Adv. Studies Theor. Phys., Vol. 6, 2012, no. 23, 1117-1120

On the Problem of Sensor Placement

Anna Gorbenko
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
gorbenko.ann@gmail.com
Vladimir Popov
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Vladimir.Popov@usu.ru

Abstract

In this paper we consider an approach to solve the problem of sensor placement. This approach is based on constructing logical models for the problem.

PACS: 42.30.Tz
Keywords: sensor placement, logical models, SAT, 3SAT

Different formalizations of the problem of sensor placement received a lot of attention recently (see e.g. [1, 2]). For instance, sensor placement is extensively used for improved robotic navigation (see e.g. [3, 4]). In particular, visual landmarks problems are extensively studied in contemporary robotics (see e.g. $[5,6,7]$). In this paper we consider SP problem (see [2]).

Let

$$
[c]_{2} \rightleftharpoons c\langle 1\rangle c\langle 2\rangle \ldots c\left\langle\left\lceil\log _{2} m\right\rceil\right\rangle
$$

where

$$
c=\sum_{i=1}^{\left\lceil\log _{2} m\right\rceil} 2^{\left\lceil\log _{2} m\right\rceil-i}\langle i\rangle,
$$

$c \leq m$. Let

$$
\delta_{i}=\wedge_{1 \leq c \leq m}\left(\left(\wedge_{1 \leq j \leq\left\lceil\log _{2} m\right\rceil} y_{i, j}=c\langle j\rangle\right) \rightarrow\right.
$$

$$
\begin{gathered}
\left.\left(\left(\wedge_{l \in\left\{p \mid b_{p} \in F\left(a_{c}\right)\right\}} z_{i, l}=1\right) \wedge\left(\wedge_{l \in\left\{p \mid b_{p} \notin F\left(a_{c}\right)\right\}} z_{i, l}=0\right)\right)\right), \\
\varepsilon=\wedge_{1 \leq l \leq n}\left(\vee_{1 \leq i \leq k} z_{i, l}\right) \\
\zeta_{i}=\neg\left(\wedge_{1 \leq c \leq m}\left(\vee_{1 \leq j \leq\left\lceil\log _{2} m\right\rceil} y_{i, j} \neq c\langle j\rangle\right)\right) \\
\psi=\left(\wedge_{1 \leq i \leq k} \delta_{i}\right) \wedge \varepsilon \wedge\left(\wedge_{1 \leq i \leq k} \zeta_{i}\right)
\end{gathered}
$$

where $1 \leq i \leq k$.
Theorem. There is $T \subseteq S$ such that $\cup_{x \in T} F(x)=N$ and $|T| \leq k$ if and only if ψ is satisfiable.

Proof. Suppose that there is $T \subseteq S$ such that $\cup_{x \in T} F(x)=N$ and $|T| \leq k$. Without loss of generality we can assume that $|T|=k$.

Let $T=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$. Let $y_{i, j}=i\langle j\rangle$ where $1 \leq i \leq k, z_{i, l}=1$ for $l \in\left\{p \mid b_{p} \in F\left(c_{i}\right)\right\}, z_{i, l}=0$ for $l \in\left\{p \mid b_{p} \notin F\left(c_{i}\right)\right\}$. Satisfiability of δ_{i} and ζ_{i} follows directly from the choice of values of variables.

Since $\cup_{x \in T} F(x)=N$, for any $b_{p} \in N$ there is $c_{i} \in T$ such that $b_{p} \in F\left(c_{i}\right)$. Thus, for any $p, 1 \leq p \leq n$, there is i such that $z_{i, p}=1$. So, ε is satisfiable. Therefore, ψ is satisfiable.

