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e oocyte requires a vast supply of energy a�er fertilization to support critical events such as spindle formation, chromatid
separation, and cell division.Until blastocyst implantation, the developing zygote is dependent on the existing pool ofmitochondria.

at pool size within each cell decreases with each cell division. Mitochondria obtained from oocytes of women of advanced
reproductive age harbor DNA deletions and nucleotide variations that impair function. 
e combination of lower number
and increased frequency of mutations and deletions may result in inadequate mitochondrial activity necessary for continued
embryo development and cause pregnancy failure. Previous reports suggested that mitochondrial activity within oocytes may
be supplemented by donor cytoplasmic transfer at the time of intracytoplasmic sperm injection (ICSI). 
ose reports showed
success; however, safety concerns arose due to the potential of two distinct populations of mitochondrial genomes in the o�spring.
Mitochondrial augmentation of oocytes is now reconsidered in light of our current understanding of mitochondrial function and
the publication of a number of animal studies.With a better understanding of the role of this organelle in oocytes immediately a�er
fertilization, blastocyst and o�spring, mitochondrial augmentation may be reconsidered as a method to improve oocyte quality.

1. Introduction

Over the past decade, our understanding of mitochondrial
function has matured. In addition to providing cellular
energy in the form of ATP for almost all intracellular events,
mitochondria have important functions in ion homeostasis,
programmed cell death, and adaptive thermogenesis [1].
Mitochondrial dysfunction has been implicated in a number
of pathophysiological processes such as aging, neurodegener-
ative diseases, diabetes and obesity, and infertility.
is review
will summarize the role of mitochondria in oocytes imme-
diately prior to fertilization and up to the blastocyst stage.

e concerns of cytoplasmic and mitochondrial transfer will
be reconsidered in light of animal studies and our greater
understanding of mitochondrial function to determine if it
may be employed to improve fertility outcomes.

2. Mitochondrial Structure and Function

Mitochondria are maternally inherited organelles that use
high eciency oxidative phosphorylation pathways to supply

ATP for cellular energy demands. 
ey are evolutionary
relics of bacteria that invaded our ancestral cells about a
billion years ago. 
ese organelles exist in the cytoplasm of
almost all eukaryotic cells and have a separate genome. 
e
mitochondrial genome is a double stranded, circular DNA
that is approximately 16.7 kb. Similar to prokaryotic DNA,
human mitochondrial DNA (mtDNA) contains no introns.

e mitochondrial genome replicates independently of the
cell cycle. 
is DNA encodes enzymes involved in (aerobic)
oxidative phosphorylation. 
is process provides a more
ecient method for the production of ATP compared with
the (anaerobic) glycolytic pathway.


e mitochondrial genome encodes 13 proteins (all part
of the oxidative phosphorylation pathway), 22 transfer RNAs,
and two ribosomal RNAs [2]. 
e expression of these gene
products is controlled, in large part, by signals provided by
the nucleus. Proteins encoded by nuclear DNA are imported
into the mitochondria to control its function in a tissue-
speci�c fashion [3, 4]. All of these nuclear-encoded proteins
recognize speci�c mtDNA sequences and are thus depen-
dent on optimal protein-protein as well as protein-DNA
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interactions [5]. As cellular demand increases, the nuclear
genome produces mitochondrial regulatory factors that are
imported into the mitochondria to initiate replication and
transcription of mtDNA and expansion of the mitochondrial
network.

Control of mitochondrial function is a�orded not only
by cell-speci�c mitochondrial transcription factors encoded
in nuclear DNA [6] but also the availability of the precursor
ADP and NADPH, substrates required for the synthesis of
ATP. As NADPH levels decline, less ATP is produced [7].
In this way, mitochondrial function is regulated by substrate
availability as well as highly speci�c communication between
the mitochondrial and nuclear genomes.

