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THE MARKET MODEL OF INTEREST RATE DYNAMICS 1!
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A class of term structure models with volatility of lognormal type is analyzed in the general HIM
framework. The corresponding market forward rates do not explode, and are positive and mean
reverting. Pricing of caps and floors is consistent with the Black formulas used in the market. Swaptions
are priced with closed formulas that reduce (with an extra assumption) to exactly the Black swaption
formulas when yield and volatility are flat. A two-factor version of the model is calibrated to the U.K.
market price of caps and swaptions and to the historically estimated correlation between the forward
rates.

KEY WORDS term structure models, HIM framework, lognormality of rates, stochastic partial
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1. INTRODUCTION

In most markets, caps and floors form the largest component of an average swap derivatives
book. A capf/floor is a strip of caplets/floorlets each of which is a call/put option on a
forward rate. Market practice is to price the option assuming that the underlying forward
rate process is lognormally distributed with zero drift. Consequently, the option price is
given by the Black futures formula, discounted from the settlement data.

In an arbitrage-free setting forward rates over consecutive time intervals are related to
one another and cannot all be lognormal under one arbitrage-free measure. That probably
is what led the academic community to a degree of skepticism toward the market practice
of pricing caps, and sparked vigorous research with the aim of identifying an arbitrage-free
term structure model.

The aim of this paper is to show that this market practice can be made consistent with an
arbitrage-free term structure model. Consecutive quarterly or semiannual forward rates can
all be lognormal while the model will remain arbitrage free. This is possible because each
rate is lognormal under the forward (to the settlement date) arbitrage-free measure rather
than under one (spot) arbitrage-free measure. Lognormality under the appropriate forward
and not spot arbitrage-free measure is needed to justify the use of the Black futures formula
with discount for caplet pricing. The market seems to interpret the concept of probability
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distribution in an intuitive rather than mathematical sense, and does not distinguish between
the forward measures at different maturities.

We work with the term structure parametrization proposed by Musiela (1993) and later
used by Musiela and Sondermann (1993), Brace and Musiela (1994a), Goldys, Musiela,
and Sondermann (1994), and Musiela (1994). We denote(bhk) the continuously
compounded forward rate prevailing at timever the time intervalt[+ x, t + x + dx].

There is an obvious relationship between the Heath, Jarrow, and Morton (1992) forward
ratesf (t, T) and oun (t, X), namelyr (t, x) = f(t,t +x). ForallT > 0 the process

Tt T
P(t,T):exp(—/ r(t,u)du) =exp<—/ f(t,u)du), O0<t<T,
0 t

describes price evolution of a zero coupon bond with maturityTime evolution of the
discount function

X— D, x) =P, t+x)= exp(—/ rt, u)du)
0

is described by the processd3(t, x); t > 0}, x > 0. We make the usual mathematical
assumptions. All processes are defined on the probability §pader;; t > 0}, P), where
the filtration {F;; t > 0} is the P-augmentation of the natural filtration generated by
a d-dimensional Brownian motioV = {W(t); t > 0}. We assume that the process
{r(t, x); t, x > 0} satisfies

(1.1) dr(t,x) = % ((r (t, x) + %Ia(t, x)|2> dt+o(t, x) - dW(t)) ,

where for allx > 0 the volatility procesgo (t, x); t > 0} is Fi-adapted with values in
RY, while | | and- stand for the usual norm and inner productRify, respectively. We
also assume that the function— o (t, X) is absolutely continuous and the derivative
T(t, X) = %a(t, X) is bounded or}Ri x Q. It follows easily that

dD(t, X) = D(t, X) ((r (t, 0) — r (t, X)) dt — o (t, X) - dW(1))

and hence (t, X) can be interpreted as price volatility. Obviously we hayg 0) = 0.
The spot rate proceg$s(t, 0); t > 0} satisfies

-dW(t)

dr(t,0) = %r(t,x)
x=0

0
dt+ —o(t, X)
oX

x=0

and hence is not Markov, in general. The process

t
Bt) = exp(/ r(s, O)ds) ,t>0
0
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represents the amount generated at tirre 0 by continuously reinvesting $1 in the spot
rater(s,0),0<s <t.

It is well-known that if for allT > 0 the procesg§P(t, T)/B(t);0 <t < T}is a
martingale undef® then there is no arbitrage possible between the zero coupon bonds
P(., T) of all maturitiesT > 0 and the savings accougt-). Note that, under (1.1), we
can easily write that

P, T)

1.2
(-2 B®)

t t
= P(O,T)exp(—/ o(s, T —s)-dW(s) — %f lo(s, T —s)|2ds>,
0 0

where the right-hand side is a martingale. It also follows that
dP, T) =P, T) (@, 0dt —o(t, T —t) - dW()).

In Section 2 the existence of the model is established; cap and swaption formulas are
derived in Section 3; and, finally, the calibration is described in Section 4.

2. THE MODEL
To specify the model, or equivalently, to define the volatility procegds x) in equation

(1.1) we fixd > 0 (for example§ = 0.25) and assume that for each= O the LIBOR rate
procesqL(t, x); t > 0}, defined by

X434

(2.1) 1+8L(t,x)=exp</ r(t,u)du>,
X

has a lognormal volatility structure; i.e.,

(2.2) dL(t,x) = ---dt+ L(t, X)p(t, x) - dW(t),

where the deterministic functign R2 — R is bounded and piecewise continuous. Using
the Ito formula and (1.1) we get

X438
dL(t,x) = 3—1dexp</ rt, u)du)
X

X434 X436
= 81exp</ r(t,u)du)d([ r(t,u)du)

X+38
+ 8‘1% exp(/ r(t, u) dU> lo(t, X +8) — o (t, x)|*dt
X

X434
Slexp</ r(t,u)du)

1 2 1 2
X r(t,x+8)—r(t,x)+§|o(t,x+8)|—Ela(t,x)| dt
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+wmx+&—omm»dwm>
1 X436
+ 5*15 exp(/ r(t, u) du) lo(t, X +8) — o (t, x)|?dt
X
9 -1
= &L(t, X)+8 (L4 68L(t, x) o(t, x+6)

(o(t, X +8) —alt, x))) dt

+ 54 8L X)) (ot X +8) — o (t, X)) - dW(D).
Consequently (2.2) holds for atl > 0 if and only if for allx > 0

SL(t, X)

(t, x).
Under (2.3) the equation fdr(t, x) becomes
(2.4) dLt, x):(%L(t,x)—}—L(t, x)y(t,x)-o(t,x+5)> dt+L(t, X)p(t, x)-dW(t).

