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Abstract

In this paper we consider an approach to solve the problem of sensor
placement. This approach is based on constructing logical models for
the problem.
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Different formalizations of the problem of sensor placement received a lot of
attention recently (see e.g. [1, 2]). For instance, sensor placement is extensively
used for improved robotic navigation (see e.g. [3, 4]). In particular, visual
landmarks problems are extensively studied in contemporary robotics (see e.g.
[5, 6, 7]). In this paper we consider SP problem (see [2]).

Let

[c]2 ⇀↽ c〈1〉c〈2〉 . . . c〈�log2m�〉
where

c =
�log2 m�∑

i=1

2�log2 m�−i〈i〉,

c ≤ m. Let

δi = ∧1≤c≤m((∧1≤j≤�log2 m�yi,j = c〈j〉) →
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((∧l∈{p|bp∈F (ac)}zi,l = 1) ∧ (∧l∈{p|bp �∈F (ac)}zi,l = 0))),

ε = ∧1≤l≤n(∨1≤i≤kzi,l),

ζi = ¬(∧1≤c≤m(∨1≤j≤�log2 m�yi,j 
= c〈j〉)),
ψ = (∧1≤i≤kδi) ∧ ε ∧ (∧1≤i≤kζi)

where 1 ≤ i ≤ k.
Theorem. There is T ⊆ S such that ∪x∈TF (x) = N and |T | ≤ k if and

only if ψ is satisfiable.
Proof. Suppose that there is T ⊆ S such that ∪x∈TF (x) = N and |T | ≤ k.

Without loss of generality we can assume that |T | = k.
Let T = {c1, c2, . . . , ck}. Let yi,j = i〈j〉 where 1 ≤ i ≤ k, zi,l = 1 for

l ∈ {p | bp ∈ F (ci)}, zi,l = 0 for l ∈ {p | bp 
∈ F (ci)}. Satisfiability of δi and ζi
follows directly from the choice of values of variables.

Since ∪x∈TF (x) = N , for any bp ∈ N there is ci ∈ T such that bp ∈ F (ci).
Thus, for any p, 1 ≤ p ≤ n, there is i such that zi,p = 1. So, ε is satisfiable.
Therefore, ψ is satisfiable.

Suppose now that ψ is satisfiable. Consider some assignment to the vari-
ables of ψ such that ψ is satisfiable. Since ψ is satisfiable, it is easy to see that
ε is satisfiable. Thus, for any l, 1 ≤ l ≤ n, there is i, 1 ≤ i ≤ k, such that
zi,l = 1. Since ζi is satisfiable, 1 ≤ i ≤ k, it is easy to check that for any i
and some c, 1 ≤ c ≤ m, we have c〈j〉yi,j where 1 ≤ j ≤ �log2m�. Thus, in
view of zi,l = 1, we have l ∈ {p | bp ∈ F (ac)}. Therefore, for any l, 1 ≤ l ≤ n,
there are values of yi,1, yi,2, . . . , yi,�log2 m� such that there is c, 1 ≤ c ≤ m, such
that c〈j〉yi,j where 1 ≤ j ≤ �log2m� and l ∈ {p | bp ∈ F (ac)}. By definition
of ψ, there are no more then k different assignments for yi,1, yi,2, . . . , yi,�log2 m�.
Therefore, there is T ⊆ S such that ∪x∈TF (x) = N and |T | ≤ k.

It is easy to see that

ζi ⇔ ζ ′i = ∧m<c≤2�log2 m�(∨1≤j≤�log2 m�yi,j 
= c〈j〉).

It is clear that

δi ⇔ ∧1≤c≤m((∨1≤j≤�log2 m�yi,j 
= c〈j〉)∨
((∧l∈{p|bp∈F (ac)}zi,l = 1) ∧ (∧l∈{p|bp �∈F (ac)}zi,l = 0))).

Therefore,
δi ⇔ δ′i = ∧1≤c≤m(((∧l∈{p|bp∈F (ac)}(zi,l = 1∨

(∨1≤j≤�log2 m�yi,j 
= c〈j〉)))∧
(∧l∈{p|bp �∈F (ac)}(zi,l = 0 ∨ (∨1≤j≤�log2 m�yi,j 
= c〈j〉))))).

Thus,

ψ ⇔ ψ′ = (∧1≤i≤kδ
′
i) ∧ ε ∧ (∧1≤i≤kζ

′
i).
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In view of

x = 1 ⇔ x, x 
= 1 ⇔ ¬x,
x = 0 ⇔ ¬x, x 
= 0 ⇔ x,

it is clear that ψ′ is a CNF. It is easy to check that ψ′ gives us an explicit
reduction from SP to SAT.

By direct verification we can check that

α ⇔ (α ∨ β1 ∨ β2) ∧
(α ∨ ¬β1 ∨ β2) ∧
(α ∨ β1 ∨ ¬β2) ∧
(α ∨ ¬β1 ∨ ¬β2), (1)

∨l
j=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧

(∧l−4
i=1(¬βi ∨ αi+2 ∨ βi+1)) ∧

(¬βl−3 ∨ αl−1 ∨ αl), (2)

α1 ∨ α2 ⇔ (α1 ∨ α2 ∨ β) ∧
(α1 ∨ α2 ∨ ¬β), (3)

∨4
j=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧

(¬β1 ∨ α3 ∨ α4) (4)

where l > 4. Using relations (1) – (4) we can easily obtain an explicit trans-
formation ψ′ into ψ′′ such that ψ′ ⇔ ψ′′ and ψ′′ is a 3-CNF. It is clear that ψ′′

gives us an explicit reduction from SP to 3SAT.
In papers [8, 9, 10, 11, 12] the authors considered some algorithms to solve

logical models (see also [13, 14, 15, 16]). Our computational experiments have
shown that these algorithms can be used to solve logical models for SP.
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