3. Mitochondrial Efficiency


e best-known function of mitochondria is the generation
of ATP from food sources. Pyruvate, converted from glu-
cose, is consumed by mitochondria to produce ATP. As
mitochondria produce ATP, they release reactive oxygen
species (ROS) locally that must be detoxi�ed as they can
induce oxidative damage to mitochondrial DNA (mtDNA).

is damage results in mutations and deletions of mtDNA.

e relative absence of repair enzymes for mtDNA may
explain its sensitivity to oxidative stress-induced damage [8].

e 10- to 20-fold higher mutation rate in mitochondrial
DNA compared with nuclear DNA is believed to be due
to its proximity to ROS generation and the limited DNA
repair capacity [9, 10]. As the organism, tissue, and cells age,
exposure of themitochondrial genome toROS increases.
is
compromises the function of this organelle.

An accumulation of mutations in mtDNA may limit
energy production. As a result, the cell has a decreased capac-
ity to support all cellular events and especially normal chro-
mosomal segregation during cell division. Many di�erent
mitochondrial deletions and mutations have been described.

e most common is a 4,977 bp deletion that occurs within
two 13 bp repeats (beginning at positions 8,470 and ending
at 13,459 of the human mitochondrial genome) [11]. Accu-
mulation of the 4,977 bp deletion within mtDNA represents
a marker for aging [12–15].

4. Inheritance of Mitochondrial DNA

Unlike the nuclear genome that is transmitted to o�spring
through Mendelian inheritance patterns, most mammals
inherit their mtDNA from the population that is present
within the oocyte at the time of fertilization.
e transmission
of the maternal mitochondrial genome to the o�spring is of
great importance. During fertilization, mitochondria that are
imported into the oocyte from the sperm are ubiquitinated
and targeted for removal through the proteasome of the
cell [16]. 
is assures that the source of mtDNA for the
o�spring will be solely maternal (homoplasmy). Multiple
deletions of mitochondrial DNA have been reported in
human sperm, especially in aging men or those with poor
quality sperm [17]. It is conceivable that survival would be
compromised if damaged paternal mitochondria were trans-
mitted to the o�spring. Negative physiological consequences

of mitochondrial heteroplasmy in the o�spring have been
reported [18–20].

As the oocyte matures, the need for more energy requires
a shi� from glycolysis to oxidative phosphorylation. Energy
needs peak at the time of ovulation [21]. Since embryonic
mitochondrial replication does not occur until a�er the
hatched blastocyst stage, mature (MII) oocytes, fertilized
oocytes, and early cleavage stage embryos are dependent on
the function of the mitochondrial pool present at ovulation
[18]. Consequently, any adverse in�uence on mitochon-
drial function (i.e., accumulation of mutational load to the
mtDNA) will negatively impact the development of the
preimplantation embryo. Mitochondria with mutations in
their genome present in the oocyte at the time of fertilization
may be passed on to the o�spring and be the basis for inher-
itance of debilitating or lethal metabolic diseases [22, 23].

5. Fertilization and the Importance of
Mitochondria in Oocytes


e number of mitochondria within cells is o�en an indi-
cation of the activity of that cell. For instance, neurons,
muscle cells, andmature oocytes havemany copies ofmtDNA
comparedwith other somatic cells. ATP generating capability
is critical for successful maturation of the cytoplasm and
nucleus in preparation for fertilization and completion of
meiosis II [13, 24, 25]. Good quality oocytes containing
optimal mitochondrial numbers and sucient levels of ATP
(at least 2 pM) [26] produce higher quality blastocysts a�er
fertilization [27].

Following fertilization and up to implantation, the emb-
ryo is dependent on the function of existing mitochondria.
As cell division begins, the total amount of mitochondria
within each blastomere decreases due to dilution with no
new mitochondrial biosynthesis [24]. Early stage cells do
not express the replication factors required to increase copy
numbers of mitochondria. 
ere is a dramatic reduction in
the number of mitochondria per cell as the fertilized oocyte
develops into a blastocyst. 
ere are very few mitochondria
per cell found in the hatched blastocyst (the bottle neck
theory [28]) which is the mechanism for transmission of
the highest quality, homoplasmic mtDNA to the o�spring.
At implantation, �rst the trophectoderm and then the entire
embryo gain capacity to replicate mtDNA [24, 29].