Recurrence relationship (2.3) defines the HIM volatility proeedsx) for all x > §
providedo (t, x) is defined on the interval @ x < §. We sebr(t,x) =0forall0<x < §
and hence, solving (2.3), we get for> §

B2 SL(t, x — ko)
2.5 t,x) = : t,x — ko).
(2.5) o (t, x) ;1+8L(t,x—k3)y(’x )

Therefore the proceds (t, x); t, X > 0} must satisfy the following equation

SL2(t, X)

9
(2.6)dL(t,x) = (8—XL(t,x) + LX)y, x) o, Xx)+ 14oL(t.x)

+L(t, X)p(t, X) - dW().

|y(t,x>|2) dt

The preceding approach to the term structure modeling is quite different from the tra-
ditional one based on the instantaneous continuously compounded spot or forward rates,
and therefore we believe its motivations and origins are worth mentioning. The change
of focus from the instantaneous continuously compounded rates to the instantaneous ef-
fective annual rates was first proposed by Sandmann and Sondermann (1993) in response
to the impossibility of pricing a Eurodollar futures contract with a lognormal model of
the instantaneous continuously compounded spot rate. An HIM-type model based on the
instantaneous effective annual rates was introduced by Goldys et al. (1994). A lognormal
volatility structure was assumed on the effective annual jrétex) which is related to the
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instantaneous continuously compounded forwardmétex) via the formula
1+ jt,x) =€,
The case of nominal annual ratgg, x) corresponding to(t, x), i.e.,
(L4 8q(t, x) ¥4 = ®®

was studied by Musiela (1994). It turns out that the HIM volatility proeg$sx) takes
the form

(2.7) rr(t,X):/ §71 1 — e Wy (t, u)du.
0

Obviously for§ = 1 we obtain the Goldys et al. (1994) model and&ct 0 we get

a(t,x):/ r(t, wy(t,udu,
0

and hence the HIM lognormal model, which is known to explodes(ferO no explosion
occurs).

Unfortunately these models do not give closed form pricing formulas for options. In
order to price a caplet, for example, one would have to use some numerically intensive
algorithms. This would not be practical for model calibration, where an iterative procedure
is needed to identify the volatility (t, X) which returns the market prices for a large number
of caps and swaptions.

A key piece in the term structure puzzle was found by Miltersen, Sandmann, and Son-
dermann (1994). First, attention was shifted from the instantaneousgétes to the
nominal annual rate$§(t, x, §) defined by

X436
(2.8) 1+ f(t,x,8))° = exp(/ r(t,u)du).

More importantly, however, it was shown that &= 1 the model prices a yearly caplet
according to the market standard. Unfortunately the volatlity, x) was not completely
identified, leaving open the question of the model specification for maturities different from

X = ié and the existence of solution to equation (1.1). These problems were only partially
addressed in Miltersen, Sandmann, and Sondermann (1995), where a model based on the
effective ratesf (t, T, §) defined by

T4t

(2.9) 1+5f(t,T,8)=exp(/ r(t,u)du)
T

—t

was analyzed.
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As explained earlier, we assume a lognormal volatility structure on the LIBOR rate
L (t, x), defined by (2.1), for atkk > 0 and a fixed > 0. This leads to the volatility (t, x)
given in (2.5) and (2.6) fok(t, x). To prove existence and uniqueness of the solution to
(2.6) we need the following result.

LEMMA 2.1. Forallx > Olet{&(t, x); t > 0} be an adapted bounded stochastic process

with values irRY, a(-, x): R, — RY be a deterministic bounded and piecewise continuous
function, and let

t
M(t, X) =/ a(s, x) - dW(s).
0

For all x > 0the equation

(2.10) dy(t, x) = y(, x)a(t, x)

Sy(t, X)
- ((ma(t,x) +$(t,x)> dt+dW(t)>, y(0, x) > 0,

whered > 0 is a constant, has a unique strictly positive solution®n. Moreover,
if for some ke {0,1,2,...},y(0,-) € CKR,) and for all t > 0, a(t, -), M(t, -) and
£(t,-) € CK(R,) thenforallt> 0, y(t, ) € CK(R,).

Proof. Since the right-hand side in (2.10) is locally Lipschitz continuous (with respect
to y) on R — {—8~1} and Lipschitz continuous oR,, there exists a unique (possibly
exploding) strictly positive solution to (2.10). By the Ito formula

t

t
(2.11) y(t, x) = y(0, x) exp(/ a(s, x)~dW(s)+f a(s, x)
0 0

8Y(S, X) 1
’ (ma(& X) +&(s,X) — Ea(s, x)> ds)

forallt < r = inf{t: y(t, X) = cc ory(t, x) = 0}. Butif y(t, X) = 0 for som& < oo then
y(s,x) = 0foralls > t and hence = inf{t: y(t, X) = co}. Moreover, because

t
/ la(s, x)|?ds < 0o
0

forallt < oo we deduce that = co. Thus (2.11) is equivalent to the following Volterra-
type integral equation fof(t, x) = log y(t, X)

t
(2.12) ¢, x) = (0, x)+/ a(s, x) - dw(s)
0

t setEx 1
+/0 a(s, x) - (ma(s, X)+&(S, X) — Ea(s, x)) ds.
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Because the right-hand side in (2.12) is globally Lipschitz continuous with respgavio
deduce using the standard fix-point arguments that there exists a unique pathwise solution to
equation (2.12). Moreover foramy> 0, £(t, -) € CK(R,) provided¢(0, -), a(t, -), &(t, -) €

CK(R,) fort > 0. O

THEOREM2.1. Lety: Ri — RY be a deterministic bounded and piecewise continuous
function,§ > 0 be a constant and let

t
M (t, X) =/ y(S, X+t —15)-dW(s).
0

Equation (2.6) admits a unique nonnegative solutigh k) forany t > 0Oand any nonnega-
tive initial condition L(0, -) = Lo. If Lo > Othen L(t, -) > Oforallt > 0. If Ly € C*(R,)
and for all t > 0,y(t,-) € CK®R,), M(t,-) € C*R,), (@/3x)y(t, X)|x=0 = O,
j=0,1,...,kthenforallt> 0, L(t,.) € CKR,).

Proof. By the solution to (2.6) we mean the so-called mild solution (cf. Da Prato and
Zabczyk 1992); i.e.l.(t, x) is a solution if for allt, x > 0

t
Lt,x) = L(O,x+t)-|—/ L, x+t—98)y(S,X+t—5)-0(s,Xx+t—5)ds
0

ly(s,x +t —9s)|2ds

/“ SL2(s,x+t—9)
o 14+486L(S,x+t—9)

t
+/ L, x+t—9)y(s,x+t—-s)-dW(s).
0
This holds true for O0< x < § because the processt,x —t),0 <t < x,x > 0, isa

solution to (2.10) witha(t, x) = y(t, (x —t) v 0) andé&(t, x) = 0. Foré < x < 26 the
procesd.(t, x —t), 0 <t < x satisfies (2.10) witka(t, x) = y(t, (x —t) v 0) and

_ LA, (Xx—=8—-1)VvO0)
S = Tt x—o—D v 0)

By induction we prove that equation (2.6) admits a unique solution forxany 0 and
0 <t < x. Also by induction, using (2.5), we deduce that the corresponalihg) and
&(t, -) satisfy the assumptions of regularity in Lemma 2.1 and hérte-) is smooth as
well. O

