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Thermal benefits of melanism in cordylid lizards:
a theoretical and field test
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Abstract. The hypothesis that low skin reflectance (melanism) provides an advantage for
thermoregulation under cold conditions has received mixed support in ectothermic
vertebrates. We selected a model system, three allopatric closely related species of cordylid
lizards that differ in skin reflectance, to test this hypothesis. Cordylus niger and Cordylus
oelofseni are melanistic and inhabit peninsular and montane areas, respectively, whereas
Cordylus cordylus is more widespread and inhabits low inland areas. By combining theoretical,
experimental, and field data on these species, we demonstrate that the difference in body
temperature (Tb) between melanistic and non-melanistic lizards under ecologically relevant
climate variation ranged from 08 to 28C. Despite its small magnitude, however, the faster
heating rate and higher Tb of melanistic species relative to non-melanistic species conferred an
advantage under cold conditions. Comparison of habitat thermal quality (de) and thermal
accuracy (db) across species indicated that, in winter, melanism conferred the greatest
advantage during small windows of thermal opportunity. This finding was most pronounced
for C. oelofseni, which is most constrained by cold temperatures in its habitat. By contrast, due
to their rock-dwelling habits, melanistic and non-melanistic species benefited from rock
refugia in summer, giving similar levels of thermoregulatory effectiveness across species,
regardless of skin reflectance. This study therefore demonstrates that skin reflectance variation
across cordylids has significant effects on their thermal balance. Furthermore, studies
investigating the role of varying skin reflectance in field populations and species should
incorporate fine and broad temporal scales (daily, monthly, and seasonal), environmental
variability, and cost–benefit trade-offs of thermoregulation.

Key words: adaptive coloration; Cape Floristic region; Cordylidae; cost-benefit thermoregulation;
ectotherm; environmental variability; fynbos; radiotelemetry; temperature preference.

INTRODUCTION

Body temperature (Tb) has direct effects on many

fundamental physiology functions and life history traits

of ectotherms (e.g., digestion, muscle performance,

development time; Huey 1982, Angilletta 2001, Ragland

and Kingsolver 2008). A significant deviation from the

optimum Tb may compromise organism fitness and a

deviation from the tolerable temperature range may

have detrimental effects on survival (Huey and Steven-

son 1979, Angilletta et al. 2002). Therefore, it is essential

to understand the intrinsic factors that affect thermal

energy budgets (i.e., energy gain and loss) of ectotherms

and how these mechanisms vary across species, climate

regimes, and habitat types. Such factors include

morphological (e.g., body size, skin reflectance), phys-

iological (e.g., cardiovascular control, evaporative cool-

ing), and behavioral traits (e.g., body posture and

orientation).

Skin reflectance (r) has a direct effect on the quantity

of solar radiation absorbed by an organism. An

individual with low r will heat faster and reach a higher

equilibrium Tb than an individual with a high r given

similar body size, posture, and environmental conditions

(Norris 1967, Watt 1968, Kettlewell 1973, Gates 1980).

Therefore, at a broader scale, the lower r of a melanistic

species should provide a thermal advantage in cold

regions compared to the higher r of a non-melanistic

species, whereas the opposite should be expected in

warm regions. Although these thermal relationships

have been modeled theoretically (Porter and Gates 1969,

Kingsolver 1983, Walton and Bennett 1993) and tested

under controlled conditions (e.g., Kingsolver 1987, De

Jong et al. 1996), only a few studies have explored the

functional consequences of skin reflectance variation

across field populations or closely related species (e.g.,

Ellers and Boggs 2004). Most field studies have been

undertaken using insects and have generally found

strong support for the benefits of low r in thermoreg-

ulation under cold conditions (e.g., Willmer and Unwin
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1981, Turner and Lombard 1990, Ellers and Boggs

2004), while the few studies using ectothermic verte-

brates have provided mixed support (e.g., Bittner et al.

2002, Tanaka 2007, see Clusella-Trullas et al. 2007b for

a review). Confounding effects such as across species

variation in behavioral and physiology adaptations (e.g.,

sun–shade shuttling, peripheral blood flow) may explain

the lack of data supporting the patterns expected. In

addition, when relationships between Tb and r have been

found in the direction predicted, several authors have

argued that the magnitude of the Tb difference between

melanistic and non-melanistic individuals is too small to

be ecologically relevant (e.g., Crisp et al. 1979, Steven-

son 1985, Luke 1989). However, recent data from a

macrophysiological study (Clusella-Trullas et al. 2008)

supports the adaptive role of skin reflectance for

thermoregulation across lizard species, and highlights

the need to further investigate r variation and its thermal

role among populations and species in the wild.

The occurrence of closely related species of cordylid

lizards that mainly differ in skin coloration in the

Western Cape Province of South Africa (Mouton and

van Wyk 1990, Daniels et al. 2004) offers a unique

opportunity to test the thermal consequences of varying r

in field populations. Melanistic species occur in cooler

mountain and coastal areas compared to lighter-colored

species, which are mostly distributed in low inland areas,

and suggests that melanism is a phenotypic trait

necessary to optimize these species’ thermal energy

budgets in cooler climates (Mouton and Oelofsen 1988,

Badenhorst et al. 1992, Mouton and van Wyk 1995).

Several studies have speculated on the thermoregulatory

function and evolutionary adaptation of melanism in

cordylids and suggest that melanism may be thermally

beneficial to species inhabiting areas with high incidence

of fog and cloud cover (Mouton and Oelofsen 1988,

Badenhorst et al. 1992, Brody et al. 1993). However,

these hypotheses have not been explicitly tested despite

their value for understanding these species’ thermal

responses to changing climate regimes predicted for this

region (Tyson et al. 2002, Hannah et al. 2005). Indeed, if

melanistic species are highly restricted in land fragments

(e.g., mountain tops) and are adapted to cold conditions,

future warming may severely impact their geographic

distribution and survival (Pounds et al. 1999, Thomas et

al. 2004).

