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Abstract

Throughout the past six months, no number has dominated the public media more persistently than the reproduction number

of COVID-19. This powerful but simple concept is widely used by the public media, scientists, and political decision makers

to explain and justify political strategies to control the COVID-19 pandemic. Here we explore the effectiveness of political

interventions using the reproduction number of COVID-19 across Europe. We propose a dynamic SEIR epidemiology model

with a time-varying reproduction number, which we identify using machine learning. During the early outbreak, the basic

reproduction number was 4.22 ± 1.69, with maximum values of 6.33 and 5.88 in Germany and the Netherlands. By May

10, 2020, it dropped to 0.67 ± 0.18, with minimum values of 0.37 and 0.28 in Hungary and Slovakia. We found a strong

correlation between passenger air travel, driving, walking, and transit mobility and the effective reproduction number with a

time delay of 17.24 ± 2.00 days. Our new dynamic SEIR model provides the flexibility to simulate various outbreak control

and exit strategies to inform political decision making and identify safe solutions in the benefit of global health.
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1 Motivation

Since the beginning of the new coronavirus pandemic in

December 2020, no other number has been discussed more

controversially than the reproduction number of COVID-19

[36]. Epidemiologists use the basic reproduction number R0

to quantify how many new infections a single infectious

individual creates in an otherwise completely susceptible

population [13]. The public media, scientists, and political

decision makers across the globe have started to adopted the

basic reproduction number as an illustrative metric to explain

and justify the need for community mitigation strategies and

political interventions [21]: An outbreak will continue for

R0 > 1 and come to an end for R0 < 1 [25]. While

the concept of R0 seems fairly simple, the reported basic
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reproduction number for COVID-19 varies hugely depending

on country, culture, calculation, stage of the outbreak [36].

Knowing the precise number of R0 is important, but chal-

lenging, because of limited data and incomplete reporting

[12]. It is difficult–if not impossible–to measure R0 directly

[50]. The earliest COVID-19 study that followed the first

425 cases of the Wuhan outbreak via direct contact tracing

reported a basic reproduction number of 2.2 [33]. However,

especially during the early stages of the outbreak, informa-

tion was limited because of insufficient testing, changes in

case definitions, and overwhelmed healthcare systems [47].

Most basic reproduction numbers of COVID-19 we see in the

public media today are estimates of mathematical models that

depend critically on the choice of the model, the initial con-

ditions, and numerous other modeling assumptions [12]. To

no surprise, the mathematically predicted basic reproduction

numbers cover a wide range, from 2.2–3.6 for exponential

growth models to 4.1–6.5 for more sophisticated compart-

ment models [36].

Compartment models are a popular approach to simulate

the epidemiology of an infectious disease [29]. A prominent

compartment model is the SEIR model that represents the

timeline of a disease through the interplay of four compart-

ments that contain the susceptible, exposed, infectious, and
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recovered populations [6]. The SEIR model has three charac-

teristic parameters, the transition rates β from the susceptible

to the exposed state, α from the exposed to the infectious

state, and γ from the infectious to the recovered state [25].

The latter two are disease specific parameters associated with

the inverses of the latent period A = 1/α during which an

individual is exposed but not yet infectious, and the infec-

tious period C = 1/γ during which an individual can infect

others [32]. For COVID-19, depending on the way of report-

ing, these two times can vary anywhere between A = 2 to

6 days and C = 3 to 18 days [40,42,44]. The most criti-

cal feature of any epidemiology model is the transition from

the susceptible to the exposed state. This transition typically

scales with the size of the susceptible and infectious popu-

lations S and I , and with the contact rate β, the inverse of

the contact period B = 1/β between two individuals of these

populations [25]. The product of the infectious period and the

contact rate defines the reproduction number R = C β [12].

Community mitigation strategies and political interventions

seek to reduce the contact rate β, and with it the reproduction

number R, to control the outbreak of a pandemic [44].

The first official case of COVID-19 in Europe was reported

on January 24, 2020. Within only 45 days, the pandemic

spread across all 27 countries of the European Union [15]. On

March 17, for the first time in its history, the European Union

closed all its external borders to prevent a further spreading

of the disease [16]. Within the following two weeks, many

local governments supplemented the European regulations

with lockdowns and national travel restrictions. In response,

passenger air travel within the European Union dropped by

up to 95% [18]. These drastic measures have stimulated a

wave of criticism, especially because initially, it was entirely

unclear to which extent they would succeed in reducing the

number of new infections [38].

In this study, as Europe begins to relax these constraints,

we correlate the effect of Europe-wide travel restrictions

to the outbreak dynamics of COVID-19. We introduce a

dynamic SEIR model with a time-varying contact rate β(t)

that transitions smoothly from the initial contact rate β0 at

the beginning of the outbreak to the effective contact rate

βt under global travel restrictions and local lockdown. We

express the time-varying contact rate β(t) = R(t)/C as a

function of the effective reproduction number R(t) and use

Bayesian inference to learn the evolution of the reproduc-

tion number for each country of the European Union from

its individual outbreak history [15]. Our model allows us

to precisely quantify the initial basic reproduction number

R0, the effective reproduction number Rt, and the adapta-

tion time t∗ to achieve this reduction, which are important

quantitative metrics of the effectiveness of national public

health intervention. Our model also specifies the exact time

delay �t between the implementation of political actions and

their effects on the outbreak dynamics of COVID-19. This

time delay is particularly important to plan exit strategies and

estimate risks associated with gradually or radically relaxing

current local lockdowns and global travel restrictions.

2 Methods

Epidemiology modeling. We model the epidemiology

of the COVID-19 outbreak using an SEIR model with

four compartments, the susceptible, exposed, infectious, and

recovered populations, governed by a set of ordinary differ-

ential equations [34], see Appendix,

Ṡ = −β S I /N

Ė = +β S I /N − α E

İ = + α E − γ I

Ṙ = + γ I .

