
The MobiSoC Middleware for Mobile Social Computing:
Challenges, Design, and Early Experiences

(Invited Paper)

Cristian Borcea
Dept. of Computer Science

NJIT
Newark, NJ 07102, USA
borcea@cs.njit.edu

Ankur Gupta
Dept. of Computer Science

NJIT
Newark, NJ 07102, USA

ag59@njit.edu

Achir Kalra
Dept. of Computer Science

NJIT
Newark, NJ 07102, USA

ak95@njit.edu

Quentin Jones
Dept. Of Information Systems

NJIT
Newark, NJ 07102, USA

qjones@njit.edu

Liviu Iftode
Dept. Of Computer Science

Rutgers University
Piscataway, NJ 08854, USA
iftode@cs.rutgers.edu

ABSTRACT

Recently, we started to experience a shift from physical com-
munities to virtual communities, which leads to missed social
opportunities in our daily routine. For instance, we are not
aware of neighbors with common interests or nearby events.
Mobile social computing applications (MSCAs) promise to
improve social connectivity in physical communities by lever-
aging information about people, social relationships, and
places. This paper presents MobiSoC, a middleware that
enables MSCAs development and provides a common plat-
form for capturing, managing, and sharing the social state
of physical communities. Additionally, it incorporates al-
gorithms that discover previously unknown emergent geo-
social patterns to augment this state. To demonstrate Mo-
biSoC’s feasibility, we implemented and tested on smart
phones two MSCAs for location-based mobile social match-
ing and place-based ad hoc social collaboration.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed Applications;
D.2.11 [Software Engineering]: Software Architectures;
H.4.3 [Information Systems Applications]: Communi-
cations Applications

General Terms

Design, Experimentation, Human Factors, Algorithms

Keywords

Mobile social computing, middleware, smart phones

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mobilware’08 February 12-15, 2008, Innsbruck, Austria
Copyright 2008 ACM 978-1-59593-984-5/08/02 ...$5.00.

1. INTRODUCTION
Social computing applications such as Facebook [1], MyS-

pace [2], and LinkedIn [3] improve social connectivity via
collaboration and coordination by enabling compelling and
effective on-line social interactions. However, these applica-
tions lead to a shift from physical communities to virtual
communities. Currently, people living or working in the
same places routinely miss opportunities to leverage inter-
personal affinities (e.g., shared interests and backgrounds)
for friendship, learning, or business through a simple lack
of awareness. Furthermore, they are not aware of nearby
places and social events, which they would normally like to
visit or attend.

Mobile social computing applications (MSCAs) can take
advantage of mobile computing algorithms, wireless tech-
nologies, and real-time location systems to help people re-
connect with their physical communities and surroundings.
For instance, MSCAs can answer questions such as: Are any
of my friends in the cafeteria right now? Is there anybody
who would like to play tennis nearby? Do people who work
on wireless come often to this place? Which are the places
where CS students hang out on campus? With research
showing that users are increasingly willing to share their
profile information and location in return for services, the
time is ripe to develop MSCAs that can answer queries and
provide recommendations about people, places, and events
of interests anytime, anywhere [4].

This paper presents MobiSoC, a mobile social comput-
ing middleware that provides support for programming and
deploying MSCAs. MobiSoC offers a common platform for
capturing, managing, and sharing the social state of phys-
ical communities. This state is composed of people pro-
files, place profiles, people-to-people affinities, and people-
to-places affinities [5]. The social state evolves continuously
over time as new user profiles, social ties, place-related in-
formation, or events are created. Additionally, the consis-
tent view of the social state provided by MobiSoC enables
algorithms that discover previously unknown emergent geo-
social patterns (i.e., people-to-people and people-to-places
affinities), which can further augment the state. MobiSoC
runs on trusted servers and provides a simple API for de-

veloping MSCAs. To improve the responsiveness and en-
ergy efficiency on mobile devices, each MSCA is split into
an MSCA service that runs on top of MobiSoC on regu-
lar servers and a thin mobile client that interacts with the
service and MobiSoC over the Internet.