In this paper we first quantify the magnitude of the

difference in body temperature (DTb) between melanistic

and non-melanistic cordylid species. The determination

of DTb is made both theoretically by predicting Tb under

several climate scenarios using a steady-state energy

model (Porter and Gates 1969) and empirically, by

measuring Tb of melanistic and non-melanistic individ-

uals under controlled and natural conditions. Second,

we test if DTb confers a thermal advantage for each

species in its respective environment. We chose two

melanistic species (Cordylus niger and C. oelofseni from

a coastal and montane site, respectively) and one non-

melanistic species (Cordylus cordylus from a low-

elevation, inland site) (see Plate 1). We determined the

thermal quality (the availability of operative tempera-

tures [Te] relative to preferred body temperature [Tp];

Hertz et al. 1993) of each species’ habitat considering

that both melanistic and non-melanistic species could

occur in each site and identify periods of potential

thermal constraint (daily and seasonal). In addition, we

calculated the thermoregulatory accuracy of each species

(deviation of Tb from Tp; Hertz et al. 1993) in their

respective natural habitats to identify which species is

most likely constrained by environmental temperature.

By comparing both thermal quality and accuracy, we

identify which species is likely to experience the highest

costs to maintain preferred temperatures. Specifically,

we predict that despite the potentially small magnitude

of DTb, melanism should be particularly advantageous

in cold conditions, especially for montane species in

which thermal opportunities likely frequently fall below

optimal and critical physiological levels (e.g., lower

temperature limits to activity and growth).

METHODS

Skin reflectance and steady-state energy model

We determined skin reflectance (r) from the mean of

five readings taken across the dorsal area of live

melanistic and non-melanistic lizards using a Beckman

DK-2A spectroreflectometer (operational range: 290–

2600 nm; Beckman, Fullerton, California, USA) in the

laboratory of Warren Porter at the University of

Wisconsin, Madison, Wisconsin, USA. Lizards were

originally collected from field populations in the

Western Cape Province of South Africa. We used a

steady-state (time-independent) energy budget model

(Porter and Gates 1969) to predict Tb of a melanistic

and a non-melanistic individual under varying incident

radiation flux, air temperature, and wind speed relevant

to field conditions (for details of model and its

assumptions see Appendix A).

Thermal responses

Heating experiments took place in a walk-in environ-

mental chamber (168 6 0.58C; Stellenbosch University,

Stellenbosch, South Africa) by positioning a halogen

bulb (R7s, 500 W, peak wavelength ;1000 nm; Halo-

line, Osram, Germany) 60 cm above a glass plate with a

matt base to avoid additional light reflection. A copper-

constantan thermocouple (Type T, 24 standard wire

gauge [SWG]) measured shaded air temperature (Ta)

2 cm above the glass plate. The experimental set-up was

isolated by styrofoam walls to avoid air turbulence from

the chamber’s air vents. We measured operative tem-

perature (Te) of a melanistic and a non-melanistic

hollow copper model (methods of Bakken and Gates

1975, see Appendix B for calibrations) that had the same

size, shape, and r as C. niger (paint number 1318 gray

primer, Krylon, Cleveland, Ohio, USA; r ¼ 7.1%) and

C. cordylus (fresh green, Dulux Duco, Slough, UK; r ¼

SUSANA CLUSELLA-TRULLAS ET AL.2298 Ecology, Vol. 90, No. 8



13.1%). These two species were chosen for their

similarity in body size and mass (Table 1 and Appendix

A). We placed paired models directly under the light

source and switched on the bulb for 20 min after their Te

had equilibrated to room temperature. We followed a

similar protocol for live lizards, but lizards were tested

individually under the lamp to avoid potential group

stress. Each lizard was placed under the bulb after being

cooled to 168C in a climate chamber (Labcon, Labotec,

Midrand, South Africa). A thermocouple (Type T, 36

SWG) placed 1.5 cm into the cloaca measured Tb. When

Tb reached 358C, we switched the lamp off and removed

the lizard unharmed. All thermocouples were calibrated

to 60.058C prior to trials.

Because halogen bulbs emit a ‘‘redder’’ wavelength

than natural light, these experiments were repeated on

models and live lizards under natural sunlight. Four

pairs of melanistic and non-melanistic models and a

single C. niger and C. cordylus of similar size (snout–

vent length [SVL]¼ 76.5 mm, mass¼15.29 g, and SVL¼

73.3 mm, mass¼ 15.11 g, respectively) were placed in an

open-sky area for 4 h while measuring shaded Ta, wind

speed (03101-5 cup anemometer, R. M. Young Wind

Sentry, Traverse City, Michigan, USA), and incident

solar radiation (LI-200SA pyranometer, LI-COR, Lin-

coln, Nebraska, USA). A summer day with intermittent

cloud cover was used to avoid overheating live lizards.

Following methods used by Bittner et al. (2002), data

from copper models (at 10-sec intervals) were fitted to

the equation Te ¼ b1(1 � exp[�b2(t � t0)]) (von

Bertalanffy growth model; Lovich et al. 1990), where

b1 is the equilibrium temperature, and b2 is the

instantaneous heating rate (in minutes). To analyze live

lizard heating curves, we plotted Tb (from 168C to 358C)

against time for each individual lizard and used the slope

as the individual heating rate (8C/min). We compared

mean heating rates of melanistic and non-melanistic

models using t tests for dependent samples, and t tests

for independent samples for live lizards after verifying

assumptions of these analyses.

Field study: species and sites

We studied C. cordylus (non-melanistic) at Joosten-

berg (338460 S, 188470 E; 290 m elevation), an inland hill

with abundant shale rock formations. We studied C.

niger (melanistic) at Mauritzbaai (328590 S, 178520 E; 5 m

elevation), a coastal site with granite rock formations

and C. oelofseni (melanistic) at Landdroskop (348020 S,

198000 E; 1080 m elevation), a small plateau with

sandstone boulders in the Hottentots Holland mountain

range. These species have allopatric distributions with

limited dispersal ability, but share many morphological

and life history traits. All species are diurnal, helio-

thermic, sit-and-wait predators, live on rock outcrops

and shelter in crevices (Wirminghaus 1990, Cooper et al.