The transition rates between the four compartments, β, α,

and γ , are inverses of the contact period B = 1/β, the latent

period A = 1/α, and the infectious period C = 1/γ , and

N = S + E + I + R is the total population. We interpret the

latency rate α and the infectious rate γ as disease-specific for

COVID-19, and assume that they are constant across all 27

countries of the European Union. We interpret the contact rate

β = β(t) as behavior specific, and assume that it is different

for each country and can vary in time to reflect the effect of

societal and political actions. For easier interpretation, we

express the contact rate β(t) = R(t)/C in terms of the time-

varying effective reproduction number R(t). For the effective

reproduction number, we postulate a hyperbolic tangent type

ansatz,

R(t) = R0 − 1
2
[ 1 + tanh

(

[ t − t∗ ]/T
)

][ R0 − Rt ] .

This ansatz ensures a smooth transition from the basic repro-

duction number R0 at the beginning of the outbreak to the

current reproduction number Rt under travel restrictions and

lockdown, where t∗ is the adaptation time and T is the tran-

sition time, see Appendix.

COVID-19 outbreak and mobility data. We draw the

COVID-19 outbreak data for all 27 countries of the Euro-

pean Union [15]. From these data, we extract the newly

confirmed cases as the difference between today’s and yester-

day’s reported cases. We sample all European air traffic data

from the Eurocontrol dashboard, a pan-European Organiza-

tion dedicated to support European aviation [19]. In addition,

we approximate car, walking, and transit mobility using a

database generated from cell phone data [4]. These data

represent the relative volume of location requests per city,

subregion, region, and country, scaled by the baseline volume

on January 13, 2020. We smoothen the weekday-weekend
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fluctuations in outbreak and mobility data by applying a mov-

ing averaging window of seven days.

Machine learning. To analyze the evolution of the effective

reproduction number for each country, and predict possible

exit scenarios, we identify the initial exposed and infectious

populations E0 and I0 and the effective reproduction number

R(t) using the reported COVID-19 cases in all 27 countries

of the European Union [15]. For each country, our simu-

lation window begins on the day at which the number of

reported cases surpasses 100 individuals and ends on May

10, 2020 for the initial simulation and on June 20, 2020

for the prediction. We fix the latency and infectious peri-

ods to A = 2.5 days and C = 6.5 days [31,33,47]. To

account for uncertainties in the initial exposed and infec-

tious populations E0 and I0 and in the effective reproduction

number R(t), we use Bayesian inference with Markov-Chain

Monte-Carlo to estimate the following set of model param-

eters ϑ = { E0, I0, σ, R0, Rt, t∗, T }. Here, σ represents

the width of the likelihood p(D̂(t) | ϑ) between the time-

varying reported new cases D̂(t) and the simulated affected

population D(t,ϑ). We adopt a Student’s t-distribution for

the likelihood between the data and the model predictions

[11,30] with a confirmed case number-dependent width,

p(D̂(t) |ϑ) ∼ StudentTν=4( mean = D(t,ϑ),

width = σ
√

D(t,ϑ)).

We apply Bayes’ rule to obtain the posterior distribution of

the parameters [41,45] using the prior distributions in Table 1

and the reported case numbers [15],

p(ϑ | D̂(t)) =
p

(

D̂(t) | D(t,ϑ)

)

p(ϑ)

p
(

D̂(t)
) .

We solve this distribution numerically using the NO-U-Turn

sampler [26] implementation of the python package PyMC3

[46]. We use two chains: The first 1000 samples are used

to tune the sampler, and are later discarded; the subsequent

1000 samples are used to estimate the set of parameters ϑ .

Chain convergence requires a geometric ergodicity between

the Markov transition and the target distribution. In PyMC3

this is detected by split R̂ statistics, which identifies conver-

gence by comparing the variance between the chains. From

the converged posterior distributions, we sample multiple

combinations of parameters that describe the time evolution

of reported cases. These posterior samples allow us to quan-

tify the uncertainty on each parameter.

To probe the effect of different exit strategies, we explore

three possible projections of the effective reproduction num-

ber R(t) for each posterior parameter sample set and predict

the outbreak dynamics for a 40-day period after our initial

Table 1 Prior distributions for the initial exposed and infectious popu-

lations E0 and I0, width of likelihood σ , basic and effective reproduction

numbers R0 and Rt , adaptation time t∗, and transition time T

manuscript submission, from May 10 until June 20, 2020.

The first scenario assumes a constant effective reproduc-

tion number R(t) = Rt, the second and third scenarios

simulate the effect of a linear return from Rt to the country-

specific basic reproduction number R0, either rapidly within

one month, or more gradually within three months. In the

revision of our manuscript, we added the reported daily new

cases from May 10 until June 20, 2020 to compare our model

predictions against the real case data.

3 Results

Figure 1 illustrates the outbreak dynamics of COVID-19 for

all 27 countries of the European Union. The dots represent

daily new cases. The brown and red curves illustrate the fit

of the SEIR model and the effective reproduction number

for the time period until May 10, 2020. The gray shaded

area highlights the model predictions for the 40-day period

of gradual reopening, from May 10 until June 20, 2020. The

dashed brown, orange, and red curves illustrate the projec-

tions for three possible exit strategies: a constant continuation

at the effective reproduction number Rt from May 10, 2020,

a gradual return to the basic reproduction number R0 within

three months, and a rapid to R0 within one months.

Table 2 and Figs. 2 and 3 summarize the basic reproduc-

tion number R0 at the beginning of the COVID-19 outbreak

and the effective reproduction number Rt as of May 10, 2020.