MobiSoC was implemented using an extensible service-
oriented architecture. Its core modules were implemented
as Java services that run over the Apache Tomcat server.
These services are exposed using KSOAP, a SOAP toolkit
designed to work with lightweight versions of JAVA on mo-
bile devices. To develop MSCA applications, it is essential
to collect accurate and continuous user location data both
indoors and outdoors. Furthermore, the location system has
to be cheap and easily deployable. Finally, it has to allow
users to control the sharing of location data for privacy rea-
sons. Considering all these requirements, we chose Intel’s
PlaceLab location engine that computes location on mobile
devices using the position and signal strength of visible WiFi
access points. In our campus, we have at least three visi-
ble access points almost everywhere, and consequently, we
obtained an accuracy of 10 - 15 meters. We used MobiSoC
to build two MSCAs: Clarissa, a location-based mobile so-
cial matching application, and Tranzact, an application for
place-based ad hoc social collaboration. These applications
were tested successfully on Windows-based smart phones,
which connect to the Internet over WiFi.

The rest of this paper is organized as follows. Section 2
presents an MSCA taxonomy and motivating examples. Sec-
tion 3 discusses the main challenges that face MSCA devel-
opment. Section 4 describes the MobiSoC design and ex-
plains its core modules. Section 5 explains how to build ap-
plications over MobiSoC and illustrates that with two proto-
type applications. Section 6 contains implementation details
and early experiences. We discuss related work in Section 7
and conclude in Section 8.

2. APPLICATIONS
MSCAs can be categorized into people-centric and place-

centric. This section illustrates each category with several
examples. We assume that users carry mobile locatable de-
vices, which can access services across the Internet using
either short range wireless interfaces (WiFi, Bluetooth) or
cellular interfaces. Furthermore, all these examples assume
that mobile users are willing to share their profile informa-
tion (including location) with trusted applications under cer-
tain privacy constraints.

2.1 People-Centric Applications
Mobile Social Matching. This application leverages

geo-social patterns to provide enhanced social matching rec-
ommendations. Users initiate the matching process by reg-
istering a match request with the application, which holds
details about the desired match. For instance, a student
can specify that she looks to hang out with a person with
similar interests on Monday from 2PM to 6PM. The ap-
plication uses real-time and historical location information,
the social network graph, and the basic user profiles to com-
pute affinities between potential matches. A match alert is
delivered to the mobile device when all the constraints for
the match are satisfied. In our example, the application can
select as best match a nearby student who shares common
friends (known from the social network graph) and common
interests (known from the location history analysis) with the

requester.
Social Event Planner. This application can be used to

plan and generate invitation lists for events, such as semi-
nars or outdoor activities. For example, if there is a seminar
on Mobile Computing in the CS department building, the
application can suggest people who should be invited to the
seminar. The list includes department’s members who have
explicitly listed Mobile Computing as an area of interests in
their profiles, but also people who visit frequently the net-
working and systems labs. Additionally, the social networks
of these people are searched for friends from other depart-
ments that might be interested in the topic.

2.2 Place-Centric Applications
Ad Hoc Social Collaboration. This application sub-

mits location-based queries to mobile users identified by cer-
tain profile properties. For example, let us consider that a
user sitting in his office might wish to know the current menu
at the cafeteria (which is not posted anywhere except inside
the cafeteria). Since the user does not know who is in the
cafeteria at that moment, the application helps her by iden-
tifying members of her social networks which are there and
asks them to answer the query. This application can also be
used to deliver queries anonymously to any person who can
provide information about a certain place subject to privacy
and reputation constraints.

Place Information. This application associates social
semantics to a place based on the profiles and interests of
the users who visit that place. Then, it could recommend the
place to users with similar interests or answer queries about
it. For instance, a CS student looking for a place to hang out
could be recommended to visit the game room of the student
center on Tuesday evenings, when it is typically occupied
by CS students. Using the same application, the campus
administration can discover places which need improvement
by checking the statistical information about places (e.g.,
type, size, and demographics of the groups that meet at each
place). For instance, the settings and ambiance in certain
rooms of the student center can be modified according to
the number of students who spend time there.

3. CHALLENGES
Social computing applications in the Internet, such as

MySpace [2] and Facebook [1], have been very successful in
the past few years because they attracted millions of users
who generated a large amount of social content (e.g., profiles,
photos, videos). Similarly, the very existence of MSCAs will
depend on achieving a critical mass of users, who share their
profiles, places, and real-time location information. To be
ready to satisfy the demands of the users, if they are to use
MSCAs, the software platforms for mobile social computing
must address the following challenges.