1997, Branch 1998). They have contrasting skin

coloration against the rock they inhabit (al least within

the visible range), and thus melanism is unlikely a result

of background matching for protection against preda-

tors (mostly birds). They are viviparous with similar

reproductive seasons, have generalist diets feeding

primarily on invertebrates (Clusella-Trullas and Botes

2008), and have no sexual dimorphism in body size

(Cordes et al. 1995). Field data collection was under-

taken in summer 2005 and winter 2006.

TABLE 1. Skin reflectance (mean 6 SD) of Cordylus niger
(melanistic, n¼ 3), Cordylus oelofseni (melanistic, n¼ 3), and
Cordylus cordylus (non-melanistic, n ¼ 2).

Wavelength

Reflectance (%)

C. niger C. oelofseni C. cordylus

Ultraviolet (290–400 nm) 2.4 6 0.5 2.9 6 0.4 1.8 6 0.1
Visible 2 (400–500 nm) 2.3 6 0.5 2.9 6 0.4 4.0 6 0.4
Visible 1 (500–700 nm) 3.2 6 0.0 3.3 6 0.4 15.5 6 2.4
Infrared 2 (700–1450 nm) 7.7 6 0.9 8.5 6 1.3 22.1 6 2.2
Infrared 1 (1450–2600 nm) 5.7 6 0.6 7.3 6 1.7 6.8 6 0.5
Mean 5.3 6 0.4 6.9 6 1.2 15.2 6 1.6

Note: Mean body masses (calculated from ;60 lizards per
species) are 14.0 6 1.6 g for C. niger, 8.1 6 1.2 g for C.
oelofseni, and 13.7 6 3.1 g for C. cordylus.

PLATE 1. (Top) Cordylus niger (melanistic) and (bottom)
Cordylus cordylus (non-melanistic) basking in their respective
field sites. Photo credits: S. Clusella-Trullas.
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Physiology, activity patterns, and climate

Adult lizards were collected from their respective sites

in January 2006, and preferred set-point temperatures

(Tp) were determined from Tb selected in a laboratory

thermal gradient (see Clusella-Trullas et al. 2007a for

detailed methods and data). Lizards were not gravid

during these experiments, and there was no effect of sex

on Tp in both field-fresh and acclimated states (Clusella-

Trullas et al. 2007a). To determine species’ thermal

indices, we used the bounds of the central 50% of the

observed Tb’s (Hertz et al. 1993). Critical thermal

maximum (CTmax) and minimum (CTmin) were estimat-

ed according to standard protocols (e.g., Kour and

Hutchison 1970, Lutterschmidt and Hutchison 1997). In

brief, lizards were acclimated for three weeks at 278 6

28C (14:10 h L:D), given water ad lib., fed twice a week,

and deprived of food two days before trials. Each lizard

was first equilibrated to a start Tb of 308C (or 158C for

CTmin) and heated (or cooled) at 18C/min for CTmax

(onset of heat-induced spasms) and CTmin (loss of

righting response) trials, respectively. All lizards recov-

ered from thermal limit trials unharmed.

We established climate stations in each site in summer

(December to February) and winter (June to August).

We monitored Ta, wind speed, and incident solar

radiation (1 m above ground; with instruments as for

Thermal responses section) while simultaneously record-

ing activity patterns, Tb and Te. A Campbell CR10 and

calibrated AM32 multiplexer (Campbell Scientific,

Logan, Utah, USA) recorded data every 15 min 24

h/day for 5–7 consecutive days. We counted the number

of active lizards and recorded respective behaviors

between 0700 and 1800 h by walking 30-m transects in

a random direction across each study site every 2 h. All

lizards located within ;6 m in either side of the transect

line were included.

Body (Tb) and operative (Te) temperatures

Lightweight radio-transmitters equipped with a tem-

perature-sensitive pulse device (BD-2T, 0.93 g, repre-

senting ,10% of body mass for all species; Holohil

Systems, Carp, Ontario, Canada) provided Tb of 6–10

lizards per population in summer and winter (respective

sample sizes and sex ratios are given in Table 4). We

monitored transmitter pulse rates using a stopwatch and

hand-held receiver (IC-R10, Icom America, Bellevue,

Washington, USA). Calibrated transmitters were glued

flat on the abdomen area of lizards allowing easy

movement of the animal in crevices while avoiding direct

solar radiation (see Appendix B for Tb calibration). The

scaled skin of these species provided a solid attachment

surface while enabling harmless removal at the end of

the study. Typically, we monitored Tb hourly from 0700

to 1800 h for at least five consecutive days in summer

and in winter. Daily visual observations further con-

firmed that lizards behaved normally with transmitters

attached.

We measured Te with copper models built as

described in the Thermal responses section. Calibrations

confirmed that models were good estimators of Te for all

species (Appendix B; Dzialowski 2005). We distributed

25 pairs of models, each representing a melanistic and a

non-melanistic individual, within habitats used by

lizards (i.e., rock surfaces and crevices) excluding

ground surfaces since brief excursions to the ground

only occurred at high speed when catching insects.

Individuals rarely left crevices or rock surfaces where

they typically basked, used a sit-and-wait strategy for

prey, or interacted with other individuals. Models were

distributed along eight transects that radiated at 458

angles from the central climate station. We divided each

transect into three equal portions and positioned a pair

of models within each portion at a random distance

within the interval (on rock or crevice) and random

height and orientation by using a random numbers

table. The combinations of locations, orientations, and

postures sampled a complete array of thermal options

available to the lizards at different times of the day (i.e.,

from complete sun to complete shade) at each site. We

assigned each pair a category describing the slope,

substrate, aspect, and sun–shade status at midday for all

sites to enable comparisons between sites. Additionally,

we placed four thermocouples inside crevices with

entrances orientated towards the four cardinal compass

points. Data were logged at 15-min intervals for 24 h/d

for at least five consecutive days per season per site.

