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Abstract Neutrophils are myeloid cells that constitute 50–

70 % of all white blood cells in the human circulation. Tradi-

tionally, neutrophils are viewed as the first line of defense

against infections and as a major component of the inflamma-

tory process. In addition, accumulating evidence suggest that

neutrophils may also play a key role in multiple aspects of

cancer biology. The possible involvement of neutrophils in

cancer prevention and promotion was already suggested more

than half a century ago, however, despite being the major

component of the immune system, their contribution has often

been overshadowed by other immune components such as

lymphocytes and macrophages. Neutrophils seem to have

conflicting functions in cancer and can be classified into

anti-tumor (N1) and pro-tumor (N2) sub-populations. The

aim of this review is to discuss the varying nature of neutro-

phil function in the cancer microenvironment with a specific

emphasis on the mechanisms that regulate neutrophil mobili-

zation, recruitment and activation.
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Introduction

Within the tumor microenvironment, there is a continuous

crosstalk between tumor cells, stromal cells and cells of the

immune system [1–3]. Tumor cells secrete a wide range of

cytokines and chemokines that not only attract and affect

macrophages, neutrophils, dendritic cells, NK-, B- and T-

cells, but also regulate other stromal cells, endothelial cells

and the tumor cells themselves. Cells of the innate and adap-

tive immune system in turn mutually affect the activation

status of other immune cells and attract more leukocytes into

the tumor cell mass. Surprisingly, non-malignant immune

cells can make up 90 % of the total tumor mass [2–5].

However, it is the integration of all signals encountered

within the tumor microenvironment that affects the com-

position and activation of the various immune cells with-

in the tumor cell mass and ultimately leads to either anti-

tumor or pro-tumor activities.

Signals emanating from the tumor may also affect

immune cell activities in the circulation and in distal

pre-metastatic organs such as the liver and the lung to

either restrain or encourage metastasis. Immune cell

inhibition of tumor growth is part of the process termed

immune surveillance, where circulating or tissue-

associated immune cells eliminate malignancies. Con-

versely, immune cells secrete factors that can stimulate

angiogenesis, remodel the extracellular matrix and pro-

mote cell growth thereby facilitating tumor growth and

dissemination. The balance between these opposite ac-

tions is dictated by multiple factors secreted by the

tumor cells, the tumor-associated stromal cells and the

immune cells themselves. A future goal is to develop

strategies that can modulate the tumor microenvironment

in such a way that the anti-tumorigenic activities of the

immune cells will prevail.

The goal of this review is to provide insight into the

complexity of the tumor-stroma interaction, with a spe-

cific emphasis on the role played by neutrophils, which

have recently emerged as a central player in the above-

described interplay.
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The Cancer-Neutrophil Crosstalk

In this review we will explore the influence of the microenvi-

ronment or niche on the phenotype and function of neutrophils

in the context of tumor initiation, growth and metastatic

progression. Significant controversy surrounds the function

of neutrophils in the context of cancer. Neutrophils are often

recruited to the tumor microenvironment where they have

been shown to either promote or inhibit tumor growth

[6–11]. There are several lines of evidence suggesting that

neutrophils may exert direct cytotoxic activities towards the

tumor, or indirectly lead to tumor regression through recruit-

ment and induction of tumor-specific T cell responses

[12–18]. For instance, tumor infiltrating neutrophils in

tumor-bearing rats secrete chemotactic factors for T lympho-

cytes and recruit T lymphocytes to the tumor bed [19]. When

neutrophils were selectively depleted at the time of in vivo

priming with γ-irradiated tumor cells, the growth of subse-

quent transplanted syngeneic tumors was not inhibited, indi-

cating that neutrophils are important for mounting specific

anti-tumor immune responses [19]. However, even in the

presence of activated neutrophils, cancer cells may generate

an immunosuppressed microenvironment, preventing cyto-

toxic immune responses, while enhancing the tumor-

promoting activities of the immune cells.

Below we discuss the interplay between cancer cells and

neutrophils, and their ultimate role in tumor growth and met-

astatic progression. We propose that in the context of tumor

growth and metastatic progression, neutrophils possess both

pro- and anti-tumor properties and that their function is deter-

mined in a niche-dependent fashion.

Niche-dependent Neutrophil Function

While chronic inflammation may promote tumorigenesis

[5, 20], the tumor cells themselves also attract immune cells

through the secretion of a wide range of chemokines such as

IL-8 (CXCL8 in human/CXCL2 in mouse), CCL2 (MCP-1),

CCL3 (MIP-1α), CCL5 (RANTES), CXCL6 (huGCP-2), and

KC (CXCL1), and cytokines such as IL-1β, IL-6, TNFα,

GM-CSF, and G-CSF, thereby inducing inflammation

[21–32]. Cytokines from tumors may regulate tumor growth

or modify the anti-tumor immune responses [33–36]. Cyto-

kines and chemokines from tumor cells also modify their

normal surrounding non-malignant stroma by modulating

the function of epithelial cells, endothelial cells, fibroblasts

and inflammatory cells to generate a supportive microenvi-

ronment [37–39]. For instance, TNFα, IL-6 and IL-17 were

shown to promote tumor growth by modifying the function of

stromal cells surrounding the tumor [40–42]. TNFα produced

by tumor cells or inflammatory cells in the tumor microenvi-

ronment can promote tumor cell survival through the

induction of NFκB–dependent anti-apoptotic molecules

[43]. TNFα was also shown to promote angiogenesis [44],

and induce the expression of VEGF andHIF-1α in tumor cells

[45]. IL-6 promotes angiogenesis and the expression of VEGF

[46] through JAK2/STAT3 signaling [42] and the tumor-

promoting effects of IL-17 are in part mediated through up-

regulation of IL-6 [42].

Traditionally, immune cells are viewed as protectors of the

host where they take part in immune surveillance, eliminating

both microbial infections and potentially cancerous cells.

However, in the context of a tumor, the function of these cells

is modified and they are “alternatively activated” to act against

the host and promote tumor growth and metastasis. It is

thought that tumors secrete factors that elicit a wound-repair

response by tumor-associated macrophages (TAMs) and

tumor-associated neutrophils (TANs) and that this response

inadvertently stimulates tumor progression [47].

The phenomenon of alternative activation and the shift

from anti-tumor to pro-tumor function of immune cells has

been extensively described for macrophages. Macrophages

have both pro- and anti-tumor actions depending on the acti-

vation signals, and have accordingly been classified into anti-

tumor “M1” and pro-tumor “M2” macrophages (Fig. 1)

[48, 6]. M1 macrophages show increased production of in-

flammatory cytokines (e.g., IL-1β, TNFα, IL-6, IL-12, IL-23)

and Th1, Th17 and NK cell-attracting chemokines such as

CXCL9/Mig and CXCL10/IP-10 [6]. Alternatively activated

M2 macrophages have a strikingly different gene expression

profile compared with M1 macrophages and express the immu-

nosuppressive cytokine IL-10, tumor growth factors (e.g., EGF,

FGF1, TGFβ1), pro-angiogenic factors (e.g., VEGF), matrix

remodeling factors (e.g., fibrin and matrix metallopeptidases),

and chemokines such as CCL17/TARC, CCL22/MDC and

CCL24/Eotaxin-2, that are involved in regulatory T (Treg) cell,

Th2 cell, eosinophil and basophil recruitment [6, 49, 50]. M2

macrophages contribute to the formation of an immunosup-

pressed microenvironment. TAMs often show a M2 phenotype

[51] and are characterized by the secretion of VEGF, HIF,

TGFβ, IL-10, Arginase I and reactive oxygen species (ROS)

[52], as well as various chemokines such as CCL2, CCL5

(RANTES), CXCL9, CXCL10, and CXCL16 [53]. TAMs

contribute to tumor growth and progression through extra-

cellular matrix remodeling, promotion of tumor cell inva-

sion and metastasis, angiogenesis, lymphangiogenesis and

immune suppression [6]. TAMs may also secrete cytokines

IL-1β, IL-6 and IL-23 that trigger the proliferation of IL-

17-producing CD8+ Tc17 cells [54], a T cell subset that is

often found to be present in various tumors [55]. IL-17

increases the synthesis of C-X-C chemokines from epithe-

lial cells [56] leading to increased neutrophil infiltration

into the tumor [57]. IL-17 also induces the production of

G-CSF [58], thus creating a G-CSF-IL-17-IL-23 feedback

axis that regulate neutrophil homeostasis [59].
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Tumor-associated neutrophils (“TANs”), like macro-

phages, may acquire an anti-tumorigenic “N1” or pro-

tumorigenic “N2” phenotype and are classified according to

their activation state, cytokine repertoire and effects on

tumor growth [7, 9–11, 60]. The N1 cells are character-

ized by cytotoxic activity towards tumor cells and an

immunostimulatory profile (i.e., TNFαhigh, CCL3high,

ICAM-1high, Arginaselow), whereas N2 neutrophils are char-

acterized by upregulation of the chemokines CCL2, 3, 4, 8,

12, and 17, and CXCL1, 2, 8 and 16 [10]. N1 cells produce

more superoxide and hydrogen peroxide and express higher

levels of Fas, TNFα, CCL3 and ICAM-1, but lower levels of

Arginase, CCL2, CCL5, VEGF, CXCR4 andMMP-9 than N2

cells [10]. Proinflammatory N1 neutrophils have also been

shown to promote CD8+ T cells recruitment and activation by

producing T cell-attracting chemokines (e.g., CCL3, CXCL9,

and CXCL10) and proinflammatory cytokines (e.g., IL-12,

TNFα, GM-CSF, and VEGF) [61]. There is a mutual interplay

between neutrophils and CD4+ T helper 17 cells (Th17) [62].

While IL-17 and CXCL8 secreted by Th17 cells induce the

recruitment of neutrophils, secretion of CCL2 and CCL20 by

activated neutrophils attracts Th17 cells [61–63]. Th17 cells

may further modulate neutrophil activity through secretion of

TNFα, IFNγ and GM-CSF [62].

The immunosuppressive transforming growth factor β

(TGFβ) was shown to promote the N2 neutrophil phenotype

[13], while interferon β (IFNβ) promotes the N1 phenotype

[64] (Fig. 1). Inhibition of TGFβ signaling using the small

molecule SM16 increased the mRNA levels for neutrophil

chemoattractants (CXCL2 and CXCL5) in macrophages iso-

lated from the tumor and increased the recruitment of CD11b+

neutrophils into the tumor with concomitant reduced tumor

growth [13]. Depletion of neutrophils prevented the SM16-

induced growth inhibition, suggesting an anti-tumor activity

mediated by neutrophils [13].

TANs differ from naïve neutrophils and G-MDSCs

(the granulocytic sub-population of myeloid-derived

suppressor cells) as they harbor low amounts of the various

neutrophil granules and generate low amounts of ROS, while

showing an enhanced chemokine secretion profile [10]. TANs
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Fig. 1 Polarization of neutrophils and macrophages. Two major activa-

tion pathways have been described for macrophages and neutrophils.

These immune cells can be activated through the classical pathway

involving microbial components and T-cell derived factors such as IL-

12 and IFNγ, into Type 1 inflammatory cells that combat acute infection.

Recent data suggest that IFNβ is also important for the polarization of

neutrophils into N1 cells. In the presence of immunosuppressive compo-

nents such as IL-10, TGFβ, PGE2, or excessive Th2 responses

characterized by IL-13 and IL-4 production, macrophages and neutro-

phils undergo an “alternative” activation pathway into Type 2 cells, which

exhibit immunosuppressive activities. Also, excessive G-CSF and TNFα

production may further promote Type 2 activation of neutrophils. Usual-

ly, the Type 1 activation prevails under acute inflammation, while Type 2

activation dominates under chronic inflammation, including the tumor

microenvironment. Type 2 activation seems to be a negative feedback

mechanism that counteracts excessive immune responses
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express higher levels of CXCL2, CXCL1 and CCL3 than

naïve bone-marrow neutrophils [65], thus generating a posi-

tive feedback loop for recruiting more neutrophils as well as

other immune cells to the tumor site. While TANs at the

primary tumor site seem to acquire an N2 phenotype induced

by high TGFβ levels, circulating neutrophils and neutrophils

in metastasis-free organs tend to have an N1 anti-tumor-

phenotype, due to paracrine exposure to activating tumor-

secreted factors such as the chemokines IL-8, CCL2, CCL5

and CXCL5 [32, 66]. Indeed, two studies have clearly dem-

onstrated an anti-tumor function for neutrophils at the pre-

metastatic lung [32, 66]. These neutrophils have been coined

tumor-entrained neutrophils (TENs), as these have been edu-

cated by the tumor to possess anti-tumor properties [32].