The basic reproduction number R0 has maximum values in

Germany, the Netherlands, and Spain, with 6.33, 5.88, and

5.19 and minimum values in Bulgaria, Croatia, and Lithuania

with 1.29, 0.93, and 0.91. The population weighted mean of

the basic reproduction number across the European Union is

R0 = 4.22 ± 1.69. The effective reproduction number Rt is

significantly lower than the initial basic reproduction num-

ber R0. In most countries, it is well below the critical value

of Rt = 1.0. It has maximum values in Sweden, Bulgaria,

and Poland all with 1.01, 0.99, and 0.96 and minimum val-

ues in Lithuania, Hungary, and Slovakia with 0.41, 0.37, and
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Fig. 1 Outbreak dynamics of COVID-19 across Europe and pre-
diction of different exit strategies. The dots represent daily new

cases. The brown and red curves illustrate the fit of the SEIR model

and the effective reproduction number for the time period until May

10, 2020. The gray shaded area highlights the model predictions from

May 10 until June 20, 2020. The dashed brown, orange, and red curves

illustrate the projections for three possible exit strategies: a constant con-

tinuation at the effective reproduction number Rt from May 10, 2020, a

gradual return to the basic reproduction number R0 within three months,

and a rapid to R0 within one months
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Table 2 Parameters of the COVID-19 outbreak across Europe

Basic reproduction number R0, effective reproduction number Rt , adaptation time t∗, adaptation speed T , and time delay �t for fixed latency

period A = 2.5 days and infectious period C = 6.5 days

0.28. The population weighted mean of the basic reproduc-

tion number across the European Union is Rt = 0.67±0.18.

Figure 4 provides a direct correlation between the reduc-

tion in mobility and the effective reproduction number of

the COVID-19 outbreak across Europe. The purple, blue,

grey, and black dots represent the reduction in air traffic,

driving, walking, and transit mobility, the red curves show

effective reproduction number with 95% confidence inter-

val. The mean time delay �t highlights the temporal delay

between reduction in mobility and effective reproduction

number. Spearman’s rank correlation ρ, a measure of the

statistical dependency between both variables, reveals the

strongest correlation in the Netherlands, Germany, Ireland,

Spain, and Sweden with 0.99 and 0.98. Only in Slovakia,

Slovenia and Lithuania, where the number of cases has not

yet plateaued and the effective reproduction number does not

show a clear smoothly decaying trend, there is no significant

correlation between mobility and the effective reproduction

number.

Figure 5 summarizes the learned basic reproduction num-

ber R0, the effective reproduction number Rt, the adaptation

time t∗, and the time delay �t for all 27 countries of the

European Union. The adaptation time t∗ characterizes the

time between the beginning of the outbreak at 100 confirmed

cases and the reduction in the effective reproduction number

and is a quantitative measure for the reaction time in the

population. The time delay �t characterizes the mean time

between the reduction in air travel, driving, walking, and

transit mobility and the reduction in the effective reproduc-

tion number and is a quantitative measure for the effect of

mobility.

Table 2 and Figs. 6 and 7 summarize the adaptation time t∗

and the time delay �t . The adaptation time t∗ has maximum

values in Bulgaria and Slovakia with 37.04 and 31.80 days

and minimum values in Luxembourg and Slovenia with 5.77

and 5.64 days. The mean adaptation time across the European

Union is t∗ = 18.61±6.43 days. The time delay �t has max-

imum values in Bulgaria and Slovakia with 43.00 and 40.25

days and minimum values in Germany and the Netherlands

both with 3.25 and 0.75 days. The mean time delay across

the European Union is �t = 17.24 ± 2.00 days.
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Fig. 2 Basic reproduction number R0 of the COVID-19 outbreak
across Europe.The basic reproduction number characterizes the initial

number of new infectious created by one infectious individual. It has

maximum values in Germany, the Netherlands, and Spain, with 6.33,

5.88, and 5.19 and minimum values in Bulgaria, Croatia, and Lithuania

with 1.29, 0.93, and 0.91

Fig. 3 Effective reproduction number Rt of the COVID-19
outbreak across Europe. The effective reproduction number charac-

terizes the current number of new infectious created by one infectious

individual. It has maximum values in Sweden, Bulgaria, and Poland all

with 1.01, 0.99, and 0.96 and minimum values in Lithuania, Hungary,

and Slovakia with 0.41, 0.37, and 0.28 as of May 10, 2020

4 Discussion

Mathematical models can inform political interven-

tions.As many countries begin to explore safe exit strategies

from total lockdown, shelter in place, and national travel

restrictions to manage the COVID-19 pandemic, political

decision makers are turning to mathematical models for

advise [10]. A powerful quantitative concept to characterize

the contagiousness and transmissibility of the new coro-

navirus is the basic reproduction number R0 [50]. This

number explains–in simple terms–how many new infections

are caused by a single one infectious individual in an oth-

erwise completely susceptible population [13]. However,

against many false claims, the basic reproduction number

does not measure the effects of public health interventions

[12]. Here, we quantify these effects, for every point in time,

for every country, using the effective reproduction number

R(t), a time-dependent metric that changes dynamically in

response to community mitigation strategies and political

actions. We learn the effective reproduction number from

case data of the COVID-19 outbreak across Europe using

Bayesian inference and systematically correlate it to politi-

cal interventions.