In the early stage embryo, the mitochondria existing
within the oocyte must provide adequate ATP to fuel the
�rst few days of embryonic development [29, 30]. It is
assumed that both anaerobic and aerobic respiration attempt
to meet the energy needs of the early embryo. 
e embryo,
however, cannot rely on anaerobic respiration when mito-
chondrial activity is insucient due its low eciency and
end product inhibition. 
e role of mitochondrial oxidative
phosphorylation and ATP production during the early fer-
tilization and preimplantation process has been shown to
be critical in many species [29, 31, 32] including humans
[13]. Murine [33, 34], bovine [35], or porcine [32] oocytes
treated with chemicals to impair mitochondrial function
show dramatically compromised cleavage rates and increased
incidence of aneuploidy. Oocytes are able to adjust local
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mitochondrial density within di�erent intracellular regions
to re�ect the cell’s changing intracellular needs [36]. 
e
observed redistribution ofmitochondria to spindles as well as
microtubule organizing centers emphasizes this feature [36].

In addition to providing adequate energy at the appropri-
ate intracellular location for cell division and chromosomal
segregation in the oocyte, mitochondria also act to sequester
calcium (cytoplasmic calcium bu�er). Increases in cytoplas-
mic free calcium are essential for oocyte activation and
embryo development a�er fertilization [22]. 
ese calcium
oscillations occur a�er sperm attachment to the oocyte
membrane or a�er sperm injection at ICSI [37]. Fertilization
completes meiosis II and requires increased amounts of ATP.

e increase in calcium �ux within the cell induces the
expression of respiratory chain enzymes that increase ATP
production through oxidative phosphorylation.

Mitochondria exhibit an interesting quality maintenance
function. Similar to prokaryotes, mitochondria have numer-
ous periods of fusion and �ssion. If active, mitochondria
maintain a polarized membrane and fuse with other mito-
chondria, to transfer components and maintain or improve
the function of damaged or poorly performing members
[38]. If, however, the mitochondrion is not functional and its
membrane is depolarized, it does not fuse with active ones
and is targeted for removal. 
is process prevents the mixing
of damaged with high-quality mitochondria and decreases
the pool of poorly performing mitochondria [38].

6. Regulation of Mitochondrial Activity:
Need for a Threshold

Inadequate supplies of ATP will result in arrested develop-
ment. 
ere is a great interoocyte variability of ATP content
within a cohort of oocytes when measured at one single
time point. 
e cell regulates ATP synthesis tightly and a
“snap-shot” of individual oocytes within a cohort may not
accurately describe this dynamic process. Actual mitochon-
drial numbers are quite variables in all oocytes [13, 39, 40],
suggesting that mitochondrial activity is not dictated solely
by copy number. Adequate amounts ofmitochondrial activity
are required to provide the burst of activity that is, required
up to the hatched blastocyst stage [41].Mitochondrial activity
is strictly regulated by nuclear signals, intracellular ion
concentrations, and the availability of substrates [42, 43].

Sucient amounts of ATP are required for numerous
cellular events that are triggered a�er fertilization including
polymerization of microtubules, cell cycle regulation, segre-
gation of chromosomes, andmembrane biosynthesis [44, 45].
Inappropriate mitochondrial activity at the pronuclear stage
is associatedwith early developmental arrest and demise [46].

