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This study presents a practical method for three-dimensional static equilibrium analysis

for masonry vaults using funicular networks. The method, a nonlinear extension of Thrust

Network Analysis, is explained, and through three exemplary case studies, the potential of

this new research is demonstrated. These examples discuss different assumptions on the

“flow of forces” in Gothic quadripartite vaults; visualize the flat-vault equilibrium of rose

windows under wind loading; and provide a stability analysis of the intricate nave vaults of

Sherborne Abbey, Dorset, England. The presented approach provides insights in structural

redundancy of unreinforced masonry structures by quantifying lower bounds on the geomet-

ric safety factors. The method for efficient funicular analysis of complex vault geometries

furthermore provides the foundation for a fully three-dimensional funicular analysis imple-

mentation, extending thrust line analysis to three-dimensional thrust networks, for historic

masonry.

KEY WORDS: unreinforced masonry structures, Gothic vaults, Gothic rose windows, flow
of forces, equilibrium analysis, limit analysis, funicular analysis, thrust network analysis,
geometric safety factor

1. INTRODUCTION

Unreinforced masonry structures generally fail not due to lack of compressive
strength, but due to instability (Heyman 1995; Ochsendorf 2002). Understanding the equi-
librium of structures in masonry is thus of primary concern. The importance of equilibrium
methods for the analysis of masonry structure, framed in an extensive historical overview,
is provided and argued very clearly by Huerta (2001, 2004, 2008). To determine the stabil-
ity, and hence to assess the safety of masonry structures, limit analysis provides a useful
theoretical framework (Kooharian 1962; Heyman 1966).

1.1. Limit Analysis of Masonry Structures

In the classic limit analysis framework, the safe theorem states that, under certain
assumptions such as no sliding at the masonry interfaces, infinite compressive strength
of the masonry, which combines a static (sufficient resistance) and a kinematic aspect (no
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3D EQUILIBRIUM ANALYSIS 313

deformation), and no tensile capacity, it is sufficient to find one possible equilibrium state in
compression for the structure under the applied loads, to guarantee safety (Heyman 1995).
In two dimensions, such equilibrium can be found and visualized by constructing a thrust
line that fits within the geometry of the structure. In practice, one wants to constrain the
solution rather to a particular zone of the structure’s section, for example 0,85·d, with d

the depth of the section, to account for imperfections in the real geometry, but also to
avoid unrealistic stress concentrations, which would violate the no-crushing assumption
(Heyman 1995) Thrust line analysis is a useful tool to explain and examine the stability of
two-dimensional (2D) structures, but unfortunately practically limited to them. They have
been used though to perform pseudo-three-dimensional (3D) analyses (Wittmann 1879;
Wolfe 1921; Block et al. 2006a), which often produce overly conservative results.

In support of this analysis framework, Holzer (2012) showed recently very clearly
that the ultimate load capacity of an arch is perfectly approximated using “thrust zone”
analysis, which is a concept that extends thrust line analysis by adding geometric con-
straints that account for the limited compressive strength of the material (Durand-Claye,
1867, 1880; Smith, Harvey, and Vardy 1990). Holzer showed that at collapse the results of
this fast limit analysis approach are practically identical to the solution obtained with an
iterative, nonlinear finite element implementation.

Boothby (2001) provided a critical overview of the different analysis methods for
masonry arches and vaults, and calls for the development of an automated 3D version of
graphical equilibrium analysis; a call, which was echoed by Kurrer (2008).

We also refer to Roca et al. (2010) for an exhaustive and general overview of the state
of the art of approaches for structural analysis of historic masonry constructions.

1.2. 3D Funicular Analysis of Masonry Vaults

In order to extend thrust line analysis to spatial structures, O’Dwyer (1999) intro-
duced the use of 3D funicular force networks defined in plan. Using optimization,
compression-only networks that are in equilibrium with both self-weight and applied loads,
and fit within the geometry of the structure, could be obtained. By limiting the problem to
vertical loading, and by keeping the layout of the networks fixed in plan during the solving,
the nodal heights could be solved through an iterative routine with linear optimization at
each step. O’Dwyer’s research showed the important influence the topology of the chosen
networks has on the obtainable equilibrium solutions, and introduced the mathematical for-
mulations of different objective functions relevant to the assessment of masonry (Section
1.3). Even though the fixed network in plan still inherently renders conservative results,
these 3D networks give a much better understanding of vaults than the simplified analysis
that combine two-dimensional thrust line analyses.

An important limitation of this method though was the lack of a general approach
to deal with the static indeterminacies in the horizontal equilibrium of networks with a
fixed horizontal projection. This horizontal equilibrium needed to be known to be able to
linearize the problem. As the solving depended on providing thrust values to all edges,
applications were thus limited to simple, often symmetric networks, for which the thrusts
could be calculated through careful inspection of the chosen network topology. And
because the dependencies of the thrust values were not formalized in O’Dwyer’s (1999)
approach, these variables could not be included in the optimization problem. A second issue
was that not every choice of horizontal equilibrium necessarily resulted in an equilibrium
solution fitting the solution space, the vault’s section.
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314 P. BLOCK AND L. LACHAUER

Building on O’Dwyer’s seminal work, thrust network analysis (TNA) addressed the
first issue by introducing reciprocal force diagrams (Maxwell 1864), which describe the
possible horizontal equilibria of compressive funicular networks, named thrust networks,
under vertical loading (Block and Ochsendorf, 2007, 2008; Block, 2009).