CoRrOLLARY 2.1. If for some k € N and all t > 0, y(t,) € CK(R,) and
(0! /axN)y(t,X)|x=0 =0, j =1, ..., k then equation (1.1) has a unique solutidan,r)
CK-1(R.) for any positive initial condition ¢0, -) € CK<"1(R,).
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Proof. Consider (1.1) as an equation with fixed volatility processés x) given by
(2.5) and (2.6). O

REMARK 2.1. Volatility o (t, X) given in (2.5) is not differentiable with respectxdor
some functiong (for example, piecewise constant with respeck}oIn such a case the
term structure dynamics cannot be analyzed in the HIM framework (1.1). However this
difficulty is rather technical. Property (1.2) is sufficient to eliminate arbitrage. By putting
T =tin(1.2) we may also use it to define the numeraire (savings account) in terms of the
price volatility o. Itis also easy to see that for al> 0

t
Pt,t+8) = ﬂ(t)P(O,t+8)exp<—f o(s,t+8—s)-dW(s)
0

1 t
——/ |cr(s,t+8—s|2ds>
2 Jo

t+6

= ﬂ(t)P(O,tJra)exp(—/ o(s,t+68—-5)-dW(s)
0

1 t+§
—5/ |o(s,t+8—s)|2ds>
0

= BMO/B+6)

because (t, x) = 0 for 0 < x < §. Solving the recurrence relationship

(2.13) Bt +38)=pH)PE,t+8)1

we get
[5-1]

(2.14) B(t) = ]_[ P(tt — (k+ D&, t —ks)~ L
k=0

The discounted byAa(t),t > 0} zero coupon bond price(t, T); 0 < t < T} satisfy
(1.2) and hence there is no arbitrage.

REMARK 2.2. Regularity ofs has an important influence on the short rate 0) dynam-
ics. If the proces$r (t, 0); t > 0} is a semimartingale, then it satisfies

(2.15) dr(t,0) = %r(t, X)|x=odTt.

Consequently, the short rate is a process of finite variation and therefore it cannot be strong
Markov, except for the deterministic case (€inlar and Jacod 1981, Remark 3.41). The
LIBOR procesqL (t, 0); t > 0O} satisfies (2.15) as well.
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REMARK 2.3. It follows from (2.11) and Theorem 2.1 that the prodess, x); t, x > 0}
satisfies

t

t
L, x) = L(O,x+t)exp</ y(s,x+t—s)-dW(s)+/ y(,X+t—9)
0 0

SL(S,x+t—79)
1465L(S,x+t—19)

y(S, X+t —19)

1
+o(s,x+t—s)—Ey(s,x+t—s)>ds)

and
[~ (x+t—9)]
Y. X+t—9 oG Xx+t=9] < Y [y Xx+t—9)
k=1
X |y (s, X+t —s—Kkd)|.
Therefore
Li(t,x) < L(t,x) < La(t, x),
where
t
Li(t,x) = L(O,x+t)exp</ y(S, X+t —19)-dW(s)
0
t 1
2
—/ (a(s,x+t—s)+§|y(s,x+t—s)| )ds),
0
t
Lo(t,x) = L(O,x+t)exp</ y(S, X+t —19)-dW(s)
0
t 1
2
+/ (a(s,x+t—s)+§|y(s,x+t—s)| )ds)
0
while

[57'x]

at, ) = Y Iy, 0y, x —ks)l.
k=1

Consequently the LIBOR rate is bounded from below and above by lognormal processes.
The estimate from above can be used to show that the Eurodollar futures price is well
defined. The most common Eurodollar futures contract relates to the LIBOR rate. The
futures payoff at timd is equal toSL (T, 0) and hence the Eurodollar futures price at time

t <TisE(L(T,0) | 7). Becausd (T, 0) < L,(T, 0) and

T
ELx(T,0) = L(0O, T)exp(/ (x(S, T —=S)+ |y(s, T — s)|2)ds) < 00,
0

we conclude that the expectation is finite.
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REMARK 2.4. Forn=1, 2, ... andt > 0 define
YoM =L, (N6 =t VO, ya(t) =y, (NS =1) v 0)

and assume that(t, 0) = 0. Itfollows easily thatthe processgg(t);t > 0},n=1,2, ...
satisfy the following closed system of stochastic equations:

. 3y ()
dyn(t) = Yyn(®O)ya(t) - — ="y ()dt+dW() | .
(1) = Yn(®Oyn(t) (j=[8§1t1+11+8yj(t)yj() + ())

We conclude this section with a study indicating that our model will typically generate
mean reverting behavior. Interest rates tend to drop when they are too high and tend to rise
when they are too low. This property, well supported by empirical evidence, is known as
mean reversion. We assume thatt, x)| < B8(x), where

o0

Al ks ,

(A1) oiiﬂ;ﬂ(H ) < 00

(A2) /oo(x + 1)B%(x)dx < co.
0

PrROPOSITION2.1. Assume (A1l)—(A2). Then for any>p1 and any deterministic initial
condition L(O, -) € Cp(R,)

SUpSUpE LP(t, X) < oo.
t>0 x>0

Proof. Leta andL, be as in Remark 2.3. By (Al) and (A2),

t 1
supsup <a(t,x+t—s)+§|y(s,x+t—s)|2>ds< 00,
0

t>0 x>0

and

t 2 o) o)
E(/ y(s,x+t—s)-dW(s)> 5/ ﬁz(x+s)dsgf BZ(x) dx < 0.
0 0 0

Since logL ; is Gaussian,

SupsupE L (t, x) < oo
t>0 x>0
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foranyp > 1. SincelL < L,

SUPSUPE LP(t, x) < oo. O
t>0 x>0
Additionally, assume
(A3) Y, X) = y(X),
(A4) f x|y (x)? dx < oo,
0
(A5) sup Y ¥/ (x +k8)| < oo,
0<x<é K=o
o 1
(A6) f ly(X)|dx=C < —.
0 K

Assumption (A3) implies thak is a time-homogeneous Markov process. Hence we can
study the notion of invariant measures. The proof of existence of an invariant measure will
follow the standard Krylov—Bogoliubov scheme: Feller property and tightness of family of
distributionsL(L (1))>0 implies existence of an invariant measure. For details we refer to
DaPrato and Zabczyk (1992).

LetCo(R) = {u € C(R): u(x) — 0 asx — oo} and letC*(R) = {u € C(R): |u(x) —
u| < Clx — z|*} forany 0 < o < 1. The Hilder norm inC*(R) will be denoted by
|l - lle- The following result will be useful.

LEMMA 2.2. A family of functiond™ c Cy(R,) is relatively compact in g{R, ) if and
only if the following conditions are satisfied:

(i) The familyT is equicontinuous on any bounded set.
(i) There exists a function R, — R, such that Ru) — 0 as u — oo and
[ f(w)] < R(u) forany feT'andu> 0.

THEOREM2.2. Assume (A1)-(A5). Let L be the solution of (2.6) and let

sup |logL (0, x)| < oo.