Since mitochondria contain multiple copies of DNA and
cells may contain hundreds or thousands of mitochondria,
a high proportion of mutations and deletions (mutational
load) may be tolerated before a de�cit in cellular function is
apparent. Mitochondrial dysfunction is only revealed when
overall mitochondrial function drops below a threshold [47].
When a follicle and oocyte are selected for �nal maturation
and have inadequate mitochondrial activity, �nal maturation
may be delayed or terminated.Delayedmaturationmay result

in an increased rate of aneuploidy following fertilization and
is directly related to a decline in pregnancy rate. Oocytic and
embryonic aneuploidies are directly related to maternal age
and mitochondrial activity [24, 44, 45].

7. Impact of Mitochondrial
Insufficiency on Fertility

Aging is associated with a decrease in mitochondrial func-
tion, especially in nonreplicating cells such as the mature
oocyte, and it is considered the basis of declining rates
of fertility in women [7, 29, 45]. Age-related infertility is
o�en due to poor oocyte quality rather than endometrial
receptivity as demonstrated by the success of donor oocyte
programs (http://apps.nccd.cdc.gov/art/Apps/NationalSum-
maryReport.aspx).

Maternal age is associated with increased oxidative stress
in oocytes and results in mitochondrial dysfunction. 
is
dysfunction is due to oxidative damage, deletions, or point
mutations and variations in the mitochondrial genome [12,
48, 49] and results in inadequate amounts of ATP as well as
a de�cit of other critical mitochondrial functions necessary
postfertilization. Oocyte aging is due to general dysfunction
of a number of cellular processes typical of cellular aging such
as the ability to generate energy by mitochondria [13, 16, 39,
40, 50]. 
us, age-related reproductive failure is attributed
primarily to the quality of the oocyte due at least in part
to the accumulation of mtDNA damage [22, 50, 51]. Unlike
the nuclear genome, the mitochondrial genome has a sub-
optimal proofreading function, thus permitting a steady
accumulation of mutations and deletions [8].

An example of mitochondrial insuciency negatively
a�ecting fertility is provided by studies of obesity. Infertility
problems are common in obese women. Obesity induces
altered mitochondrial function in cumulus cell-oocyte com-
plex [52, 53].
e combination of increased lipid and fatty acid
content and resultant increase in ROS in the ovary, oocyte,
and surrounding cumulus cells negatively a�ects the function
of these cells.
is results in increasedmitochondrial damage
and decreased function. Oocytes that mature in this environ-
ment have reduced capacity for normal development [53].

Low ATP and decreased mtDNA copy number are
associated with not only poor oocyte quality, but also a
reduction in the quality of embryo development and sub-
optimal implantation and placentation rates [26, 41, 54].
With diminished numbers of mitochondria, the negative
e�ects of poor mitochondrial quality (mutational load) may
become more evident. 
e proportion of mutant/wild-type
mitochondria in the oocyte may be low enough to allow
for normal embryo development but be an explanation for
the surprisingly high number of o�spring diagnosed with
mitochondrial disease [23].

To increase the probability of successful outcome in
assisted reproduction, controlled ovarian hyperstimulation
programs are routinely employed. 
ese procedures them-
selves have been shown to decrease the quality of oocytes.
Gonadotropin-induced hyperstimulationmay further impair
mitochondrial function within the oocyte. Monkey oocytes,
collected a�er follicle stimulating hormonehyperstimulation,
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show a higher degree of the common deletion compared with
age matched, unstimulated oocytes [55]. Similar results have
been reported in the mouse [56, 57].

8. Oocyte Quality and Aneuploidy

Meiosis occurs two times during the maturation of oocytes,
once at the time of ovulation (meiosis I) and the second at the
time of fertilization (meiosis II).
e �rstmeiosis is ultimately
completed when the mature oocyte is exposed to midcycle
levels of LH. One of the most energy intensive activities
within the oocyte is the assembly and disassembly of micro-
tubules. 
is activity plays an important role in the proper
positioning and segregation of chromosomes.
emetaphase
alignment of the chromosomes in the oocyte is dependent
on the assembly and disassembly of microtubules [58]. As
the oocyte ages, the ability to produce adequate spindle
microtubules decreases and results in an increased incidence
of aneuploidy or unequal development [59]. Meiotic division
errors can lead to nonextrusion of the �rst polar body,
irregular distribution of chromosomes, and aneuploidy.With
advancingmaternal age, the secondmeiosis becomes increas-
ingly susceptible to aneuploidy compared to meiosis I [59–
61]. Similar �ndings have been reported for the mouse [58].