These allowed the analyst to calculate, visualize and explicitly control the horizontal
equilibrium, and hence the degrees of indeterminacy of thrust networks. Using the geo-
metrical information provided by these diagrams, TNA provided a general framework for
linearizing O’Dwyer’s equations of equilibrium for any topology of network by providing
equilibrated thrusts for all edges of the network. TNA furthermore adopted the data struc-
ture and matrix formulation of the force density formulation (Schek 1974), which improved
the solving speed by several orders of magnitude over the node-wise approach.

An important drawback of the original TNA framework, as presented in the above-
mentioned references, though was the lack of a general algorithm to automatically
identify, control, or vary the degrees of indeterminacy of the horizontal equilibrium of
thrust networks with fixed projection. The manual manipulation of the reciprocal force
diagrams—each possible force diagram corresponds to a 3D thrust network for the given
loads and boundary/support conditions—guaranteed that all solutions where in compres-
sion, but was of course not sufficient to find specific equilibrium solutions, for example one
that fits in thin masonry vaulted structures with complex geometry. This paper will present
the extensions to TNA that overcome this constraint.

Another recent approach for 3D limit analysis based on funicular networks has been
proposed by Andreu, Gil, and Roca (2007, 2010). An important difference to the approach
presented in this paper is that, although easily general loading cases could be included,
the equilibrium solutions are not constrained to fixed horizontal projections, which will be
argued in this discussion to be of particular practical importance for masonry assessment.
A related approach to TNA for generating funicular networks for vertical loading cases
has been proposed by Fraternali (Fraternali and Rocchetta, 2002; Fraternali, 2010), as a
specific 3D extension of the lumped stress method (Fraternali, Angelillo, and Fortunato
2002). Block (2009) has showed that their equilibrium conditions and global framework,
separating horizontal and vertical equilibrium, was entirely equivalent to TNA, but in con-
trast, this approach, based on discretized airy stress functions, had challenges with respect
to singularities in the boundary conditions and loading, or discontinuities, such as cracks
or openings, in the discretized equilibrium surfaces and the supports. Recently, the math-
ematical foundation of this framework, based on TNA and the lumped stress method, has
been formalized and extended with efficient solving algorithms by Vouga et al. (2012) to
find particular best-fit solutions to target surfaces, but because their solving strategy was
not based on fixed pattern layouts, their method is unable to capture typical sharp features
of Gothic masonry vaults, such as creases along ribs. Convergence issues also remain.

1.3. Problem Statement

Although it is sufficient, based on the safe theorem, to find a possible compressive
equilibrium state for the vault, or in geometrical terms, a possible thrust network that
stays within the vault’s geometry, it is useful to identify specific equilibrium solutions,
e.g. associated to the following objectives:

� Maximizing the ratio between the thinnest possible vault geometry enveloping a
funicular solution in equilibrium with given loads over the actual vault geometry, which
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3D EQUILIBRIUM ANALYSIS 315

(a) (b) a(c)

λcP

Figure 1. Illustration of different relevant specific funicular solutions for an arch, providing (a) the geometric
safety factor, (b) the minimum and maximum thrust, and (c) the collapse load factor for a given live load location.

renders the geometric safety factor (GSF) (Heyman 1982; O’Dwyer 1999), a measure of
the closeness to collapse of the vault under those loads (Figure 1a).

� Minimizing/maximizing horizontal thrust, which provides the thrust values that bound
the range of thrust that the vault will and can exert onto its neighboring elements
(Figure 1b).

� Maximizing the collapse load factor, which indicates how much live load a vault can
take before a collapse mechanism is formed, i.e., the thrust line no longer fits inside of
the vault (Figure 1c).

In 2D, there is furthermore a direct relation between the thrust lines in Figures 1b–1c and
the collapse mechanisms: Where the lines touch the intrados and extrados on alternate sides,
hinges will form (Heyman 1995). It has not been shown that such a relation exist for vaults.

This study will focus on finding the thrust network with a given plan layout that maps
the mid (or other target) surface of the vault. This objective is chosen because it fulfils the
main objective of finding a safe field of admissible stress, represented by that thrust network
that stays within a defined portion of the section of the vault. It can furthermore be solved
very efficiently and fast, which means that many analyses under different force pattern
assumptions can be ran and tested consecutively. Also, the obtained solution provides a
good lower bound on the geometric safety factor (GSF) of the vault for a given loading
(although the quality of the lower bound will depend on the choice of network topology).
Lastly, the resulting best-fit solution forms the basis for finding other objectives, such as the
ones shown in Figure 1, by providing a good and feasible starting point for the respective
optimization problems. Currently, the algorithms consider perfect geometry, thus not taking
displacements or structural pathologies into account, which will be addressed in future
research (see Section 5).

A particular objective of this study is to demonstrate that the new nonlinear search
algorithms, presented in Block and Lachauer (2011) or in Panozzo, Block, and Sorkine-
Hornung (2013) and Van Mele et al. (2014), are the foundation for a flexible, intuitive, fast
and robust, and thus practical, equilibrium analysis implementation for assessing vaulted
masonry. This aim directly responds to the needs and demands from practice where leading
masonry experts still extensively use thrust line analysis as a key part of the stability and
safety assessment of historic masonry structures, partly also influenced by time and bud-
get restraints. The new algorithms for the TNA framework constitute an important step to
develop software implementations that provide this practical limit analysis framework for
fully 3D problems, as will be shown in this paper through several examples from the field
of structural assessment of historic structures.
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316 P. BLOCK AND L. LACHAUER

The method facilitates understanding how thin vaults with double curvature can be
stable, but the main advantage of the extended TNA is that it is faster and easier to inves-
tigate complex networks. For this, two important assumptions are added to Heyman’s
assumptions in Section 1.1: As in thrust line analysis, possible spatial flow of forces
are modeled using linear elements, arranged following some a priori specified topology,
and loading is limited to vertical, or parallel loading. The first assumption unavoidably
renders unconservative results compared to more general approach that model vaults as
surfaces, volumes or blocks, as there is a strong influence on how the structure is mod-
eled and disretized. But, because of the extremely fast computation, thanks to the new
solving algorithms, the analyst gets practically real-time feedback for each force pattern
drawn or generated, which allows him to check many force flow assumptions rapidly, e.g.,
considering information from a visual assessment of the vault, such as crack locations.