Statistics and thermal indices

To compare Tb, Te, and thermal indices (de, db) across

species while accounting for the non-independence of

multiple measurements per individual, repeated mea-

sures ANOVAs were performed in SAS version 8.0 (SAS

Institute 1999). A compound-symmetry covariance

structure was used in proc-mixed with a reduced

maximum-likelihood estimation method (Littell et al.

1996). Species and individuals were entered as categor-

ical variables and time as continuous variable in the

models. Data are reported as mean 6 standard devia-

tion (SD).

Following Hertz et al. (1993), we calculated the

habitat thermal quality as the mean of the absolute

value of the deviations of Te from Tp (¼de). A high de
value indicates that the habitat has few optimal Te’s (i.e.,

low thermal quality), whereas a low value of de indicates

that thermoregulation may be unnecessary to maintain

Tp. We calculated the accuracy of Tb by averaging the

deviations of field active Tb from Tp (¼db). If Tb is

beyond the set-point range, db is the difference between

Tb and the nearest boundary of Tp. If Tb is within Tp, db
equals zero. A high value of db indicates that optimal

temperatures are rarely maintained. We combined de, db,

and field behavioral observations of lizards to assess the

effectiveness of thermoregulation (Blouin-Demers and

Weatherhead 2001). We calculated mean de and db of

each species using data from three days that were

SUSANA CLUSELLA-TRULLAS ET AL.2300 Ecology, Vol. 90, No. 8



representative of the range of typical conditions found in

summer and winter in each study site, allowing a

comparison of seasons within a species and across

species. Days with atypical conditions (e.g., an excep-

tionally warm winter day) were analyzed separately as

these reflected climatic conditions unrepresentative of

the season.

RESULTS

Skin reflectances

Mean r values of melanistic (C. niger, C. oelofseni )

and non-melanistic (C. cordylus) lizards were 6.1% and

15.2%, respectively, with most differences occurring in

the visible and near infrared portions of the spectrum

(Table 1).

Steady-state energy model

When modeling the effects of total incident radiation

(Qs), air temperature (Ta), and wind speed (V ) on Tb

(Fig. 1), we found that given constant Ta and low V, the

difference in Tb between a melanistic and a non-

melanistic lizard (DTb) of similar size was greater at

higher values of radiation. For example, at Qs ¼ 800

W/m2 (Ta¼ 258C, V¼ 0.5 m/s), DTb of a melanistic (r¼

5.3%) and a non-melanistic (r ¼ 15.2%) lizard was

;2.58C; whereas at 200 W/m2, DTb was ;18C (Fig. 1A).

Increasing V rapidly reduced DTb (Fig. 1B). At constant

Qs and low V, a change in Ta barely affected DTb (Fig.

1C).

Thermal responses: heating experiments

Under halogen lights, mean equilibrium temperature

of melanistic models (49.38 6 3.18C) was significantly

higher than non-melanistic models (48.38 6 3.28C) (t ¼

4.292, df¼ 24, P , 0.001; Fig. 2A). Mean instantaneous

heating rate of melanistic models (0.134 6 0.021 min�1)

was also significantly higher than non-melanistic models

(0.126 6 0.018 min�1) (t¼ 3.46, df¼ 24, P , 0.005; Fig.

2A). However, the mean heating rate of C. cordylus (0.97

6 0.058C/min) was lower than that of C. niger (1.018 6

0.088C/min) measured under controlled conditions, but

was not significantly different (t¼ 0.996, df¼ 8, P¼ 0.35;

Fig. 2B).

When exposed to sunlight (natural outdoors experi-

ment), Tb of C. niger was either equal to, or greater than,

Tb of C. cordylus (mean DTb¼ 0.78 6 0.58C; range¼ 08

to 2.48C; Fig. 3). For instance, DTb equaled 0.58C for

66% of the experimental time (Fig. 3). Melanistic models

also had higher Te than non-melanistic models (DTe ¼

1.28 6 0.68C, range¼ 0.38 to 2.98C) and a minimum DTe

of 0.58C was maintained 90% of the time (Fig. 3). In the

absence of clouds, DTe equaled 1.58 6 0.48C at midday.

Physiology and climate

WhileCTmaxdid not differ between species, CTminofC.

oelofseni was significantly lower than that of C. cordylus

and C. niger when acclimated for three weeks under

common temperature conditions (Table 2). Climate

conditions (from stations placed in each site) were

relatively similar across sites in summer, although the

inland site (Joostenberg) had the highest level of Qs, V,

andTa (Table 3). By contrast, conditions differed more in

winter across sites: Joostenberg (inland) and Land-

droskop (mountain) were the coldest sites, while Mau-

ritzbaai (coastal) and Landdroskop were the windiest

(Table 3).

Field data: intraspecific analyses

Cordylus cordylus (non-melanistic), inland site.—The

thermal habitat quality (de) of C. cordylus was more

suitable in summer than winter (Fig. 4A, Table 4). In

summer, a non-thermoregulating lizard could maintain

Tb near Tp most of the day. However, it could also reach

high thermal thresholds at midday. From 0700 to 1800

FIG. 1. Predictions of the steady-state energy flux model
showing the effects of (A) total incident radiation Qs, (B) wind
speed V, and (C) air temperature Ta on body temperature Tb.
Constant environmental parameters are indicated within the
figures. Solid squares and open circles are the Tb predictions for
lizards with skin reflectance of 5.3% and 15.2%, respectively.
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hours, 34% and 9% of all Te’s were higher than Tp and

CTmax, respectively, with 74% of Te’s above Tp

occurring between 1100 and 1500 h (Appendix C). The

daily pattern of de in summer (Fig. 4A) indicated that

the thermal habitat quality improved quickly from 0700

to 1000 h, then declined slightly from 1200 to 1400 h,

and improved further for the rest of the day, averaging

;28C variation in de at 1800 h. Under these same

conditions, the de of a melanistic individual (calculated

from melanistic models) increased by 0.28 6 0.18C from

1200 to 1400 h, resulting in lower overall thermal quality

of the habitat. However, crevices with favorable

temperatures would be equally available for melanistic

and non-melanistic individuals during these periods. By

contrast, in winter, C. cordylus was constrained by the

thermal environment (98% of all Te’s , Tp). The de in

winter improved throughout the day (Fig. 4A), with the

most suitable period at 1500 h, when de averaged;108C.