Aneuploidy of the egg and embryo is the leading genetic
cause of spontaneous abortions and developmental disabili-
ties.
e incidence of aneuploidy in eggs fromwomen in their
20’s is 2% but dramatically increases to 35% around 40 years
of age and perhaps even higher [62]. 
e segregation and
migration of chromosomes or chromatids to the appropriate
daughter cell depend on binding of the DNA to spindles
[63]. An inverse relationship exists between mitochondrial
activity and the prevalence of chaotic mosaicism in the
preimplantation embryo [64]. Competent mitochondrial
activity includes migration to the appropriate site in the cell
to provide local organelles with adequate amounts of energy.

us, mitochondrial activity is a balance between functional
capacity (mutational load), absolute mtDNA copy number
within the cell, and motility of the organelle [22, 65–67].

Mitochondrial mutations and subsequent decline in ATP
levels may accelerate follicular atresia and lead to premature
ovarian failure. More speci�cally, lesions in the ATP synthase
gene due to oxidative stress may be related to ovarian
insuciency and a loss of function [13, 50]. An increase in
the 4977 bp deletion of mtDNA has been reported in ovarian
tissue [68] as well as oocytes and embryos [55, 69, 70] and
surrounding support cells of the follicle [71]. In addition,
unfertilizable oocytes and developmentally arrested embryos
show a decreased expression of mitochondrial genes and an
increased presence of the 4977 bp deletion [72–74].

9. Third Party Cytoplasmic Transfer

In an e�ort to increase mitochondrial activity at the time
of fertilization of the oocyte, ooplasm obtained from an
oocyte donated by a younger woman was transferred to the
oocyte of a reproductively mature woman. 
e technique of
ooplasm transfer was based on a well-established method
used in experimental embryology to induce thematuration of

immature oocytes. 
is method was used with con�dence as
cytoplasmic manipulation of oocytes and early embryos was
shown to be compatible with normal development [75].

Following donor cytoplasmic transfer during ICSI,
improvements were observed in embryo formation, implan-
tation, and live births [76–81]. Patient selection was not
based solely upon maternal age but rather on those who
had previously demonstrated poor embryo cleavage rates and
morphological anomalies. 
ese factors were considered to
be representative of inadequate mitochondrial function. As
live births of healthy children were achieved, this method
was proposed to augment resident mitochondrial activity in
compromised oocytes.

10. Issues Related to Third Party
Cytoplasmic Transfer

While the bene�t of cytoplasmic transfer in fertility enhance-
ment was observed, issues related to the “3 parent genome”
arose. As detailed previously, signi�cant e�ort is expended
by the fertilized oocyte to maintain the maternal identity
of its mitochondria. 
ere is a great deal of communication
between the nuclear and mitochondrial genomes and strict
control over mitochondrial function through this commu-
nication. Infusion of third party mitochondria itself or with
deletions and/or mutations could theoretically increase the
risk for heritable mitochondrial disease [82]. It has been
shown that some children born using the transfer of third
party cytoplasm exhibited mitochondrial heteroplasmy [83].
Since the e�ect of two di�erent mitochondrial genomes on
the health of the o�spring was unknown, the US Food and
Drug Administration reviewed the technique in 2002. 
ey
suggested that the technique of donor cytoplasm transfer
be suspended pending the successful completion of studies
under an approved Investigational New Drug application.