3.1 Social Data Collection and Management
MSCAs require complex geo-social community data about

people and places. Static data such as people demographics
or places’ coordinates are easy to collect, manage, and val-
idate. Dynamic data, on the other hand, are much harder
to handle. For instance, a software platform supporting
MSCAs must provide mechanisms to: (1) capture ties be-
tween users and between users and places, (2) model, vali-
date, and store these ties, and (3) effectively share commu-
nity data among multiple applications.

3.2 Location Collection and Management
Most MSCAs need users’ location data to function prop-

erly. Therefore, it is essential to provide infrastructure sup-
port to collect real-time user location. Ideally, a location
system should be accurate, scalable, cost effective, easily de-
ployable, work both indoors and outdoors, and allow users
to control the sharing of their location. No currently avail-
able system has all these features, and in fact, some of the
features are contradictory. Therefore, system designers will
have to consider which are the most important features for
MSCAs when choosing the location system. Furthermore,
the software that collects the location and shares it with
MSCAs must scale to a large number of concurrent location
updates to accommodate a large user population and the
need of MSCAs to react quickly to location changes.

3.3 Learning Emergent Geo-Social Patterns
Communities have rich geo-social ties, which cannot be

captured directly from the user profiles. However, the col-
lection of raw data about people and places over time could
be used to determine emergent patterns which are not ap-
parent otherwise. For example, users’ mobility traces (i.e.,
location indexed by time) over a long period can be pro-
cessed to learn their significant individual or group places.
Furthermore, these places can be semantically enhanced by
analyzing the user-generated tags associated with them. In
order to identify such patterns, we need to model the global
state of a community and design algorithms which can ex-
tract new knowledge out of this state.

3.4 Privacy
In addition to the privacy issues for desktop-based social

computing applications, the software platform which sup-
ports MSCAs must also cope with location privacy, which
is highly sensitive for mobile users. The MSCAs and their
software platform must ensure that users cannot track each
other. An even more difficult privacy problem than track-
ing is the inference of social ties based on location. For
instance, if Bob is allowed to see John’s location, and he
sees that John is too often located at Alice’s office, he might
infer that they might have a romantic relationship. While
solutions exist for direct inference channels (e.g., database
query evaluation), more research is necessary to prevent in-
direct inference channels such as the one in this example.

3.5 Energy Efficiency
Battery power represents the most important physical lim-

itation faced by MSCAs developers. For example, the basic
question asked by a user who plans to run such an applica-
tion on her smart phone is: How long can I use my phone if
I run this application? Therefore, developers need to under-
stand the power consumption characteristics of each com-
ponent of the mobile devices in order to design energy ef-
ficient applications and protocols. Trade-offs between local
execution on mobile devices and offloading application com-
ponents to servers, which results in extra communication
costs, must be considered. For instance, common compu-
tationally intensive tasks required by multiple applications
or multiple users should be offloaded to servers. Further-
more, data aggregation methods should be designed to run
at the servers in order to reduce both the computation and
communication costs.

Figure 1: Social State of a Community

4. MOBISOC ARCHITECTURE
This section presents the design of MobiSoC, our mobile

social computing middleware designed to address the chal-
lenges discussed in the previous section. A key goal of Mo-
biSoC is to capture and manage the social state of a com-
munity and to learn emergent social state information as
illustrated in Figure 1. The basic social state of a physi-
cal community is composed of people profiles, place profiles,
social ties between people, and associations between people
and places. This state evolves continuously over time as
new user profiles, social ties, place-related information, and
events are created. Additionally, learning algorithms can
determine people-to-people and people-to-places affinities,
and based on these affinities, discover previously unknown
emergent geo-social patterns. The newly discovered infor-
mation can be used to augment the user profiles and the
characteristics of the places.

MobiSoC acts as a centralized entity for social state man-
agement and provides a service API to programmers for
application development. We chose a centralized solution
because it is simpler to maintain a consistent view of the so-
cial state and to provide access control to privacy sensitive
data. Additionally, having servers in the system architecture
helps to improve the battery lifetime on the mobile devices
as certain parts of the applications can be executed at the
server side. The MobiSoC architecture is presented in Fig-
ure 2. The internal modules can be physically distributed
on multiple servers in order to achieve scalable operation
for thousands of mobile clients. In the following, we present
each of the middleware modules.

