢ by ¢ — Ap(!) then using (105) we find that in the formula giving ¢ the
terms I (|k| + 2) 71(A) should be replaced simply by Clrrzst T (k| + %) m1(A), where :

£—1 1
(107) C‘:ZLH'
a=0 2
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Let us consider the next case, when Sd has multiplicity 3, i.e. when we have triple poles.

This time we shall get the combination:

PII

(108) P(|k|+%) 0(A) + T (|k|+g> m(A4) + (|k|+ ) ol A) .

We want to use a further subtraction, say of Ay ¢(? | to get coefficients for 71(A4) and 7,(A)
of the form T (lk| + %) x Q. From (106) we get the formula

(109) F'<%+m+e>:Rm(e)l“<;12—+m+e>+f(€)f‘( +m+e) ,

where R,, is the rational fraction

m—1
110 Rn(e
(110) (€) 2 %+a+e
and where the function f i1s given by
I (3+¢)
111 €) = —2 7~
(1) FO = Fig

If we differentiate (109) we get:
" 1 ! 1 ! 1
(112) r —2-+m+e =R, (e) T —2—+m+e + Rn(e) T §+m+e
! 1 ! 1
+f'(e) T §+m+e +f(e) T 5+m+e .
We have to transform the term R, (e) IV (§ + m + €) because it involves at the same time

a function of m, R,,(¢) and a derivative of I'. To do this we replace I'' (3 + m + €) by its
value (109) which yields:

(113) Rm(e)2 T (% +m+ e) + Ru(e) f(€) T ( +m+ e)

and we use again (109) to replace the second term of the formula by

(114) for (b rmee) s (5 4mee) .

Coming back to all the terms of (112) we thus proved:
1 1
(115) r (5 +m+ e) = (Rl (€) + Rm(e)?) T (-2— +m + e)
' 2 1 (1
+(f'(e)— fle*) T §+m+6 +2 f(e) T §+m+e .
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This shows that, if we replace ¢ by ¢ — A\; ¢} — Ay ¢! where A\; = A = f(0) as above
and

(116) Vo= B0) 5 f2(e) = () = f(6)?

then the combination (108) gets replaced by

n n n ,
17) T(H+2) 7o(4)+ pppaze T (k1 +2) ma(4) + ¢lyyynm T (101 +5) 724)
where the rational number ¢}, is 3 Rg,ll)(O), with

(118) R(e) = R’ (€) + Rm(€)? .

We can now proceed by induction to the general case. One proves by induction on £ the

following formula on the fth derivative T''® of the ' function:
1 1 ‘L 3 (1

(119) T'® (—+m—+—e —RUDET(z4+m+e +ZC§ fi(e) =7 (—+m+e)
2 2 = 2

where R%) and f; are defined inductively by

(120) RUHV(e) = RO (€)' + Rm(e) RY(e) ,
(121) fix1(e) = fi(e) — f(e) fi(e) -

The proof uses the same patern as above and is straightforward. It shows that if we replace

¢ by
(122) PP WA RS VA NS Y1

where Ay = % fe(0), then the combination of terms:

1 ny (0
(123) >oT (k+3) " ma)
in the expression of the cocycle ¢, gets replaced by
n 1 n—1
e ~ plg-1) —
(124) r(kl+3)> 7RI n(4) m= k=
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Now the functions R%)(e) are easy to compute, since

m—1
. ! A 1
R..(€) = Z Tu(e) with To(e) = =To(e)*, Tule) = +a te
a=0

One gets that R%)(e) is the (¢ + 1)th symmetric function of the m terms -%—:_la—_H:

m—1

(125) H(1+ +a+€) SR () 2

a=0

We can then easily compute the product I (% +m) R RS~ 1)(0) which appears in (124) and
get

(126) T (% + m) RU-D(0)=T G) Tm—qg(m) ,

<

where o;(m) is the jth symmetric function of the first m odd 1/2 integers:

(127) "izl ( (2€+1)) 2 o (m)

What is remarkable now is that these coefficients vanish if ¢ is larger than m so that not
only we transformed them to elements of F( ) @ but we have also eliminated all but a

finite number.

We note that the function f;(e) is not difficult to compute, and by induction we get the
formula

(1)
2

as can be seen by interpreting the transformation
(129) T(h)y=h'— fh

as T(h) = (—) and using (121).