Although cytoplasmic transfer using donor material has
been shown to improve the success of IVF, a study in
mice demonstrated a range of physiological abnormalities in
o�spring when equal proportions of heterogeneous popu-
lations of mitochondria were generated in the oocyte [19].
Metabolic abnormalities in o�spring may have been due to
the di�erences in response to nuclear signals between the two
populations ofmitochondrial DNA.Due to intimate commu-
nication with the nucleus, mitochondria optimally should be
obtained from the same female providing the oocyte [82].
Similar metabolic e�ects were observed when o�spring of
mice carrying a signi�cant load of mutated mitochondria
were examined [84].
esemurine studies demonstrated that
the addition of supplemental mitochondria can negatively
a�ect outcomes of o�spring unless they are obtained from the
same genetic source and are mutation-free.

11. Other Methods to Increase Intracellular
Mitochondrial Activity in Oocytes

Dietary supplementation with CoQ10 may increase mito-
chondrial activity within the oocyte and developing embryo
[85]. CoQ10 is a coenzyme that aids in the transport of
electrons along the mitochondrial respiratory chain. Since
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Table 1: Summary of Previous Cytoplasm and Mitochondrial Transfer Studies.

Species
Cytoplasm (Cyto) or

mitochondria (Mito) transfer
Safe for oocyte Increased fertilization rate Viable blastocyst Reference

Mouse Cyto and Mito ✓ ✓ ✓ [87, 89–92, 96–99]

Pig Cyto ✓ ✓ ✓ [31]

Cow Cyto and Mito ✓ ✓ ✓ [20, 35, 100]

Human Cyto and Mito ✓ ✓ ✓ [78–81, 101, 102]

tissue levels of CoQ10 decrease with age, supplementation of
this agent may improve mitochondrial function in the ovary.
CoQ10 administration is e�ective in the treatment of a variety
of pathological conditions, including hypertriglyceridemia
and Friedrich’s ataxia. Dietary supplementation with CoQ10
may improve oocyte and embryo quality, especially inwomen
of advanced reproductive age.

12. The Safety and Efficacy of Cytoplasmic or
Mitochondrial Transfer: Animal Studies

Since these initial studies in humans, a large compendium of
reports in animals have shown that the transfer of cytoplasm
or an enriched fraction of mitochondria can reduce in
vitro fragmentation of oocytes and increase cleavage rates
of recipient embryos compared with noninjected controls.

ese studies also have demonstrated that this technique can
produce healthy embryo and o�spring (Table 1).

Mouse. Oocytes that have had their mitochondria damaged
or have not converted from glycolytic to aerobic respiration
have a lower likelihood of development a�er fertilization
[29, 86]. Early studies demonstrated the feasibility of injection
of mitochondria into an oocyte to increase intracellular
ATP concentrations [87]. Mitochondrial injections increase
the viability of mouse oocytes destined for apoptotic cell
death [88]. When mitochondria were stained with green
�uorescent protein (GFP) prior to transfer to the oocyte,
GFP-marked mitochondria were observed until blastocyst
stage [89]. Following infusion of GFP mitochondria, dense
clustering of mitochondria occurred around spindles, where
ATP was needed.

Injection of mitochondria into mouse oocytes did not
negatively a�ect survival rate or development rate to morula
stage compared with bu�er-injected controls [90]. No long-
term e�ects on growth of o�spring or phenotypic abnormal-
ities were observed when intra- and interstrain cytoplasmic
transfers were compared [91]. When mitochondrial concen-
trates were injected into mouse 2 pronuclear stage embryos,
there was an increase in progression to blastocyst stage with
no untoward e�ects [92]. 
ese authors commented on the
need to avoid heteroplasmy of mitochondria to maintain
appropriate nuclear-mitochondrial communication required
for optimal embryo development.