Immunosuppression in the Tumor Microenvironment

Ultimately, tumors do develop in the presence of a functional

immune system, suggesting that tumor cells acquire properties

that help them evade immune surveillance [67]. Indeed, tu-

mors have been shown to escape the anti-tumor immune

responses by generating an immunosuppressed tumor micro-

environment. Tumors often produce soluble immunosuppres-

sive factors, such as TGFβ [13, 68, 69], VEGF [69, 70], IL-10

[69, 71], iNOS [72, 73], PGE2 [74, 75], and gangliosides [76,

77], that act on neutrophils and other tumor infiltrating im-

mune cells. Often, progressive immunosuppression is ob-

served at advanced tumor stages, which is partially mediated

by tumor-infiltrating immunosuppressive immune cells such

as regulatory T (Treg) cells, Th17 cells, regulatory dendritic

cells, TAMs, TANs and MDSCs. The mechanisms that

mediate the immunosuppressive microenvironment de-

serve an in-depth exploration, which is beyond the

scope of this review. Here we will only describe the

effects of some of these immunosuppressive factors that

are relevant to neutrophil function.

TGFβ

Transforming growth factorβ (TGFβ), which exists in at least

three isoforms β1, β2 and β3, has been linked to the regula-

tion of tumor initiation, progression and metastasis [78] and

TGFβ1 is frequently upregulated in human cancers [79, 80].

Tumor-secreted TGFβ is usually sequestered to the extracel-

lular matrix as an inactive complex, and becomes activated

through enzymes such as neutrophil-derived elastase and ma-

trix metalloproteinase (MMP)-9, or expression of αvβ6

integrin [78]. In addition, reactive oxygen free radicals pro-

duced by activated neutrophils can activate latent TGFβ [81].

Thus, activated neutrophils, through production of elastase,

MMP-9 and ROS, may contribute to TGFβ-mediated immu-

nosuppression, a mechanism that may drive a negative

feedback that prevents excessive immune responses. Tumor-

associated MDSCs and TAMs are also significant sources of

TGFβ production [82, 83]. As MDSC and TAMs phenotypes

are affected by TGFβ [84], their initial appearance in the

tumor would further contribute to the immunosuppressed

microenvironment by enhancing the recruitment of these cells

to the tumor bed.

The importance of TGFβ in immunosuppression was dem-

onstrated by introducing the expression of a dominant-

negative TGFβ type II receptor in mouse tumor-specific T

cells. These ex vivo expanded TGFβ-insensitive CD8+ Tcells

infiltrated the tumor and mediated apoptosis in tumor cells

[68]. Fridlender et al. [13] showed that inhibition of TGFβ

signaling using the small molecule inhibitor SM16 conferred

anti-tumorigenic activity to neutrophils. Low concentrations

of TGFβ1 were further shown to inhibit neutrophil degranu-

lation, as measured by lactoferrin release, in response to

lipopolysaccharide (LPS) and formyl peptides [85]. TGFβ

was also shown to prevent the production of ROS, reactive

nitrogen intermediates and IL-1β by neutrophils [86]. Fur-

thermore, TGFβ has even been shown to be a potent

chemoattractant for neutrophils taking a central part in their

recruitment to sites of inflammation [87–89]. However, an-

other study showed that TGFβ reduces the expression of the

adhesion molecule L-Selectin, resulting in impaired neutro-

phil recruitment to sites of inflammation [86]. Blockage of

TGFβ signaling increased the numbers of neutrophils in tu-

mors, which was associated with increased amount of

chemokines and cytokines within the tumor, concomitant with

increased ICAM-1 expression on endothelial cells [13, 90].

The increase in intra-tumor neutrophil number observed fol-

lowing anti-TGFβ signaling therapy can be explained by the

ability of TGFβ to inhibit endothelial adhesiveness of neutro-

phils and neutrophil transmigration in vivo [91]. Abrogation

of TGFβ signaling in mammary carcinomas also led to in-

creased infiltration of Gr-1+CD11b+MDSCs into the invasive

front of tumor tissues facilitating tumor cell invasion and

metastasis through a process involving metalloproteinase ac-

tivity [82, 92]. Interestingly, MDSCs from TGFβ signaling

deficient tumor-bearing hosts produced higher levels of

VEGF, MMP-2, MMP-13 and MMP-14 than those isolated

from normal mice [82].

PGE2

Prostaglandins (PGs) are small-molecular derivatives of ara-

chidonic acid, produced by cyclooxygenases (COXs; consti-

tutively active cyclooxygenase COX-1 and inducible COX-2)

and PG synthases [93]. COX-2 expression is induced by

cytokines and growth factors at sites of inflammation and is

usually not detected in normal tissues [94]. Increased COX-2

expression and PGE2 production has been reported in
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human colon carcinoma [95], breast cancer [96, 97],

renal cell carcinoma [98], and lung carcinoma [99].

Prostaglandin E2 (PGE2) directly suppresses various im-

mune cells such as macrophages, neutrophils, Th1, CTL and

NK cells, while it promotes Th2, Th17 and regulatory T cell

responses as well as the development of tumor-associated

suppressive macrophages [93, 100–103]. The Th17-

promoting activity of PGE2 is related to its ability to

suppress the production of the Th17-inhibitory IL-12,

while enhancing the Th17-supporting IL-23 secretion by

dendritic cells [104]. As mentioned above, IL-17 pro-

motes neutrophil recruitment [59], such that increased

Th17 activity caused by PGE2 has indirect effect on

neutrophil function. Indeed, PGE2 has been shown to

stimulate IL-23/IL-17-induced neutrophil migration in

inflammation by inhibiting IL-12 and IFNγ production,

which may be one mechanism for its pro-inflammatory

effect [105]. PGE2 also promotes MDSC recruitment to

tumor through the local induction of CXCL12/SDF-1

[100]. In addition, PGE2 promotes the recruitment of

CD4+CD25+ Tregs to the tumor and has direct positive

effects on tumor progression [106]. PGE2 may also pro-

mote tissue influx of neutrophils [107], macrophages

[108] and mast cells [109]. One mechanism is through

PGE2-stimulated production of IL-8 by epithelial cells

[107] and pulmonary microvascular endothelial cells

[110], as well as MCP-1 by mast cells [108]. Further-

more, activated neutrophils have been shown to express

COX-2 and secrete PGE2 [111, 112], which may repre-

sent another mechanism for immune response restriction.

However, PGE2 may also contribute to dysregulated in-

flammatory responses by increasing vascular permeabili-

ty that facilitates influx of pro-inflammatory polypep-

tides. While PGE2 prolongs neutrophil half-life through

upregulation of intracellular cAMP levels and inhibition

of apoptosis [113], it also attenuates PMA-, fMLP- or

GM-CSF-stimulated ROS and LTB4 production in neu-

trophils [114–117]. The Th2 cytokine IL-13 was found to

increase neutrophil PGE2 production concomitant with

increased expression of complement receptor type 1

(CR1) and type 3 (CR3), and increased neutrophil

phagocytosis [118].

In line with the immunosuppressive, tumor promoting

function of PGE2, inhibitors of prostaglandin synthesis,

such as indomethacin and aspirin, have been shown to

inhibit tumor growth [101] and restore anti-tumor activ-

ity by altering the balance between IL-10 and IL-12

[119]. Recently, this issue has reached a renaissance

where specific COX2 inhibitors have been proposed to

be potential drugs for tumor prevention [120]. Non-

steroidal anti-inflammatory drugs (NSAIDs), such as

diclofenac, increased neutrophil superoxide production,

but also promoted L-Selectin down-regulation [121].

Interestingly, a mutual interplay between TGFβ and

PGE2 seems to exist, where TGFβ stimulation of CD4+

T cells induces production of PGE2, and PGE2 contrib-

utes to TGFβ-induced suppression of T cells [122].

Other Immunosuppressive Molecules

The expression of indoleamine 2,3-dioxygenase (IDO), a

tryptophan catabolizing enzyme, in tumors may lead to dys-

functional T cell response through depletion of tryptophan

from the tumor microenvironment [123, 124]. IDO is also

produced by MDSCs, regulatory dendritic cells and TAMs

[6, 52, 125, 126]. Silencing of IDO within the tumor using

Salmonella typhimurium as a tumor-homing vector to deliver

a short-hairpin RNA targeting IDO, allowed tumor infiltration

of activated ROS-producing neutrophils and consequent tu-

mor cell death [127].

Another mechanism leading to suppression of T-cell medi-

ated immune responses is excessive production of adenosine

by the cell surface enzyme CD73 (ecto-5′-nucleotidase) [128,

129]. CD73 is usually expressed on endothelial and epithelial

cells [130], subsets of leukocytes [131] and Foxp3+ Tregs

[128, 129], but also on several cancer types [132, 133].

CD73 acts in concert with CD39 (ecto-apyrase) to produce

adenosine in a coordinated two-step enzymatic conversion.

Both CD39 and CD73 seem to attenuate neutrophil trafficking

into the lungs during LPS-induced injury [134] suggesting

that CD73 expression on tumor cells is likely to limit neutro-

phil infiltration. CD73-deficient mice have increased anti-

tumor immunity and are resistant to experimental metastases

[135]. Similarly, anti-CD73 antibody therapy was found to

inhibit breast tumor growth and metastasis [136].

Regulation of Neutrophil Mobilization, Recruitment

and Activation in Cancer

Neutrophil Mobilization in Cancer

Human cancers often induce elevated numbers of circulating

neutrophils [6, 7, 9–11, 137–159]. The consequences of

cancer-induced neutrophilia in human patients will be further

discussed in the section discussing “Prognostic Values of

Neutrophils and Other Myeloid Subtypes in Cancer Patients”.

In tumor bearing mice, a phenomenon similar to what occurs

upon inflammation, is observed, namely, the number of circu-

lating neutrophils increase dramatically and are associated

with the progression of the disease [32, 160–162]. For exam-

ple, using the 4T1 mammary tumor model in Balb/c mice, we

showed that within 1 week after orthotopic inoculation of the

tumor, circulating neutrophil numbers increased from ~17 %

to over 30 % [32]. This increase continues with the
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progression of the disease, reaching a state of acute

neutrophilia with neutrophils making ~90 % of all circulating

white blood cells [32]. Similar increase in circulating neutro-

phil numbers was seen in other mouse models of cancer

including Lewis lung carcinoma [163] as well as in spontane-

ous mouse models such as the MMTV-PyMT and MMTV-

Wnt1 transgenicmice [32], where tumor initiation is driven by

a transgene, rather than an engrafted tumor. In a rat model of

13762NF mammary adenocarcinoma cells, the number of

circulating neutrophils did not increase in poorly metastatic

cells, whereas the number rose 50-fold in rats bearing a highly

metastatic clone [164]. An intermediate rise in neutrophil

number (12–14-fold) was observed in moderately metastatic

tumors [164]. The increase in neutrophil number correlated

with the ability of the tumor cells to secrete CSF [165]. These

tumor cells did not induce a cytotoxic neutrophil response,

while i.v. co-injections of tumor-elicited neutrophils

caused a dose-dependent increase in extrapulmonary

metastases that was associated with increased production of

heparanase and type IV collagenolytic enzymes by the neu-

trophils [164]. In contrast to tumor-elicited neutrophils, nor-

mal or proteose peptone-elicited neutrophils did not alter the

invasive potential [166].

How are the Neutrophils Mobilized? Unlike the situation in

infection and inflammation where neutrophil mobilizing fac-

tors are secreted by endothelial cells and other stromal cells, in

the context of cancer, neutrophil mobilizing factors are often

secreted by the tumor cells themselves [22]. The most com-

mon neutrophil chemoattractants produced by tumors include

IL-8 (CXCL8/CXCL2), MIP-1α (CCL3), huGCP-2

(CXCL6) and KC (CXCL1) [167–171]. G-CSF is ectopically

expressed in several human tumors such as leukemia [172],

bladder [173], pancreatic [174], cervical [175], ovarian [176],

head and neck [177], colorectal [178] and breast carcinoma

[179]. Similarly, some human cancers show elevated GM-

CSF expression levels [31, 180, 181]. It is therefore not

surprising that elevated numbers of circulating neutrophils

are seen in a wide variety of human malignancies.