It follows then that

(€)e=0
1) 1 1
(130) Ae=-T (§> i <_—r o 6)>



and that the above operation of subtraction has a very simple interpretation, namely the
following. In the proof of Theorem II.1 a), we were applying the linear form Res,—¢ to

meromorphic functions of the form
n —2s3
(131) r (|k| + 5 + s) Trace (A |D|7%*) = ((s) ,
where A is an operator. But any other linear form such as
(132) ¢ — Reso—0 g(s) ((s) ,

with g holomorphic at 0, would have worked equally well. What the subtraction of
S Ae 09 is doing is exactly to take

T(1/2)

9= Fapt sy

If we combine this with

(133) F(g(jil;s):ﬁ@jtwrs) ,

we can summarize the above discussion by the following variant of Theorem II.1.

Theorem I1.2. The statements of Theorem II.1 are true for the cocycle ¢}, given, for
n-odd, n < p, by the formula

(@, ... ,a™) =

. — 1)kl 1 _ .
V2ne Z ﬁ ag ] Tm—g(m) 74 (ao(dal)(kl)...(da")(k") ||~ Clkl+ )) ,
g Rl k! !

with m = |k| + 252, ot = (ki + )(ky + k2 +2)...(ky +--- + kn+n) and o defined in
(127).

Not only the coefficients are all rational multiples of the overall factor V27, but also the
total number of terms in the formula is now finite and bounded in terms of p alone and

not the order of the poles. Indeed,

n—1

g < |k| + and|k| + n < p,

so that the formula does not involve more than p terms in the Laurent expansion.
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Let us see what this formula looks like for small values of p.

p =1. Then only ¢} is non zero; we have k = 0 and ¢ = 0, also
(134) ©i(a’, a') = V2ri (a® da' |D|7Y) .

This shows that, even if we had poles of arbitrary order for the function ((s) = Trace

(a® da' |D|7172%) at s = 0, they do not contribute to ¢} except for the residue of ¢ at
s=0.

If we had used the formula of Theorem II.1 we would be taking the residue of T (3+5s) ¢(s)

at s = 0 which involves infinitely many of the functionals 7. Note also that here 74 is a

trace.

p = 2. Again, only ¢} is non zero, but now we can have k; =1 and also ¢ = 1 if k; = 1.

Thus, we get three terms:

(135) ei(ag, ar) = V2w (TO (a® da* |D|7Y) — % 7o (ao(dal)(l) |D|_3)

—% T1 (ao(dal)(l) [D|_3)> .

This time 7 is no longer a trace, as one can see using Proposition II.1, and the formula
involves 7, i.e. the coefficient of s™2 in some (-function. However, no higher order

coefficient is involved, unlike the formula for ¢ in Thm. IL.1. a).

p = 3. Let us look at o3 in this case. Here, we must have k = 0 but since ¢ < |k| + e

we can have ¢ = 1. Thus, we get two terms for 4
(136)
#3(a0, a1, a2,as) = V2ri (70 (o’ da da® da® |D|7*) + 7 (a° da’ da® da®|D| %)) .

This shows that, even for ¢, the coefficient of s72 in the expansion of the (-function is

playing a role, i.e. that 7| enters into play.

4. Local index formula

To get more insight into the content of Theorems I1.1 and I1.2, we shall now write down a
corollary whose statement does not involve cyclic cohomology or noncommutative geometry

but computes a Fredholm index (called spectral flow) as a sum of residues of (-functions
attached to the problem.

To formulate the problem we just need a pair (D, U) of operators in Hilbert space, where

D 1s selfadjoint with discrete spectrum, while U is unitary. The main assumption that we
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need is that [D, U] is bounded, which implies immediately that the compression PUP of
U of the positive part of D, (P= I—*Q'—F , F''= Sign D) 1s a Fredholm operator. The index

(137) Index PUP = dim Ker PUP — dim Ker PU*P

can be interpreted as spectral flow, i.e. as the number of eigenvalues which cross the origin
in the natural homotopy between D and UDU* = D + U[D,U*]. In any case, it is an

integer, and we shall compute it as a sum of residues,
We make the following hypotheses:

(138)
a) If S is the spectrum of D (with multiplicity), then

Z |A|7* < oo for some finite s .
AES

(We call p the lower bound of such s).

b) The operators U and [D,U] are in the domain of 6%, 6 = [|D|,] for 1 < k < N,
N >>0.

c¢) The following functions, holomorphic for Res >> 0, are meromorphic, with finitely

many poles for Res > —e,
C(k,n)(s) = Trace (U—l [D, U](kl) [D, U—l](kQ) L [D, U](kn) |D|—2|k|—n—s) :

where we use the notation X*¥) = Vk(X), V(X)=[D?% X].