Suppose now that ψ is satisfiable. Consider some assignment to the variables of ψ such that ψ is satisfiable. Since ψ is satisfiable, it is easy to see that ε is satisfiable. Thus, for any $l, 1 \leq l \leq n$, there is $i, 1 \leq i \leq k$, such that $z_{i, l}=1$. Since ζ_{i} is satisfiable, $1 \leq i \leq k$, it is easy to check that for any i and some $c, 1 \leq c \leq m$, we have $c\langle j\rangle y_{i, j}$ where $1 \leq j \leq\left\lceil\log _{2} m\right\rceil$. Thus, in view of $z_{i, l}=1$, we have $l \in\left\{p \mid b_{p} \in F\left(a_{c}\right)\right\}$. Therefore, for any $l, 1 \leq l \leq n$, there are values of $y_{i, 1}, y_{i, 2}, \ldots, y_{i,\left\lceil\log _{2} m\right\rceil}$ such that there is $c, 1 \leq c \leq m$, such that $c\langle j\rangle y_{i, j}$ where $1 \leq j \leq\left\lceil\log _{2} m\right\rceil$ and $l \in\left\{p \mid b_{p} \in F\left(a_{c}\right)\right\}$. By definition of ψ, there are no more then k different assignments for $y_{i, 1}, y_{i, 2}, \ldots, y_{i,\left\lceil\log _{2} m\right\rceil}$. Therefore, there is $T \subseteq S$ such that $\cup_{x \in T} F(x)=N$ and $|T| \leq k$.

It is easy to see that

$$
\zeta_{i} \Leftrightarrow \zeta_{i}^{\prime}=\wedge_{m<c \leq 2^{\left\lceil\log _{2} m\right\rceil}}\left(\vee_{1 \leq j \leq\left\lceil\log _{2} m\right\rceil} y_{i, j} \neq c\langle j\rangle\right) .
$$

It is clear that

$$
\begin{gathered}
\delta_{i} \Leftrightarrow \wedge_{1 \leq c \leq m}\left(\left(\vee_{1 \leq j \leq\left[\log _{2} m\right\rceil} y_{i, j} \neq c\langle j\rangle\right) \vee\right. \\
\left.\left(\left(\wedge_{l \in\left\{p \mid b_{p} \in F\left(a_{c}\right)\right\}} z_{i, l}=1\right) \wedge\left(\wedge_{l \in\left\{p \mid b_{p} \notin F\left(a_{c}\right)\right\}} z_{i, l}=0\right)\right)\right) .
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\delta_{i} \Leftrightarrow \delta_{i}^{\prime}=\wedge_{1 \leq c \leq m}\left(\left(\left(\wedge _ { l \in \{ p | b _ { p } \in F (a _ { c }) \} } \left(z_{i, l}=1 \vee\right.\right.\right.\right. \\
\left.\left.\left(\vee_{1 \leq j \leq\left\lceil\log _{2} m\right\rceil} y_{i, j} \neq c\langle j\rangle\right)\right)\right) \wedge \\
\left.\left.\left(\wedge_{l \in\left\{p \mid b_{p} \notin F\left(a_{c}\right)\right\}}\left(z_{i, l}=0 \vee\left(\vee_{1 \leq j \leq\left\lceil\log _{2} m\right\rceil} y_{i, j} \neq c\langle j\rangle\right)\right)\right)\right)\right) .
\end{gathered}
$$

Thus,

$$
\psi \Leftrightarrow \psi^{\prime}=\left(\wedge_{1 \leq i \leq k} \delta_{i}^{\prime}\right) \wedge \varepsilon \wedge\left(\wedge_{1 \leq i \leq k} \zeta_{i}^{\prime}\right) .
$$

In view of

$$
\begin{aligned}
x=1 \Leftrightarrow x, & x \neq 1 \Leftrightarrow \neg x, \\
x=0 \Leftrightarrow \neg x, & x \neq 0 \Leftrightarrow x,
\end{aligned}
$$

it is clear that ψ^{\prime} is a CNF. It is easy to check that ψ^{\prime} gives us an explicit reduction from SP to SAT.