The classical SEIR model can predict a natural equilib-

rium and herd immunity. The SEIR model has advanced

to the model of choice for the outbreak dynamics of COVID-

19 [36]. It belongs to a class of infectious disease models

that epidemiologists characterize as compartment models

[14]. Compartment models represent the population via a

sequence of compartments through which the population

passes as the disease progresses. Out of the many differ-

ent compartment models, the SEIR model seems best suited

to mimic the epidemiology of COVID-19 via four compart-

ments: the susceptible, exposed, infectious, and recovered

populations. For more than three decades [6], epidemiolo-

gists have successfully applied the SEIR model to understand

the outbreak dynamics of the measles, chickenpox, mumps,

polio, rubella, pertussis, and smallpox [25]. For this class of

diseases, the outbreak ends as the number of daily new cases,

β S I , decreases. As such, the classical SEIR model is self-

regulating: It naturally converges to an endemic equilibrium,

at which either the susceptible group S, or the infectious

group I , or both have become small enough to prevent new

infections [32]. In epidemiology, this equilibrium is known

as herd immunity [22]. In a homogeneous, well-mixed pop-

ulation, herd immunity occurs once a fraction of (1 − 1/R0)

of the population has become immune, either through the

disease itself or through vaccination, see Appendix. For the

basic reproduction number of R0 = 4.22 ±1.69 we found in

this study, the herd immunity threshold would be 78%. This

value is lower than 94% for the measles, 89% for chickenpox

with, 86% for mumps and rubella, and 80% for polio [3], but
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Fig. 4 Correlation between reduction in mobility and effective
reproduction number of the COVID-19 outbreak across Europe.
Purple, blue, grey, and black dots represent reduction in air traffic,

driving, walking, and transit mobility; red curves show effective repro-

duction number R(t) with 95% confidence interval. The mean time

delay �t highlights the temporal delay between reduction in mobil-

ity and effective reproduction number. Spearman’s rank correlation ρ,

measures of the statistical dependency between mobility and reproduc-

tion, and reveals the strongest correlation in the Netherlands, Germany,

Ireland, Spain, and Sweden with 0.99 and 0.98
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Fig. 5 Parameters of the COVID-19 outbreak across Europe.
Basic reproduction number R0, effective reproduction number Rt , adap-

tation time t∗ and time delay �t . The adaptation time t∗ characterizes

the time between the beginning of the outbreak and the reduction in

the effective reproduction number; the time delay �t characterizes the

mean time between the reduction in air travel, driving, walking, and

transit mobility and the reduction in the effective reproduction number

significantly higher than the values of 16% to 27% for the

seasonal flu [7]. The countries with the highest prevalence,

Luxembourg with 0.72%, Sweden with 0.71%, and Spain

with 0.64% [15], do currently not even come close to these

values, not even when including asymptomatic cases that are

believed to increase the prevalence by an order of magnitude

[43], resulting in 7.2%, 7.1%, and 6.4%. Knowing the pre-

cise basic reproduction number of COVID-19 will be critical

to estimate the conditions for herd immunity and predict the

success of vaccination strategies.

The dynamic SEIR model can predict the effects of

public health interventions. The classical SEIR model

is a valuable tool to understand the interplay of the sus-

ceptible, exposed, infectious, and recovered populations

under unconstrained conditions. However, for the current

COVID-19 pandemic, similar to SARS, MERS, or Ebola, the

dynamics of these four populations are tightly regulated by

public health interventions [10] including isolation, quaran-

tine, physical distancing, and community containment [9,53].

This implies that model parameters like the contact rate β,

the rate at which an infectious individual comes into contact

Fig. 6 Adaptation time t∗ between beginning of the outbreak
and reduction of the effective reproduction number across
Europe. The adaptation time characterizes the time between the begin-

ning of the outbreak at 100 confirmed cases and the reduction in the

effective reproduction number. It has maximum values in Bulgaria and

Slovakia with 37.04 and 31.80 days and minimum values in Luxem-

bourg and Slovenia with 5.77 and 5.64 days

Fig. 7 Time delay�t between reduction of air travel and reduc-
tion of the effective reproduction number across Europe. The

time delay characterizes the mean time between the reduction in air

travel, driving, walking, and transit mobility and the reduction in the

effective reproduction number. It has maximum values in Bulgaria and

Slovakia with 43.00 and 40.25 days and minimum values in Germany

and the Netherlands both with 3.25 and 0.75 days
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and infects others, are not constant, but modulated by social

behavior and political action [5]. Here we explicitly account

for a dynamic contact rate β(t) and express it as a func-

tion of the time-varying effective reproduction number R(t)

[55]. This allows us to “bend the curve” and predict tempo-

rary equilibrium states, far away from the equilibrium state

of herd immunity, but stable under current conditions [32].

Yet, these states can quickly become unstable again once the

current regulations change [53]. Our dynamic SEIR model

allows us to study precisely these scenarios.

The time-varying effective reproduction number

reflects the strength of public health interventions.

To model temporal changes in the reproduction number,

we propose a hyperbolic tangent type ansatz for the effec-

tive reproduction number R(t). This functional form can

naturally capture the basic reproduction number R0, the con-

verged reproduction number under the current constraints

Rt, the adaptation time t∗, and the transition time T , see

Appendix. Figure 11 illustrates how our hyperbolic tangent

type model compares against a constant and a random walk

type reproduction number. The constant reproduction num-

ber in Fig. 11, left, nicely captures the exponential increase

during the early stages of the outbreak, but fails to “bend

the curve” before herd immunity occurs. Nonetheless, sev-

eral recent studies have successfully used an SEIR model

with a constant reproduction number to model the outbreak

dynamics of COVID-19 in China [42] and in Europe [34]

by explicitly reducing the total population N to an affected

population N∗ = η N . The scaling coefficient η = N∗/N

is essentially a fitting parameter that indirectly quantifies

the level of confinement [5]. For example, when averaged

over 30 Chinese provinces, the mean affected population was

η = 5.19 · 10−5 ± 2.23 ± 10−4, suggesting that the effect of

COVID-19 was confined to only a very small fraction of the

total population [42]. The Gaussian random walk in Fig. 11,

left, naturally captures the effects of public health interven-

tions, however, in a daily varying, rather unpredictable way.