In c) only finitely many functions are involved because of the inequality |k| + n < p. At

the technical level, we need to assume that I'(s) ((s) restricted to vertical lines is of rapid

decay.

Corollary I1.1. Let D and U be as above. Then

n-1 -1 —1)Il 1
Index PUP = Z(—l) 7 <n 5 )'Z k(_t% 273 'q‘,‘ Om-g(m) Ress=q s7 C(k,n)(S) )
k’q 1..'. n: .

n<p

with m = |k| + 251

Proof. We just apply Theorem IL.2 to the special case when A = C*(S?), acting on H
by the unique representation which sends the function f(e*®) to f(U). We use the formula,
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for the pairing between K!-theory and odd cyclic cohomology, together with the index
formula (cf. [Co}),

(139) (o', U) = \/% Y (- (”;1>! o (UL, UL

n odd

The proof of Theorem II.1 b) shows that the hypothesis (138) is sufficiert to conclude. g

At this point we should stress the considerable freedom that one has in applying Corollary
I1.1. The data is a discrete subset (perhaps with multiplicity) of R,

(140) S = Spectrum D |,

together with a unitary matrix, u(A, A')y »es which signifies a “unitary correspondence”
on the list S. The main hypothesis is that when D is shifted by this correspondence (i.e.
UDU* is considered), it stays at bounded distance from D. Then one writes down a finite

number of (-functions, the ((x ) above, which can be expressed as Dirichlet series of the

form

(141) > e pE
when one computes the trace in the basis of eigenvectors
(142) Detr =2t

for the operator D.

The statement is that a certain rational combination of residues of these functions gives

the index of PUP or spectral flow. In particular, one has:

Corollary I1.2. IfIndex PUP # 0, at least one of the functions {(x n)(s) has a non trivial
pole at s = 0.

5. Concluding remarks

We shall now briefly discuss the analogues of Theorems II.1 and II.2 in the even case, i.e.

when we have a Z/2-grading v of the Hilbert space H such that:

(143) ~a = avy Ya € A, D~y = —+D .
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Let us come back to Theorem II.1 and consider for n even, n > 0, the cochain given by

the similar formula:

(144)  gnla®sa™) = D a7y (va'(dat) R (da™) ) |D|~HEER))

420,k >0

Va’ € A, where the Cn,k,q are given by:

(145) Cn kg =

1
(=Lyfttbn (gt kDT DO (kl +o ke, + g) a((k1 + 1) (k1 + k2 +2)..)70,

One can compute By, exactly as we did in the proof of Thm. II.1. a). One obtains:

" p(k)(q)

(146) Bypy(a’,a') = - Z( _k_‘q'—

k,q
k>1

ry (va°(da’)® |D|7172%)

One checks as in the proof of a) that by, + Bopis = 0 for all n > 0 (n even), but to get

the correct expression for ¢, we need to go back to the proof of b), in the case n = 0.

In this case we get:
(147) Yo(a) = Trace(va e—fD2) Vae A

and this time we look for the constant terms in the asymptotic expansion at 0 of this

function of §(¢). It is of course related to the analogue of (68) for n = 0,
(148) {(=) = Trace(ya [D|~%*)

however, this time it is no longer the residue of (148) which matters, but rather its value

at 0, which governs the residue of the product I'(z)((z)
(149) #o(a) = Res (T'(s) Trace(ya |D|72?)) .

The right hand side is equal to

(¢)
Z F(;# Tq—l(7a) )

920

where we need to define 7_; following Proposition II.1, by
(150) T-1(b) = bes s~! Trace(b |D|2%) .
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We can now simplify the cocycle ¢ as we did in Theorem II.2. The expression (144) for
@n Involves

(151) Res T (|k| + o4 3) Trace(A|D|™?°) ,

s=0 2
for some operator A. As in the proof of Theorem I1.2 we replace this by
(152) ng D(1+s)7'T (Ucl + g + s) Trace(A|D| %)

and we use the equality

m—1
(153) T(m+s)T(1+s)7' = Z oij(m) s’
0
where the o; are the elementary symmetric functions of the numbers 1,2,...,m — 1.