GM-CSF and G-CSF are broadly used therapeutically in

cancer patients for their positive effects on bone marrow

mobilization and immune functions. They are especially im-

portant for overcoming neutropenia caused by various anti-

neoplastic treatments. However, accumulating studies show

that these factors also promote the expansion of myeloid

suppressive components, with undesirable consequences on

tumor antigen-specific immune responses [182]. For instance,

GM-CSF-based anti-tumor vaccine to human metastatic mel-

anoma patients induced a subset of immunosuppressive

MDSCs that involved TGFβ secretion [183]. GM-CSF may

increase immune responses when administered at low doses,

while causing an opposite effect at high doses [182]. While

physiological concentrations of GM-CSF are required for

normal myelopoiesis, chronic administration of GM-CSF re-

sulted in the generation of immune suppressive Gr-1+CD11b+

cells in mice [184]. Experimental tumors overexpressing GM-

CSF induced a systemic increase of immature myeloid cells,

which was associated with suppression of T cell immune

responses [184–186]. However, irradiated cancer cells

engineered to secrete GM-CSF elicited potent anti-tumor im-

mune responses in various animal tumor models [187].

Similarly, tumor-secreted G-CSF that contributes to neu-

trophil mobilization, activation and stimulation of oxidative

metabolism [188–191], is also involved in the polarization

towards immunosuppressive MDSCs [192, 193]. The pres-

ence of G-MDSCs was shown to be important for promoting

tumor growth [193]. Besides stimulating neutrophils, G-CSF

may stimulate non-hematopoietic malignant tumor cell

growth in an autocrine fashion [173, 194]. G-CSF receptor

(G-CSFR) expression has been observed in bladder cancer

cells [195], ovarian cancer [196], colorectal cancer [197] and

Ewing sarcoma [198]. G-CSF administration increased tumor

growth of Erwin sarcoma [198], and must therefore be care-

fully considered before use for stimulating neutrophil recruit-

ment following chemotherapy.

Neutrophil Recruitment to the Tumor Microenvironment

Neutrophils make up a significant proportion of the non-

malignant stroma that contributes to the tumor microenviron-

ment [199]. The increase in circulating neutrophil numbers in

the context of cancer (see “Neutrophil Mobilization in Cancer”

section) may passively lead to an increase in the absolute

number of neutrophils marginating at the tumor microenviron-

ment. However, neutrophils are also actively recruited into the

tumor microenvironment in both cancer patients and mouse

models of cancer. In humans, intratumoral infiltration of neu-

trophils has been detected in gastric carcinoma [200–202],

bronchioloalveolar carcinoma [170, 203], non-small cell lung

carcinoma [204], pancreatic neoplasia [205], pancreatic ductal

adenocarcinoma [206], bladder cancer [147], glioma [207],

cervical carcinoma [139] and breast carcinoma [4, 208]

(Table 1). The clinical consequences of intratumoral and

circulating neutrophils in cancer patients will be discussed in

“Prognostic Values of Neutrophils andOtherMyeloid Subtypes

in Cancer Patients” section.

Neutrophils are actively recruited to the tumor microenvi-

ronment along a chemotactic gradient of tumor-secreted fac-

tors. Production of CXCL8/IL-8 and related chemokines oc-

curs downstream to oncogene activation [209–211]. Bellocq

et al. [170] observed a direct correlation between the number

of neutrophils and IL-8 levels in broncoalveolar lavage fluids

from bronchioloalveolar carcinoma patients, suggesting a role

for this cytokine in neutrophil recruitment. Neutrophils were

mainly located in the alveolar lumen, while seldom in the

alveolar wall [170]. CXCR1 and CXCR2 are the major
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neutrophil receptors that mediate neutrophil chemotaxis to the

tumor microenvironment in response to IL-8. The same re-

ceptors also mediate neutrophil response to other ligands such

as CXCL1/2/3, ENA-78 (epithelial-cell-derived neutrophil

attractant-78; CXCL5), GCP-2 (granulocyte chemotactic

protein-2; CXCL6) and NAP-2 (neutrophil-activating

peptide 2; CXCL7) [212–215]. The neutrophil-sensitive hu-

man HT-29 colorectal adenocarcinoma and FaDu pharyngeal

squamous-cell carcinoma cells secrete IL-8 and GROα, and

induced the adhesion of neutrophils to ICAM-1 on

microvascular-endothelial cell monolayers resulting in trans-

migration through the endothelial cell monolayer [216]. Re-

cruited neutrophils also release cytokines and chemokines,

which enhance their own recruitment and activation in addi-

tion to inducing the migration of other immune cells [217].

Neutrophil-secreted MMP-9 may process the chemokine

Table 1 Tumor-associated neutrophils (TANs) in human cancer

Cancer type Major findings Reference

Bladder cancer • Increase in circulating CD11b+CD15highCD33low granulocytes, while no increase in

CD11b+CD15lowCD33high monocytes. Both cell types are activated.

• Presence of circulating monocyte-macrophage CD11b+HLA-DR+, and granulocytic

CD11b+CD15+HLA-DR− myeloid cells.

• Myeloid cells secrete CCL2, CCL3, CCL4, G-CSF, IL-8 and IL-6.

• Granulocytes inhibit in vitro T cell proliferation through induction of CD4+Foxp3+

T regulatory cells.

[147]

Metastatic adenocarcinomas of the

pancreas, colon, and breast

• Unusually large number of circulating granulocytes co-purified with low density

PBMCs on a density gradient.

• Increased oxidative stress and production of H2O2 in circulating granulocytes.

• H2O2-dependent reduction in T-cell receptor ζ chain expression and IFNγ production

in T cells.

[278]

Bronchioloalveolar carcinoma • Neutrophils are present in the alveolar lumen. The number of neutrophils

correlate with IL-8 levels.

[170]

Stage III and IV lung and stomach cancer • Patients with lung and stomach cancer showed increased blood neutrophil

count, but decreased level of leukocyte cationic proteins.

[386]

Recurrent localized cervical cancer • High density of CD66b+ neutrophils and CD163+ macrophages in

peritumoral compartment.

[139]

Hepatocellular carcinoma (HCC) • Intratumoral CD66b+ neutrophils correlate with CD8+ T cells, TGFβ

expression, BCLC stage and early recurrence.

• Increased intratumoral neutrophil numbers were associated with decreased overall

survival, while peritumoral neutrophils were not associated with the outcome.

[387]

Hepatocellular carcinoma (HCC) • Neutrophils from HCC patients produced CCL2 and CCL3. High CCL2 production

was associated with reduced overall survival.

[388]

Hepatocellular carcinoma (HCC) • Pro-inflammatory IL-17-producing cells recruit neutrophils into the peritumoural

stroma of hepatocellular carcinoma (HCC) by epithelium-derived CXC chemokines.

• Neutrophils promote angiogenesis at the adjacent tumor-invading edge via MMP-9 signaling.

• Selective depletion of neutrophils inhibits tumor progression and growth.

[57]

Resectable non-small cell lung cancer • Intratumoral CD66b+ neutrophils were elevated in 50 % of the patients.

• An increase in CD66b+ cells was associated with high incidence of relapse and worse

overall survival.

[204]

Colorectal cancer • Increase in MPO+ and CD15+ cell infiltrate in the mucosa.

• While MPO+ cells were largely CD15+CD66b+, a high percentage of CD15+CD66+

cells were MPO−.

• Only high density of MPO+ cell infiltration was associated with improved survival.

[362]

Colorectal carcinoma • High intratumoral CD66+ cells were associated with a poorer prognosis. [365]

Melanoma stage I/II • Presence of CD66b+ tumor infiltrating neutrophils was associated with poor prognosis. [389]

Renal cell carcinoma • The presence of intratumoral neutrophils was associated with increased tumor size and

shorter recurrence-free survival.

[390]

Cervical cancer • The highest densities of CD66b+ neutrophils and CD163+ macrophages were observed

in the peritumoral environment.

•High peritumoral and stromal neutrophils were associated with shorter recurrence-free survival.

[139]

Various cancer samples • CD15+ neutrophils were found in substantial amounts in untreated malignant

hepatocellular, cervical, colorectal and gastric carcinoma.

• The CD15+ cells were more abundant in the peritumoral stroma than in the cancer nest.

• The peritumoral stroma CD15+ cell density was associated with intrahepatic metastasis

in liver cancer and lymph node metastasis in gastric cancer.

[391]

Evidence for the presence of neutrophils within human cancer specimens and its prognostic value
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CXCL5 to further promote neutrophil recruitment [214]. Sim-

ilarly, neutrophil-derived Cathepsin G may increase the che-

motactic activity of CXCL8, CXCL5 and CCL15 through N-

terminal truncation [218].

Ly6G+ neutrophils are the dominant source of CXCR2 in

the blood, and CXCR2 deficiency attenuates neutrophil re-

cruitment to the tumor bed [219]. Depletion of Ly6G+ cells

purged CXCR2-dependent tumor-associated leukocytes, sup-

pressed established skin tumor growth and colitis-associated

tumorigenesis [219]. CXCR2 is thus a potent pro-tumorigenic

chemokine receptor that directs recruitment of tumor-

promoting leukocytes into tissues during tumor-inducing and

tumor-driven inflammation [219]. This notion correlates well

with the important role CXCR2 plays in recruiting neutrophils

to inflammatory sites.

The granulocyte chemotactic protein (GCP)-2/CXCL6was

shown to be important for the recruitment of neutrophils to

melanoma tumors, and is associated with angiogenesis and

tumor growth [171, 220]. CXCL6 specific antibodies reduced

the recruitment of neutrophils to the tumor, with concomitant

reduction in tumor growth [220]. There are several lines of

evidence to suggest that CD8+ T cells may promote the

recruitment of neutrophils to the tumor, supposedly through

secretion of IFNγ [14] and vice versa, neutrophils contribute

to T cell recruitment and activation [14]. Elimination of either

neutrophils or CD8+ T cells, or administration of IFNγ neu-

tralizing antibodies prevented tumor regression, suggesting a

tight co-operation between neutrophils and CD8+ cells in

eliminating the tumor [14]. In contrast, regulatory T

cells may limit neutrophil recruitment to the tumor site,

which might be related to decreased expression of neu-

trophil chemoattractants such as CCL3, CXCL1 and

CXCL2 [221].

CXCL12 and VEGF are also suggested to act as

chemoattractants for myeloid cells [222, 223] and may act in

concert for recruiting neutrophil to the tumor microenviron-

ment. Under normal conditions, a tight cooperation between

myeloid cells and endothelial progenitor cells is required for

proper neovascularization [223]. VEGF induces bone

marrow-derived myeloid cell mobilization to the circulation

and through VEGF-mediated upregulation of SDF1/CXCL12

in activated perivascular myofibroblasts, the myeloid cells are

kept in close proximity to angiogenic vessels [223]. VEGF is

upregulated in a wide variety of tumors [69, 224–227], as is

CXCL12 [228]. CXCL12, that is also upregulated by hypoxia

[229], augments CXCR4 expression on vascular endothelial

cells [230] and attracts CXCR4+ cells, including neutrophils,

to the tumor [223].

While tumor cells are capable of secreting neutrophil

chemoattractants, other cells in the tumor microenvironment

may also contribute to neutrophil recruitment. For example,

tumor-infiltrating T helper type 17 (Th17) cells and IL-17

induce the expression of G-CSF, leading to immature

myeloid-cell mobilization and recruitment into the tumor mi-

croenvironment [231]. IL-17 may also induce the expression

of C-X-C chemokines, notably CXCL8/IL-8, in epithelial

cells that in turn recruit neutrophils to the tumor [57]. The

presence of Th17 cells within the tumor microenvironment

could antagonize and counter the tumor-suppressive IFNγ-

producing CD4+ Th1 cells, and are thereby likely involved in

the promotion of tumor growth [83]. However, in a lung

melanoma mouse cancer model, adoptive transfer of Th17

cells promoted tumor-specific CD8+ T cell activation [232],

suggesting for a dual role for Th17 cells in tumor biology. The

Th17 cells promoted dendritic cell recruitment into the tumor

tissues and stimulated CCL20 chemokine production by

the tumor [232].

Recently, another tumor-derived cytokine, IL-35, was

shown to promote tumor growth by enhancing myeloid cell

accumulation and angiogenesis [233]. IL-35 does not directly

inhibit tumor-associated CD8+ T cell activation, differentia-

tion, or effector functions, but IL-35-treated cancer cells

showed increased expression of gp130 and reduced sensitivity

to CTL destruction [233]. Altogether, these data suggest that

tumor cells induce a chronic inflammatory response.