0<x<oo

Then

supE| logL(t)|| < oo.
t>0

If, moreover, (A6) is satisfied than there exists an invariant measure for the process L,
concentrated on the closed set

U={UueCMR):u>0and ux) - las x— oo}.
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Proof. Consider the processt, x) = log L (t, x) which can be represented as

t
(2.16) l(x,t) = Io(x+t)+/ FIt—9s)(x+t—s)-y(x+t—s)ds
0

1 t
— 5/ ly (X 4+t —9)|>ds+ M(t, x)
0

for anyt > 0, whereM is defined by

t
M(t, X) =/ y(X+t—s)-dW(s)
0

and
B sd(x—ks)
FOX) = g my(x — k)

foranyl € C(R). By (Al),y - F: Co(R,) — Co(R,) is a Lipschitz continuous function.
By the standard fix-point methddt) depends continuously on the initial condition in the
spaceCy(R,). Therefore the processs a Feller process. Notice that

t
M;(t,x)z'/ y' X+t —s)-dW(s).
0

By the Ito formula

(2.17) E/Oo M?(t, x) dx < /oo/w|y(x+s)|2dxds=«/E/OOx|y(x)|2dx
0 0 0 0

and
(2.18)E/ M;(t,x)zdng / |y/(x+s)|2dxds=ﬁ/ x|y’ ()% dx.
0 0 0 0

By (2.16), fort > 0,

o0

1 o0
EN®N < MO0+ K/O ly Ol dx + 5/0 ly ()|?dx + E sup|M(t, x)|.

x>0

By (2.17), (2.18), and the Sobolev imbedding

A

t 00 t 00
Esup|M(t, x)|? < C; (f / |y(x+s)|2dxds+/ / |y/(x+s)|2dxds>
X>u 0 Ju 0 Ju

R(u) < o0

IA
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and for anx < %

EIM®)|?

IA

t e} t e}
Q(/f |y(x+s>|2dxds+// Iy’(x+s)|2dxds)
0 0 0 0

R < o0,

IA

whereR andR(u) are independent afandR(u) — 0 asu — oco. Thus

SUpE|I(t)] < oo.
t>0

Let (A6) be also satisfied. Assume from now that 0. In order to prove existence of an
invariant measure for the procdsse will prove that the family of law£ (I (t)):>0 is tight.
Again by (2.16)

(2.19) SUPE supll(t, )| < K/ |y<x>|dx+%/ y 0 dx
u

t>0 x>u u

+ Esup|M(t, x)| - O

X>U
asu — oo. Moreover for anyy € C(R)

[FW)) — FOHWI _ C;+CK sup [ (X) — ¢r(u)]

2.20
( ) |X_u|a x,u=>0 |X_u|a

for a certain constar®;. By (A2), (A4), and (A6)

SUPE(I(1) o < C2+ CK SUPE]|I(t)]|q-
0

t>0 t>

SinceCK < 1

Cx
1-CK’

(2.21) SUpE[I()[le <
t>0

By (2.19), (2.21), and Lemma 2.2, the familyl (1))>0 is tight onCy(R). Sincd is a Feller
process, by the standard Krylov—Bogoliubov technique there exists an invariant measure
for the process$, concentrated o€y (RR). Existence of invariant measures foon Cy(R)

is equivalent to existence of invariant measuredfan U. O

3. DERIVATIVES PRICING

In this section we derive formulas for caps and swaptions at different compounding fre-
guencies (for example, quarterly and semiannually).
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Consider a payer forward swap on principal 1 settled quarterly in arrears atTjmes
To+jé, j =1,...,n. The LIBOR rate received at timg is set at timel;_; at the level
(cf. (2.1))

L(Tj—1,0) =8 Y (P(Tj_1, T)) "t = D).

The swap cash flows attimdg, j = 1, ..., nareL(Tj_1, 0)6 and—«4é and hence the time
t(t < Top) value of the swap is (cf. Brace and Musiela 1994)

n

N, B
(3.1) E( 5((T_))<L<T;,1, 0) )5 | ﬂ) — Pt T - Y. P T),
j=1 I j=1

whereCj =«éfor j =1,...,n—1andC, =1+ «6.
The forward swap rater, (t, n) at timet for maturity Ty is that value of the fixed rate
which makes the value of the forward swap zero; i.e.,

-1
n
(3.2) wr,(t,n) = (52 P(t, Tj)) (P(t, To) — P(t, To)).
j=1
In a forward cap (res. floor) on principal 1 settled in arrears attifiegp= 1, ..., nthe

cash flows at time3; are(L(Tj_1,0) — )8 (res. ¢ — L(Tj_1, 0))"8). The cap price at
timet < Tpis

- B®)
Capt) = E( (L(Ti_1,0) —k)*8 | ]—')
,-X; pH T ‘

=l

= . P(t’ -rj)ETj ((L(-rjfls O) _K)+5 | ‘FI) i

j=1

whereEt stands for the expectation under the forward meaByrgefined by (cf. Musiela
(1995))

T T
(3.3) P; exp(—f o(t,T—t)-dW(t)—%/ |o(t,T—t)|2dt>]P’
0 0

(PO, T)B(t)*P.

The process

(3.4) Kt, T)=Lt T-1) 0<t<T
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satisfies (cf. (2.3) and Theorem 2.1)

dK, T) = K@, Ty, T —1)
SK(t, T)
Kt, Dy, T—t)- (o, T+8—t)dt +dWI(t)).

Moreover, the process
t
(3.5) Wr () = W(t) +/ o(s, T —9)ds
0

is a Brownian motion unddPy. Consequently
(3.6) dK{, T) =K, Ty, T —t) - dWris(t)

and hence (t, T) is lognormally distributed undéi, 5. It follows that

Etis (LT, 00 — )" | Ft) = Erys (KT, T) =07 | F)

= K(, T)N(h(t, T)) —«N(h(, T) — ¢(t, T)),

where

ht, T) = <Iog K(tK’ D + %g%t,T))/g(t,T),

;
2T = / ly(s, T —s)°ds
t

and hence we have the following result.

PROPOSITION3.1. The cap price attime € Ty is

Capt) = » SP(t. T))
j=1

x (K(t, Ti_)N(h(t, Tj—1)) — «N(h(t, Tj—1) — ¢(t, Tj_1))) .

REMARK 3.1. The preceding Ca&p formula corresponds to the market Black futures
formula with discount from the settlement date. It was originally derived using a different
approach and model set-up by Miltersen et al. (1994).