It is a valuable method to analyze case data retrospectively,

but since it does not allow for a closed functional form, it

is not very useful to make informed predictions. We con-

clude that the hyperbolic tangent based ansatz in Fig. 11,

middle, with four physically meaningful parameters, is the

most useful approach to represent the time-varying effective

reproduction number R(t) for our current purposes.

Bayesian inference identifiesbasic andeffective repro-

duction numbers from reported cases. Unfortunately,

we can neither measure the basic nor the effective repro-

duction number directly. However, throughout the past six

months, the COVID-19 pandemic has probably generated

more quantitative data than any infectious disease in history.

Parametric Bayesian methods offers incredible opportuni-

ties to evaluate these data and learn correlations and trends

[39]. Here we learn the effective reproduction number R(t)

directly from the reported COVID-19 cases in all 27 coun-

tries of the European Union, starting from the day of the

first reported case on January 24, until May 10, 2020.

This not only allows us to identify the model parameters

and confidence intervals, but also to quantify correlations

between travel restrictions and reduced effective reproduc-

tion numbers. Table 2 and Figs. 2 and 3 summarize our basic

reproduction numbers R0 and effective reproduction num-

bers Rt for all 27 countries. Our mean basic reproduction

number of R0 = 4.22±1.69 exceeds the first estimates of 1.4

to 2.5 from the World Health Organization based on a tracing

study that reported a value of 2.2 during the early outbreak in

Wuhan [33]. However, our results agree well with the more

recent values of 5.7 for the Wuhan outbreak [47] and with a

recent review that suggested values from 4.1 to 6.5 calculated

with SEIR models [36]. Our basic reproduction number of

4.22 is lower than the numbers of 18 for measles, 9 for chick-

enpox, 7 for mumps, 7 for rubella, and 5 for poliomyelitis

[3]. Compared to the SARS coronavirus with a range from

2 to 5 [36], our values of SARS-CoV-2 in Table 2 are rather

on the high end, suggesting that the new coronavirus would

spread more rapidly than SARS [54]. Knowing the precise

basic reproduction number is critical to estimate the number

of contacts to trace, if we want to successfully control the

dynamics of COVID-19 through contact trancing [24].

Political mitigation strategies reduce the effective

reproduction number with a time delay of two weeks.

Freedom of movement is the fundamental principle of the

European Union. On March 13, 2020, the World Health

Organization declared Europe the epicenter of the COVID-19

pandemic with more reported cases and deaths than the rest

of the world combined [51]. To prevent a further spreading

of the pandemic, four days later, for the first time in history,

the European Union closed all its external borders [16]. In

the following two weeks, the local governments augmented

the European regulations with local lockdowns and national

travel restrictions. Figure 4 shows that these measures had

an enormous effect on the mobility within the European

Union: By March 22, 2020, the average passenger air travel

in Europe was cut in half, and as of May 10, it is reduced by

86% in Germany, 92% in France, 93% in Italy, and 95% in

Spain [18]. These drastic actions have triggered an ongoing

debate about the effectiveness of different outbreak strate-

gies and the appropriate level of constraints [38]. Table 2

and Figs. 4, 5, 6 and 7 summarize our time-varying effective

reproduction number R(t) and highlight the time delay of

its reduction with respect to the European travel restrictions.

An important socio-economical metric is mean time delay of

�t = 17.24 ± 2.00 days between the reduction of air traffic,

driving, walking, and transit mobility and the inflection point
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of the reproduction number curve. Figures 5 and 7 show that

this time delay varies hugely across Europe with the fastest

response of 0.75 days in the Netherlands, followed by Ger-

many with 3.25 days, Belgium with 4.00 days, and Italy with

5.00 days. These fast response times naturally also reflect

decisions on the national level. France had the first reported

COVID-19 case in Europe on January 24, 2020 and acted

rigorously and promptly by introducing the first national

measures on March 16 [52]. Similarly, Italy, Spain, and Ger-

many had introduced their national measures on March 9,

March 9, and March 13, 2020 [48]. Figures 5 and 7 clearly

highlight the special role of Sweden, where the government

focusses efforts on encouraging the right behavior and creat-

ing social norms rather than mandatory restrictions: The time

delay of 23.75 days is above the European Union average of

17.24 days, and Sweden is one of the few countries where the

effective reproduction number has not yet decreased below

one. Taken together, these results confirm that, especially dur-

ing the early stages of an outbreak, controlling mobility can

play a critical role in spreading a disease [8]. However, these

drastic political measures have stimulated an active ongoing

debate when and how it would be safe to lift these restrictions.

Exit strategies will have different effects in individual

countries. Political decision makers around the globe are

currently trying to identify safe exit strategies from global

travel restrictions and local lockdown. Mathematical mod-

els can provide guidelines and answer what-if scenarios. Our

predictions in Fig. 1 show projections of the number of total

cases, for three possible exit strategies from lockdown: a con-

tinuation at a constant effective reproduction number Rt, a

gradual return to the basic reproduction number R0 within

three months, and a rapid to R0 within one months. Nat-

urally, the case numbers increase in all three cases, with

the steepest increase for the most rapid return. Interestingly,

our method provides significantly different confidence inter-

vals for different countries suggesting that a controlled return

will be more predictable in some countries like Austria and

less in others. Our projections suggest that in Sweden, were

policy makers had encouraged each individual to take respon-

sibility for their own health rather than enforcing political

constraints, the projected case numbers will follow the cur-

rent curve, without major deviations. Strikingly, in most

countries, the newly reported case numbers upon gradual

reopening, from May 10 to June 20, 2020, follow the dashed

brown curves of the prediction with a constant effective

reproduction number. This suggests that most countries have

learnt how to successfully control the pandemic and manage

new outbreaks.