Relative to a non-melanistic lizard, the de of a melanistic

lizard (calculated from melanistic models) improved by

0.38 6 0.28C throughout the day in winter.

As expected, the deviation of Tb from Tp (i.e., db) was

smaller in summer than winter (Fig. 4B, Table 4), 18%

of Tb’s fell within Tp in summer, while only 7% did so in

winter. During both seasons, db was generally lower

than de (Table 4, Fig. 4A, B), reflecting active thermo-

regulation. In summer, lizards basked early in the

morning (from 0700 to 0900 h), then they remained in

FIG. 2. Heating curves for (A) melanistic and non-melanistic copper models and (B) Cordylus niger and Cordylus cordylus
measured under a 500-W halogen bulb. In (A), temperature excess equals Te (model temperature) minus Ta (shaded air
temperature). At 120 s, the bulb was switched on. In (B), lizards were cooled to 168C before trials started. Values are means 6 SE.
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crevices to avoid the midday heat and basked again

before sunset (Fig. 5A). In winter, lizards maintained Tb

close to Tp during clear days (Fig. 5B) and were active

from ;1100 to 1700 h, corresponding to the period with

lowest de (Fig. 4A). On a foggy day, lizards remained

mostly inactive, although Tb was slightly higher than

available Te (Fig. 5C).

Cordylus niger (melanistic), coastal site.—The ther-

mal habitat quality of C. niger was moderately suitable

in summer (Table 4), 17.2% of all Te’s were above Tp,

and only 1% of Te’s were above CTmax (Appendix C).

Therefore, this species did not face much risk of

reaching high lethal thresholds unless confronting

atypical hot conditions. Summer de was at its best

between 1200 and 1600 h (3.4 6 0.3; Fig. 4A) and

differed significantly from winter de (Fig. 4A, Table 4).

Lizards were constrained by the thermal environment in

winter (99.7% of Te’s, Tp), and de typically improved at

most 88C throughout the day (Fig. 4A). The thermal

habitat available to a non-melanistic lizard (calculated

from non-melanistic models) under these winter condi-

tions was reduced by 0.28 6 0.28C throughout the day.

On a completely overcast day, the difference between

melanistic and non-melanistic models was negligible and

averaged 0.048 6 0.058C.

The deviations in db were significantly lower (greater

thermal accuracy) in summer than in winter (Fig. 4B,

Table 4). In summer, db was similar to de (Table 4, Fig.

4A, B), suggesting that C. niger did not thermoregulate

to a great extent except to avoid high Te’s. Observations

in the field indicated that C. niger was active throughout

the day (Fig. 6A). By contrast, in winter, db was lower

than de, indicating increased behavioral thermoregula-

tion compared to summer (Table 4, Fig. 6B). During

cold days with clear skies, lizards basked during the

warmest periods of the day (from 1100 to 1500 h; Fig.

6B) and reached Tb close to Tp. During overcast winter

days, little activity occurred, although Tb was slightly

higher than crevice Te (Fig. 6C).

Cordylus oelofseni (melanistic), mountain site.—The

thermal quality of C. oelofseni’s habitat in summer was

moderately suitable and was significantly higher than

winter (Fig. 4A, Table 4). In summer, most Te’s were

FIG. 3. Body temperature (Tb) of a melanistic (Cordylus niger) and a non-melanistic (Cordylus cordylus) lizard, as well as the
mean operative temperature (Te) of melanistic and non-melanistic copper models exposed to natural conditions. Incident solar
radiation measured at lizard level is also plotted (right-hand y-axis). Shaded air temperature and wind speed at 1 m height averaged
17.38 6 1.48C and 2.0 6 0.6 m/s, respectively. Note that Te lines are means of five models, while lizard Tb data are for single
individuals. Therefore, these data do not fully reflect the variation across microsites, lizards, and models (for model calibrations, see
Appendix B).

TABLE 2. Mean (6SD) critical thermal maximum (CTmax) and
minimum (CTmin) of the study species determined after three
weeks of acclimation at 27.08 6 2.08C.

Species CTmax (8C)� (n) aCTmin (8C)� (n)

Cordylus cordylus 41.6 6 1.0 (10) 7.5 6 0.7 (10)a

Cordylus niger 41.0 6 0.6 (8) 7.4 6 0.5 (7)a

Cordylus oelofseni 40.8 6 0.5 (10) 6.3 6 0.8 (9)b

Notes: For CTmin, statistically homogeneous groups are
indicated by similar superscript letters (post hoc unequal
sample honest significant difference test). Sample sizes are
given in parentheses.

� ANOVA, F2,25 ¼ 2.73, P . 0.08.
� ANOVA, F2,23 ¼ 7.21, P , 0.005.
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lower than Tp (72.3%), although warm temperatures

were also available (20.8% of all Te’s . Tp and 4.7% .

CTmax; Appendix C). In summer, de was lowest from

1400 to 1600 h (48C; Fig. 4A). By contrast, the thermal

quality in winter was very low throughout the day

(;248C; Fig. 4A). Indeed, 100% and 11.3% of all Te’s

were below Tp and CTmin, respectively. Under these

conditions, the mean de and maximum Te available to a

non-melanistic lizard (calculated from non-melanistic

models) was reduced by 0.38 6 0.18C and 0.68 6 0.38C,

respectively. During an entirely overcast day, the

difference in de between melanistic and non-melanistic

models was 0.058 6 0.078C. By contrast, during an

atypical warm day (Fig. 5C), this difference was

comparable to that found during cold days (i.e., 0.38

6 0.38C), whereas the difference between maximum Te

of melanistic vs. non-melanistic models was more

pronounced (1.38 6 0.18C).