Neutrophil Activation in Cancer

Neutrophils are traditionally perceived as the first line of

defense against microbial infections and as mediators of in-

flammation, which possess favorable properties that protect

the host. In the context of cancer, neutrophils were shown to

exert both pro- and anti-tumor activities suggesting for a dual

mode of activation which is the basis for the distinction

between N1 and N2 neutrophils, as described in

“Niche-dependent Neutrophil Function” section. Interest-

ingly, several tumor-derived cytokines can activate neu-

trophil cytotoxic activities, including CCL2, CCL5, CCL3,

CXCL1, SDF1/CXCL12 and CXCL16 [32, 66]. However,

these chemokines are usually associated with pro- rather than

anti-tumor activities. For example, CCL2 (MCP-1), which is

overexpressed in a wide range of cancers [234], is associated

with poor prognosis in breast, colorectal, cervical and thyroid

cancers [235–239]. Tumor-derived CCL2 plays a pro-tumor

role by recruiting inflammatory monocytes to pulmonary

metastases [240] and MDSCs to the tumor microenvironment

[241], as well as promoting angiogenesis [242], tumor cell

proliferation [243] and migration [244]. On the other hand,

CCL2 prevents apoptosis of neutrophils [245] and activates

neutrophils in the pre-metastatic lung towards an anti-tumor

phenotype where they produce H2O2 to kill disseminated

tumor cells [32, 66], suggesting a dual role of this chemokine.

Also, CXCL1 was shown to promote tumor cell proliferation

[246], tumor angiogenesis [247], invasion and migration

[248], in addition to its ability to recruit and activate neutro-

phils [249]. CXCL1 was shown to be involved in a paracrine

132 R.V. Sionov et al.



network mediating both metastatic progression and

chemoresistance [250]. IL-8 is another chemokine expressed

in variety of tumors and is associated with neutrophil recruit-

ment and activation [251]. For example, IL-8 secreted by

human fibrosarcoma and prostate carcinoma cells promoted

the infiltration of MMP-9+ neutrophils [252] and melanoma

secreted IL-8 was shown to increase CD11b/CD18 expression

on neutrophils, an indication for their activation [253, 254].

A dual role has also been observed for G-CSF. On the

one hand, G-CSF is an essential cytokine for mobilization

of neutrophils, and under certain conditions, activates

them. On the other hand, G-CSF may polarize

granulocytes to promote tumor growth and metastasis

[26]. These seemingly conflicting roles played by both

neutrophils and the tumor-derived chemokines, put forth

the question of what determines the overall contribution

of neutrophils to cancer? It is likely that the pro- and anti-

tumor activities of neutrophils are determined by the

overall cytokine and chemokine milieu provided by the

tumor and the tumor infiltrating cells rather than the

expression level of a specific chemokine. This notion is

supported by the fact that TGFβ was shown to be a potent

repressor of neutrophil cytotoxicity both in vivo and

in vitro [13, 32]. This is best exemplified by the differ-

ences in the function of neutrophils at the primary tumor

site versus their activity at the pre-metastatic niche. High

TGFβ activity in the tumor microenvironment generates

immune suppressive conditions, attenuating the potential

cytotoxicity of activated neutrophils recruited to the tumor

bed [13]. At the same time, the full extent of activated

neutrophil anti-tumor cytotoxicity may be manifested in

distant organs, i.e. the pre-metastatic niche, where TGFβ

levels are low [32, 66].

Tumor-Associated Neutrophils (TANs): Pro-

and Anti-Tumor Mechanisms

Neutrophils in Tumor Initiation - Inflammation-Associated

Tumorigenesis

Chronic inflammation has been associated with increased

susceptibility for cancer [20]. This is well demonstrated in

chronic Hepatitis B virus infection [255], where the persisting

insult and chronic inflammation ultimately leads to hepatocel-

lular carcinoma. Another well-studied example is the correla-

tion between inflammatory bowel (IBD) disease and colorec-

tal cancer (CRC) with up to 30 % of IBD patients developing

CRC [256]. The inflammatory process involves a wide range

of immune cells of which neutrophils make a significant

fraction. It is therefore reasonable to assume that neutrophils

also play a part in inflammation-driven tumorigenesis. Indeed,

neutrophils were shown to directly promote tumorigenesis by

causing genomic instability [257]. Neutrophil-induced

genotoxicity has been related to induction of oxidative DNA

damage through release of ROS and myeloperoxidase-related

metabolites [258–260]. In addition, neutrophils were shown to

promote experimental chronic colitis-associated carcinogene-

sis in mice [261]. Neutrophil recruitment to the inflamed

submucosa was mediated by the chemokine CXCL2 through

the neutrophil receptor CXCR2, resulting in increased neutro-

phil secretion of MMP-9 and neutrophil elastase, and conse-

quent excessive angiogenesis and cell proliferation [261].

Elastase degrades barrier-forming proteins on epithelial cells

[262] and neutrophil-derived elastase was found to degrade

the adhesion molecule E-Cadherin on pancreatic ductal ade-

nocarcinoma, leading to tumor cell dyshesion and increased

migratory capacity [206]. Neutrophil infiltration of pancreatic

ductal adenocarcinoma cells was also associated with

epithelial-to-mesenchymal transition (EMT). In vitro cultiva-

tion of tumor cells with neutrophils led to enhanced expres-

sion of the transcription factor TWIST, translocation of β-

Catenin to the nucleus, appearance of ZEB1 in the nucleus and

downregulation of keratins, a sign of (EMT) [263].

Under certain circumstances, administration of neutrophil-

neutralizing antibodies reduced the number and size of tumors

[261, 264, 265]. The tumorigenic effect of MMP-9, predom-

inantly provided by neutrophils and mast cells, was also

reported in a mouse model of skin cancer where MMP-9

knockout mice showed decreased incidence of invasive tu-

mors [266]. While there is a large body of evidence to support

the pro-tumorigenic function of neutrophils, several studies

show that neutrophils also possess anti-tumorigenic functions.

For example, neutrophils were shown to participate in im-

mune surveillance and eliminate potentially malignant cells

and neutrophil MMP-8 was shown to provide protection

against carcinogen-induced skin tumors [267].

Neutrophils at the Primary Tumor Site

Neutrophils are frequently found in solid tumors [268] (see

“Neutrophil Recruitment to The Tumor Microenvironment”

section), and together with macrophages and NK cells make

up the vast majority of tumor infiltrating cells. The fact that

neutrophils are frequent residents of solid tumors is not sur-

prising as many of these tumors express and secrete high

levels of neutrophil mobilizing factors and neutrophil

chemoattractants. For example, IL-8/CXCL8, a potent neu-

trophil chemotactic factor and activator, was found to be

expressed in a wide variety of human cancers [253,

269–272]. In most cases, IL-8 is secreted by the tumor cells

themselves [210], while in others, other stromal cells such as

fibroblasts [273] and macrophages [274] secrete IL-8. Some

human cancers secrete high levels of G-CSF and GM-CSF
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[275, 276], acting as both potent mediators of neutrophil

mobilization, recruitment and activation (Fig. 2).

Recruited neutrophils were shown to acquire a pro-tumor

phenotype similar to that of tumor-associated monocytes,

which by analogy to the M2 monocyte phenotype, was

referred to as an N2 neutrophil phenotype [13]. TANs were

shown to support tumor growth by producing angiogenic

factors and matrix-degrading enzymes [8, 57, 64, 252, 264,

277]. Neutrophils were also shown to promote the acquisi-

tion of a metastatic phenotype [265] and to suppress anti-

tumor immune responses [278]. Neutrophil-derived CXCL2

enhances angiogenesis as well as neutrophil accumulation,

ultimately inducing carcinogenesis [247]. Several studies

have shown that G-CSF may stimulate angiogenesis and

promote tumor growth [279–281]. This effect of G-CSF is

mediated through recruitment of CD11b+Gr1+ MDSCs and

increased number of endothelial progenitor cells [279]. The

pro-angiogenic effects of MDSCs is in part driven by Bv8

(prokineticin 2/PK2), which is upregulated by G-CSF [282,

283] through a STAT3 dependent mechanism [284]. G-CSF

may further contribute to tumor angiogenesis by inducing

VEGF-A production in neutrophils [285]. The neutrophil

secreted MMP-9 has been functionally implicated in VEGF

activation [286], thus further fortifying angiogenesis. A co-

operation between cancer cells and neutrophils in promoting

angiogenesis was demonstrated by Queen et al. [4], where

GM-CSF secreted by breast cancer cells stimulated neutro-

phils to produce oncostatin M, which in turn stimulated the

tumor cells to produce VEGF, thereby augmenting tumor-

associated angiogenesis.

IL-17 produced by Th17 cells induces expression of G-CSF,

leading to immature myeloid-cell mobilization and recruitment

into the tumor microenvironment [231]. These CD11b+Gr1+

MDSCs produce the pro-angiogenic Bv8 [283], that bypasses

VEGF and renders tumors refractory to anti-VEGF therapy

[231]. Anti-Bv8 treatment reduced the number of CD11b+Gr1+
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Fig. 2 The crosstalk between cancer cells, neutrophils and other immune

cells in the tumor microenvironment. The tumor microenvironment is

characterized by a state of chronic inflammation, where tumor cells

secrete a range of cytokines and chemokines that recruit and activate

neutrophils and other immune cells. Accumulating evidence suggest that

neutrophils are essential for mounting an adaptive immune response, as

this fails to occur upon depletion of neutrophils. Neutrophils exert both

pro-tumor and anti-tumor activities. Through production of ROS, nitric

oxide and TRAIL, neutrophils can directly kill the tumor cells. Neutro-

phils also indirectly prevent tumor growth through eliciting specific anti-

tumor CD8+ cytotoxic responses. By virtue of their multifunctional tasks,

neutrophils may also stimulate tumor growth through secretion of ECM

remodeling enzymes and pro-angiogenic factors. As in chronic inflam-

mation, a negative feedback mechanism involved in restricting immune

responses, such as the generation of MDSCs, also occurs within the

tumor, generating an immunosuppressed environment that antagonizes

the anti-tumorigenic activities of neutrophils. The secretion of immuno-

suppressive factors by the tumor cells themselves further fortifies this

immunosuppressed milieu. (TANs Tumor Associated Neutrophils, TAMs

Tumor Associated Macrophages)
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cells in peripheral blood and in tumors along with suppression

of angiogenesis [283]. Thus, G-CSF may induce angiogenesis

through a Bv8-dependent mechanism.

The important role of neutrophils in the induction of the

angiogenic switch in cancer, was further illustrated in a RIP1-

Tag2 transgenic mouse model of pancreatic β-cell carcino-

genesis [287]. MMP-9-expressing neutrophils were predomi-

nantly found in angiogenic islet dysplasias and in tumors,

whereas MMP-9-expressing macrophages were localized

along the periphery of these lesions [287]. Transient depletion

of neutrophils reduced the frequency of initial angiogenic

switching in islet dysplasias. Jablonska et al. [64] observed

that IFNβ-deficient mice develop faster growing melanoma

and fibrosarcoma tumors with better developed blood vessels

than did wild-type mice. These tumors displayed enhanced

infiltration of CD11b+Gr1+ neutrophils that expressed high

levels of VEGF, MMP-9 and CXCR4. The transcription fac-

tors c-Myc and STAT3 regulating the expression of these

proteins, were also elevated in the neutrophils [64]. Thus,

endogenous IFNβ seems to inhibit tumor angiogenesis

through repression of genes encoding pro-angiogenic and

homing factors in tumor-infiltrated neutrophils [64]. Neutro-

phils in bronchioloalveolar carcinoma produce hepatocyte

growth factor (HGF) that stimulates the migration of the tumor

cells [203]. Similarly, human cholangiocellular and hepatocel-

lular carcinoma cells induce HGF secretion by neutrophils,

which in turn enhances the invasiveness of the cancer cells

[288]. TANs can also stimulate tumor growth by releasing

growth factors such as epidermal growth factor, TGFβ and

platelet-derived growth factor (PDGF) from the extracellular

matrix [289]. The important role neutrophils play at the primary

tumor site was further demonstrated using neutrophil depletion

experiments in mice. In neutrophil depleted mice tumor growth

was significantly reduced supporting the notion of pro-

tumorigenic neutrophil function at the primary tumor site [287,

264]. While these observations clearly demonstrate a pro-tumor

function for neutrophils in the tumor-microenvironment, there

are several convincing observations showing the opposite (See

“Anti-Tumor Functions of Neutrophils” section). The complex-

ity of the mechanisms that regulate neutrophil function in the

primary tumor microenvironment is exemplified in Fig. 2.