2. THRUST NETWORK ANALYSIS

This section will give a short review of the concepts and assumptions of the Thrust
Network Analysis framework, and identify the necessary extensions. TNA is an analy-
sis approach that allows performing funicular analysis using discrete networks and under
parallel loading conditions, giving a very high degree of control to the analyst to explore
different assumptions on the force flow in vaulted masonry.

2.1. Equilibrium of Thrust Networks

For the static analysis of (historic) masonry vaults, which typically have a heavy,
dominant self-weight, it is sufficient to consider vertical loading only. For gravity loading,
the lines of action of the loads are vertical, and it is thus meaningful to keep the horizontal
projection of the laid-out network fixed during the analysis process. This is equivalent in 2D
to thrust line analysis, done using graphic statics, where indeed the nodes in the funicular
form stay on the verticals through the centroids of single stones, called voussoirs, of a
masonry arch (Block et al. 2006a). Live loads are also applied at specific (x,y)-locations, and
thus also want to stay fixed during the analysis. Lastly, the location of cracks and openings
are hard constraints on the analysis, as no thrust can travel across them, something other
approaches have challenges with. Note that the TNA framework requires parallel loading
cases, of which vertical loads represent a special case (Block 2009).

The vertical equilibrium of a typical node i in a thrust network (Figure 2a) is given
by Equation 1:

FV ,ji + FV ,ki + FV ,li = Pi (1)

in which FV,ji are the vertical components of forces in edges ji, and Pi is the load applied at
node i.

When rewriting the vertical equilibrium equations (1) in function of the horizontal
force components, i.e., the thrusts, FH,ji, using Equation 2:

FV ,ji = FH,ji · tan
(

αji

)

= FH,ji ·
zi − zj

lH,ji
(2)

one gets after rearranging:
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3D EQUILIBRIUM ANALYSIS 317

αji
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(a) (b)

|z-z|
T

Figure 2. Illustration of (a) a typical node i in the thrust network with applied load Pi and branch forces Fji, and
(b) the height deviation |z-zT| of the thrust network from the target surface of the vault.

(

FH,ji

lH,ji
+

FH,ki

lH,ki

+
FH,li

lH,li

)

zi −
FH,ji

lH,ji
zj −

FH,ki

lH,ki

zk −
FH,li

lH,li
zl = Pi (3)

in which lH,ji are the horizontal lengths of edges ji, which is exactly the problem that is being
solved in O’Dwyer (1999). These equations can be linearized by providing values for FH,ji,
which for a given horizontal projection are not independent; they need to be chosen such
that they represent a possible horizontal equilibrium with the fixed plan geometry. This
requirement can be guaranteed by constructing allowed compressive reciprocal force dia-
grams, which is one of the core premises of TNA (Block 2009; Van Mele et al. 2012). These
force diagrams furthermore allow to linearize Equation (3) by measuring the lengths of the
corresponding reciprocal edges, l∗H,ji, which are the (scaled) magnitudes of the thrusts FH,ji

as shown in Equation 4:

qji =
FH,ji

lH,ji
=

l∗H,ji

lH,ji
(4)

with qji the well-known force densities (Schek 1974) or tension coefficients (Pellegrino and
Calladine 1986).

2.2. Controlling the Indeterminacy of Thrust Networks

For 3D networks, obtaining one of the specific equilibrium solutions in Section 1.3
is not a straightforward task because of the high degree of static indeterminacy of such
models. Put simply, rather than having one horizontal thrust to consider, as for planar struc-
tures, such as arches on buttresses, these networks have highly dependent combinations of
horizontal thrusts in their edges (Block 2009). This is clarified and visualized in TNA with
reciprocal force diagrams, which represent the different possible horizontal equilibria of
these networks for given form diagram (Figure 3).
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318 P. BLOCK AND L. LACHAUER

PP

P P

(a) (b)

Figure 3. Illustration of several static equilibrium states existing for determinate networks: for the same load P,
form diagram, and overall depth of the solution, but when changes in the force diagram, i.e., changes in the internal
distributions of thrusts, several thrust networks result. The force diagram of (b) is stretched to double the size in
one direction compared to (a), resulting in the doubling of the horizontal forces in that direction and therefore also
in a thrust network half as deep in that direction.

For a single node or simple networks, describing the dependencies between the
thrusts for form diagrams that stay fixed in the horizontal plane, is still manageable, but
the complexity of the problem grows quickly for large networks with arbitrary topology.
A strategy is thus needed to:

1. understand the dependencies between the thrusts in the different edges of the net-
work, i.e. how local changes in thrust influence the thrusts globally, while keeping the
projection of the solutions fixed; and

2. develop control mechanisms to produce different equilibrated thrust distributions to
search for one of the specific lower-bound equilibrium solutions in Figure 1.

3. COMPUTATIONAL IMPLEMENTATION

This section will outline the key steps of the nonlinear extensions of TNA that address
the challenges posed above. Controlling the dependencies has been solved algebraically in
Block and Lachauer (2011), and explicitly in Panozzo et al. (2013) and Van Mele et al.
(2014).