The thermal accuracy (db) was significantly greater in

summer than winter (Fig. 4B, Table 4). In addition, db
was lower than de in summer (Table 4), suggesting that

lizards were effectively thermoregulating for at least part

of the day. Daily patterns of db and de in summer (Fig.

4A, B) showed that between 0900 and 1200 h dbwas at its

lowest (;18–28C from Tp), although mean Te deviated up

to 58C from Tp. Therefore, lizards were actively

thermoregulating in themorning as shown by the number

of lizards basking ;0900 h (Fig. 7A). By contrast, they

seemed to be less effective thermoregulators in winter.

Despite a closer value of Tb than Te to Tp throughout the

day in winter (Fig. 4A, B), db remained very high (Table

4). Although active lizards were not observed during

censuses made during overcast winter days (Fig. 7C), Tb

of C. oelofseni was slightly greater than crevice Te. On an

exceptionally warm winter day, lizards basked frequently

and maintained Tb close to Tp (Fig. 7B).

Field data: interspecific analyses

In summer, there were no significant differences in Tb

across species (F2,15 ¼ 0.42, P ¼ 0.667; Table 4). Mean

summer Te (determined from the copper models which

matched lizard reflectance from the respective sites) was

significantly different across species (F2, 104 ¼ 5.11, P ,

0.01; Table 4). However, the mean deviation of Tb and

Te from Tp (i.e., mean db and de) were not significantly

different among species (Tb, F2, 104 ¼ 1.57, P¼ 0.21; Te,

F2, 104 ¼ 2.66, P ¼ 0.08).

In winter, the Tb of C. oelofseni was significantly

lower than that of C. cordylus and C. niger (F2,22 ¼

23.96, P , 0.001; Table 4), but C. cordylus and C. niger

were statistically homogeneous. Mean Te in C. oelofse-

ni’s site was significantly lower than that in C. niger and

C. cordylus sites (F2,89 ¼ 15.01, P , 0.001; Table 4). In

addition, mean db and de were significantly greater for C.

TABLE 3. Air temperature and wind speed (1 m above ground) and incident solar radiation (at
ground level; mean 6 SD) obtained from study climate stations in summer and winter.

Site and season Air temperature (8C) Wind speed (m/s) Solar radiation (W/m2)

Joostenberg site (inland; Cordylus cordylus: non-melanistic)

Summer

Mean 22.7 6 1.9 4.2 6 0.7 342.1 6 47.9
Maximum 29.9 6 3.2 6.9 6 0.9 1123.0 6 54.4
Minimum 16.8 6 1.3 1.4 6 0.9 0

Winter

Mean 11.4 6 1.1 2.0 6 0.7 111.3 6 43.9
Maximum 17.2 6 3.1 5.5 6 1.9 631.1 6 218.9
Minimum 7.9 6 1.6 0.5 6 0.4 0

Mauritzbaai site (coastal; Cordylus niger: melanistic)

Summer

Mean 20.7 6 1.9 2.8 6 1.1 309.9 6 83.7
Maximum 29.7 6 3.6 4.7 6 1.0 1086.7 6 144.6
Minimum 14.2 6 1.0 0.8 6 1.2 0

Winter

Mean 13.6 6 1.4 3.0 6 0.7 107.1 6 70.0
Maximum 17.9 6 2.4 5.7 6 1.2 569.6 6 290.1
Minimum 9.3 6 3.5 0.7 6 0.5 0

Landdroskop site (mountain; Cordylus oelofseni: melanistic)

Summer

Mean 21.0 6 3.0 1.9 6 0.4 254.3 6 35.5
Maximum 28.8 6 3.5 4.9 6 1.6 997.6 6 118.9
Minimum 15.0 6 2.5 0.1 6 0.2 0

Winter

Mean 10.7 6 6.5 2.9 6 2.0 171.9 6 66.0
Maximum 16.9 6 8.5 5.9 6 3.5 733.8 6 127.6
Minimum 5.6 6 5.2 0.3 6 0.3 0

Note: Data are presented as the grand mean of daily (24 h) means, maxima, and minima for
periods of 5–7 days, 6SD.
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oelofseni than for C. cordylus and C. niger, but db and de
of C. cordylus did not differ from C. niger (db, F2,76 ¼

27.34, P , 0.001; de, F2,76 ¼ 27.34, P , 0.001).

DISCUSSION

This study demonstrates that the variation in color-

ation among cordylid lizards in the Western Cape does

indeed reflect a variation in skin reflectance and has

significant effects on the thermal balance of these

organisms. Moreover, differences between Tb of mela-

nistic and non-melanistic individuals (DTb) predicted

from theoretical relationships were in accordance with

experimental trials using both live lizards and Te models

under controlled and natural conditions. Overall, DTb

and DTe ranged from ;08 to 28C (Figs. 1–3) under

varying, ecologically relevant climatic conditions. Al-

though these differences are typically small, the faster

heating rate and higher Tb of melanistic relative to non-

melanistic lizards distinctly conferred an advantage

under cold conditions. Indeed, these differences are

likely to be more substantial when translated in terms of

time spent above a critical threshold such as the

minimum Tb for food assimilation, reproduction or

growth. For example, periods during which melanistic

and non-melanistic Te are above (or below) CTmin in

winter can be readily calculated from data gathered in

the field (following, e.g., Sinclair 2001; see Appendix D).