A payer swaption at strike maturing at timeTy gives the right to receive at timg,
the cash flows of the corresponding forward payer swap settled in arrears or, alternatively,
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discounted from the settlement dafgs= To+ j6, ] = 1,..., n to Ty value of the cash
flows defined by(wr,(To, N) — x)™8, wherewr,(To, n) is given in (3.2). Hence the time
t < Ty price of the option is

t T
= E<ﬁﬁ<(T)> (Zﬁﬁ{”( To“o’”)—“*“ﬂo)ift)
J
,
p) o
- (ﬁ(To) (1_ 2 GP (T TJ)> | ﬂ)
.
! T
- (ﬁﬁ((T))( (Zﬁﬁﬁ’;(tm_m—mmo)) m),
J

whereCj =«d8for j =1,...,n—1andC, = 1+ «§ (cf. Brace and Musiela 1994b). Let

(3.8) A= {w7,(To,N) >k} = {ch P(To, T)) < 1}

j=1

be the event that the swaption ends up in the money. The second expression in (3.7) can be
written as follows

- B(t) B(To) ) )
3.9 P(t. TOPrL(A| F) — Y GE E Fr, ) 1a | F
(3.9) (t, ToPr,(A| Fp) 2 j (,B(To) (ﬁ(Tj)| ™) lalFt

n
= P, To)Pr (A Ft) — ch P, THPr (Al Fo).
=1

Alsoforallj =1,...,n

B
(3.10) P, Tj-oPr (Al F) = E (ﬁ(le) Il Tt)

t 1
- E(f<%)>m"*'ﬂ)
= E(/f((.rtj))(l‘l‘(SK(Tj—l,Tj—l))lA|-7:t>
= P THPr (Al Fo)
+ 8P, THER (K(Tj—1, Ti—)1a | Ft)
= Pt T)Py (Al F)
+ 8P, THET (K(To, Ti—D)a | ),
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where the last equality holds because the progéss T;_1); 0 <t < T,_;} isamartingale
under the measury, and the eventA is Fy, measurable (see (3.4)—(3.6) and (3.8)).
Consequently we have the following result.

THEOREM3.1. The payer swaption price at time< Ty is

Ps(t) =6 ) P(t. T)Er (K(To. Tup) =) la | 7).
j=1

To simplify further the preceding swaption formula we need to analyze first the rela-
tionships between the forward measuPes defined in (3.3), as well as the corresponding

forward Brownian motion$V, given in (3.5), forj = 1,2,..., n. We have
(3.11) dWr (1) = dW(t) +o(t, T} — t)dt
= dWy_ () + (o, T —t) —o(t, Tj_1 —t))dt
SK(t, Tj—1)
= _ —_— T_1— .
dWr,_, (1) + 1+5K(t,'|’,—,1)y(t’ j—1—t)dt

Also, because the procefis (t, Tj_1); 0 <t < T;_,} satisfies

d K(t7 -rj—l) = K(t7 Tj—l))/(t’ -rj—l - t) : der (t)v

we have
SK(t, Tj_1) SK(t, Tj-1)
12 = T —1) - dWy
(3.12) 1+ 8K, T_) (1+5K(t,T,-_1))2y(t’Jl b ®
52K 2(t, Tj_y)
AR T G TP
SK(t, Tj—1)

R R A dWr,_, (0,

and hence the procefd +§K (t, Tj_l))*léK (t, Tj—1); 0 < t < Tj_1} isa supermartingale
under the measuitr, and a martingale under the meashfe, .
Letfort < Ty

P, Tv)
P(t, To)

denote the forward price at timefor settlement at timdy on a T, maturity zero coupon
bond. Because we have

(3.13) Fro(t, Ti) =

k k -1
Frot, T = [[Fr. ¢, T) = (1’[(1+6K(t, Ti_1)>)
i=1 i=1



144 ALAN BRACE, DARIUSZ GATAREK, AND MAREK MUSIELA

the eventA, defined in (3.8), can be written as follows

n k -1
(3.14) A = [ch <H<1+5K<T0,Ti1)>) 51}
k=1 i=1
n k To
= {ZCK(H(le(t,Ti_l)exp(/ (s Tiii—9) - dWr (s)
k=1 i=1 t
1 [T -
——/ |V(SsTil_S)|2ds)>> 51].
2 )i
Moreover, we deduce from (3.11) that fox Tpandi, j =1,...,n
=1 SK(t, T))
(3.15) dWe (1) = dWy (t)+Zl+5K(t 7 y(, T, —t)dt
21 5K, Ty
Zm y(t, T, —t)dt.

=0

Consequently we can write

To To
(316) X =/ y(s,ﬂ_l—s)-dm<s>=/ Y T —S) - dW (S)
t t

! /TO SK (s, Tr_1)

L) Trke T

J /To SK (s, To_y)
1+ 6K(s, Te-1)

Y Tee1—9) - y(s, Tig—s)ds

)/(Sv TZ—l - S) : ]/(S, -ri—l - S) ds.

=17t
We will approximate the conditional af; distribution of X4, ..., X, under the measure
Pr, (for eachj =1, ..., n) by the distribution of the random vecti, ..., XJ, where
' To L SK(t, Teen)

3.17 X = s, T_1—5) -dWs (s _ O e A
(3.17) . /t y(s.Tiii—9) W”()*;Ham,n,l) P

ZJ: SK(t, o))

145K T ¢
and

To
(3.18) Ay =/ Y, Tie1—9)-y(s, Ti-1 —s)ds
t
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In view of (3.12) this approximation corresponds to Wiener chaos order O approximation
of the process

3K (s, Tp) -7
¢

(3.19) > U g«
1+ 6K (s, Ty)

under the measut®y,. A more accurate approximation involving Wiener chaoses of order
0 and 1 may be used as well. We found, however, that the contribution of order 1 Wiener
chaos is not very significant; so we can simply replace the process (3.19) by its viaine at
formula (3.15) or, because of (3.12), by the conditional expectation uhgdermgiven ;.

Obviously the conditional ot distribution ofX{, ..., X} under the measurir, is
N(u!, A), whereAy; is given in (3.18) and

| SK(t T LSK(t, Tooa)
3.20 P — = A4 — — =7 Ay
(3.20) Hi ;1+5K(t, T @ ;1+5K(t,n_l) .

In practice the first eigenvalue of the mateixis approximately 50 times larger than the
second, and therefore we can assume thit of rank 1, or equivalently that

(3.21) Ay = I',T;

for some positive constanty, ... T',. Setdy = 0 and fori > 1

i SK(t, Te—1)
(3.22) d = ; 1+6Kt, T ©

then it follows from (3.20) and (3.21) that
(3.23) ul =Tid —dp).
Forallj =1,...,nthe function

n

K -1
fix)=1- ch ( (1+ SK(t, TiZ1) exp(I‘i (X+d —dj)— %FF)))
i=1

k=1

satisfiesfj/(x) > 0, fj(=o00) = —ndk, f(c0) = 1. Hence there is a unique poigtsuch
that f;(s)) = 0. Moreover, ifsy is the solution withj = 0, clearlys; = sp + dj. Also
fj (x) > 0 for x > s; and therefore, using (3.14), (3.17), and (3.23) we deduce that

(3.24) Pr,(A| F) =Pr (X! = Tis | F) = N(—so — ).
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Moreover, standard arguments yield

To
(3.25) Ex;(K(To, Tj_)Ia | Ft) = Eg, (K(t, Ti—1) eXp(/ y(s Tj_1—9) - dWr ()
t

1M )
—5/ ly(s, Tj-1—9)| d5>|A|~7:t>
t

= K, Tj-y)N(—=so—d; +T7})

and finally we obtain the following result.
THEOREM3.2. The price at time < Ty of the payer swaption can be approximated by
n
Psat) =6y P(t, TH(K(t, Ti_)N(=So— 0 + Tj) — kN(—so — dy)).

j=1

where g is given by

i=1

n k -1
1

> G (]‘[ <1+ SK(t, Tiza) exp(ri (o+d)— Er?») =1
Ck=«é,k=1,....,n—=1,Cy, =1+ «é, whileT'; and d are defined in (3.21) and (3.22)
respectively.