3.1. Nonlinear-Solving Approach

As mentioned earlier, addressing the second challenge in Section 2.2, this paper
will be searching for the “best-fit” solution that minimizes in a least-squares sense the
vertical deviations between the solution and the target surface defined inside of the vault
(Figure 2b), as shown in Equation 5:

f (q) =‖ z − zT ‖2 (5)

with z the thrust network, and zT the target surface.
A specific case for the target surface is when zT = zM = (zI + zE)/2, with zI and

zE the intrados and extrados heights of the vault respectively, which thus coincides with
the mid surface of the vault. The best-fit solution, found with the objective function (5),
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3D EQUILIBRIUM ANALYSIS 319

represents a lower bound on the geometric safety factor (Figure 1.a), and dependent on the
topology of the force pattern chosen, it will generate a lower bound more or less close to
the GSF. This objective is chosen because this least-squares problem can be solved very
efficiently, and because the resulting solution forms a good and feasible starting point for
finding the objectives in Section 1.3: finding the minimum versus maximum thrust networks
of the vault (Figure 1b) or obtaining the geometric safety or collapse load factors for a given
loading case (Figure 1a and 1c).

Minimizing the objective function (5) is a difficult nonlinear optimization prob-
lem (Vouga et al., 2012). The nonlinear relationship between z and q is clear from the
equilibrium Equations (3). Two strategies to solve the problem have been proposed, and
will be summarized next. For a detailed description of the mathematical formulations and
algorithms, the authors refer to the provided references.

The first, algebraic approach (Block and Lachauer 2011, 2013) introduces a method
for identifying the thrust dependencies between edges in equilibrium networks with par-
allel loads and fixed projection, based on matrix analysis of structural frames. The main
concept is that, because only vertical loads are considered, each in-plane equilibrium of
the (unloaded) 2D bar-node structure that coincides with the projection on the plane of the
thrust network, represents a possible horizontal equilibrium of a funicular network for the
given loads. These equilibria correspond to the states of self-stress of that planar struc-
ture, and identifying these, give the independent edges of the network, i.e. the edges whose
thrusts, or equivalently force densities qindep, can be chosen freely without violating the
equilibrium of the fixed planar network topology. This approach particularly gives clear
insights into the dependencies of the variables of the problem.

The second, explicit approach (Panozzo et al., 2013; Van Mele et al., 2014) improves
the robustness of the search algorithms and particularly also increases the speed of solving
over the first, algebraic approach, by searching over all force densities q. In this method, it
is guaranteed that all thrust distributions represent possible compressive equilibria for the
fixed projection by explicitly controlling both form and force diagram. The efficiency of
this approach comes from sampling the best components of previous research: the robust,
iterative algorithms for guaranteeing equilibrium developed in Rippmann Lachauer, and
Block(2012a), which allow to deal with imperfect form diagrams (see Section 4.2.2), the
analytically provided best-fit objective function and gradient, and efficient search algorithm
used in Van Mele and Block (2011).

3.2. Overview Implementation

This section provides an overview of the main steps of the workflow of the cur-
rent implementation, which is intended as a prototype for new 3D limit analysis tools for
complex vaulted masonry. Figure 4 shows schematically what is needed as input (left) and
what is generated as output (right), and Figure 5 shows a pipeline of the computational
implementation. The dotted steps are either optional or are only necessary in particular
solvers (Section 3.1).

From the intrados and extrados surfaces, SI and SE respectively, of the vault, which
can be generated from a point cloud from a laser-scan survey, the self-weight loading is
computed. The target surface ST can either be generated as mid surface of the vault, defined
by the intrados and extrados, or directly provided by the analyst. This allows the analyst,
for example, to constrain the solution to stay within certain parts of the masonry, e.g. in the
ashlar masonry shell, rather than going through rubble infill.
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320 P. BLOCK AND L. LACHAUER

SE

ST
G

SI

w

Γ ΓΓ Γ*

Figure 4. Illustration of the main inputs of the current implementation (left): optionally, the vault’s intrados and
extrados surfaces, SI and SE; the target surface, ST; additional surcharge loading w; and the force layout as form
diagram Ŵ. Overview of the main outputs (right): the best-fit thrust network G, and the (scaled) force diagram Ŵ∗

corresponding to that equilibrium solution.

Additional surcharges w can be added, which, together with the self-weight compo-
nents, make up the loads p that are lumped, based on their tributary area, to the appropriate
nodes of the network, defined by the two-dimensional form diagram Ŵ. This force pattern
is laid out on the horizontal plane, and is the horizontal projection of the to-be-found 3D
thrust network. The form diagram Ŵ can either be drawn by the analyst or generated e.g.
with the algorithms in Panozzo et al. (2013).

After generating a starting point, the optimization problem to minimize
(Equation 5) is done iteratively using a gradient ∇f . The implementation produces as
geometric output the best-fit thrust network G and the reciprocal force diagram Ŵ∗. From
these, all forces in the network are known, which are then used to check stresses and fric-
tion thresholds at the voussoirs’ interfaces. Different visualizations will be used in Section
4 to better represent the results.

4. APPLICATIONS

This section will present case studies illustrating the method. In Section 4.1 differ-
ent assumptions of force patterns for quadripartite vaults are compared on a generic vault
geometry, adding to the historical debate on the flow of forces in Gothic vaults; in Section
4.2, the flat-vault action of several, intricate rose windows is explored; and in Section 4.3,
the nave vaults of Sherborne Abbey, England are used as case study of an equilibrium
analysis of a structural rib network with complex geometry.

