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Abstract

Algorithms on sequences of symbols have been studied for a long
time and now form a fundamental part of computer science. One of the
very important problems in analysis of sequences is the longest common
subsequence problem. For the general case of an arbitrary number of
input sequences, the problem is NP-hard. We describe an approach to
solve this problem. This approach is based on constructing a logical
model for the longest common subsequence problem.
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1 Introduction

Algorithms on sequences of symbols have been studied for a long time and
now form a fundamental part of computer science. One of the very important
problems in analysis of sequences is the longest common subsequence (LCS)
problem. The LCS problem is to find the longest subsequence common to all
sequences in a set of sequences (often just two).

The computational problem of finding the longest common subsequence
of a set of k strings has been studied extensively over the last thirty years
(see [1, 2, 3] and references). This problem has many applications. When
k = 2, the longest common subsequence is a measure of the similarity of two
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strings and is thus useful in molecular biology, pattern recognition, and text
compression [4, 5, 6]. The version of LCS in which the number of strings is
unrestricted is also useful in text compression [5], and is a special case of the
multiple sequence alignment and consensus subsequence discovery problem in
molecular biology [7, 8, 9].

The k-unrestricted LCS problem is NP-complete [5]. If the number of
sequences is fixed at k with maximum length n, their longest common subse-
quence can be found in O(nk−1) time, through an extension of the pairwise
algorithm [3]. Suppose |S1| = n and |S2| = m, the longest common subse-
quence of S1 and S2 can be found in time O(nm) [10, 11, 12].

2 Problem Definition

Given two sequences S and T over some fixed alphabet Σ, the sequence T is a
subsequence of S if T can be obtained from S by deleting some letters from S.
Notice that the order of the remaining letters of S bases must be preserved.
The length of a sequence S is the number of letters in it and is denoted as |S|.
For simplicity, we use S[i] to denote the ith letter in sequence S, and S[i, j] to
denote the substring of S consisting of the ith letter through the jth letter.

Given sequences Si, 1 ≤ i ≤ m, over some fixed alphabet Σ, the LCS
problem asks for a longest sequence T that is a subsequence of Si for all
i ∈ {1, 2, . . . , m}.

In the decision version LCS can be formulated as following.
LCS:
Instance: A fixed alphabet Σ, sequences Si, 1 ≤ i ≤ m, and positive

integer k.
Question: Is there a sequence T , |T | ≥ k, that is a subsequence of Si for

all i ∈ {1, 2, . . . , m}?

3 Logical model

The propositional satisfiability problem (PSAT) is a core problem in mathe-
matical logic and computing theory. Propositional satisfiability is the problem
of determining if the variables of a given boolean function can be assigned in
such a way as to make the formula evaluate to true. PSAT was the first known
NP-complete problem, as proved by Stephen Cook in 1971.

Encoding problems as Boolean satisfiability and solving them with very ef-
ficient satisfiability algorithms has recently caused considerable interest. From
a practical point of view, to further investigations of the LCS of interest to
find explicit reductions to the satisfiability problem. Such reduction will pro-
vide a basis for construction of an effective intelligent algorithm for LCS. In
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this paper we consider reductions from LCS to PSAT.
Let

ϕ[i, j] = (
∨

1 ≤ l ≤ |Σ|
x[i, j, l]) ∧ (

∧

1 ≤ l[1] ≤ |Σ|
1 ≤ l[2] ≤ |Σ|
l[1] �= l[2]

(¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]])),

ϕ =
∧

1 ≤ i ≤ m
1 ≤ j ≤ |Si|

ϕ[i, j],

ψ[1, i, j] =
∧

1 ≤ l[1] ≤ k
1 ≤ l[2] ≤ k
l[1] �= l[2]

(¬y[i, j, l[1]] ∨ ¬y[i, j, l[2]]),

ψ[1] =
∧

1 ≤ i ≤ m
1 ≤ j ≤ |Si|

ψ[1, i, j],

ψ[2, i, j, l] =
∧

1 ≤ j[1] ≤ |Si|
j[1] �= j

(¬y[i, j, l] ∨ ¬y[i, j[1], l]),

ψ[2] =
∧

1 ≤ i ≤ m
1 ≤ j ≤ |Si|
1 ≤ l ≤ k

ψ[2, i, j, l],

ψ[3, i, j, l] =
∧

1 ≤ j[1] ≤ |Si|
1 ≤ l[1] ≤ k
j[1] < j
l[1] ≥ l

(¬y[i, j, l] ∨ ¬y[i, j[1], l[1]]),

ψ[3] =
∧

1 ≤ i ≤ m
1 ≤ j ≤ |Si|
1 ≤ l ≤ k

ψ[3, i, j, l],

ψ[4, i, l] =
∨

1 ≤ j ≤ |Si|
y[i, j, l],

ψ[4] =
∧

1 ≤ i ≤ m
1 ≤ l ≤ k

ψ[4, i, l],
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ξ[i[1], i[2], j[1], j[2], p] =
∧

1 ≤ l ≤ |Σ|
(y[i[1], j[1], p] ∧ y[i[2], j[2], p]) →

x[i[1], j[1], l] = x[i[2], j[2], l],

ξ =
∧

1 ≤ i[1] ≤ m
1 ≤ i[2] ≤ m
i[1] �= i[2]
1 ≤ j[1] ≤ |Si[1]|
1 ≤ j[2] ≤ |Si[2]|
1 ≤ p ≤ k

ξ[i[1], i[2], j[1], j[2], p],

τ = ϕ ∧ (
∧

1 ≤ q ≤ 4
ψ[q]) ∧ ξ.