Rabbit. Transfer of homoplasmic cytoplasm into a high qual-
ity MII oocyte did not a�ect survival of oocyte, fertilization
rate or progression to 2 or 8 cell stage, and morula or
blastocyst stage of embryo [93]. On the other hand, transfer of

heteroplasmic ooplasm resulted in a decrease in the number
of fertilized oocytes reaching the blastocyst stage.
e authors
conclude that transfer of homogeneous cytoplasm is required
for optimal preimplantation embryo development [93].

Cow. As with other species, oocyte and embryo quality as
well as reproductive outcome depend in part on the quality
of mitochondria and ATP content in the oocyte [94, 95].
Treatment of bovine oocytes with ethidium bromide depletes
mtDNA content in oocytes, and as a result, they are arrested
in pre-implantation development [20, 35]. Cytoplasmic trans-
fer to these impaired oocytes resulted in the complete rescue
of the oocytes, which then are developed into normal calves.

Treatment of poor quality bovine oocytes withmitochon-
dria obtained from the animal’s own granulosa cells resulted
in dramatic improvements in oocyte quality as well as rates of
morula, blastocyst, and hatched blastocysts [100]. Addition
of mitochondria obtained from the same breed improved
embryo quality during preimplantation development. 
ere
is a segregation of donor mitochondria by the oocyte a�er
cytoplasmic transfer [20] supporting the hypothesis that
mitochondrial homoplasmy is optimal.

Pig. Supplementation of developmentally incompetent oocy-
tes by injection of mitochondria resulted in a doubling of
mitochondria number and normal embryo development. As
a result fertilization rates were doubled or tripled (from
approximately 10–20% to 30–40%) [31, 32].

13. Summary of Animal and Human Studies

Supplementation of mitochondrial activity in oocytes by
transfer of cytoplasm or mitochondria improves fertility in
all species tested including humans. Following mitochon-
drial transfer, these organelles are detectable at least until
the blastocyst state and may be found in the o�spring.
Suboptimal results were achieved when the mitochondria
used were obtained from somatic sources, were genetically
di�erent from resident mitochondria, or contained deletions
or mutations. 
ese studies suggest that while the transfer
of mitochondria to oocytes can improve oocyte quality and
reproductive success, the source and quality of mitochondria
may a�ect the safety of the o�spring.

14. Why Not Mitochondria from the Patient’s
Own Somatic Cells?

In general, most somatic cells that would be obtained from
the reproductivelymature oocyte donorwould be expected to
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containmitochondrial DNA deletions andmutations [14, 15].
Such mitochondrial DNA would not be considered safe for
the o�spring, as the transmission of these mutations and
deletions to all embryonic tissue would be a potential risk
[23]. Somatic cell mitochondria appeared to adversely a�ect
embryonic development [24, 90, 97].

Autologous mitochondria obtained from the patient’s
own granulosa cells have been used to successfully improve
fertility outcomes [101]. However, concerns were raised about
the use of somatic cell mitochondria, as they would be
expected to contain point mutations and deletions, similar
to all other somatic cells [24, 71, 103]. In addition, death
(apoptotic) signals frommitochondria within granulosa cells
control follicular atresia and prevent oocyte development
[104, 105]. 
us, their transfer during ICSI could prove to be
detrimental to the oocyte.

15. Are Tissue-Specific
Mitochondria Required?

While over 1,500 proteins are present within the mito-
chondria, only 13 are encoded within the mitochondrial
genome [24, 106, 107]. 
us, most mitochondrial proteins
are imported from the cytoplasm and regulate mitochondrial
function in a tissue-speci�c fashion [3, 4, 106].
emitochon-
drial proteome is cell speci�c and re�ects the needs of the cell
in which it resides.

Mitochondrial function varies widely between cells and
tissue types [1, 108]. As a result, the cell type used as
a source of mitochondria for oocyte transfer should be
closely related to the recipient cell, so that the coordination
of mtDNA and nuclear DNA communication has already
occurred. 
us, mitochondria used for oocyte augmenta-
tion should be obtained from ovarian, or more preferably,
oocyte-di�erentiated cells.
ese factsmake it imperative that
mitochondria used to improve bioenergetics of the oocyte be
sourced from cells of oogonial derivation.