4.1 Data Collection
The People sub-module allows applications to collect,

store, and modify user profiles. Besides basic demographic
information, users can provide information regarding social
interests, preferences, and social ratings. This sub-module
also provides mechanisms to introduce new groups and add
new social contacts, and it maintains a social network based
on this information. The Places sub-module supports the
collection of geographical data and maps for buildings, of-
fices, and outdoor locations. Furthermore, it provides mech-
anisms to introduce and modify social events associated with
a place. The Location sub-module receives and stores loca-
tion updates from the mobile devices. We decided to deter-

Figure 2: MobiSoC Architecture

mine the location of the mobile device on the device itself for
privacy reasons. We believe that users would be very con-
cerned if a certain hardware/software infrastructure would
track them to determine their real-time location. There-
fore, we allow them to control when and how often location
updates are sent to our middleware.

4.2 Social State Learning
This module learns emergent social state information. The

People Profiling sub-module is used to provide user-centric
information to services such as profiles, social links, and so-
cial groups. Additionally, this module enhances user pro-
files based on newly discovered information about individ-
ual users. For example, this module could find out that a
user attends research seminars regularly, plays tennis every
Friday, or works together with another user. Similarly, the
Place Profiling sub-module shares place-centric informa-
tion and enhances the semantics of the place with social
information. For instance, this module could find out how
crowded a place is at different times in the day, popular so-
cial events which happen at that place, or the demographics
data of people who visit the place frequently. The People-

People Affinity Learning sub-module computes social
affinities based on factors such as similar interests, similar
backgrounds, common friends, or common places. Ad hoc
social groups can be discovered based on co-location in the
same place at the same time. Similar interests can be dis-
covered if people visit the same place at different times. As
the user and place profiles change over time, these affinities
are re-computed periodically. The People-Place Affin-

ity Learning sub-module analyzes users’ mobility traces
to identify significant places for individuals or groups. To
discover these geo-social ties between people and places, it
basically performs temporal synchronization on the mobility
traces and uses clustering techniques to determine repeated
user co-presence at a place.

4.3 Event Manager
This module is used for asynchronous communication with

the applications. The applications can register events with
the middleware to receive notifications when a certain part
of the social state changes. For example, an application
might want to be notified in real-time of the co-location of
two users, a user presence at a given place, or a new social

Figure 3: Building Applications over MobiSoC

match based on newly identified social affinities. We decided
to let the mobile devices pull their events from the middle-
ware instead of having the middleware push the events onto
them. There are two reasons for this decision. First, mo-
bile devices change frequently their IP addresses, and the
middleware would have to be aware of them. Second, the
devices might not have Internet connectivity all the time
because power savings mechanisms might turn off certain
wireless interfaces or the users might turn off the devices
themselves. In such situations, the middleware would have
to keep track of the status of mobile devices, on-line or off-
line. In our architecture, the mobile devices poll periodically
the middleware for event notifications. To reduce useless
communication which could impact the battery lifetime, our
implementation, as illustrated in Section 5, takes advantage
of the location engine running on mobile devices to retrieve
event notifications during the location updates.

4.4 Privacy Management and Enforcement
This module manages and enforces privacy rules on be-

half of the entities in the system (users and applications).
Entities register their privacy preferences using a privacy
statement, which has a primary entity that issues the state-
ment and a secondary entity on which the statement applies.
A privacy statement includes access control objects, infor-
mation objects, and action objects. An access control ob-
ject defines the conditions under which a statement applies.
Currently, these conditions are user’s location, co-location
with other users, time of the day, or a combination of these
constraints. The information object defines the information
that is restricted, and we currently support restrictions over
location, events, profile data, and social network data. The
action object describes the action to be taken in case the
secondary entity tries to access the information defined by
the information object. Currently, we support denial of ac-
cess and sending an appropriate message to the secondary
entity, or forwarding the request to the primary entity that
can further allow or disallow information access. More so-
phisticated actions, such as removing only the privacy sen-
sitive data from an object, will be added in the future.

5. APPLICATION DEVELOPMENT OVER

MOBISOC
This section presents the general structure of any MSCA

built on top of MobiSoC, the MobiSoC’s development API,
and code examples for two prototype applications, Tranzact

Figure 4: Middleware API

and Clarissa, successfully developed and tested on smart
phones.