Theorem. Given sequences Si, 1 ≤ i ≤ m, over some fixed alphabet Σ,
and positive integer k. There is a sequence T , |T | ≥ k, that is a subsequence
of Si for all i ∈ {1, 2, . . . , m}, if and only if τ is satisfiable.

Proof. Suppose that there is a sequence T , |T | ≥ k, that is a subsequence
of Si for all i ∈ {1, 2, . . . , m}. Clearly, we can assume that |T | = k. In this
case,

T = S1[j[1, 1]]S1[j[1, 2]] . . . S1[j[1, k]] =

S2[j[2, 1]]S2[j[2, 2]] . . . S2[j[2, k]] =

. . .

Sm[j[m, 1]]Sm[j[m, 2]] . . . Sm[j[m, k]]

for some
1 ≤ j[1, 1] < j[1, 2] < . . . < j[1, k] ≤ |S1|,
1 ≤ j[2, 1] < j[2, 2] < . . . < j[2, k] ≤ |S2|,

. . .

1 ≤ j[m, 1] < j[m, 2] < . . . < j[m, k] ≤ |Sm|.
Let Σ = {a1, a2, . . . , ap}; x[i, j, l] = 1 where 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|,
1 ≤ l ≤ |Σ|, Si[j] = al; x[i, j, l] = 0 where 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|,
1 ≤ l ≤ |Σ|, Si[j] �= al; y[i, j, l] = 0 where 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|, 1 ≤ l ≤ k,
j /∈ {j[i, 1], j[i, 2], . . . , j[i, k]}; y[i, j, l] = 0 where 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|,
1 ≤ l ≤ k, j = j[i, r], l �= r; y[i, j, l] = 1 where 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|,
1 ≤ l ≤ k, j = j[i, r], l = r.

Suppose that Si[j] = al0 . In this case, x[i, j, l0] = 1. Therefore,

∨

1 ≤ l ≤ |Σ|
x[i, j, l] = 1. (1)
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Since Si[j] = al0 , it is easy to see that x[i, j, l] = 0 where i �= l0. In view of
l[1] �= l[2], it is clear that ¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] = 1 where 1 ≤ l[1] ≤ |Σ|,
1 ≤ l[2] ≤ |Σ|, l[1] �= l[2]. In view of (1), hence we get ϕ[i, j] = 1. Therefore,
by arbitrariness of i and j we obtain that ϕ = 1.

If j /∈ {j[i, 1], j[i, 2], . . . , j[i, k]}, then y[i, j, l] = 0 for all l. Hence ¬y[i, j, l] =
1. So, ψ[1, i, j] = 1. If j = j[i, r] and l �= r, then y[i, j, l] = 0. In view of
l[1] �= l[2], we obtain ¬y[i, j, l[1]] ∨ ¬y[i, j, l[2]] = 1. Therefore, ψ[1] = 1.

Consider ψ[2, i, j, l]. If y[i, j, l] = 0 or y[i, j[1], l] = 0, then ψ[2, i, j, l] = 1.
Suppose that y[i, j, l] = 1 and y[i, j[1], l] = 1. By definition, if y[i, j, l] = 1, then
j = j[i, r], l = r. Similarly, j[1] = j[i, r], l = r. Hence j = j[1]. Therefore,
ψ[2] = 1.

Consider ψ[3, i, j, l]. If y[i, j, l] = 0 or y[i, j[1], l[1]] = 0, then ψ[3, i, j, l] = 1.
Suppose that y[i, j, l] = 1 and y[i, j[1], l[1]] = 1. By definition, if y[i, j, l] = 1,
then j = j[i, r], l = r. Similarly, j[1] = j[i, r[1]], l[1] = r[1]. Since j[1] < j,
j[i, r[1]] < j[i, r]. Hence r[1] < r. By definition, l[1] ≥ l. In view of l = r and
l[1] = r[1], we obtain r[1] ≥ r. Therefore, ψ[3] = 1.

Note that y[i, j[i, l], l] = 1 for all 1 ≤ i ≤ m, 1 ≤ l ≤ k. Therefore, ψ[4] = 1.
Consider ξ. If y[i[1], j[1], p] = 0 or y[i[2], j[2], p] = 0, then

((y[i[1], j[1], p] ∧ y[i[2], j[2], p]) → x[i[1], j[1], l] = x[i[2], j[2], l]) = 1.

Suppose that y[i[1], j[1], p] = 1 and y[i[2], j[2], p] = 1 where i[1] �= i[2]. By
definition, j[1] = j[i[1], r[1]], p = r[1], j[2] = j[i[2], r[2]], p = r[2]. Note that

Si[1][j[i[1], 1]]Si[1][j[i[1], 2]] . . . Si[1][j[i[1], k]] =

Si[2][j[i[2], 1]]Si[2][j[i[2], 2]] . . . Si[2][j[i[2], k]].