Limitations. Just like any infectious disease model, our

model inherently faces limitations associated with data

uncertainties from differences in testing, inconsistent diag-

nostics, incomplete counting, and delayed reporting. For our

specific study of COVID-19, we encounter a few additional

limitations: First, although a massive amount of data are

freely available through numerous well-documented public

databases, the selection of the model naturally limits what we

can predict and it remains challenging to map the available

information into the format of the SEIR model. Second, the

initial conditions for our exposed and infectious populations

will always remain unknown and many new first cases have

been reported throughout the past couple of weeks. To reduce

the influence of unknown initial conditions, our parametric

Bayesian inference algorithm learns these populations along-

side the effective reproduction number. Third, in its current

state, our model does not distinguish between community

mitigation strategies, local public health recommendations,

and global political actions [9]. We are currently integrating

the current approach into a global network model that will

provide more granularity to include other community miti-

gation strategies in addition to mobility. Fourth, our current

model is not directly informed by mobility data. We have

recently proposed a new method that uses a stochastic pro-

cess to directly incorporate mobility as a latent variable into

the present SEIR model framework [35]. Fifth, and prob-

ably most importantly, our current knowledge limits our

ability to make firm predictions about the recovered group,

which will be critical to estimate the return to normal. Recent

studies have shown that the unreported asymptomatic pop-

ulation is huge, up to an order of magnitude larger than the

reported symptomatic population traced in our study [43]. A

related challenge is that the number of reported cases strongly

depends on the testing strategy of each country. A possibility

to eliminate testing bias could be to use death counts rather

than case counts [23]; however, this would also require a

consistent Europe-wide definition of death with versus death

caused by COVID-19. In general, more targeted tests will be

needed to identify the size of the asymptomatic population

and explore whether it behaves differently in terms of contact

rate and infectious period, which would both radically change

the overall reproduction number. As more data become avail-

able, we are confident that we will learn from uncertainty

quantification, become more confident in our model predic-

tions, and learn how to quickly extract important trends.

5 Conclusion

We quantified the effectiveness of public health interventions

using the effective reproduction number R, the time-varying

reproduction number of the COVID-19 pandemic, across all

27 countries of the European Union. We adopted an SEIR

epidemiology model with a dynamic effective reproduction

number, which we learned for each country from its individ-

ual reported cases using Bayesian inference . We found that,
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during the early stages of the COVID-19 outbreak, the basic

reproduction number across Europe was R0 = 4.22 ± 1.69.

Massive public health interventions as well as social learning

have successfully reduced the effective reproduction number

to Rt = 0.67±0.18 by May 10, 2020. Strikingly, this reduc-

tion displays a strong correlation with mobility in the form

of air travel, driving, walking and transit mobility with a

mean time delay of 17.24 ± 2.00 days. This time delay is an

important metric as we seek to identify safe exit strategies

from current lockdown and travel restrictions. To highlight

the predictive potential of our model, we simulated different

exit strategies from lockdown that either maintain the current

status quo, gradually return to normal, or rapidly return to

the early exponential growth. Upon gradual reopening, from

May 10 to June 20, 2020, the newly reported case numbers

in most countries followed the prediction that maintained the

current effective reproduction number suggesting that most

countries were able to successfully manage the pandemic and

control new outbreaks. Our dynamic epidemiology model

provides the flexibility to simulate the effects and timelines

of various outbreak control and exit strategies to inform polit-

ical decision making and identify solutions that minimize the

impact of COVID-19 on global health.
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Appendix

The SEIRmodel. The SEIR model is a popular model in the

epidemiology of infectious diseases [25]. It represents the

timeline of a disease through four compartments that charac-

terize the dynamics of the susceptible, exposed, infectious,

and recovered populations [6]. The transition between these

populations is governed by a set of ordinary differential equa-

tions [29],

Ṡ = −β S I /N − μ S + μ N

Ė = +β S I /N − α E − μ E

İ = + α E − γ I − μ I

Ṙ = + γ I − μ R .

(1)

The transition rates between the four populations, the con-

tact rate β, the latency rate α, and the infectious rate γ , are

inverses of the contact period B = 1/β, the latent period

A = 1/α, and the infectious period C = 1/γ . The set of

equations (1) includes vital dynamics at an equivalent birth

and death rate μ, such that the sum of all four equations, (1.1)

to (1.4), is equal to zero,

Ṡ + Ė + İ + Ṙ = 0 . (2)

This implies that the sum of the four populations is constant

and equal to the total population N ,

S + E + I + R = const. = N . (3)

For the SEIR model with vital dynamics (1), the basic repro-

duction number R0, the number of new infections caused by

one infectious individual in a completely susceptible popu-

lation [13], is

R0 = α

α + μ

β

γ + μ
. (4)

The magnitude of R0 plays a critical role in the outbreak

dynamics of an infectious disease [36]. Here we are interested

in studying the outbreak dynamics of COVID-19, for which

the time period is short, and we can neglect the effects of vital

dynamics. This implies that the set of equations (1) reduces

to the following system,

Ṡ = −β S I /N

Ė = +β S I /N − α E

İ = + α E − γ I

Ṙ = + γ I ,

(5)

and the basic reproduction number (4) simplifies to the fol-

lowing expression,

R0 = β/γ = C β = C/B . (6)

Many infections diseases, including COVID-19, display a

significant latent period during which individuals have been

infected but are not yet infectious themselves. These indi-

viduals are represented through the exposed population E .

A special case of the SEIR model is the SIR model, which

follows from the set of equations (5) with α → ∞ as

Ṡ = −β S I /N

İ = +β S I /N − γ I

Ṙ = + γ I .