4.1. Flow of Forces in a Quadripartite Vault

An important aspect for the analysis of masonry vaults using thrust networks is to
define an appropriate form diagram to model a plausible flow of forces in a 3D structure.
Because of the setup, that the horizontal projection of all equilibrium solutions is kept
fixed, different network topologies can be easily compared to obtain better insights into the
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3D EQUILIBRIUM ANALYSIS 321

Solving

Output

Evaluate cost f 

Generate nodal heights z

Compute tributary areas

Calculate loading p

Identify independent force densities q
indep

Generate starting point

Assign independent force densities q
indep

Calculate all force densities q

Compute member forces

Generate reciprocal diagram Γ*

Generate thrust network G

Visualize results

f ≤ ε

f > ε

∇f 

Pre-processing

Target surface ST

Additional loading w

Draw/generate form diagram Γ

Intrados/extrados surfaces SI, SE

Input

Figure 5. Diagram of the steps of the computational implementation, divided into input, pre-processing, solving
and output.

structural logic of certain masonry vault geometries, and thanks to the newly developed effi-
cient solvers, equilibrium solutions can now be generated practically instantaneously. This
explicit control allows thus to fully understand the different possible lower-bound equilib-
ria of vaulted structures under different assumptions. There has been extensive debate on
the structural behavior of masonry vaults, with a particular emphasis on the perceived role
of the rib in Gothic vaults (Viollet-le-Duc 1854; Sabouret 1928; Abraham 1934; Heyman
1968; Mark, Abel, and O’Neill 1973).
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322 P. BLOCK AND L. LACHAUER

Many scholars have assumed that the vault forces “flow” to the supports in the same
manner as water would drain off the vault’s upper surface or as a cannonball would roll
off the extrados of a vault, as Abraham (1934) claimed (Figure 6a), correcting Viollet-le-
Duc’s “wrong”’ assumption on how the forces would travel to the supports (Viollet-le-
Duc, 1854) (Figure 6b). Following a similar logic, Ungewitter and Mohrmann (Ungewitter,
1890) and Rave (1939) defined that a reasonable slicing of a vault, needed for a pseudo-3D
discretization of the force paths in masonry vaults, is to cut them up according to lines of
steepest descent (Figure 6c). This assumption is perfectly reasonable for properly supported
vaults or shells, and has strong correspondances with Heyman’s explanation that Gothic
vaults act as thin shells with stress concentrations along creases (Heyman 1977, 1995), as
it is known that there is a direct relation between curvature and membrane stresses in shells
(Calladine 1983). For non-properly supported vaults though, these assumptions no longer
make sense. For example, in the case of the often occurring Sabouret cracks, which run
parallel and along the sides of a quadripartite vault (Sabouret 1928; Heyman 1995), these
cracked boundaries cannot transfer thrust.

In that situation, a curvature analysis of the vault’s geometry could result in thrusts
hitting these unsupported edges (as would be the case for the vault geometry shown in
Figure 7). Instead, forces should have been redirected to run parallel along those unsup-
ported edges towards the supported corners. It is clear that other approaches are needed,
and that we need to get rid of the common misconception to use a curvature analysis to
decide on the discretization. Panozzo et al. (2013) address this issue, and propose an opti-
mization framework to automatically generate appropriate force patterns for self-weight

(a) (b)

(c) (d)

Figure 6. Illustration of different assumptions on how the forces flow to the supports in a quadripartite vault,
according to (a) Abraham (1934), (b) Viollet-le-Duc in part A (Abraham, 1934), (c) Rave (1939), and (d) Mark
(1982).
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Hy

Hx

Hy

Hx

qfront

qside

(a) (b)

V

Figure 7. Illustrated example of generic quadripartite vault geometry with dimentions 13m × 7m × 4.5m: (a)
axonometry, and (b) top view, with height contour lines, horizontal thrust at the corners in both x- and y-direction.
As conservative assumption it is assumed, that the boundary thrust at the edges qside and qfront is zero.

by applying structural heuristics (e.g., force lines should trace sharp features, such as
creases in the vault’s surface along a rib, or should not hit unsupported boundaries [e.g.,
of openings]) to generate more informed topologies based on the vault’s geometry. This
research considered only perfect geometry, but could be extended to include structural
pathologies.

This issue is also particularly clear when including point loads. Even if perfectly
supported, the patterns generated from a curvature analysis can only be considered as rea-
sonable assumptions to represent the self-weight, as they do not necessarily include the
“ideal” load paths to carry the live loads to the supports. O’Dwyer (1999) proposed that a
good discretization should combine, or at least reflect all possible ways the forces in the
vault could act. It has been clearly shown by O’Dwyer (1999), and Van Mele et al. (2014)
that overlays of the patterns for the dead and live loads result in significantly less conserva-
tive assessments, and more importantly, that the dead load pattern not always allows finding
an equilibrium solution for the combined loading case, i.e. a solution that stays within the
section of the vault.

The most important information to decide on force pattern layouts is obtained
by looking for pathological information in-situ (e.g., cracks, deformations, fallen-out
stones/bricks). The network approach allows including those naturally, for example, by
taking out branches, such that no compressive forces run through cracked areas. The fixed
horizontal projection guarantees that such impossible force flows do not occur during the
nonlinear search. Other important hints on force layouts are provided by experimental
research (e.g., Barthel, 1994; Jagfeld and Barthel, 2004).