In Landdroskop (mountain site), a non-melanistic lizard

would spend, on average, 17 additional minutes per day

below CTmin compared to a melanistic lizard. This

difference mostly results from models exposed to full sun

(additional 27 min/d below CTmin) and to partial shade

(18 min/d; Appendix D). Given the thermal sensitivity of

physiological rate functions in ectotherms (Beyer and

Spotila 1994, Bauwens et al. 1995, Angilletta 2001), the

additional time period per day during which Tb remains

below or above a critical threshold or is maintained

within the preferred range should confer a selective

advantage, especially if summed across an entire winter

season or an individual lizard’s lifetime. A detailed

understanding of traits such as the optimal temperature

for digestion, growth and embryonic development, and

longer time-series of Tb could provide further insight

into the relative costs and benefits of melanism in these

species.

FIG. 4. Daily patterns of (A) habitat thermal quality, de (8C), and (B) lizard thermal accuracy, db (8C), in winter (broken line)
and summer (continuous line) for three cordylid species in their respective habitats. Values shown are mean hourly de and db
calculated for three days 6 SE.
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In winter, cordylid lizards followed patterns observed

for species in other temperate regions where thermal

conditions often force lizards to maintain Tb well below

preferred levels (e.g., Van Damme et al. 1987, Sievert

and Hutchison 1989, Grbac and Bauwens 2001) despite

efforts to thermoregulate (Table 4, Fig. 4). The finding

that db was consistently lower than de (i.e., effective

thermoregulation) in all species in winter suggests a

similarity to the model proposed by Blouin-Demers and

Weatherhead (2001; and see Blouin-Demers and Nadeau

2005). This model predicts that species living in

suboptimal conditions can depart from perfect thermo-

conformity if the opportunity for thermoregulation is

available despite high costs associated with challenging

environments (e.g., predation risks). However, an

integrative model of thermoregulation is potentially

more complex (Huey and Slatkin 1976, Martin and

Huey 2008) and possibly species-dependent and spatially

and temporally scale-dependent. For example, during

overcast days, individuals of Cordylus oelofseni were

rarely observed in the open where the thermal benefits of

melanism were mostly negligible (,0.058C), and may

not have outweighed the potential costs (Huey and

Slatkin 1976). Instead, their Tb closely matched crevice

Te and supported thermal conformity.

Overall, C. oelofseni was the most constrained species

given the recurrent cold temperatures in the mountain

site in winter (Table 3). Differences in thermal habitat

quality (de) between non-melanistic vs. melanistic

models in this site indicated that melanism could confer

a great advantage during small windows of thermal

opportunity. For example, when clear skies occurred in

winter (e.g., Fig. 7B), lizards were readily seen basking.

In this case, the benefits of thermoregulation largely

outweighed the costs, and melanism conferred temper-

atures closer to preferred levels (and prolonged activity

periods) in an environment that was typically subopti-

mal. Therefore, it is not surprising that melanism, which

is thought to have evolved in cordylids as a result of past

cold climate regimes (Mouton and Oelofsen 1988,

Daniels et al. 2004), has been maintained across multiple

generations in these mountain populations.

By contrast, comparison of db, de, and behavioral

patterns of Cordylus cordylus and C. niger did not seem

to indicate a stronger advantage of melanism on the

coastal (Mauritzbaai) compared to the inland (Joosten-

berg) site. Although fog conditions reduce the amount

of incident solar radiation reaching the ground surface

(Bonan 2002), coastal fog in the Western Cape mainly

occurs in summer (as a result of warm moist air over the

cold water of the Benguela-upwelling zone; Tyson and

Preston-Whyte 2000) when the range of available Te is

broad (Fig. 4A). In addition, the incidence of high winds

in the region (Tyson and Preston-Whyte 2000) should

enable melanistic lizards (such as C. niger; Fig. 6A) to

thrive in relatively hot environments and avoid high-

temperature thresholds via convective cooling. Despite

the calculated reduction of the thermal habitat quality

(;0.28C) for a melanistic lizard at Joostenberg (inland

site), favorable Te in crevices should be equally available

to melanistic and non-melanistic lizards and provide

similar thermal refugia to both during the warmest

periods of the day. By contrast, we found that melanism

at Joostenberg (inland) would also give lizards a Tb

advantage in winter.

Two results from this study merit further detailed

attention. First, Tb was often maintained slightly above

mean or maximum crevice Te even when the latter was

the most favorable Te available (Figs. 5–7), which

suggests that lizards may have used additional micro-

sites hidden from our direct observations (e.g., within

crevices or between boulders). Many variables such as

crevice depth, orientation and position within a boulder,

and the size and properties of the latter, contribute to

the complexity of the thermal environment in rock

retreats (e.g., Huey et al. 1989). Despite the small

deviation of Tb from Te in all species, this study suggests

that thermal investigations of rock-dwelling species

should thoroughly explore crevice networks to reflect

TABLE 4. Summary of mean body (Tb) and operative (Te) temperatures, habitat thermal
quality (de), and accuracy of thermoregulation (db) of three Cordylus species.

Species and season Tb (8C) Te (8C) de (8C) db (8C)

Cordylus cordylus (Tp ¼ 30.7–33.6)

Summer 27.8 6 4.3 (3F:3M) 31.2 6 7.4 4.5 6 0.9 3.7 6 0.7
Winter 20.5 6 6.0 (4F:4M) 16.5 6 6.1 14.4 6 2.0 10.5 6 2.3

Cordylus niger (Tp ¼ 32.0–33.4)

Summer 27.1 6 4.9 (4F:2M) 27.6 6 5.7 5.7 6 0.6 5.2 6 1.0
Winter 20.1 6 5.5 (5F:3M) 16.0 6 4.3 16.0 6 2.0 11.9 6 3.5

Cordylus oelofseni (Tp ¼ 32.8–34.6)

Summer 28.7 6 4.9 (3F:4M) 28.6 6 6.9 6.3 6 0.2 4.4 6 0.3
Winter 12.5 6 4.5 (6F:4M) 9.3 6 5.7 24.0 6 4.9 20.6 6 3.7