Proof. Follows from Theorem 3.1 and formulas (3.24) and (3.25). O

In the US, UK, and Japanese markets caps correspond to rates compounded quarterly,
while swaptions are semiannual. In the German market caps are quarterly and swaptions

annual. We deal with this problem by assuming lognormal volatility structure on the
quarterly rates. The forward swap rate at time Ty is

n -1
(3.26) P (t,n) = <k82 P(t,Tkj)) (P(t, To) — P(t, Tn))

=1

and hence the time< Ty price of a payer swaption at strikematuring at timeT is

= (3
B(t) n "
" (ﬂ(%) (1_ 2,6"P e Tki)) |ﬁ>

J

Ps®(t)

¥ (To, n) — 1) kS | ﬁ)

n
P(t. TOPr,(A| F) — Y CP(t. Ti)Pr, (A | F).
j=1
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whereC* = ks for j =1,....n—1andC = 1+ ks, while

n
A= {0 (To,n) = «} = ClP(To. Ty < 1} :
j=1

J7
From (3.10) it follows that for all

P(t, Tk(j_l))]P)Tk(j,l)(A | F) = P(, Tki)PTkJ(A | Ft)
k
+6 P(t, Tk(]‘fl)+i)ETk(j—1)+i

i=1
x (K(To, Tkgj—p+i-Dla | Fo),

and hence
n kj

(3.27) Ps(t) = 52( Y. PtTOER (K(To, Tinlal 7o)
i=1 \i=k(j—1)+1

— ke P(t, Tkj)PTkj(A | .ﬂ)) .

Repeating arguments used in the proof of Theorem 3.1 we deduce the following swaption
approximation formula.

THEOREM3.3. Let k ands be such thatks)~?! is the compounding frequency per year

of the swap rateo(T';) (t, n), given in (3.26). The time£ Ty price of a payer swaption can
be approximated by

n Kj
3.28) Psd¥(t) =52( i: Pt TOK(®E TN (= —di +17)

i=1 \i=k(j—1+1

—keP(t, TN (s - dk,-)) :

where §° is given by

n kj )
ch(k) (l—J[ <1—|—5K(t, Ti_1) exp<Fi (Sék) + d|> - %F|2>)) =1,

=1 i=1

Cl =kesforj=1,....n—1,C¥ =1+ ks, andI; and d are defined in (3.21) and
(3.22) respectively.
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REMARK 3.2. If one choose8 = 0.25, for example, in a market with quarterly and
semiannual caps and swaptions, then formula (3.28) can be used to price the semiannual
caps and swaptions and hence it can also be used to jointly calibrate to both quarterly and
semiannual volatility inputs.

To analyze differences between the exact swaption value, computed by simulation, and
an approximate value computed using formula (3.28) ita 1 andt = 0, a one-factor
model was fitted to U.S. cap and swaption data on 12 July 1994 generating a typical volatility
structure. Simulation prices were generated undeP{héorward measure using the exact
formula

n—1 n +
(3.29) P(0, Ty Er, <ch I (1+5K(T0,Ti1))+Cn>
j=0 i=j+1

withCo=1,Cj=—«8,j=1,....,n—1,C, = —(1+«$) and

t 1 t
K, Ticy) = K(O,Til)exp</ )/(S,Tifl—S)~dWri(S)—§/ IV(S,Til—S)IZdS),
0 0

_ b 8K(s Ticn) _
WTi,l(t)—WTi(t)—/O my(&ﬂ—l—s)ds

The preceding equations permit the recursive calculation of the Brownian motions
W, (t), ..., Wy _,(t) for 0 < t < To. For each simulation ofV (t) on [0, Tg] that
gives values oK (Tp, Ti_1), i = 1,..., n, substitution in (3.29) gives the corresponding
value of the swaption. The simulation procedure, which involves Riemann and stochastic
integration steps, was checked by back calculating the cap prices used in parametrization.
The simulation prices coincided with the closed form prices calculated using th@)Cap
formula of Proposition 3.1. Table 3.1 gives the swaption prices for a range of strikes, op-
tion maturities, and swap lengths. Two standard deviation errors of simulated prices are in
brackets. Bid and ask spreads, estimated by professional dealers at Citibank London, are
in the last column.

We also compared formula (3.28) with the market formula for pricing swaptions, based
on assuming the underlying swap rate is lognormal, and given by

(3.30) 8 PO, T)(wr,(0,mN(h) — kN (h — y/To)),
j=1

where

h= (IOQM + %szo)/ yVTo.
K
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TABLE 3.1
Accuracy of the Formul®sd® (0)

Option maturity ~ Strike ~ Simulation Psd?(0) Spreads
x Swap length price

6.00% 159.71(0.25)  160.17

0.25x 2 7.00% 39.62(0.25)  40.39
8.00%  4.25(0.25) 4.61

6.25% 237.79(0.25)  238.09

0.25x 3 7.25%  59.33(0.25)  60.54
8.25%  6.11(0.25) 6.75

6.60% 361.24(0.25) 362.72

0.25x 5 7.60%  79.49(0.25)  81.16
8.60%  5.84(0.25) 6.39

6.70% 386.34(0.25)  389.79

05x5 7.70% 127.34(0.25)  131.43
8.70%  25.99(0.25)  28.12

6.60% 187.23(0.25)  188.56

1x2 7.60%  92.93(0.25)  94.76
8.60%  40.29(0.25)  41.99

6.75% 230.00(0.25)  231.80

)]

(&)

= = =
OvowWwuNPropRprPWooNMNwado A

2x2 7.75% 140.17(0.25)  142.60
8.75%  80.54(0.25)  82.98
7.50% 359.41(0.26)  363.60 20
2x5 8.50% 189.24(0.25)  194.47 16
9.50%  91.64(0.25)  95.79 10
7.00% 227.75(0.25)  230.28 11
3x2 8.00% 148.15(0.25) 151.14 8
9.00% 92.68(0.25)  95.67 6
7.00% 323.71(0.25) 327.13 16
3x3 8.00% 204.93(0.25)  208.80 12
9.00% 123.43(0.25) 127.39 9
7.00% 502.65(0.40) 506.34 27
5x5 8.00% 331.56(0.37) 336.90 22
9.00% 209.39(0.34) 215.33 22
10.00% 127.85(0.31) 133.44 18

The difference between calculated and simulated prices is well within spreads. All
prices are in basis points (1 bp$100 per $1M face value).