We thus obtain the following analogue of Theorem I1.2 :

Theorem I1.3. a) The following formula defines a cocycle in the (b, B) bicomplez of A:

on(a®, ... a") =

—1 13 n n - n
Z___ki' )k o oq (k14 5) 7o (va’(da’)®) . (dam)*=) DO )
2 Tl E]

for n even, # 0, while

po(a®) = r-1(7a®) .

b) The cohomology class of the cocycle (¢n), n even, in HC®V"(A) coincides with the
cyclic cohomology Chern character ch. (A, H, D).

Remark II.1. To see where the classical index theorem for manifolds fits in this picture,
let us consider the spectral triple (A, H, D) consisting of the Dirac operator D acting on

the Hilbert space H of L2-spinors over a closed Riemannian Spin manifold M, of dimension

p, and with A = C*(M). Then:

a) the dimension spectrum of the triple (A, H, D) is simple and contained in the set

{neN; n <p};

b) with 7 = 7o and otherwise using the above notation, one has
T (ao(dal)(k‘) ... (da™)*) |D|—("+2|k|)) =0, for |k|#0;

67



c) forky=kes=...=kn=0, one has
7 (a®[D,a']...[D,a"] |D|™™) = I/n/ A(R)Aa® da' A...Nda™
M

where v, 18 a numerical factor and A(R) stands for the A-form of the Riemannian curva-

ture of M.

Assertion a) follows from the standard pseudodifferential calculus, while b) and ¢) can

be easily checked, e.g. by means of the symbolic calculus for asymptotic operators, as in

[C-M, §3].

A much more interesting example for the general local index formalism developed in this
section is provided by the spectral triples of Section 1, associated to triangular structures on
manifolds. In that case, the foliation-preserving diffeomorphisms contribute (via Gelfand-

Fuchs classes) to the “higher residues” corresponding to |k| # 0. This application will be

discussed in a forthcoming paper.
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Appendix A. Inequalities for eigenvalues and the Dixmier trace

Let 'H be a (separable) Hilbert space. We let K C £(H) be the ideal of compact operators
and £! C K the ideal of trace class operators:

(1) TEﬁlﬁiun(T)<oo
0

where pin(T) = Inf {||T/E1|| ; dim E = n} is the nth characteristic value of T. Note that:

(2) un(T) = dist(T, R,) , R, = {operators of rank < n}

(3) pn{T) = n + 1’th eigenvalue of |T|.

(This last equality is the minimax principle.)

One defines Trace(T) for T € L! as:

(4) Trace(T) = Z(T{n,fn) (€,) orthonormal basis .

This converges because T is an ¢! sum of rank one operators |n)(n| and it is independent

of the basis as can be seen for such an operator.

Lemma A.1l.

Z pn(T) = Sup |Trace(TX)|; || X]| < 1.
0

Proof. First note that |Trace(T)| < 3 p,(T) using the polar decomposition T' = U|T]|,
0
IT| = 3 ptnlin}(nn| and |Trace [Unn)(nal|< 1.

Then |Trace(TX)| < > pun(TX) < 3 un(T), if || X|| < 1. For the converse use U* = X. g
0 0

One lets ||T'||; = Trace(|T|). It is a norm, the trace norm.
Definition A.1. For each integer N > 1, let, for T € K

on(T) = Sup{||TE||; ; E subspace , dimE = N} .
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By construction, oy is a norm,

(5) O'N(Tl + Tz) § O'N(Tl) + O'N(Tg) VT] € K.

Proposition A.1l.

Proof. We can assume T > 0. Then taking E = Exn(T) the spectral projection on

the spectral subspace corresponding to the first N eigenvalues one gets the inequality >.
o0 N-1 N-~-1

Conversely if dim E = N then ||TE||; = 3 pn(TE) = Y. un(TE) < Y pa(T) (since

0 0 0

dist(TE,Ry) = 0). g

We shall now extend the definition of o5 to a function o of the positive “scale” parameter

A as follows:

Lemma A.2. Let T € K. The following function of A € R agrees with on(T) at integer

values:

ox(T) = Inf {{[z[ly + Allyllec s +y =T} .

Proof. One can assume T > 0. Let N € N*, we compare on(T') of Definition A.1 with
the r.h.s. of 4.

Assume T = z +y, with ||z||; + N||y|lec < 1. Then

oN(T) S on(@) + N|IT = 2lloo < [zl + Nylloo < 1.

Conversely write T = (T — un(T)1) En + (un(T) En + T(1 — En)) = 2 + y. One has
llls = on(T) = Nun(T) and |lylloo = pn(T). Thus [|z]ls + Nlylleo = on(T)- u

By construction, the function ¢5(T') is increasing as a function of A. Also the unit ball for

the norm o) is the convex hull of the unit ball of £; and A~! times the unit ball of K.