Hence Si[1][j[i[1], p]] = Si[2][j[i[2], p]]. By definition, this implies x[i[1], j[1], l] =
x[i[2], j[2], l] for all 1 ≤ l ≤ |Σ|. Therefore, ξ = 1.

Since ϕ = ψ[1] = ψ[2] = ψ[3] = ψ[4] = ξ = 1, it is clear that τ = 1.
Now suppose that τ = 1. By definition, ϕ = ψ[1] = ψ[2] = ψ[3] = ψ[4] =

ξ = 1. Since ϕ = 1, it is easy to see that ϕ[i, j] = 1 for all 1 ≤ i ≤ m,
1 ≤ j ≤ |Si|. Hence ¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] = 1 for all 1 ≤ l[1] ≤ |Σ|,
1 ≤ l[2] ≤ |Σ| such that l[1] �= l[2]. Therefore, for given i and j there is no
more than one value of l such that x[i, j, l] = 1. In view of ϕ[i, j] = 1, we
have (1). Hence there exists at least one value of l such that x[i, j, l] = 1.
Therefore, we can assume that Si[j] = al where 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|,
1 ≤ l ≤ |Σ|, x[i, j, l] = 1. Since ψ[1] = 1, it is easy to see that ψ[1, i, j] = 1
for all 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|. Hence ¬y[i, j, l[1]] ∨ ¬y[i, j, l[2]] = 1 for all
1 ≤ l[1] ≤ k, 1 ≤ l[2] ≤ k such that l[1] �= l[2]. Therefore, for given i and j
there is no more than one value of l such that y[i, j, l] = 1. Since ψ[2] = 1, it
is easy to see that ψ[2, i, j, l] = 1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|, 1 ≤ l ≤ k.
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Hence ¬y[i, j, l] ∨ ¬y[i, j[1], l] = 1 for all 1 ≤ j[1] ≤ |Si| such that j[1] �= j.
Therefore, for given i, j, and l either y[i, j, l] = 0 or

y[i, j, l] = 1 ∧ (
∧

j[1] �= j

y[i, j[1], l] = 0). (2)

Since ψ[3] = 1, it is easy to see that ψ[3, i, j, l] = 1 for all 1 ≤ i ≤ m, 1 ≤ j ≤
|Si|, 1 ≤ l ≤ k. Hence ¬y[i, j, l] ∨ ¬y[i, j[1], l[1]] = 1 for all 1 ≤ j[1] ≤ |Si|,
1 ≤ l[1] ≤ k such that j[1] < j and l[1] ≥ l. Therefore, for given i, j, and l
either y[i, j, l] = 0 or

y[i, j, l] = 1 ∧ (
∧

j[1] < j
l[1] ≥ l

y[i, j[1], l[1]] = 0). (3)

Since ψ[4] = 1, it is easy to see that ψ[4, i, l] = 1 for all 1 ≤ i ≤ m, 1 ≤ l ≤ k.
Hence for given i and l there exists at least one value of j such that y[i, j, l] = 1.
Since for given i and j there is no more than one value of l such that y[i, j, l] = 1,
we can suppose that

y[i, j[i, 1], l[i, 1]] = 1, y[i, j[i, 2], l[i, 2]] = 1, . . . , y[i, j[i, p[i]], l[i, p[i]]] = 1 (4)

and y[i, j, l] = 0 for given i where 1 ≤ p[i] ≤ |Si|,
(i, l) /∈ {([i, 1], l[i, 1]), (j[i, 2], l[i, 2]), . . . , (j[i, p[i]], l[i, p[i]])}.

Since for given i and l there exists at least one value of j such that y[i, j, l] = 1,
we can suppose that p[i] ≥ k. In view of (2), it is clear that p[i] ≤ k. So,
p[i] = k. Without loss of generality, we can suppose that

j[i, 1] < j[i, 2] < . . . < j[i, k].

In view of (3), it is easy to see that if j[i, t1] < j[i, t2], then l[i, t1] < l[i, t2].
Therefore, (4) can be represented as follows:

y[i, j[i, 1], 1] = 1, y[i, j[i, 2], 2] = 1, . . . , y[i, j[i, k], k] = 1.

Let
T = S1[j[1, 1]]S1[j[1, 2]] . . . S1[j[1, k]].

Since ξ = 1, it is easy to see that

S1[j[1, 1]]S1[j[1, 2]] . . . S1[j[1, k]] =

S2[j[2, 1]]S2[j[2, 2]] . . . S2[j[2, k]] =

. . .

Sm[j[m, 1]]Sm[j[m, 2]] . . . Sm[j[m, k]].

So, in view of theorem, we obtain an explicit reduction from LCS to PSAT.
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4 Conclusion

In papers [13, 14, 15, 16, 17, 18, 19] the authors considered some algorithms to
solve logical models. Our computational experiments have shown that these
algorithms can be used to solve the logical model for LCS.
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