16. Use of Germ Line Quality Mitochondria:
Oocyte Precursor Cells

High-quality, autologous mitochondria must be used for
energy augmentation of oocytes through mitochondrial
transfer. 
e transfer of the same mtDNA obtained from
oocyte precursor cells would reduce possible compromised
oxidative phosphorylation function that could arise through
mixing mtDNA genotypes [19, 31]. 
e existence of oocyte
precursor cells has been reported in both the mouse and
human [109–115]. While the previous independent observa-
tions argue strongly for the existence of these cells in the
mouse or human ovarian epithelium, there have been reports
to the contrary [116].
ere is also a debate in the literature as
to the role of these cells in normal folliculogenesis [117]. Due
to the fact that these cells have di�erentiated to the oocyte
lineage but have not spent years in a postmitotic state, these
cells may be used as a source of tissue-speci�c, autologous
mitochondrial DNA free of mutations and deletions.

Mechanisms exist within the oocyte to amplify high-
quality mitochondria DNA even in the presence of mutated

variants [28]. Provision of germ line quality mitochondria,
through the use of the patient’s own cells, can be expected
to provide necessary ATP as well as increase the proportion
of high-quality, homoplasmic mtDNA in the oocyte [84].

e frequency of mitochondrial disease increases in children
conceived from women of advanced reproductive age [118,
119]. In an e�ort to improve the bioenergetics of the oocyte
by mitochondrial supplementation, it is critical that the
autologous and tissue-speci�cmitochondria be of the highest
quality: free of DNA mutations and deletions.

17. Severe Mitochondrial
Mutations and Deletions

Numerous mitochondrial mutations, deletions, and nucle-
otide variations are found in oocytes and blastocysts [49],
especially in women of advanced reproductive age, some
of which may be considered unsafe for transmission to
o�spring. New therapies are being developed to allow carriers
of mitochondrial disease to have their own genetic child.
In this case, the nucleus of the patient’s oocyte may be
transferred into an enucleated donor oocyte with normal
mitochondria. Studies have shown that a low amount (<1%)
of mitochondrial DNA is transferred with the nucleus [49,
120], and di�erentiated cells derived from these blastocysts
exhibited no evidence of transmission of the patient’s mito-
chondrial DNA. 
ese studies demonstrate the promise of
nuclear genome transfer to prevent mitochondrial disease
transmission in a�ected patients.

18. Concluding Remarks

Augmentation of the energy in the oocyte by cytoplasmic or
mitochondrial injections has been shown to improve fertility
outcomes. Human and animal studies have established the
rules by which this procedure can be safely performed.

(i) 
emitochondriamust be obtained from the patients
own cells, such that communication between the
mtDNA and nuclear DNA is optimal (maintenance of
homoplasmy in the o�spring)

(ii) 
e cell source of mitochondria should optimally be
of ovarian and more preferably, oocyte origin such
that the mitochondria are prepared to functionally
respond to tissue- and cell-speci�c demands.

(iii) 
e mitochondrial genome of these cells must be of
high quality, without deletions or mutations so that
no mutations are transmitted to the o�spring.

Over the past few years, several laboratories have reported the
identi�cation and characterization of oocyte precursor cells
and developed methods to isolate these cells from ovarian
tissue. 
ese germ line cells can serve as a source of patient-
and tissue-speci�c mitochondria that may be used for oocyte
augmentation. Mitochondria can be isolated and delivered
at the time of ICSI to the oocyte with inadequate levels
of mitochondrial activity. 
is method satis�es the rules
established in preclinical and clinical studies and is proposed
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to be a safe and e�ective means to improve oocyte and
preimplantation embryo quality in an assisted reproductive
technology setting.
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