5.1 Application Structure
Each MSCA is split in two parts: (1) an MSCA service

that runs on servers and accesses social state information us-
ing the MobiSoC’s service API, and (2) a thin MSCA client
that interacts with the MSCA service over the Internet. Fig-
ure 3 shows how our prototype applications are divided into
client and service parts. This application structure improves
the responsiveness and energy efficiency on mobile devices.
Essentially, the MSCA services offload the computationally
intensive components of the applications on the servers. In
this structure, MSCA clients cannot interact directly with
the middleware; they can only interact with their associated
services. Therefore, the programmers are naturally forced to
design the applications in the required structure. Another
benefit of this structure is that services can easily maintain
global state across the mobile clients.

MSCA clients can communicate synchronously (i.e., re-
quest/reply) with the services. However, many times they
need to be contacted when certain social, temporal, or ge-
ographical conditions are met. To achieve this goal, the
MSCA services register events with the middleware, which
will deliver them to clients. As illustrated in Figure 3, the
event notification delivery is done periodically when the mo-
bile clients update their location with the middleware. Al-
though this mechanism introduces a one location update
period delay, it improves the energy efficiency on the mo-
bile devices. Once the location engine receives events from
the middleware, it passes them to an Event Dispatcher that
subsequently delivers each event to its target MSCA client.

5.2 API and Code Examples
The current API exposed to MSCA services is presented

in Figure 4. Since most of the function names are self-
explanatory, we provide a very brief overview of the main
categories of functions. The event manager API allows ser-
vices to register and delete events. The data collection API
is used to store data about people (profiles, social ties, and
social groups), places (physical descriptions, user generated
tags that characterize them, and associated events), and lo-
cation. The people profiling API provides access to people-
centric data such as searching profiles by tags and keywords
or retrieving the social groups associated with a given user.
Furthermore, the data returned by this API could contain
profile data mined by the middleware (e.g., emergent pat-
terns). Similarly, the place profiling API offers access to
place-centric data such as attendance and demographic pat-
terns or history of social events that happened at a given
place.

The people-place affinity API provides information about
the emergent visiting patterns at a given place, by individ-
ual users or groups, as well as real-time data about the oc-
cupants of a place. The people-people affinity API can be
invoked to retrieve social connections between two users.
Specifically, it can return an affinity matrix between two
users, computed across several geo-social factors, common
social groups and ties, or the co-presence history. The pri-
vacy manager API allows services to set and delete privacy
statements as well as to check privacy constraints.

As more applications will be developed over MobiSoC, we
expect to add new functions or even to update existing ones.
Besides the service API, we also provide a very limited API
for MSCA clients on mobile devices to check the current lo-
cation, enable and disable the transmission of location data

to the middleware, and listen for events from the local event
dispatcher.

Tranzact is an application for place-based ad hoc social
collaboration. Its clients send queries for real-time infor-
mation from various places. Figure 5 shows the processing
done by the Tranzact service when it receives such a query.
For instance, the requester might want to find out the cur-
rent menu at the cafeteria (which is not posted anywhere
outside the cafeteria). In order to answer the query, while
not bothering strangers, Tranzact starts by identifying the
social contacts of the requester that are currently in the
cafeteria. This task is achieved through two function calls
to the People Profiling module and People-Place Affinity
module. Before sending the query, Tranzact verifies if the
potential destinations are willing to accept events from this
application. In this case, the privacy constraints, verified
through the Privacy Management module, are set by a user
for herself (i.e., when and where she wants to receive Tran-
zact events). The available users receive the request using
our event-based communication mechanism. Responses are
sent back through the same mechanism.

Clarissa is a location-based mobile social matching ap-
plication. Figure 6 illustrates the processing done by the
Clarissa service when a student has a two hour break be-
tween two classes and is looking for a hangout partner on
campus. This person must be available between 2PM and
4PM, and she must be in close proximity of the requester.
Additionally, she has to be either someone known by the re-
quester or someone who shares common interests (in this ex-
ample, we look for sports they play and music preferences).
The service gets the union of known people, social contacts
and members of common groups, from the People Profiling
module. Then, it computes a matching score with all the
remaining users. This score is computed by assigning higher
weights to certain affinity factors (i.e., sports and music).
The raw affinity scores are retrieved from the People-People
Affinity module. Once the potential matches are identified,
Clarissa registers events for the requester, which are trig-
gered by the co-presence with potential matches during the
specified time interval.