The slope of oy, such as o411 — oy = pupn, is decreasing with A, thus o) is a concave
function of A.

Between 0 and 1 one has o5(T) = A||T|| as follows from:

[#lloo < llzfl -
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One can check as in the proof of Lemma A.2 that o is affine between N and N + 1 for
any N (see Fig.). In particular (5) holds for all real values A > 0.

For a positive operator T we view ox(T) as the trace of T cutoff at the (inverse) scale .

We shall now investigate the additivity of oy for T > 0.
Lemma A.3. For T\, T, > 0 and A1, A € RE

Tn4x T+ T2) 2 0x (Th) + 01, (T2)

Proof. Let us assume that Ny, N, are integers. First for T > 0 one has:
(6) oN(T) = Sup {Trace(TE) ; dimE = N} .

(The r.h.s. is smaller than |TE||; and hence than on(T), the other inequality is clear.)

Then Trace(T\ Ey) + Trace(T,E,) < Trace(T1 E) + Trace(T>2E) where E = E; V E, has
dimension < Ny + N,. One can then deduce the result for arbitrary A;, Ay by piecewise

linearity. g

We shall now concentrate on the log A divergence of o,(T) and average the coefficient of

log A over various scales by considering the following function:

Ao u
(7) ™(T) = 1—5;3 /a Eug((% % (we fix a >e) .

By construction 7 is subadditive (using 5). Let us now evaluate a lower bound for A (T1 +

Ty), T; > 0.
Lemma A.4. Let Ty, T, be such that ox(Tj) < Cjlogh VA >a. IfT; > 0, then:

|72(Th + T3) — ™A(Ty) — (1) < (Cy + Cs) ((loglog A + 2)1log 2)/log A .

Proof. One has o,(T; + T3) 2 04(T1) + 04,(Ty). Thus:

1 /* oou(Ty + Ty) du 1 /’“ ou(Ty + T3) du
a log u u log A/,

(T + Ta(T2) € o = . log(u/2) w’

On [a, +0o[ one has o, (T} + Ty) < (Cy + C3) logu, thus:

A 22 210g 2
L[ DT e 1 e ] g 2leg2
logh J, log u v logA Jy, logu log A

71



ou(Th + T;)  ou(Ty + Ty)

1 2
log A /2a

2
:J,'u_u <(Cr+Cy) 1 / logu — logu/2 du
2

log(u/2) log u Tog A Jy, Tog u/2 -
27 N
log2 du du
/’-;a log(u/2) w ~ % /a u log u log 2(log log ogloga) N

Let A be the space of functions h()); A € [a, oo[, which are bounded and are taken modulo

those of order O(loglog A/log \). The latter form an ideal for the obvious pointwise product
and thus A is an algebra.

By Lemma A.4 we have a well defined additive map:
(8) 7 L) L, g
defined by 7(T) = class of (TA(T'))a>q for any T > 0. Here we used:

Definition A.2. £1:%) is the normed ideal with norm:

Sup u(T) =
u>a loOgu

ITl,00 -

Note that the image by 7 of the ideal £! of trace class operators is {0}.

The above definition of 7(T) for T > 0 has been extended to any T using linearity. For

instance if we write T = T* in two ways as T} — T = T) - T, (all Ty, T} > 0) we have:
(9) T(Th) = 7(T2) = 7(Ty) — 7(T3)
since the equality Ty + T; = T, + T can be combined with Lemma A 4.

Proposition A.2. 7 is a lincar positive map from L) 4o A such that for any bounded

operator S in H:
7(ST) =7(TS) VT e 1>

Proof. One has for any unitary U and T > 0 in £(1:°) the equality:

T(UTU*) =1(T) .
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This extends by linearity to arbitrary T’s and then using TU instead of T one gets T(UT) =
7(TU) and the conclusion by linearity. g

Corollary A.1. For T € L1 the class T(T) only depends upon the locally convex
topology of H, not the inner product.

Proof. 7(STS~') = 7(T) for any invertible S. g

Let us now consider states w on the C* algebra:

(10) A = Cy([a,00[) /Co ([a, 00])

Lemma A.5. Let f € Cy([a,o0[) then f()) has a limit for A — oo iff w(f) is independent
of w.