Promotion of Cancer Cell Dissemination by Neutrophils

There are several studies showing that neutrophils promote

tumor cell motility, migration and invasion [146]. Neutrophils

may facilitate invasion through secretion of enzymes

degrading the extracellular matrix such as elastase, Cathepsin

G, proteinase-3, MMP-8 and MMP-9 [146]. Neutrophils may

also indirectly contribute to the degradation of the extracellu-

lar matrix through activation of tumor-derived pro-MMP-2

(pro-Gelatinase A), mediated by the neutrophil-derived elas-

tase, cathepsin G and proteinase-3 [290].

IL-8-producing tumor cells have frequently been shown to be

more metastatic than the corresponding non-producer cells

[291]. IL-8 is a potent chemoattractant for neutrophils and

normally recruits neutrophils to the site of wounds. However,

in the tumor settings, IL-8 induces the release of specific prote-

ases and heparanases by recruited neutrophils. These proteases

and heparanases remodel the extracellular matrix making it

easier for tumor cells to intravasate. Neutrophil elastase activates

other latent proteases in the tumor microenvironment which

cleave and inactivate plasminogen activator inhibitor-1, leading

in turn to the release of embedded growth factors such as bFGF,

a potent angiogenic factor [291]. An interesting interplay be-

tween neutrophil elastase and its inhibitor alpha 1-antitrypsin

seems to have a significant impact on cancer development

[292]. A deficiency in alpha 1-antitrypsin is associated with

increased risk of liver cancer, bladder cancer, gall bladder can-

cer, malignant lymphoma and lung cancer [292]. Conversely,

elevated concentrations of neutrophil elastasemight promote the

development, invasion, and metastasis of many cancers [292].

Neutrophils also release high levels of MMP-9/Gelatinase B,

which further affects extracellular matrix remodelling. HOCl

produced by myeloperoxidase of activated neutrophils oxidizes

specific sulfur-containing amino acids and activates the MMP

pro-enzymes. In parallel, HOCl inactivates TIMP-1, thereby

further increasing the proteolytic activity of MMPs [291].

Neutrophils activated by melanoma-secreted IL-8 can fa-

cilitate melanoma cell extravasation through an interaction

between ICAM-1 (CD54) on the melanoma cells and Mac-1

(CD11b/CD18) on neutrophils [253, 254, 293]. Neutrophils

were also shown to be important for entrapping circulating

melanoma cells and thus facilitating lung metastasis develop-

ment [294]. Melanoma-secreted IL-8 not only attracts neutro-

phils, but also strongly upregulates β2 integrins, which inter-

act with ICAM-1 on melanoma cells, thereby promoting the

anchoring of the tumor cells to vascular endothelium [294].

Other studies further show that IL-8 increases neutrophil β2

integrin expression with simultaneous shedding of L-selectin

(CD62L), thereby promoting their sequestration in the lung

[295]. Similarly, neutrophils were shown to promote breast

cancer cell transendothelial migration through an ICAM-1-

CD11b/CD18 interaction dependent mechanism [296]. Neu-

trophils were also shown to interact with colon carcinoma

cells, facilitating their dissemination [297]. The interaction

was mediated by CD11b, CD11a and L-selectin on neutro-

phils and CD54 and sialylated, O-linked, protease-sensitive

ligands on the tumor cells [297, 298].

Neutrophils in Pre-Metastatic Organs - The “Seed and Soil”

Hypothesis

In 1889, Stephen Paget proposed that tumors do not metasta-

size to random organs and that there are preferable sites of

metastasis for specific tumors. This has led to the realization
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that successful colonization of a distant organ requires a

degree of compatibility between the tumor cell and the future

site of metastasis. This realization was the basis of the “Seed

and soil” theory. This theory was expanded uponwhen tumors

were shown to directly enhance the seeding of circulating cells

in the lungs [299], suggesting that the tumor can modulate the

“soil” to make it more compatible with the “seed”. Later

studies have shown the direct involvement of bone marrow

derived VEGFR1+ progenitor cells [300, 301] in generating

the pre-metastatic niche that is more receptive toward incom-

ing tumor cells. These cells were identified as of myeloid

lineage, and appeared not to differentiate, but maintained their

expression of immature surface markers including c-Kit and

Sca-1 within the tissue parenchyma [300]. Of note, the for-

mation of the pre-metastatic niche was found to be organ

specific. Yan et al. [302] observed that CD11b+Gr-1+myeloid

cells are increased in lung of mice bearing mammary adeno-

carcinomas before tumor cell arrival. These immaturemyeloid

cells decreased IFNγ production, but increased the production

of pro-inflammatory cytokines in the premetastatic lung [302].

In addition, the CD11b+Gr-1+ cells produce large amounts of

MMP-9 and promote vascular and ECM remodeling [302].

Deletion of MMP-9 normalized aberrant vasculature in the

pre-metastatic lung and diminished lung metastasis [302].

More recently, Gao and colleagues [303] showed that it was

the CD11b+Ly6Chigh monocytic myeloid subpopulation that

was promoting metastatic seeding in the lungs rather than the

neutrophilic CD11b+Ly6Ghigh subpopulation. Interestingly,

the pro-metastatic effect of CD11b+Ly6Chigh monocytes at

the pre-metastatic lung was found to be mediated by secretion

of versican which in turn leads to mesenchymal to epithelial

transition (MET) and to enhanced proliferation [303]. Still,

while these studies do not implicate neutrophils in the process

of priming the pre-metastatic niche, the fact the neutrophil

chemoattractants such as S100A8 and S100A9 [301] are

available in the pre-metastatic lung, together with our own

observations [32] showing neutrophils accumulating early in

the pre-metastatic lung, support the notion that neutrophils may

contribute to the formation of the pre-metastatic niche. Further-

more, Kowanetz et al. [26] showed that depletion of Gr1+ or

Ly6G+ cells from the pre-metastatic lung results in reduced

metastasis. Similarly, Sceneay et al. [304] also observed in-

creased numbers of granulocytic CD11b+Ly6CmedLy6G+ my-

eloid cells in the pre-metastastic lungs in mice injected with

melanoma or breast carcinoma cells with a concomitant reduc-

tion in the cytotoxic activity of NK cells [304]. Erler et al. [305]

observed that lysyl oxidase (LOX) secreted by hypoxic breast

tumor cells is required for the recruitment of immature myeloid

CD11b+F4/80− cells to the premetastatic lung. Tumor-secreted

LOX was found co-localized with fibronectin in the lung, to

which CD11b+ cells bound. The CD11b+ cells secreted MMP-

2, generating chemoattractive collagen IV peptides, a process

leading to enhanced invasion and recruitment of metastasizing

tumor cells as well as bone-marrow-derived cells into the lung

[305]. Knocking down LOX in the breast tumor cells prevented

the recruitment of CD11b+ cells to the premetastatic lung, with

concomitant reduction in metastatic growth [305].

A mechanism involving microvascular deposition of neu-

trophil extracellular traps (NETs) was found to directly facil-

itate the formation of hepatic micrometastases [306]. Neutro-

phils were also shown to promote liver metastasis of Lewis

lung carcinoma (H-59 subline) cells through Mac1 (CD11b/

CD18)-mediated interaction with circulating tumor cells

[307]. Neutrophil depletion prior to cancer cell inoculation

reduced the number of liver metastases [307]. This effect was

reversed when inflamed neutrophils were co-inoculated with

tumor cells [307]. H-59 cells showed reduced adhesion to

liver sinusoids of CD11b deficient mice [307]. In contrast,

our own work, using mouse models of breast cancer, shows

that neutrophils are stimulated by tumor-secreted factors and

acquire an anti-tumor phenotype [32]. These neutrophils ac-

cumulate in the lungs in large numbers during the pre-

metastatic phase and provide anti-metastatic protection by

eliminating incoming disseminated tumor cells [32]. These

tumor-entrained neutrophils (TENs) produced high levels of

H2O2 and acquire the capacity to kill tumor cells in a contact

dependent fashion [32]. Similarly, Lopez-Lago and colleagues

[66] showed that tumor-secreted CXCL1 stimulates neutro-

phils and induces an anti-metastatic response in a model of

human renal cell carcinoma. Furthermore, they demonstrated

that the metastatic potential of the tumors inversely correlates

with the extent of neutrophil mobilization [66]. Finally, we

have shown that tumoricidal neutrophils also exist in the

circulation of breast cancer patients, but not in healthy indi-

viduals, suggesting that anti-tumor neutrophils are generated

during the natural course of the disease in patients [32]. These

conflicting observations provide the basis for the controversy

that surrounds the function of neutrophils at the pre-metastatic

niche; do they possess favorable or unfavorable properties?

The answer to this question remains obscure. However, it

seems that neutrophils may possess both pro- and anti-tumor

functions and their actual function in situ is determined by the

microenvironment and chemokine milieu (Figs. 1 and 2).

Anti-Tumor Functions of Neutrophils

The recognition that neutrophils have potential anti-tumor

functions was first brought forward in the 1970s where neu-

trophils from patients with bladder cancer were shown to be

cytotoxic toward bladder cancer cells [308]. Since then neu-

trophils were shown to exert their anti-tumor functions via

direct cytotoxicity, antibody dependent cell mediated cytotox-

icity (ADCC) and through the presentation of specific anti-

gens (Table 2) [7]. Neutrophils need to be activated in order to

exert their anti-tumor activities. Various cytokines (e.g., G-

CSF, IFNγ, TNFα) and chemokines (e.g., CCL-2, CCL-5,
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Table 2 Evidence for anti-tumorigenic effects of neutrophils

Major findings Reference

Human neutrophils

• Normal human peripheral blood granulocytes destroy

various human cancer cells in vitro, including

osteosarcoma, melanoma and lung squamous carcinoma

cells, at a higher efficiency than normal fibroblasts.

[392]

• Leukocytes from patients with urinary bladder

carcinomas showed cytotoxicity toward human bladder

carcinoma cells in vitro.

[308]

• Leukocytes from pregnant women, and patients with

toxemia, uterine myoma, ovarian and endometrial

carcinoma had cytotoxic effects toward primary ovarian

carcinoma cultures.

[393]

• Neutrophils from Stage III and IV lung and stomach

cancer patients were more cytotoxic to K562 cells than

those from healthy controls.

[386]

• Normal human peripheral blood granulocytes showed

cytostatic effect on various tumor cell lines including

human K562 myeloid leukemia, human F265

lymphoblastoid, mouse TU-5 kidney cells, mouse RBL-

5 lymphoma, human RAJI Burkitt’s lymphoma, human

W1-38 embryonal lung line, human SV40 transformed

fibroblasts.

• The neutrophils were cytolytic to Chang-A

hepatocarcinoma cells, an effect that was enhanced by

antibodies.

• Granulocytes formed clusters among themselves and

attached to the target cells.

• Detachment of adherent cells was observed after 6 h.

[394]

• PMA-stimulated neutrophils mediated cytotoxicity

against CEM T-lymphoblast cells.

• Neutrophil cytotoxicity was mediated by H2O2 and

myeloperoxidase.

• Killing of CEM could be inhibited by catalase, the MPO

inhibitor cyanide, and the HOCl scavengers tryptophan,

methionine and alanine, suggesting a role for the MPO-

H2O2-Cl- system.

• The cytotoxic effect was dependent on pH and the

effector cell number.

[314]

• Concanavalin A-activated neutrophils can release

cytotoxic quantities of H2O2 and myeloperoxidase,

which in concert with a halide (chloride or iodide) lysed

murine LSTRA lymphoma cells.

• SOD did not affect killing.

• Unstimulated neutrophils had no effect.

• Azide, cyanide and catalase prevented the cytotoxicity.

[315]

•Neutrophils were cytotoxic and cytostatic to human

tumor cell lines T24 bladder carcinoma, LR

melanoma, and SV40-transformed fibroblasts, as

well as K562 CML, Raji Burkitt lymphoma and

CEM T-ALL cells.

• The killing of tumor cells was selective, as the neutrophil

didn’t kill normal human fibroblasts.

• Protease inhibitors did not inhibit neutrophil cytotoxicity.