6. IMPLEMENTATION PROTOTYPE AND

EARLY EXPERIENCES
We built a prototype implementation for MobiSoC using

a service-oriented architecture, which supports evolution by
providing modularity, extensibility, and language indepen-
dence. The core middleware modules are implemented as
services and written in JAVA. They run over the Apache
Tomcat application server and store data in a PostgreSQL
database, which provides good support for GIS data such as
maps and place related information. MSCA clients run on
iMate and htc TyTN smart phones. WebSphere Everyplace
Micro Edition Java (WEME) [6] was selected as the Java
Micro Edition implementation because it runs reliably on
our smart phones with ARM processors and Window Mo-
bile operating system. Personal Profile 1.0 and MDIP 2.0 is
the minimum configuration required.

We had a number of options for communication between
client applications on mobile nodes and the application ser-
vices on the server. Since our services are written in JAVA,
the easiest way would have been to serialize Java objects
and send them over sockets, but this option does not pro-

Figure 5: Tranzact pseudo-code

Figure 6: Clarissa pseudo-code

vide for language independence. The next option considered
was to use a lightweight parser [7] to convert JAVA objects
to XML and then transport these objects over TCP. Unfor-
tunately, we found compatibility issues between the JAVA
mobile edition library (J2ME) and the parser. Finally, we
decided to expose our services via the Simple Object Ac-
cess Protocol (SOAP). SOAP offers language independence,
and SOAP clients are available for many popular languages.
Additionally, it provides a clean transport mechanism, with
the client and services communicating over HTTP. We use
KSOAP J2ME [8] library that implements a subset of SOAP
1.1 and has a memory footprint less than 50KB. This makes
it extremely suitable for resource constrained devices such as
smart phones. Furthermore, the KXML parser provides fast
performance comparable to XML-RPC, yet provides sup-
port for custom data types.

The location engine on the clients is a modified version of
Intel’s Place Lab software [9]. This engine estimates the user
location based on the location and the signal strength of the
WiFi access points visible from the mobile device. Mobile
devices hold a database consisting of access point names and
their locations in the area of interest. When a mobile device
receives beacon messages from the visible access points, it
retrieves each access point’s coordinate from the database

and computes the estimated user position by averaging the
location of the access points. We also implemented a fin-
gerprinting based algorithm, such as the one described in
[10], to improve the location accuracy. Currently our sys-
tem provides room level accuracy (10-15 meters). However,
a significant problem that we observed is that accuracy dif-
fers significantly (up to 10 meters) for different mobile de-
vices. In the near future, we plan to investigate solutions
that accommodate device heterogeneity.

While this location engine provides many benefits, we had
concerns about its power consumption on mobile devices. To
quantify the effect of the location engine on the overall en-
ergy consumption on smart phones, we ran experiments in
which the location was computed and delivered over WiFi
at intervals between 10 seconds and 1 minute [11]. For these
experiments, we used the centroid version of the location
calculation. The results showed that the battery lifetime
lasted between 4 and 6 hours, which translates into a con-
sumption of 25%-50% of the total battery power. The main
conclusion is that adaptive strategies are necessary to com-
pute and deliver the location in real-time in order to reduce
the energy consumption. For instance, the location can be
updated only when users move more than a certain thresh-
old. Furthermore, social knowledge can be used to decrease
the frequency of the updates or even to turn off the engine
for certain periods of time (e.g., attending weekly meetings
or classes).

While the People-to-People Affinity module of the middle-
ware is relatively straightforward to implement, the People-
to-Places Affinity module is more difficult due to the addi-
tional uncertainties added by the location errors. The first
algorithm which we developed for this module is GPI, an
algorithm which learns previously unknown ad hoc social
groups and their meeting places [12]. The middleware can
share the results of GPI with geo-social recommendation ap-
plications subject to privacy constraints. For instance, new
students can learn about popular hangouts on campus or
faculty could learn about students attending research sem-
inars on certain topics. Our theoretical analysis and simu-
lation results demonstrated that 90%− 96% of group mem-
bers can be identified with negligible false positives when
the user meeting attendance is at least 50%. Experimen-
tal results using one-month of mobility traces collected from
smart phones carried by students and faculty on our campus
successfully identified all groups that met regularly during
that period. Additionally, the group places were identified
with good accuracy.