These issues are not considered in the theoretical example in this section; perfect,
non-cracked geometry will be assumed, as well as perfectly rigid foundations (i.e., no
support discplacements).
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324 P. BLOCK AND L. LACHAUER

Mark et al. (1973) used photo-elastic analysis on carefully machined, perfectly homo-
geneous and smooth, plastic models to show the path of forces in a groin vault (Figure 6d).
This is thus equivalent to doing a linear elastic FE analysis, hence assuming a continuous,
homogeneous body and furthermore only considering “perfect world” boundary conditions,
to explain the stability of the discrete masonry vault. Next to the fact that the solution will
be significantly influenced by the significant tensile capacity of the plastic model, the result
does not acknowledge the indeterminacy of the problem, i.e. it generates one, fictional
lower-bound solution, based on erroneous boundary conditions and parameters.

Barthel (1994) studied the force paths in Gothic vaults using nonlinear FEM analysis,
hence not erroneously including the fictional tensile capacities of cracked masonry, but also
provided a very clear state-of-the-art report and discussion of the different discretizations
proposed historically for several vault geometries. Particularly his categorization of typical
observed crack patterns unveiled important clues to explaining the flow of forces in vaults
of different geometry. Heyman (1995) indeed also already discussed this aspect. In many
churches, one observes the combination of Sabouret cracks and cracks running along the
center of the nave. It can thus be concluded that these vaults globally act as three-hinged
arches, thus effectively as barrel vaults. Holzer (2012) showed the validity of this model
quantitatively by comparing the resulting thrusts at the abutments for several pseudo-3D
discretizations that were based on different kinematically admissible crack patterns, which
he repeatedly observed in practice. These were lastly benchmarked by a top-level analysis
considering the groin vault as simple barrel vault, showing only marginal difference for all
assumptions.

It is clear that there has been a long-lasting discussion on how Gothic vaults “exactly”
work. Of course, these discussions always need to be framed correctly, particularly that the
question differs heavily for each specific case study. This section shows that the method
presented in this study allows for a systematic comparison of different assumptions on the
force flow of vaults. These are all of course possible equilibrium solutions for the statically
highly indeterminate problem, but thanks to the new algorithms, the different assumptions
on the force paths can be evaluated and discussed using quantifiable measures, for example
by comparing how well the funicular solutions generated from each force pattern map in a
least-squares manner to a given vault’s mid surface.

As an example, this section will look at different possible layout of forces for the
generic quadripartite vault geometry shown in Figure 7, which was constructed following
Fitchen’s geometrical diagrams (Fitchen 1961). It can be seen from the height contour lines
(Figure 7b) that the intersecting pointed vault section spanning the x-direction has only
single curvature (parallel isolines) and that the other is doubly curved (curved isolines).

Figure 8 shows in the top row the best-fit thrust networks for five different layouts
(a-e). The pipes around the edges of the thrust networks are proportional to the magnitude
of force in them. The chosen form diagrams are shown in the middle row, with circles over
each node proportional to the vertical deviation of the node in the best-fit thrust network
work, measured with respect to the target surface, taken as mid surface of the vault. The
bottom row shows the reciprocal force diagrams, corresponding to the respective best-fit
solutions for the five patterns and drawn to the same scale. These show the equilibrium and
distribution of horizontal thrusts in the equilibrium solutions.

The patterns have been defined such that they interpret and represent the different
assumptions posed in the historical debate, and only have thrust components at the cor-
ners. This would mean that the sidewalls do not take any thrust, which, for example, could
account for the typically observed Sabouret cracks along the sides of a quadripartite vault.
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(a) (b) (c) (d) (e)

Hy

Hx

V

Hx

Hy

Hx
Hy

Figure 8. Illustration of results. Top row: Resulting best-fit thrust networks to the target surface, chosen as the
mid surface of the vault geometry in Figure 7, with pipes around its edges proportional to the magnitude of
force in them. Center row: Form diagrams: (a) parallel arches and rib arches; (b) fan-like arrangement of arches
directly going to the corner supports; (c) superposition of the first two patterns; (d) pattern combining a regular
quadrilateral grid with arches in plan to the supports; and (e) triangulated pattern with its diagonals oriented
towards the corners. The circles over each node are proportional to the vertical deviation of the node in the
solution. Bottom row: Reciprocal force diagrams, corresponding to the respective best-fit solutions for the five
patterns and drawn to the same scale.

Pattern (a) assumes parallel web arches, supported by diagonal rib arches, carrying the
loads to the supports; in (b), arches are laid out in plan in a fan-like arrangement from the
supports, connected at the ridges; pattern (c) is a superposition of the first two patterns, thus
combining both load-carrying logics; pattern (d) combines a regular quadrilateral grid with
arches in plan, which run to the supports; and pattern (e) was proposed in O’Dwyer (1999)
to be a good pattern to represent the combined force flow logics of patterns (a) and (b), thus
in intent equivalent to pattern (c), but not a direct superposition.

For each network topology, the least-squares best-fit solution to the center surface of
the vault geometry in Figure 7 is compared, considering the self-weight of the vault only,
so without taking into account the typical fill over the vault’s haunches. Table 1 shows
the summary of the results obtained with the best-fit solving algorithm for the different
force patterns in Figure 8 with m, the number of edges of the network; ni, the number
of free nodes, i.e. the number of nodes that have a to-be-found height; k, the number of
degrees of structural indeterminacy of the network, i.e. the amount of independently chosen
force densities, which is dependent on the pattern’s topology and geometry and represents
its complexity (Block and Lachauer 2011); the global, averaged fitness measure of the
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326 P. BLOCK AND L. LACHAUER

Table 1. Summary of the results obtained with the best-fit solving for the five patterns (a-e) in Figure 8

Pattern m ni k f /ni [mm2] | z - zM|max [mm] | z - zM|mean [mm]

a 148 121 10 1778 142 29
b 252 213 18 242 54 12
c 380 261 34 187 62 13
d 480 225 36 337 84 10
e 328 121 86 1068 93 24

solution, f/ni, which is the cost divided by the number of free nodes; and the maximum and
average vertical deviations in absolute values of the nodes of the thrust network from the
target surface along the mid surface of the vault, |z- zM|max and |z-zM|mean.