[395]

• PMA-activated granulocytes are cytotoxic to CEM T-

ALL cells.

• The myeloperoxidase-hydrogen peroxide-halide system

is involved as azide, cyanide and catalase inhibited the

killing.

• The killing was dependent on the presence of a halide.

[316]

• PMA-activated neutrophils are cytotoxic to Raji Burkitt

lymphoma cells when incubated at 20:1 E:T ratio.

[317]

Table 2 (continued)

Major findings Reference

• The myeloperoxidase-hydrogen peroxide-halide system

is involved as the cytotoxicity can be inhibited by azide,

cytochrome C and catalase.

• Superoxide dismutase enhanced the cytotoxic effect.

• Neutrophils had a stronger cytotoxic effect on malignant

targets (MA-160 prostate cancer, Garr1 colon cancer)

than on nonmalignant targets (human embryonic lung

and intestinal cells).

• Neutrophils from colon and breast cancer patients with

stage I disease possessed neutrophils which were less

effective in killing tumor cells than neutrophils from

normal donors.

• In contrast, neutrophils from colon and breast carcinoma

patients with stage IV disease were more effective in

killing tumor cells than normal cells.

[396]

• PMA-activated neutrophils kill K562 CML cells.

Neutrophil cytotoxicity was inhibited by catalase, while

augmented by SOD.

[318]

• Lidocaine enhanced, while verapamil and exogenous

adenosine 5′-triphosphate inhibited neutrophil-mediated

tumor cytotoxicity.

• Prednisolone inhibited, while chloroquine had no effect

on neutrophil-mediated tumor cytotoxicity.

[397–400]

• TNF-treated neutrophils acquire cytotoxic activity

towards tumor cells such as Raji, K562, UCLA-SO-M14

and U937, through production of hydrogen peroxide.

• Catalase, but not SOD, sodium azide or deferoxamine,

prevented the cytotoxic effect.

[309, 310]

• IFNγ enhances the tumor cytostatic effect of neutrophils. [311]

• Neutrophils induce ADCC of human GD2+ melanoma

and neuroblastoma cell lines in the presence of

antibodies to the ganglioside GD2.

• CD11/CD18-deficient neutrophils were defective in

inducing cytolysis.

•Antibodies to CD11b, CD11c and CD18 blocked ADCC

by normal neutrophils.

• Antibodies to FcRII and FcRIII, but not those to FcRI,

blocked ADCC.

• GM-CSF enhances anti-tumor neutrophil ADCC.

[336]

• K652 cells that have been made resistant to H2O2

through repeated exposure to increasing amounts of

glucose oxidase, expressed elevated levels of Catalase

and were resistant to the cytotoxic effect of TNFα-

activated neutrophils.

[401]

• Neutrophils from colon carcinoma and breast cancer

patients showed elevated cytotoxicity towards Hct-116

colon carcinoma cells, while normal neutrophils or

neutrophils from melanoma patients had almost no

effect.

• The cytotoxicity of neutrophils from colon carcinoma

could be enhanced by fMLP and prothymosin α1.

• Prothymosin α1 enhanced the oxidative responses of

neutrophils.

[402]

• GM-CSF-primed neutrophils reduced melanoma cell

viability.

• These neutrophils showed increased release of O2
−.

• SOD and Catalase when applied separately could not

abrogate the neutrophil killing of melanoma cells, while

added together partly prevented the killing.

• Interfering with nitric oxide (NO.) production by NG-

monomethyl-L-arginine significantly protected the

melanoma cells against GM-CSF-primed neutrophils.

[325]
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Table 2 (continued)

Major findings Reference

•Neutrophils are cytotoxic to HT-29 colorectal cancer and

FaDu pharyngeal squamous-cell carcinoma cells. These

tumor cells secrete IL-8 and GROα, leading to the

activation of cytotoxic neutrophils.

[216]

• Tumor-entrained neutrophils (TENs) with anti-tumor

activities are present in the peripheral blood of breast

cancer patients prior to surgical resection, but not in

healthy individuals.

• These TENs showed cytotoxic effect towards MDA-

MB-231 breast carcinoma cells.

[32]

• Human neutrophils display a higher cytotoxic activity

against poorly metastatic cells compared with highly

metastatic renal cell carcinoma cells.

• Several neutrophil chemokines including CXCL1,

CXCL2, CXCL3, CXCL5 and IL-8 were down

modulated in the highly metastatic cells.

• Non-metastatic renal carcinoma cells promote

recruitment of neutrophils to the lung of mice. The

metastatic activity inversely correlated with the ability of

tumor cells to recruit and activate these immune cells.

[66]

Murine neutrophils

• Neutrophils are attracted by rat Walker Carcinoma 256

cells.

• Neutrophils interacts with these cells, indent their

membranes, leading to a rounding up of the tumor cells.

This killing process depends on the presence of other

host factors, as in vitro the tumor cells did not induce

cytotoxic neutrophils.

[403]

• Cytotoxic effect of rat peritoneal neutrophils against the

syngeneic ascites tumor WBP1.

• Establishment of WBP1 ascites tumor was retarded when

the rats were stimulated to produce large amounts of

peritoneal neutrophils by intraperitoneal injections of beef

heart infusion broth in combinationwith proteose peptone.

[404]

• Granulocytes from tumor-bearing mice were cytotoxic. [405]

• PMA-stimulated BCG- or thioglycollate-elicited

peritoneal neutrophils kill efficiently P388 and TLX9

lymphoma cells, which correlated with H2O2 release.

• Cell lysis peaked after 4.5 h following co-cultivation

with activated neutrophils.

[406]

• Increase in the proportion of myeloperoxidase-positive

neutrophils in mice bearing autochthonous M-MuSV

(Moloney murine sarcoma virus)-induced tumors.

• The cytotoxic activity correlated with myeloperoxidase

expression.

• Ha-2 Harvey-MuSV-induced sarcoma and Tu5 Simian

virus-40-transformed kidney cells were highly

susceptible to the cytotoxic effect of neutrophils (40–

60 % killing), while MBA 3-methylcholantrene-induced

sarcoma, Ta3/St 3-methylcholantrene-induced

adenocarcinoma, T1699 spontaneous adenocarcinoma

and 3 T3 embryonic fibroblasts showed medium

sensitivity (20–40 % killing).

• The cytotoxic activity of neutrophils seems to be non-

specific, leading to killing of various tumor cell lines as

well as allogeneic, but not syngeneic, fibroblasts.

Although the extent of killing of allogeneic mice was

much lower (5–20 %) than tumor cells (20–60 %).

• Total bone marrow derived cells were much more

cytotoxic than spleen-derived cells. Cells from the

lymph nodes were not cytotoxic.

[407]

Table 2 (continued)

Major findings Reference

• β-1,3-glucan, BCG, Propionibacterium acnes and

Zymosan A induced anti-tumor activity of neutrophils

toward MM46 mammary carcinoma, MM48 mammary

carcinoma, MH134 hepatoma, EL-4 and YAC-1

lymphoma cells.

•Catalase, but not superoxide dismutase, cyanide or azide,

inhibited the killing of tumor cells.

[408, 409]

• Antibody to TNF prevented the cytolytic effect of

caseinate-induced inflammatory neutrophils toward

MM46 mammary tumor cells.

• Immature neutrophils obtained from ascites fluid 6 h after

caseinate injection showed stronger cytotoxic activity

than mature neutrophils obtained 3 h after injection.

• Myeloperoxidase is expressed 1.6 times more in

immature neutrophils.

[332]

• Intraperitoneal injection of Corynebacterium parvum

24 h after an intraperitoneal inoculation of a lethal

number of mouse ovarian teratocarcinoma cells induced

an antitumor response that cured 75 to 95 % of the mice.

• Isolated peritoneal neutrophils were cytolytic to the

tumor cells with cell lysis obtained within 30 min after

binding of the neutrophils to the ovarian teratocarcinoma

target cells.

[410]

• Overexpression of chemokines such as IL-8, MCP-1 or

MIP-1 in CHO tumor cells led to recruitment of

neutrophils and concomitant inhibition of tumor growth

in nude mice.

[411]

• IFNγ activates rat neutrophils to kill tumor cells by a

mechanism dependent on nitric oxide.

• SOD enhanced the tumor cytotoxic effect.

[312, 313]

• The growth of disialoganglioside (GD2) positive

neuroblastoma cells was inhibited by neutrophils in the

presence of antibodies towards GD2, an effect that was

enhanced by GM-CSF.

• In the absence of antibodies, neutrophils inhibited growth

of one GD2+ cell line, whereas they stimulated the

growth of two other GD2+ cell lines as well as the GD2−

cell lines tested.

[412]

•Mouse granulocytes restrict human tumor cell growth in

SCID mice.

[413]

• Neutrophils, together with macrophages, mediate

antibody-dependent cell cytotoxicity (ADCC) towards

tumor cells, which is responsible for the efficacy of

monoclonal antibody (mAb)-mediated cancer therapy.

[342]

• Neutrophil-induced ADCC contributes to the anti-tumor

activity of the anti-CD20 antibody Rituximab in a non-

Hodgkin’s lymphoma SCID mouse model.

[341]

•Walker carcinomaW256 activated neutrophils in vitro to

produce singlet oxygen.

• ROS is crucial for neutrophil-mediated tumor cell lysis.

[326]

• Massive granulocyte infiltration at the site of W256

transplants correlates with spontaneous tumor

regression.

• Peripheral blood granulocytes from the tumor-bearing

animals are cytotoxic to W256 cells in vitro.

[414]

•Adoptive transfer of granulocytes in the vicinity ofW256

carcinoma in rats or Ehrlich ascites tumor in mice

reduced tumor cell mass with concomitant increased

survival.

[415]

• The presence of MPO in the tumor microenvironment

was accompanied by the formation of lipid peroxidase

[416]
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CXCL5 and IL-8) may promote the generation of anti-

tumorigenic neutrophils [32, 66, 309–313]. Anti-tumorigenic

neutrophils can also be generated artificially by exposing them

to the phorbol ester PMA, or to the lectins Concanavalin A or

wheat germ agglutinin (WGA) [314–318].

In vivo, the effect of massive infiltration of neutrophils was

analyzed by sustained treatment of tumor-bearing mice with

GM-CSF, leading to a strong neutrophilia around the tumors.

These mice showed a 16-fold lower mortality rate than un-

treated mice [319]. The same therapeutic strategy was applied

in a patient with advanced hepatocarcinoma, who exhibited a

complete remission after 4 months of G-CSF treatment.

Prolonged administration of G-CSF to squamous head and

neck cancer patients led to increased disease-free survival

[320]. Other clinical trials using continuous GM-CSF admin-

istration in advanced prostate cancer [321] or sustained G-

CSF in stage IV melanoma with brain metastases [322] re-

ported better survival, suggesting for an anti-tumor effects of

neutrophils.

Direct Cytotoxicity

Neutrophils are armed with a variety of toxic molecules, most

of which have anti-microbial properties and are harmless

toward eukaryotic cells [323, 324]. Still, several anti-

bacterial molecules are also involved in neutrophil cytotoxic-

ity toward tumor cells. Of special importance are the reactive

oxygen species H2O2 and HOCl, generated during an “oxida-

tive burst” that is mediated by the NADPH oxidase complex

and by myeloperoxidase, respectively [325–327]. These mol-

ecules are directly involved in the anti-tumor activity

[325–327]. Inhibition of myeloperoxidase by azide or cya-

nide, or addition of catalase that catalyzes the conversion of

hydrogen peroxide to water and oxygen, prevents neutrophil-

mediated tumor cell killing [13, 32, 309, 314–318]. Neutro-

phils from patients with myeloperoxidase (MPO) deficiency

or defective H2O2 production are not cytotoxic to tumor cells

[327]. However, addition of superoxide dismutase (SOD) that

catalyzes the conversion of superoxide into oxygen and hy-

drogen peroxide, did not prevent the killing, but sometimes

even enhanced it [13, 32, 309, 314–318], possibly by accel-

erated hydrogen peroxide production, the key effector mole-

cule in neutrophil cytotoxicity. Dissemond and colleagues

showed that SOD in combination with catalase could partly

prevent tumor cell killing with an involvement of nitric oxide

in the killing process [325]. Rat neutrophils stimulated with

IFNγ produced nitric oxide that prevented tumor cell growth

[312] and induced apoptosis of the tumor cells [313]. How-

ever, another study [13] could not relieve the cytotoxic effect

with a nitric oxide scavenger. This apparent discrepancy could

be due to different neutrophil activation modes and the pres-

ence of several neutrophil generated cytotoxic molecules

where the inhibition of one is compensated for by the other.