7. RELATED WORK
A number of projects developed toolkits and middleware

architectures for mobile context-aware applications. Aura [13]
is a middleware architecture that allows mobile applications
to adapt to dynamically-changing resources. GAIA [14] pro-
vides dynamic resource discovery in ubiquitous computing
environments and system configuration according to the avail-
able resources. One.world [15] provides a framework for
developing pervasive computing applications with a focus
on resource discovery and migration to cope with chang-
ing usage environments. The context toolkit [16] presents a
conceptual framework that supports the acquisition, repre-
sentation, delivery, and reaction to context information.

Context-aware migratory services [17] is a distributed pro-
gramming framework that provides a client-server model in

mobile ad hoc networks (MANETs), where services migrate
to different nodes to maintain a semantically correct and
continuous interaction with clients. A similar idea in a differ-
ent context is presented in the MUM middleware [18], which
aims at relieving mobile services from the burden of main-
taining service continuity in dynamic environments, with
multimedia services moving among different wireless access
points. REDMAN [19] is a middleware that disseminates,
manages, and retrieve replicas of resources of common inter-
est made available by cooperating nodes in dense MANETs.
Spatial Programming [20] is a runtime system that provides
an imperative programming model for distributed applica-
tions in MANETs using location and properties to name
the nodes of interest. Contory [21] is a middleware for con-
text provisioning on smart phones that provides an SQL-
like interface to query context data across the Internet or
MANETs.

A number of mobile social applications have been previ-
ously developed. Lovegetty [22] is a wireless-enabled, spon-
taneous matchmaking device that works within its limited
radio transmission range. Social Net [23] infers shared in-
terests between people by storing the IDs of the nearby de-
vices and analyzing this co-location data collected over a
long period of time. Social Serendipity [24] is another sim-
ilar mobile phone-based application using Bluetooth and a
database of user profiles to recommend face to face interac-
tions between nearby users who share common preferences.
GeoNotes [25] allows users to post virtual notes at places,
which can be read by other users visiting the same place.
Context-aware recommender systems which can assist users
with shopping are presented in [26, 27]. The Active Cam-
pus [28] project is also host to several social computing ap-
plications built on top of a centralized client-server architec-
ture.

8. CONCLUSIONS
This paper presented MobiSoC, a middleware that pro-

vides a common platform for rapid development and deploy-
ment of mobile social computing applications. This mid-
dleware captures the social state of physical communities,
learns previously unknown patterns from the emergent geo-
social data, and augments the social state with this new
knowledge. Additionally, it provides mechanisms to share
social state data, in real-time, with applications running on
mobile devices, while respecting user’s privacy concerns. We
implemented MobiSoC as a flexible service oriented architec-
ture and used it to build Tranzact and Clarissa, two proto-
type applications running on smart phones. MobiSoC was
developed as part of the SmartCampus project [29], which
investigates the benefits of mobile social computing in uni-
versity campus settings. As this project will provide several
hundred students with smart phones, we will be able to test
our middleware and applications in a real-life large scale
community.

9. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grants No. CNS-0454081,
IIS-0534520, CNS-0520033, and CNS-0520123. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation.

10. REFERENCES
[1] Facebook (2004). http://www.facebook.com.

[2] MySpace (2003). http://www.mysace.com.

[3] LinkedIn (2002). http://www.linkedin.com/.

[4] Q. Jones, S. Grandhi, S. Karam, S. Whittaker,
C. Zhou, and L. Terveen. Geographic place and
community information preferences. In Journal of
Computer Supported Cooperative Work. 2007.

[5] Q. Jones, S. Grandhi, L. Terveen, and S. Whittaker.
People-to-people-to-geographical places: The P3
framework for location-based community systems. In
Journal of Computer Supported Cooperative Work.
Kluwer Academic Publishers, 2004.

[6] Weme: WebSphere Everyplace Micro Edition.
www.ibm.com/software/wireless/weme/.

[7] Xstream: JAVA-XML parser.
http://xstream.codehaus.org/.

[8] Ksoap: Simple object access protocol for J2ME.
http://ksoap.objectweb.org/.

[9] B. Schilit, A. LaMarca, G. Borriello, W. Griswold,
D. McDonald, E. Lazowska, A. Balachandran,
J. Hong, and V. Iverson. Challenge: Ubiquitous
Location-Aware Computing and the Place Lab
Initiative. In Proceedings of the 1st ACM International
Workshop on Wireless Mobile Applications and
Services on WLAN (WMASH 2003), San Diego, CA,
Sep 2003.