Comparing the average cost per node, f/ni, it is not surprising that pattern (a) performs
the worst, as the simple arches running across the web of the vault will have approximately
catenary shapes and thus never fit a pointed arch section well. A remarkable improvement
is observed for pattern (b). Indeed, this fan-like arrangement is connected at the vault’s
ridges, allowing for a “kink”, both in plan and in elevation, in the funicular arches cross-
ing the vault’s web. The best solution, considering the least-squares objective, is achieved
with the superposed pattern (c), although the improvement over (b) is not that significant.
This result is at first sight surprising, but can be explained after comparing their respective
reciprocal diagrams: indeed the reciprocal diagram of pattern (c) has globally a very similar
thrust distribution as pattern (b), showing that the parallel arches of pattern (a) only provide
a minimal contribution. Pattern (d) does not perform better, which can be explained by the
remaining arch sections in the pattern that run perpendicular to and over the pointed ridges
of the singly curved web sections, indeed causing the largest deflections along that line.
If this issue would be addressed, for example with a strategy as used in pattern (b), then
this pattern would perform the best with respect to the chosen objective, as can be seen by
the best score in the average deflection |z-zM|mean. Pattern (e), even though triangulated, and
hence having the most degrees of indeterminacy, thus the most options to redistribute the
horizontal thrusts, performs very poorly. The resulting values are similar, although slightly
better, to those obtained with pattern (a). Observing that their reciprocal diagrams have very
similar layouts, the reason for these similar results can be explained: even though triangu-
lated with edges orientated globally towards the supports, the pattern has no “arches” in
plan that can collect the web thrusts directly into the supports. Because of this, the network
is basically reduced to parallel arches spanning the web, with minimal forces in the con-
necting, transverse edges. So, O’Dwyer’s suggestion that this would be a good pattern to
represent the vault’s flow of forces does not work for supports only at the corners. This of
course happens because the form diagram is kept fixed during the analysis.

As a general remark, it is interesting that although the diagrams show that for each
solution the thrusts are redistributed very differently inside of the vault, the horizontal thrust
in x- and y-direction at the corner supports differ by less than 5%, as can be seen by the
overall similar sizes of the force diagrams, suggesting that a top-level equilibrium analysis
would have sufficed, a result which Holzer (2012) showed based on the typically recur-
ring crack patterns for quadripartite vaults observed in practice. Indeed, global equilibrium
should be satisfied, so it is in this context important to point out that the presented fully 3D
approach has most advantage over pseudo-3D analyses when indeed the chance to redis-
tribute and explicitly control the thrusts is fully exploited. Much less conservative results
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3D EQUILIBRIUM ANALYSIS 327

can be obtained in critical points with patterns that do not necessarily all go to the cor-
ner supports, but allow some thrust to be taken by neighboring elements, such as adjoining
vaults or sidewalls. A particularly interesting potential of the method is that these thrusts can
be directly and explicitly constrained to particular values, which, for example, are defined
by the lateral stability or different stiffness’s of these abutments (see Section 5).

Note also that the least-squares objective, fitting the vault’s mid surface, does not
necessarily result in the solution with the highest geometric safety factor (GSF), but rather
provides a lower-bound on it. To obtain the real GSF, one would need to minimize |z-zM|max

instead. Nonetheless, these theoretical findings add a new contribution to the historic dis-
cussion, and provide new arguments and insights to come closer to understanding the
structural behavior of masonry cross vaults. Regardless of the above discussion, it is impor-
tant to remember that all of these solutions represent admissible distributions of stress for
the vault’s geometry, if no cracks or other structural pathologies exist. None of these nec-
essarily represent the “real” equilibrium state of the vault; this one, we will never know
due to, for example, the unknowable support and material properties of historic masonry
(Heyman 1995; Huerta 2008).

4.2. Rose Windows

The delicate stone tracery of large rose windows provides an additional challenge for
3D analysis of masonry structures. The stability of these daring masonry structures have not
been studied much (Heyman, 2002; Clifton and Willis, 2007; Block, 2009; Caprili, Royer-
Carfagni, and Salvatore 2011). The main loading of large windows of Gothic churches and
cathedrals is the pressure and suction caused by wind. Assessing their out-of-plane stability
is therefore crucial. In order to withstand these lateral loads, these window structures have
to develop flat-arch action in their shallow depth (Heyman, 2002). The structural action
of rose windows is similar to flat circular vaults, but they differ in that the force paths are
defined and limited by the layout of the ribs of the window tracery.

4.2.1. Notre Dame de Mantes, France This section first focuses on a rose window
with a statically determinate form diagram, with three bars coming together at each inter-
section, resulting in a force diagram consisting of only triangles. This means that all forces
in the system are known up to a scale, which is defined by the loading and the depth of
the mullions. Neglecting the contribution of the self-weight of the window, this means that
the same reaction force is required from all sides. Because of the simple, statically deter-
minate geometry, these conclusions could of course also have been made using simple
trigonometry and hand calculations, as done in Heyman (2002).