Table 2 (continued)

Major findings Reference

(LPO)-derived aldehydes such as acrolein, 4-hydroxy-2-

nonenal and malondialdehyde.

• The presence of acrolein and neutrophil elastase were

increased in animals with regressing W256 tumor.

• Meth A tumor cells induce infiltration of cytotoxic

neutrophils, which are responsible for the IFNγ-

dependent spontaneous rejection.

[417]

• Inhibition of TGFβ signaling by using SM16 increased

neutrophil mediated cytotoxicity towards AB12

mesothelioma cells in a mechanism that depends on

ROS.

• While antibodies to TNFα and N-methylarginine, an

inhibitor of iNOS, did not inhibit the cytotoxicity,

blockade of superoxide and H2O2 by superoxide

dismutase (SOD) and catalase, respectively, blocked

neutrophil cytotoxicity.

[13]

• CD11b+MMP-9+ Neutrophils accumulate in the lungs

prior to metastatic seeding of breast carcinoma cells.

• Tumor-entrained neutrophils (TENs) inhibit metastatic

seeding of 4T1 breast carcinoma cells in the lungs by

generating H2O2.

• Also, neutrophil depletion in MMTV-PyMT/MMTV-

cMyc tumor bearing mice resulted in enhanced

metastatic seeding in the lungs.

• TENs could not prevent the growth of local tumor.

• Circulating blood neutrophils from 4T1-tumor bearing

mice were cytotoxic to the mouse 4T1 and the human

MCF7 breast carcinoma cell lines. Similarly, circulating

blood neutrophils from B16 melanoma-bearing tumor

mice were cytotoxic to both B16 and 4T1 cells.

• Catalase or TGFβ (at 200pM) abrogated the cytotoxic

effects of TENs.

• Neutrophil-tumor cell contact was required for tumor

cytolysis.

• Tumor-secreted CCL2 mediates the anti-metastatic

entrainment of G-CSF-stimulated neutrophils.

• In vitro CCL2 and CCL5 simulated naïve neutrophils to

produce H2O2 and to kill 4T1 tumor cells.

[32]

Purified neutrophil products

• Myeloperoxidase, a product of neutrophils, shows

cytotoxic effects against mouse lymphoma cells.

[418, 419]

• Cationic proteins purified from polymorphonuclear

leukocytes granules exert a cytotoxic effect on mouse

LSTRA lymphoma cells.

[420]

• A ~100kD protein secreted from wheat germ agglutinin

or actinomycin D-stimulated neutrophils kills MM46

and MM48 mammary adenocarcinoma cells, MH134

hepatoma cells and L929 fibrosarcoma cells, but not

normal splenocytes.

• No cytotoxic effect of supernatant of unstimulated

neutrophils.

[421]

• Human defensins HNP-1, HNP-2 and HNP-3 lysed

various human and mouse tumor cell lines.

•Human defensins in combination with hydrogen peroxide

had a synergistic cytotoxic effect on tumor cells.

[335]

• Calprotectin (S100A8/S100A9), a calcium binding

protein complex abundantly expressed in neutrophils,

induces apoptotic cell death in various tumor cells.

[422]

Evidence for neutrophil mediated tumor cell killing in cancer patients, in

animal models of cancer and in using neutrophil derived products
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Several studies, including our own, have shown that neu-

trophil cytotoxicity requires physical contact between neutro-

phils and tumor cells [4, 32, 328]. Caruso et al. [329] demon-

strated intimate contact between neutrophils and tumor cells in

samples of early gastric cancer at a stage prior to the appear-

ance of neutrophilia. Following the interaction with neutro-

phils, tumor cells show varying degrees of damage including

disorganization of the intermediate filaments and dilation of

the rough endoplasmic reticulum [329]. However, neutrophil

cytotoxicity induced by the phorbol ester PMA, a potent

agonist of H2O2 production and secretion, does not require

physical contact [32]. This observation suggests that high

levels of neutrophil-generated H2O2 are sufficient for cytotox-

icity, even when physical contact is restricted. These seem-

ingly conflicting observations were resolvedwhenwe realized

that rather than secreting H2O2 spontaneously, neutrophils

secrete H2O2 in a contact-triggered fashion [32]. Similarly,

Saito et al. [330] demonstrated by visualizing the oxidative

process by luminol-dependent chemiluminescence, that ROS

accumulate at sites where neutrophils come in contact with

tumor cells. Also, the intensity of the hydrogen peroxide-

sensitive tracer dichlorofluorescein diacetate preloaded in

tumor cells rapidly increased after adding the neutrophils

[330]. The interaction between neutrophils and tumor

cells results in loss of tumor cell membrane integrity

beginning within 15 min of the binding step and comple-

tion of the lytic event within 45 min [328]. It is notewor-

thy to point out that molecules other than H2O2, HOCl

and NO· may also mediate the tumoricidal effects of

neutrophils. These include proteases [331], membrane-

perforating agents [331], TNFα [331, 332], TRAIL

[333] and defensins [334, 335].

Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC)

Another mechanism for neutrophil-mediated tumor cell kill-

ing is antibody-dependent cell-mediated cytotoxicity (ADCC)

[7, 331] where specific antibodies are used to target malignant

cells. Neutrophils express several subtypes of FcRs capable of

inducing ADCC, including FcγRI (CD64), FcγRIIa (CD32),

FcγRIIIa (CD16a), and FcγRIIIb (CD16b) [336–338], whose

surface expression is increased following G-CSF stimulation

[338, 339]. FcγRI was shown to mediate neutrophil ADCC

activity against glioma, squamous cell and ovarian carcinoma

cells [338]. However, binding of IgG to the inhibitory

FcγRIIb, might lead to down-regulation of immune responses

[340]. The neutrophil-mediated killing of human ganglioside

GD2+ melanoma and neuroblastoma cells in the presence of

antibodies to GD2, was found to depend on FcγRII and

FcγRIII, but not on FcγRI [336]. Neutrophils from a child

with leukocyte adhesion deficiency (LAD) devoid of

CD11/CD18 adhesion molecules failed to mount any detect-

able ADCC [336], suggesting the involvement of these

adhesion molecules in ADCC. Also, antibodies to CD11b,

CD11c and CD18 efficiently blocked ADCC by normal neu-

trophils, providing further support to this notion [336]. GM-

CSF enhanced the anti-tumor neutrophil-dependent

ADCC through enhanced expression of CD11/CD18

molecules [336]. Neutrophils were also shown to con-

tribute to the anti-tumor ADCC in Non-Hodgkin’s Lym-

phoma using antibodies to CD20 (Rituximab) [341], in

breast cancer using a Tn antigen-specific chimeric mAb

[342], and in B-cell lymphoma using a bispecific single-

chain fragment variable-specific for HLA class II and

FcαRI (CD89) [343]. The bispecific antibody against

the myeloid receptor for IgA (FcαR1; CD89) and the B-cell

surface marker CD20 induced neutrophil-dependent

ADCC toward broad range of B cell lines [344]. Lysis

via FcαRI:CD20 bispecific antibodies was enhanced in

blood from patients during therapy with G-CSF or

GM-CSF [344]. Interestingly, Otten et al. [345] ob-

served that immature neutrophils mobilized from the

bone marrow upon G-CSF treatment, efficiently triggered

tumor cell lysis via FcαRI (CD89), but were unable to

initiate tumor cell killing via FcγR. This may provide a

rationale for the disappointing results observed in some

earlier clinical trials in which patients were treated with

G-CSF and anti-tumor antibody binding to FcγR. An

indication for the role neutrophils play in mediating

ADCC in human patients was described by Cheung

and colleagues [346]. In their study they found that

the outcome of treating high risk neuroblastoma patients

with anti-GD2 monoclonal antibody strongly correlated

with the extent of granulocyte activation [346].

Neutrophils as Tumor-Antigen Presenting Cells

There is accumulating evidence suggesting that neutrophils

contribute to the development of an adaptive anti-tumor im-

mune response [12–16, 347]. Elimination of neutrophils pre-

vents the mounting of anti-tumor CD8+ T cytotoxic responses

[12–14, 16]. Neutrophils were shown to be required for prim-

ing rats with tumor-associated antigens to induce anti-tumor

CD8+ effector T cells [348]. This may be related to the ability

of neutrophils to attract and activate dendritic cells, macro-

phages, NK cells and T cells. By virtue of their ability to

present antigens, neutrophils may directly activate a T cell

response. Neutrophils may also activate dendritic cells and T

cells through release of neutrophil extracellular traps (NETs)

[349, 350]. On top of secreting T cell chemoattractants,

neutrophil-secreted TNFα, Cathepsin G and neutrophil elas-

tase, are able to increase T cell proliferation and cytokine

production, which together enhance adaptive immune re-

sponses [350]. Jackaman et al. [351] demonstrated the coop-

eration between tumor-infiltrating neutrophils and CD8+ T
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cells in eradicating tumors that received intratumoral injection

of IL-2 and anti-CD40 antibodies.

Prognostic Values of Neutrophils and Other Myeloid

Subtypes in Cancer Patients

Alterations in circulating leukocyte composition and number

are often observed in cancer patients. Cancer-related inflam-

mation and tumor-induced immune suppression are often

associated with expansion of myeloid subsets including

MDSCs. In parallel, the granulocytes are often activated in

cancer patients with a concomitant increase in H2O2 produc-

tion [278]. G-CSF is often secreted by tumor cells [26, 174,

189, 190, 194, 198, 276, 352–359] and is preferentially ob-

served in dedifferentiated or poorly differentiated tumors

[360, 361, 354, 190]. Elevated G-CSF blood concentrations

in cancer patients have been associated with poor clinical

outcome [174, 194, 198, 276, 352, 355, 356].

Recently, a high myeloperoxidase (MPO)+ CD15+ cell

infiltration representing neutrophils in colorectal carcinoma

was found to be an independent favorable prognostic factor

[362, 363]. Also, the increased presence of CD16+ (FcγRIII)

myeloid cells of the monocyte/macrophage lineage that were

also positive for CD45, CD33, CD11b, and CD11c, but not

CD64 or HLA-DR, was found to be associated with improved

survival in patients with colorectal carcinoma [364]. This is in

contrast to the general concept that high amounts of

intratumoral myeloid cells promote tumor progression and

hence correlate with poor disease outcome. In particular,

colorectal carcinoma infiltration by CD66b+ granulocytes

was proposed as a marker of adverse prognosis [365].

Already in 1970, Riesco [366] observed a positive correla-

tion between cancer curability and the total number of lym-

phocytes, while a negative correlation was found with the total

number of peripheral neutrophils (segmented and

nonsegmented) when 589 cases of different cancer types were

investigated. From then on, a large number of clinical studies

have been performed to understand the neutrophil-cancer

relationship. Clinical data have often related elevated circulat-

ing neutrophil counts or elevated neutrophil-to-lymphocyte

ratios (NLRs) as a predictive parameter for poor outcome

and formation of distant metastasis in patients with epithelial

malignancies [367], including lung [368, 170], gastric [159,

163, 369], renal cell carcinoma [370], ovarian [141], hepatic

[143, 148, 371], pancreatic [138], colon cancer [145, 372],

and colorectal carcinoma [152] (Table 3). However, Caruso

et al. [200] observed that when analyzing the amount of

tumor-infiltrated neutrophils in advanced gastric carcinoma,

in female but not male, patients with higher TANs had a

favorable prognosis.

Colorectal carcinoma sections were characterized by

tumor-infiltrating granulocytes (TIGs) and tumor-associated

macrophages (TAMs) and abnormal levels of the cytokines

IL-1β, IL-6, IL-8, TNFα, G-CSF and M-CSF [178]. G-CSF

was associated with a deeper tumor invasion and a more

advanced tumor stage [178]. The granulocyte/lymphocyte

ratio was associated with abnormal levels of G-CSF (more

than 50 % of the cancer patients) and TIGs were a risk factor

for lymph node metastasis in colorectal carcinoma [178].

Similarly, in gastric carcinoma, TIGs were associated with

tumor stage and shorter survival time [373].

Studies on neutrophils from patients with head and neck

squamous cell carcinoma (HNSCC) showed that these neu-

trophils differ from their counterparts in healthy donors [374].