[10] Y. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm.
Accuracy Characterization for Metropolitan-scale
Wi-Fi Localization. In Proceedings of Mobisys 2004,
Washington, DC, 2004.

[11] A. Anand, C. Manikopoulos, Q. Jones, and C. Borcea.
A Quantitative Analysis of Power Consumption for
Location-Aware Applications on Smart Phones. In
Proceedings of the 2007 IEEE International
Symposium on Industrial Electronics, pages
1986–1991, June 2007.

[12] A. Gupta, S. Paul, Q. Jones, and C. Borcea.
Automatic Identification of Informal Social Groups
and Places for Geo-Social Recommendations. In the
International Journal of Mobile Network Design and
Innovation. To Appear. 2008.

[13] J. P. Sousa and D. Garlan. Aura: an architectural
framework for user mobility in ubiquitous computing
environments. In 3rd Working IEEE/IFIP Conference
on Software Architecture, pages 29–43. Kluwer
Academic Publishers, Aug 2002.

[14] M. Roman, C. Hess, R. Cerqueira, R. H. Campbell,
and K. Nahrstedt. Gaia: A middleware infrastructure
to enable active spaces. In IEEE Pervasive Computing
Magazine, volume 4(1). Oct-Dec 2002.

[15] R. Grimm, J. Davis, E. Lemar, A. MacBeth,
S. Swanson, T. Anderson, B. Bershad, G. Borriello,
S. Gribble, and D. Wetherall. System support for
pervasive applications. In ACM Transactions on
Computer Systems, volume 22(4), pages 421–486. Nov
2004.

[16] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications. In
Human-Computer Interaction, volume 16(2-4), pages
97–166. 2001.

[17] O.Riva, T. Nadeem, C. Borcea, and L. Iftode.
Context-aware Migratory Services in Ad Hoc
Networks. In IEEE Transactions on Mobile
Computing, volume 6(12), pages 1313–1328. December
2007.

[18] P. Bellavista, A. Corradi, and L. Foschini. MUM: A
Middleware for the Provisioning of Continuous
Services to Mobile Users. In Proceedings of the 9th
IEEE International Symposium on Computers and
Communications (ISCC’04). IEEE Computer Society
Press, Jun 2004.

[19] P. Bellavista, A. Corradi, and E. Magistretti.
Comparing and Evaluating Lightweight Solutions for
Replica Dissemination and Retrieval in Dense
MANETs. In Proceedings of the 9th IEEE
International Symposium on Computers and
Communications (ISCC’05). IEEE Computer Society
Press, Jul 2005.

[20] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer,
and L. Iftode. Spatial Programming using Smart
Messages: Design and Implementation. In Proceedings
of the 24th International Conference on Distributed
Computing Systems (ICDCS), pages 690–699, March
2004.

[21] O. Riva. Contory: A Middleware for the Provisioning
of Context Information on Smart Phones. In
Proceedings of the 7th ACM International Middleware
Conference (Middleware), pages 219–239. Springer,
2006.

[22] Lovegety: Love Japanese Style.
http://www.wired.com/news/culture/0,1284,12899,00.html.

[23] M. Terry, E. D. Mynatt, K. Ryall, and D. Leigh. Social
Net: Using Patterns of Physical Proximity Over Time
to Infer Shared Interests. In Proc. Human Factors in
Computing Systems (CHI 2002), pages 816–817, 2002.

[24] N. Eagle and A. Pentland. Social serendipity:
mobilizing social software. In Pervasive Computing,
IEEE, volume 4(2), pages 28–34. 2005.

[25] Geo-notes: Place based virtual notes.
http://csd.ssvl.kth.se/ csd2002-geonotes/.

[26] W. Yang, C. Cheng, and J. Dia. A location aware
recommender system for mobile shopping
environments. In Expert Systems with Applications:
An International Journal, volume 34, pages 437–445.
2008.

[27] H. Heijden, G. Kotsis, and R. Kronsteiner. Mobile
recommendation systems for decision making on the
go. In Proceedings of International Conference on
Mobile Business, July 2005.

[28] W. G. Griswold, R. Boyer, S. W. Brown, and T. M.
Truong. A component architecture for an extensible,
highly integrated context-aware computing
infrastructure. In International Conference on
Software Engineering (ICSE 2003), pages 363–372,
May 2003.

[29] SmartCampus (2005). http://smartcampus.njit.edu.