(7)

While the SIR model is conceptually simpler and lends

itself to closed form solutions, for the outbreak dynamics

of the COVID-19 pandemic, the invisible exposed, but not

yet infectious population plays a critical role. Throughout

this study, we therefore focus on the SEIR model. We repa-

rameterize the absolute SEIR model (5) and scale it by the

total population N , to obtain the fractions of the susceptible,

exposed, infectious, and recovered populations,

s = S/N e = E/N i = I/N r = R/N . (8)
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This introduces the relative SEIR model,

ṡ = −β s i

ė = +β s i − α e

i̇ = + α e − γ i

ṙ = + γ i ,

(9)

parameterized in the fractional populations, s, e, i , and r ,

which sum up to one,

s + e + i + r = 1 . (10)

Endemic equilibrium. The hallmark of a typical epidemic

outbreak is that it begins with a small infectious population

I0. The infectious population I (t) increases, reaches a peak,

and then decays to zero [25]. Throughout the outbreak, the

susceptible population S(t) decreases, but the final suscep-

tible population S∞ always remains larger than zero. This

final state is called the endemic equilibrium. To estimate the

endemic equilibrium of the COVID-19 pandemic, we divide

equation (5.1) by equation (5.4),

Ṡ

Ṙ
= − β S I

γ N I
(11)

Separation of the variables and using the definition of the

basic reproduction number R0 = β/γ yields the following

equation,

Ṡ

S
= − R0

N
Ṙ , (12)

which we integrate in time,

∫

1

S

dS

dt
dt = −

∫

R0

N

dR

dt
dt , (13)

to obtain the following expression,

ln(S(t)) − ln(S(0)) = −R0[ R(t) − R(0) ]/N . (14)

Here S(0) and R(0) are the initial susceptible and recovered

populations and S(t) and R(t) are these populations at time t .

Using ln(S(t))− ln(S(0)) = ln(S(t)/S(0)) and applying the

exponential function on both sides of the equation introduces

the following explicit representation for the susceptible pop-

ulation at time t ,

S(t) = S(0) exp(−R0[ R(t) − R(0) ]/N ) . (15)

According to equation (8), we scale the populations with

the total population N as s0 = S(0)/N and r0 = R(0)/N ,

and evaluate equation (15) at the limit t → ∞ with s∞ =
S(∞)/N , e∞ = 0, i∞ = 0, and r∞ = R(∞)/N = 1 −

s∞, to obtain the following expression for the susceptible

population at endemic equilibrium,

s∞ = s0 exp(−R0[ r∞ − r0 ]) = 1 − r∞ . (16)

This transcendental equation has an explicit solution in terms

of the Lambert function W ,

s∞ = −W (−s0 R0 exp(−R0[ 1 − r0 ]))/R0

e∞ = 0

i∞ = 0

r∞ = 1 +W (−s0 R0 exp(−R0[ 1 − r0 ]))/R0 .

(17)

The endemic equilibrium condition (17) confirms that, unless

S(0) = 0, the final susceptible population will always be

larger than zero, S∞ > 0 [32].

Public health interventions.The classical SEIR model (1)

assumes that the disease develops freely and that the con-

tact rate β, latency rate α, and infectious rate γ are constant

throughout the course of the outbreak. It is obvious that the

contact rate β will change in response to community mitiga-

tion strategies and political actions, e.g., local lockdown and

global travel restrictions [20]. Here, to account for the effects

of public health interventions, we introduce a time-varying

contact rate β(t) and rewrite the system of equations (5),

Ṡ = −β(t) S I /N

Ė = +β(t) S I /N − α E

İ = + α E − γ I

Ṙ = + γ I .

(18)

We make a hyperbolic tangent type ansatz for the contact rate

β(t),

β(t) = β0 − 1
2
[ 1 + tanh

(

[ t − t∗ ]/T
)

][ β0 − βt ] , (19)

where β0 is the initial contact rate at the onset of the pan-

demic, βt is the contact rate in response to public health

interventions, t∗ is the adaptation time, and T is the tran-

sition time. For easier interpretation, we reparameterize the

system (18) in term of the time-dependent effective repro-

duction number R(t) = β(t)/γ ,

Ṡ = − R(t) γ S I /N

Ė = + R(t) γ S I /N − α E

İ = + α E − γ I

Ṙ = + γ I .

(20)

With equation (19), the effective reproduction number takes

the following hyperbolic tangent type form,

R(t) = R0 − 1
2
[ 1 + tanh

(

[ t − t∗ ]/T
)

][ R0 − Rt ] . (21)
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Fig. 8 SEIR model with time-varying effective reproduction
number. Increasing the basic reproduction number R0 increases the

initial growth, and with it the number of cases. The temporary equi-

librium for the smaller basic reproduction number of R0 = 2.5 is

s∗
∞ = 0.948 and r∗

∞ = 0.052 and for the larger basic reproduction

number of R0 = 5.0 is s∗
∞ = 0.544 and r∗

∞ = 0.456. Latent period

A = 2.5 days, infectious period C = 6.5 days, basic reproduction num-

ber R0 = [5.0, 4.5, 4.0, 3.5, 3.0, 2.5], effective reproduction number

Rt = 0.75, adaptation time t∗ = 20 days, and transition time T = 15

days

This ansatz ensures a smooth transition from the initial basic

reproduction number R0 = β0/γ at the beginning of the

outbreak to the effective reproduction number Rt = βt/γ

in response to public health interventions, where t∗ and T

are the adaptation and transition times. From equation (16),

we can estimate the constrained equilibrium in response to

public health interventions,

s∗
∞ = −W (−st Rt exp(−Rt[ 1 − rt ]))/Rt

e∗
∞ = 0

i∗∞ = 0

r∗
∞ = 1 +W (−st R0 exp(−Rt[ 1 − rt ]))/Rt ,

(22)

where st = st∗+T /2 and rt = rt∗+T /2 are the fractions of

the susceptible and recovered populations at time t = t∗ +
T /2, the time at which the effective reproduction number

has fully adopted the new value R(t) = Rt. Importantly,

this constrained equilibrium is not equivalent to the natural

endemic equilibrium, s∞ ≤ s∗
∞ and r∗

∞ ≤ r∞, since Rt ≤
R0.