Notes: Sample sizes and sex ratios (females :males) of radio-telemetered lizards are given in
parentheses next to Tb data. Grand means (6SD) were calculated from three days data in each
species’ site (from 07:00 to 18:00 hours and 08:00 to 17:00 hours in summer and winter,
respectively). Set-point boundaries of preferred Tb’s (central 50%) are indicated next to species
names.
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FIG. 5. Grand means of hourly body temperature (Tb), operative temperature (Te), and number of individuals observed in the
open (outside crevices) as a function of time of day for Cordylus cordylus at Joostenberg, South Africa. Operative temperatures are
means of (1) Te’s (or maximum Te’s) in full sun, (2) Te’s in shade, Te’s (or maximum Te’s) in crevices in (A) summer (five days), (B)
winter (five days), and (C) a foggy day in winter. The set-point boundaries of Tp and thermal limits (CTmax and CTmin) are
indicated by continuous and broken horizontal lines, respectively. Squares represent the mean number of active lizards (right-hand
axes) observed (mostly basking) along 50-m transects every two hours.
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FIG. 6. Grand means of hourly body temperature (Tb), operative temperature (Te) and number of individuals observed in the
open (outside crevices) as a function of time of day of Cordylus niger at Mauritzbaai, South Africa. Operative temperatures are
means of (1) Te’s (or maximum Te’s) in full sun, (2) Te’s in shade and (3) Te’s (or maximum Te’s) in crevices in (A) summer (five
days), (B) winter, clear skies (two days), and (C) winter, overcast (two days). Tp, CTmax, and CTmin are indicated by continuous and
broken horizontal lines, respectively. Squares represent the mean number of active lizards (right-hand axes) observed along 50-m
transects every two hours.

SUSANA CLUSELLA-TRULLAS ET AL.2308 Ecology, Vol. 90, No. 8



FIG. 7. Grand means of hourly body temperature (Tb), operative temperature (Te), and number of individuals observed in the
open (outside crevices) as a function of time of day of Cordylus oelofseni at Landdroskop, South Africa. Operative temperatures are
means of (1) Te’s (or maximum Te’s) in full sun, (2) Te’s in shade, and (3) Te’s (or maximum Te’s) in crevices in (A) summer (five
days), (B) a winter, warm day, and (C) winter, overcast (two days). Tp, CTmax, and CTmin are indicated by continuous and broken
horizontal lines, respectively. Squares represent the mean number of active lizards (right-hand axes) observed along 50-m transects
every two hours.
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the spatial and temporal variation of thermal opportu-

nities offered by rock retreats.

Second, when the habitat provided a large range of

thermal opportunities, Tb was often below the lower

boundary of Tp (e.g., Figs. 6A and 7A) suggesting that

lizards actively maintained Tb below preferred levels.

Several hypotheses may explain this finding. The

maintenance of Tb below Tp may be a means to reduce

the risk of overheating under warm conditions. Indeed,

the narrow range of Tp and the proximity of CTmax to

Tp (e.g., Fig. 6A, in accordance with the asymmetry of

thermal performance curves; Van Berkum 1988, Huey

and Kingsolver 1989, Martin and Huey 2008) indicate

that any further increase in Tb during the warmest

periods of the day may be hazardous, especially when

the availability of Te below Tp is low. However, even

when a broad range of thermal options was available

(e.g., Fig. 7A, B), Tb was also maintained below Tp,

making this hypothesis, at least sometimes, unlikely.

Alternatively, phenotypic plasticity (e.g., seasonal accli-

matization) and differences in sex ratios among popu-

lations may have affected Tp boundaries across seasons

(e.g., Patterson and Davies 1978, Christian and Bedford

1995). However, since no significant acclimation or sex

effects on Tp have been found for several cordylid

species held in the laboratory (Wheeler 1986, Clusella-

Trullas et al. 2007a), this possibility seems unlikely.

Lastly, behaviors such as feeding, mating, and main-

taining territories may impose significant deviations

from optimal Tb despite high habitat thermal quality

(e.g., Shine 1980). In fact, the overlap of Tb and Tp is

highly variable across species and is influenced by diet,

season, climate, habitat type, and geographic location

(e.g., Grbac and Bauwens 2001, Gvoždı́k 2002, Diaz and

Cabezas-Diaz 2004, Vitt et al. 2005). Therefore, the

present data do not allow us to fully ascertain the cause

of this consistent effect, but trade-offs between thermo-

regulatory costs and benefits (time and energy; Huey

and Slatkin 1976, and see Blouin-Demers and Weath-

erhead 2001) seem like the strongest candidate in

dictating natural Tb variation in these field populations.

In conclusion, using a multifaceted study that incor-

porates theoretical, experimental, and field data gathered

at wide spatial and temporal scales, we have demon-

strated the beneficial role of melanism in cordylids.

Furthermore, by using spatially complex rock outcrops

typical of cordylid habitat, these species were less

thermally constrained under warm temperatures than

under cold temperatures. Therefore, as predicted, mela-

nism conferred an advantage in winter rather than a

disadvantage in summer for all species. Indeed, the

greatest thermal advantage was found in the species

located in the mountain site where Te frequently fell

below physiological thresholds in winter. Future tests of

the adaptive thermal advantage of skin reflectance (or the

thermal melanism hypothesis) should consider cost/ben-

efit tradeoffs of thermoregulation to understand fully the

impacts of climate and its variation on lizard ecology.
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APPENDIX A

The steady-state energy model and its assumptions (Ecological Archives E090-160-A1).

APPENDIX B

Calibrations: copper models, live lizards, and radio transmitters (Ecological Archives E090-160-A2).

APPENDIX C

Frequency distributions of operative (Te) and body (Tb) temperatures in three species of Cordylus (Ecological Archives E090-
160-A3).

APPENDIX D

Table presenting de, db, time spent above and below critical thresholds for a melanistic and a non-melanistic lizard on a typical
summer and winter day (Ecological Archives E090-160-A4).
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