Note that because

n

1
E —_— To, N) — k)78
j;ﬁ(Tj)<coTo(on> )

=4 P (0, TJ)ETJ (a)TO(To, n) — K)+

n

j=1
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TABLE 3.2
Black vs Calculated Price

Option maturity ~ Strike  Black  PsdY(0)
x Swap length price

8% 183.88 183.88

0.25x 1 10% 36.59 36.59
12% 1.35 1.35

8% 344.05 344.05

1x2 10% 129.36 129.35
12% 34.87 34.87

8% 748.02 747.97

1x5 10% 281.24 281.14
12% 75.82 75.73

8% 1204.52 1204.19

1x10 10% 452.88 452.20

12% 122.08 121.60

8% 473.29 473.21

3x3 10% 262.20 262.09
12% 136.27 136.17

Whenyield and volatility are flat (10% and 20% respectively)
the Black swaption formula arisd? (0) are almost identical.
All prices are in basis points (1 bp $100 per $1M face value).

the market seems to identify the forward measdtgs j = 1, ..., n with the forward
measuréy, and assumes lognormality of the swap rate proegss, n), 0 <t < Tounder

the measur®r,. In fact, formula (3.28) reduces to (3.30)df = 0, T} = Aﬁ/z = y/To,

andK (0, T)) = K. We assumed constant 10% yield (compounded quarterly) and 20%
volatility in formulas (3.28) and (3.30). Table 3.2 gives the swaption prices.

4. MODEL CALIBRATION

To calibrate the model we used data from the U.K. market for Friday, 3 Feb 95. Market
cash, futures, and swap rates are given in Table 4.1, together with the corresponding zero
coupon discount function (ZCDF). Cap and swaption volatilities, given in Table 4.3 (or
4.4), together with the historically estimated correlation between the forward rates, given in
Table 4.2, were used to compute the model volatilities. We assumed a two-factor model with
a piecewise constant volatility structupgt, x) = f (t)y (X), wherey (x) = (y1(X), y2(X))

and f:R, — R. If f = 1 the volatility is time homogeneous dorepresents the term
structure of volatility. Because in the U.K. market caps are quarterly while swaptions are
semiannual, we used the cap formula from Proposition 3.15th0.25 and the swaption
formula from Theorem 3.3 witk = 2. Computed volatility functions for 3 Feb 95 are given

in Table 4.3. As a comparison a one-factor normal HIM model was fitted to the same set
of data. Normal volatilities for 3 Feb 95 are given in Table 4.4 (formulas 3.2 and 6.1 from
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TABLE 4.1
GBP Yield Curve for 3 Feb 1995

Market rates
Rate

6.687509
6.750009
6.781259
7.125009
7.500009
92.94
92.26
91.83
91.52
91.31
91.15
91.04

Rate

90.94
90.90
90.88
90.85
90.85
8.265%
8.550%
8.655%
8.770%
8.910%
8.920%

Tenor

Cash 1 Month
Cash 2 Month
Cash 3 Month
Cash 6 Month
Cash 9 Month
Future 15 Mar 95
Future 21 Jun 95
Future 20 Sep 95
Future 20 Dec 95
Future 20 Mar 96
Future 19 Jun 96
Future 18 Sep 96

| Tenor

o Future 18 Dec 96
o Future 19 Mar 97
o Future 18 Jun 97
o Future 17 Sep 97
o Future 17 Dec 97
Swap 2 year
Swap 3 year
Swap 4 year
Swap 5 year
Swap 7 year
Swap 10 year

Zero Coupon Discount Function (ZCDF)

Tenor: x

Tenor: x

ZCDF(x) | Tenor:x

ZCDF (x) |

ZCDF (x)

0.00000000
0.07671233
0.10958904
0.37808219
0.62739726
0.87671233
1.12602740
1.37534247
1.62465753
1.87397260
2.12328767

1.0000000
0.9948960
0.9926898
0.9742228
0.9557792
0.9366995
0.9173059
0.8978535
0.8784706
0.8592755
0.8402950

2.37260274
2.62191781
2.87123288
3.12054795
3.49863014
4.00273973
4.49863014
5.00273973
5.50136986
6.01095890
6.50136986

0.8216536
0.8033866
0.7854682
0.7679495
0.7436387
0.7110506
0.6797622
0.6489580
0.6203222
0.5921385
0.5658937

7.00821918
7.50684932
8.00547945
8.50410959
9.00547945
9.50410959
10.00821918
10.50821918
11.00821918
11.50821918

0.53980408
0.51675532
0.49467915
0.47353468
0.45317677
0.43378439
0.41501669
0.39720417
0.38015617
0.36383986

The zero coupon discount function is calculated from the market rates at various tenors. Intermediate rates
can be found by splining.

TABLE 4.2
Forward Rate Correlations for GBP

0 0.25 0.5 1 15 2 2.5 3 4 5 7 9
0 1.0000 0.6853 0.5320 0.3125 0.3156 0.2781 0.1835 0.0617 0.1974 0.1021 0.1029 0.0598
0.25 0.6853 1.0000 0.8415 0.6246 0.6231 0.5330 0.4278 0.3274 0.4463 0.2459 0.3326 0.2625
0.5 0.5320 0.8415 1.0000 0.7903 0.7844 0.7320 0.6346 0.4521 0.5812 0.3439 0.4533 0.3661
1 0.3125 0.6246 0.7903 1.0000 0.9967 0.8108 0.7239 0.5429 0.6121 0.4426 0.5189 0.4251
15 0.3156 0.6231 0.7844 0.9967 1.0000 0.8149 0.7286 0.5384 0.6169 0.4464 0.5233 0.4299
2 0.2781 0.5330 0.7320 0.8108 0.8149 1.0000 0.9756 0.5676 0.6860 0.4969 0.5734 0.4771
2.5 0.1835 0.4278 0.6346 0.7239 0.7286 0.9756 1.0000 0.5457 0.6583 0.4921 0.5510 0.4581
3 0.0617 0.3274 0.4521 0.5429 0.5384 0.5676 0.5457 1.0000 0.5942 0.6078 0.6751 0.6017
4 0.1974 0.4463 0.5812 0.6121 0.6169 0.6860 0.6583 0.5942 1.0000 0.4845 0.6452 0.5673
5 0.1021 0.2439 0.3439 0.4426 0.4464 0.4969 0.4921 0.6078 0.4845 1.0000 0.6015 0.5200
7 0.1029 0.3326 0.4533 0.5189 0.5233 0.5734 0.5510 0.6751 0.6452 0.6015 1.0000 0.9889
9 0.0598 0.2625 0.3661 0.4251 0.4299 0.4771 0.4581 0.6017 0.5673 0.5200 0.9889 1.0000

Forward rates were assumed constant on the intervals between the given terms. One year of data (1994) was
used to calculate this table.
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TABLE 4.3
Lognormal HIM Fit for 3 Feb 1995

Currency: GBP A-T-M Black Market  Average error (%): 0.64
Contract Length strike (%) volatility (%) price (bp) Error (bp) Error (%)