The neutrophils from HNSCC showed lower inducible pro-

duction of ROS, reduced spontaneous apoptosis and increased

number of immature neutrophils [374]. The serum concentra-

tion of neutrophil related cytokines was higher in HNSCC

patients [374]. HNSCC tissue exhibited considerable infiltra-

tion by neutrophils, and strong infiltration was associated with

poorer survival in advanced diseases [157]. Neutrophil count,

neutrophil-to-lymphocyte ratio and serum concentrations of

CXCL8 (IL-8), CCL4 (MIP-1β) and CCL5 (RANTES) were

significantly higher in the peripheral blood of HNSCC pa-

tients than in controls [157]. In vitro, HNSCC-conditioned

medium inhibited apoptosis of neutrophils, increased neutro-

phil chemokinesis and chemotaxis and induced the release of

lactoferrin, MMP-9 and CCL4 [157]. Further studies showed

that HNSCC activates the p38-MAPKpathway in neutrophils,

and stimulates the release of CCL4, CXCL8, and MMP-9 by

neutrophils in a CREB-dependent manner [375]. The secre-

tion of CCL4 and MMP-9 by neutrophils was stimulated by

macrophage migration inhibitory factor (MIF) produced by

the HNSCC cells [376]. MIF was also shown to be produced

by other cancer cell types, including breast cancer, esophageal

squamous cell carcinoma and hepatocellular carcinoma,

where it contributes to angiogenesis [377–380]. Breast cancer

patients with positiveMIF expression in tumor tissues showed

a significantly worse disease-free survival comparedwithMIF

negative patients [377]. Thus, there seem to be a crosstalk

between the tumor cells and neutrophils that may affect tumor

growth and modify anti-tumor immune responses.

In human hepatocellular carcinoma, TANs accumulate in

the peritumoral stroma due to IL-17-dependent release of

epithelial cell derived chemokines such as CXCL1/GROα,

CXCL2/MIP-2, CXCL3/GROγ and CXCL8/IL-8 [57]. High

infiltration of peritumoral neutrophils correlated with tumor

progression and predicted poor survival [57]. Neutrophils are

the major source of MMP-9 within the hepatocellular carci-

noma tissue, which was shown to stimulate the pro-

angiogenic activity in hepatoma cells [57]. Selective depletion

of neutrophils inhibited tumor angiogenesis and growth

in vivo [57]. Also, CXCL5 has been shown to be
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Table 3 The correlation between neutrophil blood count and cancer prognosis

Cancer cell type Effect on prognosis Reference

Advanced pancreatic adenocarcinoma Elevated pretreatment NLR>5 was a predictor of shorter survival. [138]

Recurrent localized cervical cancer Tumor-associated neutrophil count is an independent factor for short

recurrence-free survival

[139]

Epithelial ovarian cancer Pre-operative NLR in ovarian cancer subjects (mean 6.02) was significantly

higher than in benign ovarian tumor subjects (mean 2.57) and healthy

controls (mean 1.98). Elevated NLR may predict an adverse outcome.

[141]

Breast cancer Patients with an NLR>2.5 showed lower disease-specific survival rate than those

with an NLR<2.5. This correlation was especially seen in the luminal A subtype.

[423]

Breast cancer Patients with an NLR>3.3 had a higher mortality rate than those with an NLR<1.8.

The high NLR was associated with more advanced stages of cancer.

[424]

Hepatocellular carcinoma (HCC) The presence of intratumoral CD66+ neutrophils was a poor prognostic factor for

HCC after resection

[387]

Hepatocellular carcinoma (HCC) Pre-operative NLR>5 was an adverse predictor of disease-free and overall survival. [148]

Hepatocellular carcinoma (HCC) Patients with an NLR>2.5 showed higher risk for tumor recurrence in HCC patients

undergoing liver transplantation.

[371]

Hepatocellular carcinoma (HCC) High baseline NLR was associated with higher tumor recurrence and worse overall

survival in patients after radiofrequency ablation.

[140]

Hepatocellular carcinoma (HCC) Elevated C-reactive protein together with an NLR>2.3 predicted shorter overall survival. [425]

Small hepatocellular carcinoma Elevated post-operative NLR change was a worse prognostic factor. [143]

Resectable non-small cell lung cancer An increase in CD66b+ cells was associated with a high cumulative incidence of relapse

(CIR) and worse overall survival.

An increase in intratumoral neutrophil to CD8+ lymphocyte ratio (iNTR) was associated

with high CIR and poor overall survival.

[204]

Advanced non-small-cell lung cancer A neutrophil count above 4,500/mm3 was associated with shorter overall and

progression-free survival.

[368]

Advanced non-small-cell lung cancer Patients with normal leukocyte count had a longer median overall survival than those

with elevated WBC count (>10×103/μl).

[426]

Advanced non-small-cell lung cancer Increased preoperative NLR had a poorer prognosis. [154]

Bronchioloalveolar carcinoma The risk of death was increased in patients with a neutrophil percentage of >39 % in

the bronchoalveolar lavage fluid.

[170]

Gastric carcinoma Higher NLR was associated with lymph node metastasis, higher tumor stage, tumor

progression and reduced 5-year survival.

[163]

Gastric cancer Patients with an NLR>2.5 had a poorer prognosis. [159]

Gastric cancer NLR was influenced by tumor size. High NLR seems to be a marker for tumor recurrence. [369]

Advanced gastric carcinoma Female, but not male, patients with a moderate to extensive amount of tumor-infiltrating

neutrophils had a 39 % reduction in their risk of mortality.

[200]

Gastric cancer stage III-IV Progression-free survival and overall survival was worse for patients with high NLR. [151]

Colon cancer, stage IIA Patients with preoperative NLR>4 had a shorter recurrent-free survival. [145]

Colon carcinoma, stage II Patients with elevated NLR had a worse overall survival and worse disease-free survival. [372]

Colorectal cancer Preoperative NLR>5 correlated with poor pre-operative prognosis. [158]

Colorectal cancer The NLR was higher in advanced stages of cancer. The ability to produce ROS at the

terminal stage was 33 % lower than in the control group.

[427]

Colorectal cancer Patients with an NLR>2.5 had a poorer prognosis than those with an NLR<2.5. [428]

Colorectal cancer Patients with an NLR>5 showed a worse overall survival. [429]

Metastatic colorectal cancer A high NLR was associated with poor overall survival. [430]

Colorectal liver metastases The 5-year survival for patients undergoing resection with an NLR>5 was worse than

those with normal NLR.

[150]

Non-metastatic renal cell carcinoma Patients with a pre-operative and post-operative NLR>2.7 had a shorter recurrence-free

survival rate.

[153, 431]

Localized renal cell carcinoma The presence of intratumoral neutrophils was associated with short recurrence-free survival. [390]

Metastatic renal cell carcinoma Patients with elevated neutrophil count (>6,500 cells/μl) showed a shorter overall survival. [432]

Metastatic renal cell carcinoma Patients with a high blood neutrophil count (>6,000), intratumoral neutrophils and low

intratumoral CD57+ NK cells are independent poor prognostic immunological factors.

[370]

Bladder cancer There was no significant difference between patients with an NLR below or above 2.5 in

terms of overall survival.

[144]

Bladder cancer NLR was an independent prognostic factor in patients treated with radical cystectomy. [149]

Urothelial carcinoma An NLR>2.5 was found to be a predictor of invasiveness. [433]
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overexpressed in hepatocellular carcinoma from patients with

recurrent disease as well as in highly metastatic hepatocellular

carcinoma cell lines [381]. The upregulation of CXCL5 in

hepatocellular carcinoma cells correlated with the promotion

of tumor growth, lung metastasis and intratumoral neutrophil

infiltration [381].

Is it possible that the elevated neutrophil counts in cancer

patients are actually the consequence of a more advanced

stage, and therefore predict an apparent poorer prognosis?

This was acknowledged by Liu et al. [178], who showed that

the NLR was significantly associated with a more advanced

colorectal tumor stage. Also Ietomi [382] observed that the

NLR was higher in Stage IV stomach cancer patients than

those having stage I-III stomach cancer. The NLR dropped

after surgery, but upon relapse it rose again [382]. Similarly,

Sarraf et al. [154] observed higher NLR in more advanced

non-small cell lung cancer patients and Fossatti et al. [207]

observed a marked and significant correlation between tumor

grade of glioma patients and the extent of neutrophil infiltra-

tion as determined by the number of CD15+MPO+ cells [207].

In low grade tumors 40–50 % show neutrophil infiltration,

while in glioblastoma multiforme over 85 % of the samples

show neutrophil infiltration [207]. These observations suggest

that while neutrophil infiltration is associated with higher-

grade tumors this does not mean that poor prognosis is due

to increased neutrophil infiltration, rather the tumor is respon-

sible for the elevated neutrophil number.

Concluding Remarks ‐ The Dialogue Between Cancer

Cells and Neutrophils

There is a continuous interaction between cancer cells and

neutrophils in the tumor microenvironment. Neutrophils are

attracted to the primary tumor by tumor-secreted chemokines,

which can also induce anti-microbial as well as anti-tumor

neutrophil activities. The activation of neutrophils under cer-

tain circumstances has been shown to yield prolonged life

span in in vivo cancer models. These so-called “Tumor-As-

sociated Neutrophils” (TANs) show enhanced NADPH oxi-

dase activity which leads to the production of reactive oxygen

species, especially hydrogen peroxide, that are cytotoxic to

tumor cells [32]. After causing tumor cell apoptosis, these

cells are then engulfed by neutrophils [383], and processed

for antigen-presentation to mount an adaptive CD8+ T cyto-

toxic anti-tumor response [15]. Neutrophils may work togeth-

er with monocytes to transport tumor cell antigens to second-

ary lymphoid tissues, where naïve Tcells are stimulated [383].

T cells further increase the activity of neutrophils through

secretion of IFNγ. The increase in oxygen radicals have

additional effects, such as suppression of T cell responses

[278, 384], activation of TGFβ [81], and induction of GMP-

140 (P-Selectin) expression on the surface of endothelial cells,

leading to enhanced neutrophil adherence and activity [385].

The activation of TGFβ suppresses excessive neutrophil func-

tion, and may polarize them into N2 neutrophils [13].

Conversely, certain tumor-stimulated neutrophils secrete

ECM remodeling enzymes and pro-angiogenic factors that

promote, directly or indirectly, the growth of the tumor as

well as their detachment and dissemination. When the immu-

nosuppressed environment is induced, there is a positive feed-

back mechanism to maintain the immunosuppressed condi-

tion. Unlike the tumor microenvironment, where immunosup-

pression prevails, neutrophils in the immunopermissive pre-

metastatic organs may show characteristics of anti-

tumorigenic cells, providing anti-metastatic protection by

eliminating metastatic cells [32]. In light of this, we propose

that while neutrophils are largely viewed as a homogenous

Table 3 (continued)

Cancer cell type Effect on prognosis Reference

Melanoma, stage IV A high pretreatment neutrophil count (>7,500 cells/μl) predicted shorter overall survival

in patients receiving IL-2-based immunotherapy.

[156]

Oral squamous cell carcinoma Patients with a pretreatment NLR>1.9 showed poorer disease-specific survival. [434]

Esophageal cancer Elevated NLR>5 is associated with poor outcomes. [435]

Esophageal cancer Patients with a pre-therapeutic NLR>2.2 showed poorer response to chemotherapy. [436]

Esophageal cancer No correlation between NLR and overall survival. [437]

Esophageal cancer High NLR>5 was associated with poorer overall survival. [438]

Stomach cancer Patients with a NLR>7.7 at post-operative day 3 showed a 4.2 times higher cancer

recurrence after gastrectomy.

[439]

Metastatic Mesothelioma An NLR>5 showed poorer overall survival in patients undergoing systemic therapy. [440]

Metastatic Mesothelioma An NLR>3 showed poorer prognosis after extrapleural pneumonectomy. [441]

Metastatic Mesothelioma A high NLR correlated with sustained neoangiogensis and increased proliferative index. [442]

Bone metastasis A high preoperative N/L ratio was associated with poor prognosis after bone metastasis

in the surgery group.

[443]

Evidence from clinical studies correlating neutrophil counts and Neutrophil to Lymphocyte Ration (NLR) with cancer prognosis
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cell population, their function in cancer is dictated in a

context-dependent fashion, which may seem conflicting. In

depth exploration of how neutrophils interpret the orchestra of

signals in the different cancer niches will enhance our under-

standing of how different neutrophil subsets function in the

context of cancer.
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