Proof. If f — L then f — L € Cy on which any w vanishes. Conversely if f has two

distinct limit points, one gets two states w;,w, whose values on f are different. ]

Remark A.l. For any separable C*-subalgebra of C} ([a,o0[) /Cy the construction of
states can be effectively performed without using the axiom of uncountable choice. So
whenever we apply Tr, (cf. below) to any separable subspace of £(1:*) we may assume

that it is effectively constructed.

Definition A.3. For any w we let:

Te(T) = w(r(T)) VT € L3

One has, using Proposition A.2:

Proposition A.3. a) Tr,, is a positive linear form on L1 and Tr (ST) = Tr(TS)
VS € L(H).

b) Try(T) is independent of w iff 7(T) converges for A — oo (and the limit is then equal
to Tr(T)).

. . . . 1,00
By construction Tr,, is continuous for the norm || ||; o and vanishes on the closure ,C(() )

of finite rank operators in this norm.
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One has:

(11) T €Ly & a\(T) = o(log )) .

In particular one has:

(12) ,Mmjzo(%)=>Te£9”W

There is an easy case where Tr, is independent of w and can be computed:

Proposition A.4. Let T > 0, u,(T) = 0(1/n) and ((s) = Trace(T*). Then the following

are equivalent:

a) (s—=1){(s)>L as s—1+ |, b) (logN)~ Z,un(T)—»L as N — oo

When this holds one has Tr(T) = L independently of w.

In particular take T = A~P, p > 0, where one knows the asymptotic behavior of Trace(e~!4) ~
Lt7?Pfort—0.

Assume A > ¢ > 0 and write:

(13)

1 e dt
— 38 — / e‘tA tﬂ -
L(s) Jo t

With s = p(1 + ¢€) and applying the trace on both sides we get:

1 oo dt
l+e)= —o——— / Trace(e t2) ¢pter

and for ¢ — 0 it is equivalent to:
1 1
[l 1,
I‘(p) t e T(p+1)

Thus we get in that case:

(14) Tr (A7P) = lim ¢? Trace(e™"2) .

I'(p+1) t—o
If we let A be the Laplacian on the n torus T™ where the length of T is 27, one can use
| 172

Ze_tk2~—— t—0
Vit

z

74



and get Tr, (A™"/%) = il

r(g+1)
More generally for ordinary pseudodifferential operators (¥ DO) on a manifold the Dixmier

trace is given by the Wodzicki residue,

Proposition A.5. Let V be an n-dimensional manifold and P € OP™V) a ¥DO of
order —n then

1) PefW™  2) Tr,(P)= 1 (27r)-"/ a_n(z,€) d™z d"71€ .
n S*

Recall that in local coordinates z a DO is written as
(Po) () = (2m) ™" [ a(z, ) n(y) dy de
where @ ~ ag + a4_1 + -+ and ay(z,€) is homogeneous of degree £ in £.

The principal symbol a,(z,¢) is invariantly defined as a function on the cotangent bundle
T*V by:

(P (e n)) (z) ~ 71 ag (z,dyp) n(z) Vn .
Next, let us consider on the complement of the 0-section V in T*V the measure dz d¢

associated to the symplectic structure. For any homogeneous function of degree —n,

a_n(z,£) dz d€ is now invariant under £ — €.

Ifwelet E =r —;—r be the vector field generating this one parameter group we have 0 . = 0,
dig p =0, where p is viewed as a form of top degree. Thus ig p is a form of degree 2n —1

and its integral on any two homologous cycles of dimension 2n — 1 gives the same result.

In particular we can choose a Riemannian metric on V and take as cycle its unit sphere
bundle $*. Then we get

/ aoa(z,€) d"e 4

where d" !¢ is the volume form on the n—1 sphere with its induced metric. If we compute

it for the constant 1 we get |S™~'| [, d" z, where

2 n/2

r(3)

Let us check the equality 2) for the above torus T™ and the Laplacian. The Lh.s. is R%j
the r.h.s. is

571 =

7rn/2
(2m)™" (2m)" 7 = 2

The general conclusion follows by positivity and invariance of Tr,,. g

S|
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Appendix B. Spectral triple and pseudodifferential calculus
Let (A, H, D) be a spectral triple. For each s € R we let H® = Domain (|D|*) and

H>®=n H* , H™ =dual of H™ .
s3>0

We obtain in this way a scale of Hilbert spaces, and for each r we define op” to be the

linear space of operators in H* which are continuous for every s:
Opr : HS N HS—T .