Cap 1 7.88 15.50 27 -0.0 -0.0
Cap 2 8.39 17.75 100 2 25
Cap 3 8.64 18.00 185 .8 0.4
Cap 4 8.69 17.75 267 .8 0.1
Cap 5 8.79 17.75 360 —7.4 -21
Cap 7 8.90 16.50 511 2 0.5
Cap 10 8.89 15.50 703 -0.0 -0.0

Option maturity

x Swap length
Swaption 025 x 2 8.57 16.75 50 -0.6 -12
Swaption 025 x 3 8.75 16.50 73 -0.1 -0.1
Swaption Ix 4 9.10 15.50 172 -04 -0.2
Swaption ®25x 5 8.90 15.00 103 Q 0.1
Swaption 5% 7 9.00 13.75 123 ] 1.3
Swaption  025x 10 8.99 13.25 151 -0.1 -0.1
Swaption 1x 9 9.12 13.25 271 -17 —0.6
Swaption 2x 8 9.16 12.75 312 2 0.4

Contracts to be fitted are on the left with their at-the-money strikes and market quoted Black volatilities. Prices
and the fit, obtained with the volatility functions below, are on the right. Average error in fitting is 0.64%, and the
largest single error is 2.5%. Note 1 bp$100 per $M face value.

Tenor: x, t y1(X) y2(X) f(t)

0.25 0.09481393 02146092  1.00000000
0.50 0.08498925 .05117321 1.00000000
1.00 0.22939966 09100802 0.99168448
1.50 0.19166872 02876211 1.00388389
2.00 0.08232925 01172934  1.00388389
2.50 0.18548202 00047705 1.07602593
3.00 0.13817885 —0.01160086 1.07602593
4.00 0.08562258 —0.04673283 1.04727642
5.00 0.14547123 —0.04181446  1.02727799
7.00 0.08869328 —0.05459175 0.96660430
9.00 0.04121240 —-0.03631021 0.93012459
11.00 0.15206796 —0.16626765 0.81425256
Piecewise constant on each internal.

Brace and Musiela (1994a) were used in the process of model calibration). Lognormal
and normal HIM model fits, expressed in terms of the market cap and swaption prices, are
given in Table 4.3 and 4.4, respectively.

Discount functions and volatilities for other days of the week 30 Jan to 3 Feb 1995 are
available in spreadsheet format on request. The inhomogeneous compghewries
over the first 5 years from 0.934 at 0.5 year on 2 Feb 95 to 1.133 at 2 years on 1 Feb 95.
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TABLE 4.4
Normal HIM Fit for 3 Feb 1995

Currency: GBP A-T-M Black Market  Average error (%): 0.55
Contract Length strike (%) volatility (%) price (bp) Error (bp) Error (%)

Cap 1 7.88 15.50 27 .00 000
Cap 2 8.39 17.75 100 2 24
Cap 3 8.64 18.00 185 -0.8 -0.5
Cap 4 8.69 17.75 267 -0.2 -0.1
Cap 5 8.79 17.75 360 -89 -25
Cap 7 8.90 16.50 511 -56 -11
Cap 10 8.89 15.50 703 i 0.2

Option maturity

x Swap length
Swaption 025 x 2 8.57 16.75 50 -0.0 -0.1
Swaption 025x 3 8.75 16.50 73 3 0.5
Swaption Ix 4 9.10 15.50 172 0 0.0
Swaption 25x 5 8.90 15.00 103 -0.0 -0.0
Swaption 5% 7 9.00 13.75 123 -0.2 -0.1
Swaption  025x 10 8.99 13.25 151 Q 0.1
Swaption 1x 9 9.12 13.25 271 -13 -0.5
Swaption 2x 8 9.16 12.75 312 -0.2 -01

Contracts to be fitted are on the left with their at-the-money strikes and market quoted Black volatilities. Prices
and the fit, obtained with the volatility function below, are on the right. Average error in fitting is 0.55%, and the
largest single error is-2.5%. Note 1 bp= $100 per $M face value.

Normal HIM volatility

Tenor: x o (X)/X

0.25 0.01236511
0.50 0.01212989
1.00 0.01207662
1.50 0.01692911
2.00 0.01359211
3.00 0.01385645
4.00 0.01384691
5.00 0.01270641
7.00 0.01154330
11.00 0.01093066

Piecewise constant on each interval.

For maturities beyond 5 years the inhomogeneous component drops to 0.718 at 9 and 11
years on 31 Jan 95. The quality of fit can be defined as follows

Fit Error (%)
Tolerable Satisfactory Good

Average error < 2% < 2% < 1%
Individual error < 8% < 5% < 3%
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TABLE 4.5
Implied Black Volatility of Caps and Swaptions for 3 Feb 1995

Lognormal
Cap/Swap Swaption maturity
length Cap 0.25 0.5 1.0 2.0 3.0 4.0 5.0

1 1550 19.12 19.86  20.42 18.05 17.34 16.31 15.79
2 18.29 16.54  16.99 17.77 16.29 15.75 15.27 14.69
3 18.09 16.48 16.44 16.42 15.24 15.05 14.56 14.02
4 17.77 15.00 15.18 15.47 14.75 14.49 14.03 13.38
5 17.35 15.02 15.08 15.12 1430 14.03 13.46 13.04
6 16.99 14.38 14.45 14.48 13.72 13.37 13.07
7 16.59 13.93 13.94  13.87 13.06 13.03
8 16.21 13.18 13.20 13.14 1280
9 1581 12.60 12.82 13.17
10 1550 13.24 13.48

Normal

Cap/Swap Swaption maturity
length Cap 0.25 0.5 1.0 2.0 3.0 4.0 5.0

1 1550 17.72 19.38 19.35 16.39 16.75 15.27 14.37
2 18.25 16.74 16,51 16.45 1570 15.24 14.09 13.22
3 1791 16.58 16.49 16.46 15.21 14.46 13.39 12.93
4 17.74 16.25 15.95 15.50 14.27 13.54 12.88 12.51
5 17.27 14.99 14.78 14.48 13.43 13.01 12.49 12.20
6 16.79 1424  14.06 13.79 13.05 12.72 12.29
7 16.30 13.73 13.62 13.49 12.85 12.57
8 16.01 13.54 13.44 13.32 12.74
9 15.76 13.38 13.30 13.19
10 1554 13.26 13.18

With the determined parametrizations, the Black volatilities for at-the-money contracts change smoothly from
maturity to maturity and between different underlying swap lengths. That property is important because many
dealers presently value swaptions by building similar matrices (by various means) and then using the Black
formulas.

The normal HIM model can be almost always fitted to the U.K. and U.S. caps and
swaptions data with a one-factor homogeneous volatility; fitting the correlation with a
second factor improves the overall fit. The lognormal HIM model frequently cannot fit a
term structure of volatility in the lognormal case and may also indicate that the price volatility
of the normal HIM is more stable over time than the yield volatility of the lognormal HIM.
The implied Black volatilities of caps and swaptions, Table 4.5, for both models are quite
similar with the lognormal volatilities being 1% to 1.5% greater than the normal at longer
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swaption maturities. That probably reflects the different impact of correlation on the two
models.
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