Time-varying effective reproduction number. Fig-

ures 8, 9 and 10 illustrate the outbreak dynamics of our

SEIR model with a time-varying effective reproduction num-

ber. The gray curves highlight the hyperbolic tangent type

nature of the effective reproduction number R(t), the dark

red, red, orange, and blue curves illustrate the dynamics of

the susceptible S, exposed E , infectious I , and recovered R

populations. Unless stated otherwise, we use a latent period

Fig. 9 SEIR model with time-varying effective reproduction
number. Increasing the reproduction number Rt decreases the effect of

interventions and increases the number of cases. The temporary equi-

librium for the smaller effective reproduction number of Rt = 0.4

is s∗
∞ = 0.764 and r∗

∞ = 0.236 and for the larger effective repro-

duction number of R0 = 0.9 is s∗
∞ = 0.594 and r∗

∞ = 0.406.

Latent period A = 2.5 days, infectious period C = 6.5 days, basic

reproduction number R0 = 4.5, effective reproduction number Rt =
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9], adaptation time t∗ = 20 days, and transi-

tion time T = 15 days

Fig. 10 SEIR model with time-varying effective reproduction
number. Increasing the adaptation time t∗ to interventions increases

the time spent at a high reproduction number, and with it the num-

ber of cases. The temporary equilibrium for the faster adaptation of

t∗ = 10 days is s∗
∞ = 0.956 and r∗

∞ = 0.044 and for the slower adap-

tation of t∗ = 22 days is s∗
∞ = 0.550 and r∗

∞ = 0.450. Latent period

A = 2.5 days, infectious period C = 6.5 days, basic reproduction

number R0 = 4.5, effective reproduction number Rt = R0/6 = 0.75,

adaptation time t∗ = [10, 12, 14, 16, 18, 20, 22] days, and transition

time T = 15 days

of A = 2.5 days, an infectious period of C = 6.5 days,

a basic reproduction number of R0 = 4.5, a reproduction

number under public health interventions of Rt = 0.75, and

adaptation and transition times of t∗ = 20 days and T = 15
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Table 3 Prior distributions for time-varying effective reproduction

number R(t) of constant, hyperbolic tangent, and Gaussian random walk

type

days. In all simulations, the effective reproduction number

R(t) transitions gradually from the initial basic reproduction

number R0 at the beginning of the outbreak to the effective

reproduction number Rt associated with the public health

interventions. The adaptation time t∗ marks the midpoint of

the transition and the transition time T is its duration. The

outbreak is more pronounced for larger basic reproduction

numbers R0 as we see in Fig. 8, for larger intervention related

reproduction numbers Rt as we see in Fig. 9, and for larger

adaptation times t∗ as we see in Fig. 10.

Constant, hyperbolic tangent, and random walk type

effective reproduction numbers. To illustrate the effect

of different time-varying effective reproduction numbers, we

compare three different methods: a constant effective repro-

duction number, a smoothly decaying effective reproduction

number of hyperbolic tangent type, and a daily varying effec-

tive reproduction number that follows a Gaussian random

walk. The constant reproduction number has one parameter

Rt = R0. The hyperbolic tangent type reproduction number,

Rt = R0 − 1
2
[ 1 + tanh ([ t − t∗ ]/T ) ][ R0 − Rt ], has four

parameters, the basic and effective reproduction numbers R0

and Rt, the adaptation time t∗, and the time delay �t . The

Gaussian random walk has three parameters, the drift μ, the

daily stepwidth τ = τ1/[ 1.0−s ], and the smoothing param-

eter s. Table 3 summarizes the prior distributions for all three

methods.

Figure 11 compares the constant, hyperbolic tangent, and

random walk type effective reproduction numbers for the

example of Austria. The three graphs illustrate the number

of reported cases as dots, the model fit as orange curves with

95% confidence interval, and the effective reproduction num-

bers as red curves with 95% confidence interval. Of all three

methods, the constant ansatz can fit the early exponential

increase of the COVID-19 outbreak, but not the later satu-

ration. The random walk type ansatz can fit both the early

exponential increase and the later saturation, but not with

a closed form expression. Only the hyperbolic tangent type

ansatz provides both a good fit and a closed functional form to

compare the time lines of the outbreak in different countries

and make informed predictions.

Herd immunity. An important consequence of the basic

reproduction number R0 is the condition for herd immunity

[12]. Herd immunity occurs once the immune population,

in our case the recovered population R, is large enough to

Fig. 11 Time-varying effective reproduction number R(t). Com-

parison of constant, hyperbolic tangent, and random walk type ansatz.

The constant effective reproduction number predicts an exponential

increase in the number of cases that fits the initial but not for the later

stages of the COVID-19 outbreak, left. The hyperbolic tangent type

reproduction number predicts a smooth early increase and later satura-

tion of the number of cases, middle. The random walk type reproduction

number predicts a daily varying, non-smooth early increase and later

saturation of the number of cases, right. Dots represent reported cases;

orange curves illustrate fit with 95% confidence interval; red curves

shows effective reproduction number with 95% confidence interval;

here illustrated for the case of Austria
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protect susceptible individuals from infection [22]. We can

express herd immunity in terms of the recovered fraction r ,

or in terms of the absolute recovered population R,

r > 1 − 1/R0 or R > [ 1 − 1/R0 ] N . (23)

Importantly, upon relaxing public health interventions, the

condition for herd immunity is not R > 1 − 1/Rt. Herd

immunity is not a function of the reproduction number under

public health interventions Rt–which is usually much smaller

than the basic reproduction number R0–but will depend

on the natural basic reproduction number R0 under uncon-

strained conditions.
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