We shall use the following smoothness condition on A: Va € A, both a and [D, a] are in

the domain of all powers of the derivation 6 = [|D|,].
Lemma B.1. Then a, [D,a] are in op°® and

b—|D|b|D|™! € op™! (b=a or [D,ad]) .

Proof. Let us first check that [D|™ b |D|~™ is bounded for n > 0. With o(-) = |D|-|D|7?,

one has:

o=id+e , e(b)=260)|D|I".
Since £¥(b) is bounded, equal to §*(b) |D|~*, we get the result using o™ = Y_ Ck ¢*.

Moreover o ~1(b) = |D|™! b |D| = —|D|~! é(b) and the same argument shows that o™(b)

is bounded for n < 0. Then one uses interpolation.
For the second part one applies the above argument to §(b); thus,
s(byeop® , 8(b)|D|"teopt.

|
It is important to note that the above smoothness hypothesis can be replaced by:

a and [D,a] €N Dom L*R? |, L(b)=|D|™' [D%b] , R(b)=[D*4|D|™".
Indeed, assuming the above, one has

L(b) = |D|™" (D] §(b) +6(b) ID|) € 0p® , R(b) € 0p°
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and the same applies to L¥RI(b).

Corollary B.1. Under the above hypothesis one has

[DQ,[D2,...[D2,I)]]--~]€ op™ Vbe A, or[D,A].
—

n

Let us now show that if b € N Dom L¥R? then b € Dom 6. The proof is more subtle than

one would expect, because the obvious argument, using

1 * D2 1/2
D= [ g M
0

requires some care. Indeed, one gets from the above
118 = w0 [ (D% )7 DN (D)
We can replace [D2,b] by |D|, which has the same size, and get
[T Dl = [T e
0

For this to work, we need to move [D? b] in front of the above integral, i.e. use the

finiteness of the norm of

/Ooo (D* + w7 [D%0] (D +w)™" p!/* dp

-~

—(D?+p)~t[D2,[D? bl)(D?+p)~ !
This finiteness follows from:
1) (D% + u)~! [D?,[D?,b]] bounded since b € Dom L?
2) [ZN(D2+ )2 pM? dp < C f, p*/? dp+ [7° 532 dp < oo
Once [D?,b] is moved in front the above calculation applies.
It follows that b € Dom & and applying the same proof to 8(b),... we get b € N Dom 6.
We thus obtain:

Lemma B.2. N Dom L*¥R? =N Dom 6.

k,q

We shall define the order of operators by the following filtration:
PeOP* iff |D|™ PenDom 6" .

7



Thus OP% = N Dom 6™ and we have:
OP® C op® Va .

Let us now describe the general pseudodifferential calculus.

We let V be the derivation: V(T') = [D? T}, and consider the algebra generated by the
V*MT), T € Aor [D,A|.

We view this algebra D as an analogue of the algebra of differential operators. In fact
by Corollary B.1 we have a natural filtration of D by the total power of V applied, and

moreover:

(1) D" C OP™ .

We want to develop a calculus for operators of the form:

(2) A |D|? 2€C, AeD.

We shall use the notation A = D? and begin by understanding the action of C given by:
(3) 0%t = A*. AT

By construction D is stable under the derivation V and:

(4) v(D™) c D™ .

Also for A € D™ and z € C one has

(3) A |D|F € OPT™HRe()

We shall use the group o%* to understand how to multiply operators of complex order
modulo OP~* for any k. One has: 62 =1+ &,

(6) E(T)=V(T) A",

Lemma B.3. Let T € DY then £¥(T) € OPI~% vk > 0.

Proof.
EXNT) = VHT) A~k e 0PI A~k c opPIF | n
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We just wish to justify the formal expansion:

o**(T) = (1+28+%52+-~>(T).

It should give a control of 62*(T) modulo OPY~*~1 if we stop at £¥(T).

To do this we need to control the remainder in the Taylor formula:

(7) (1+£)"+1—a:1+(n+1_a)5+(”“‘;)(”‘O’) 24 ... 4
€k+l ‘ En
(n+l—a)--(n+l1-k—a) m+---+(n+1—a)~-~(2—a) —
1 n
8"“/ (n+1l-a) - (1-a)l+t&)™“ %—dt.
0 !