By direct verification we can check that

$$
\begin{align*}
\alpha \Leftrightarrow & \left(\alpha \vee \beta_{1} \vee \beta_{2}\right) \wedge \\
& \left(\alpha \vee \neg \beta_{1} \vee \beta_{2}\right) \wedge \\
& \left(\alpha \vee \beta_{1} \vee \neg \beta_{2}\right) \wedge \\
& \left(\alpha \vee \neg \beta_{1} \vee \neg \beta_{2}\right), \tag{1}\\
\vee_{j=1}^{l} \alpha_{j} \Leftrightarrow & \left(\alpha_{1} \vee \alpha_{2} \vee \beta_{1}\right) \wedge \\
& \left(\wedge_{i=1}^{l-4}\left(\neg \beta_{i} \vee \alpha_{i+2} \vee \beta_{i+1}\right)\right) \wedge \\
& \left(\neg \beta_{l-3} \vee \alpha_{l-1} \vee \alpha_{l}\right), \tag{2}\\
\alpha_{1} \vee \alpha_{2} \Leftrightarrow & \left(\alpha_{1} \vee \alpha_{2} \vee \beta\right) \wedge \\
& \left(\alpha_{1} \vee \alpha_{2} \vee \neg \beta\right), \tag{3}\\
\vee_{j=1}^{4} \alpha_{j} \Leftrightarrow & \left(\alpha_{1} \vee \alpha_{2} \vee \beta_{1}\right) \wedge \\
& \left(\neg \beta_{1} \vee \alpha_{3} \vee \alpha_{4}\right) \tag{4}
\end{align*}
$$

where $l>4$. Using relations $(1)-(4)$ we can easily obtain an explicit transformation ψ^{\prime} into $\psi^{\prime \prime}$ such that $\psi^{\prime} \Leftrightarrow \psi^{\prime \prime}$ and $\psi^{\prime \prime}$ is a 3-CNF. It is clear that $\psi^{\prime \prime}$ gives us an explicit reduction from SP to 3SAT.

In papers $[8,9,10,11,12]$ the authors considered some algorithms to solve logical models (see also $[13,14,15,16]$). Our computational experiments have shown that these algorithms can be used to solve logical models for SP.

References

[1] A. Gorbenko, M. Mornev, V. Popov, and A. Sheka, The problem of sensor placement for triangulation-based localisation, International Journal of Automation and Control, 5 (2011), 245-253.
[2] A. Gorbenko, M. Mornev, V. Popov, and A. Sheka, The Problem of Sensor Placement, Advanced Studies in Theoretical Physics, 6 (2012), 965-967.
[3] A. Gorbenko, A. Lutov, M. Mornev, and V. Popov, Algebras of Stepping Motor Programs, Applied Mathematical Sciences, 5 (2011), 1679-1692.
[4] A. Gorbenko, V. Popov, and A. Sheka, Robot Self-Awareness: Temporal Relation Based Data Mining, Engineering Letters, 19 (2011), 169-178.
[5] A. Gorbenko and V. Popov, On the Problem of Placement of Visual Landmarks, Applied Mathematical Sciences, 6 (2012), 689-696.
[6] A. Gorbenko and V. Popov, A Real-World Experiments Setup for Investigations of the Problem of Visual Landmarks Selection for Mobile Robots, Applied Mathematical Sciences, 6 (2012), 4767-4771.
[7] A. Gorbenko and V. Popov, The Problem of Selection of a Minimal Set of Visual Landmarks, Applied Mathematical Sciences, 6 (2012), 4729-4732.
[8] A. Gorbenko, M. Mornev, and V. Popov, Planning a Typical Working Day for Indoor Service Robots, IAENG International Journal of Computer Science, 38 (2011), 176-182.
[9] A. Gorbenko and V. Popov, Programming for Modular Reconfigurable Robots, Programming and Computer Software, 38 (2012), 13-23.
[10] A. Gorbenko and V. Popov, On the Optimal Reconfiguration Planning for Modular Self-Reconfigurable DNA Nanomechanical Robots, Advanced Studies in Biology, 4 (2012), 95-101.
[11] A. Gorbenko and V. Popov, The set of parameterized k-covers problem, Theoretical Computer Science, 423 (2012), 19-24.
[12] A. Gorbenko, V. Popov, and A. Sheka, Localization on Discrete Grid Graphs, Proceedings of the CICA 2011, (2012), 971-978.
[13] A. Gorbenko and V. Popov, The Longest Common Parameterized Subsequence Problem, Applied Mathematical Sciences, 6 (2012), 2851-2855.
[14] A. Gorbenko and V. Popov, The Binary Paint Shop Problem, Applied Mathematical Sciences, 6 (2012), 4733-4735.
[15] A. Gorbenko and V. Popov, The Longest Common Subsequence Problem, Advanced Studies in Biology, 4 (2012), 373-380.
[16] A. Gorbenko and V. Popov, Element Duplication Centre Problem and Railroad Tracks Recognition, Advanced Studies in Biology, 4 (2012), 381384.

Received: July, 2012