The main lemma is the following;:

Lemma B.4. Leta € C,0<Rea<1land 8 >0, 8 <a=Rea Then the following

operator preserves the space OP® for any a:

1
U= 02'8/ (1+tE)™ (1 —t)" dt .
0

Proof. This will be done by expressing ¥ as an integral of the form

(8) = [o¥ dus) <o

One writes

sinTa [ 1
9 14+t8)7 %= —— pu%d
© (e =2 [ e
using the standard formula:
(10) o SINTQ /°° 1 —a g
T s o T+ u # a

Let us then consider the resolvent of —g?, namely

RN =M+o9)7".
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One has, with 8 € 10, 1[ as above,
| BTy ; ds
11 R(MN == —2(B+is) yB+is—1
(1 (A) 2/_000 sinw(f + 1s)

which follows from

1 1 [ : ds
12 1 ~(atis) 45
(12) 1+y 2/_ooy sinm(f + is)

(With y = e*, this means that 13_ w 1s the Fourier transform of which also

sin 1r(ﬂ+z.s)’
follows from (10) written as =) = foo e(11+::u du , a =1~ f—1is.)
Thus, from (11) we get,

1 [ : At ds
13 28 R()) = _/ “2s \A-1 2 7%
(13) 7 (N 2 _OOJ A sin7(f + 1s)

where the measure ﬁ'ﬂ%si is well controled by e~l*! ds. By (9) we have:

1 1 1
(1+t&)™" = Smm/ t R(&”) pm dp
0

e t

. oo oo B-1 1
- 1 1 : +1 A ds
23 1 t€ o _ Sin e _/ _/ —21s :u_ _1 - _ N e d
(1+1¢£) T 2 y t _OOU t # sinm(f3 +is) o

with A = (*’%1- — 1).

For fixed s we are thus dealing with the size:

) B-1
1 w1
- —1 TYdpy=1.
t/o ( t ) S

One has 0 < t < 1 so that the behavior at g = 0 is fine, also the integral converges for

p — oo as uB=N=1 gince 8 < a.
We get
oo B-1
1 1
I=—/ <u+——1> 7Y u" t du
t J, ¢
oo g-1 —a
1 1 1 1
:—/ (-——1) (v+1)ﬂ1t"a(——-1) _“t(——l) dv
tJo \t t
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Finally, we get an equality:

1 o0
1-8)" .
/ o?P(1+tE) @ d-o" dt = / o dy(s)
0 TL' — 00
where the total mass of the measure v is finite.

Let us check this in another way, by looking directly at the L!-norm of the Fourier trans-

form of the function

! o (1=t)"
u——»/ Pt (14 t(e¥ —1))7° ( n') dt .
0 .

Thus, it is enough to check that the following function of u is in the Schwartz space S(R):

on(u) = (" — 1)“(”“)6[3“ (e("“_")“ —1-(n+1-a)e*~-1)

(nt+1-0a)(n~a) - (ntl-ajn—0a) - (2-a)

u 2
2! (e =1 - n!

(e — 1)") .

First, for u — oo the size is ~ e~ (*TDu fu c(ntl-aju _ (f=a)u _, o For y — —o0 it
behaves like e®* — 0. We need to know that it is smooth at u = 0 but this follows from the

Taylor expansion. The same argument applies to all derivatives. Thus this gives another

proof of the lemma. g
We are now ready to prove:
Theorem B.1. Let T € D? and n € N. Then for any z € C

o2*(T) — (T +2 E(T) + —(—257—1)

EAT) 4. + z(z — 1)..7.1('2 —n+1) 8"(T))
€ Opi~(nt1),

Proof. First for any z € C and k € N one has:

(14) E¥ (o*3(T)) e OPT™* .

Indeed, by (8) we know that 027 leaves any OP™ invariant; as £¥ 00%% = 62 0 £F, we just
use Lemma B.3.

One has, for 0 <Re o <1, f as above and z = (n + 1) — a:

2(z—=1)---(z—n+1)
n!

g 2(B+(nt)—a) () _ <a2ﬂ(T) +z0 &)+ + a2’ 8"(T))
(15) =\ (£"Y(T)) .
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If we apply this equality to o2%(T) and use (14) and Lemma B.4 we see that for any s

there exists a polynomial P,(«) of degree n in a such that:
o= NT) = Py(a) e OPT" ("D B Rea<1.

The polynomials Py(a + s) have to agree modulo QP4=(**+1) on the overlap of the bands
B < Re a <1 and thus the differences between two will belong to OPI~("+1) for all 2. It
follows then that there is P(z) which works for all z. To obtain its coefficients one takes

the integral values z = 0,1,...,n which yields the formula of Theorem B.1. ]
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