TNA can be used to model the flat vault action of the rose window of the Notre Dame
de Nantes, or Mantes-la-Jolie Cathedral, France, originally constructed circa 1180. Figure 9
shows (a) the assumed form diagram, which approximates the structure as a bar-node sys-
tem; and (b) the unique corresponding force diagram, drawn to scale. The grey dotted lines
in Figure 9a contour the tributary areas of the loaded nodes, found using Voronoi diagrams
on the vertical plane of the window as the wind loading is the dominant loading to be con-
sidered. The corresponding compressive equilibrium solution in Figure 9c visualizes the
flat-vault action of the structure. The thrust network is in equilibrium with the wind loads
and stays within the depth of the mullion structure.

The obtained solution is compared with Heyman’s (2002) results. Using this fully 3D
approach, for the same geometry (diameter of the rose window is 8m and mullions of 25 cm
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328 P. BLOCK AND L. LACHAUER

(a) (b) (c)

Figure 9. Illustration of thrust network analysis of the rose window of Notre Dame de Mantes, France: (a) the
structural action is reduced to a bar-node system (after Heyman 2002); (b) the in-plane forces in the rose win-
dow due to the wind loading can be measured from the reciprocal force diagram; (c) the equilibrium network
demonstrates flat-vault action.

by 25 cm) and wind loading (2 kN/m2), the minimum thrust of the final spokes is 49.6 kN.
Heyman used a simplified two-dimensional approach to determine a value of 67 kN, which
is 35% higher, and hence more conservative. For this case, TNA provides thus a signif-
icant improvement over existing hand methods of analysis, only by having a 3D thrust
network.

Because the joints between the stones making up the mullions are parallel to the dom-
inant wind loading and the proportion of the cross-sectional area of the mullions compared
to the loaded area is small, this failure mode can be critical and sliding due to the shear
forces needs to be checked at the interfaces of the outer spokes with the outer ring. To pre-
vent this failure, iron connecting dowels were often inserted to transfer the shear forces
(Heyman 2002; Clifton and Willis 2007).

The obtained flat-vault action causes stresses less than 800 kN/m2, which is more
than an order of magnitude below the crushing strength of even the softest limestone
(12,000 kN/m2). This result needs to be considered carefully though, since the analysis
assumed that the window has a perfect geometry that can generate the suggested minimum
thrust flat vault action. For even small out-of-plane deflections of the window, which is
not unthinkable for large area windows, the thrust network, constrained by the formation
of hinges in the mullions and the decreased height due to the resulting “sagging” mecha-
nism of the window, quickly becomes nearly flat, resulting in very high thrust values and
hence high stresses on reduced sections. This makes rose windows candidates where not
only the geometry and stability, but also elasticity and interface material properties have an
important impact on their stability because of the potential for snap-through failures of the
slender ribs or shearing failure at their interfaces.

This example only attempted at improving Heyman’s results (2002) through a fully
3D equilibrium network. Proper analysis would again demand a careful assessment of the
structural pathologies, an investigation in the construction technique and process, and a
general investigation of the conservation state.

4.2.2. Intricate Mullion Geometries The result of the 3D assessment in Section 4.2.1
shows that significant improvements over pseudo-3D approaches can be obtained just by
considering the problem, using exactly the same assumptions, in three dimensions. Most
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3D EQUILIBRIUM ANALYSIS 329

rose windows do not have such simple and structurally determinate layouts as the rose
window of the Notre Dame de Mantes though (Figure 10a). More complex rose window
geometries, such as shown in Figures 10b–10f, cause two challenges to the analyst: first,
because several intersections have more than three ribs coming together, thrusts can be
equilibrated in different manners in those nodes; and second, because the many three-valent
intersections, the central axis lines of the mullions are not necessarily possible geometries
that can be in equilibrium in compression (Block 2009). This issue can be explained with
the triangulated reciprocal force diagram in Figure 9b, which can only be composed out
of closed force vector polygons in a single, unique way. The corresponding edges between
form and force diagram need to be parallel, so an equilibrated network does not necessarily
coincide perfectly with the centerlines of the windows’ ribs.

The first issue is of course one of the key aspects that the method demonstrated in this
paper addresses, but the second issue demands a special approach. In contrast to the exam-
ple of the continuous groin vault in Section 4.1, rose windows can only transfer significant
compression forces through their mullions. As mentioned above, the networks, obtained
by tracing these, do not necessarily result in a geometry that represents an equilibrium
solution, which thus also means that the thrusts in the ribs could not even be found with
trigonometry or equations, as global equilibrium would not be possible, which would corre-
spond to a reciprocal force diagram that cannot be closed. Therefore, a form diagram needs
to be found that aligns as close as possible to the centerlines of the mullions, but for sure
stays within their width. For this, an iterative solving procedure has been used that enforces
equilibrium in the form diagram by explicitly using the information of the connected force
diagram (Rippmann et al., 2012a). This approach could be considered as a relaxation pro-
cedure, and is available as part of the free plug-in RhinoVAULT (Rippmann et al., 2012b).
This preparatory step was needed to generate proper form diagrams for most of the rose
windows shown in Figure 10.

4.3. Gothic Vault With Complex Rib Geometry

This section looks at the equilibrium of the nave vaults of Sherborne Abbey in Dorset,
England, finished circa 1490 (Figure 11a). These beautiful vaults, with a main span of 12 m,
are a crossing between lierne and fan vaults. From plans and sections, complemented with
information obtained from photographs, a simplified 3D model was made of the vaults
(Figure 11b). The main features of the vault, the beautiful rib pattern, then served as guide
to draw a force pattern (Figure 12a).

The form diagram in Figure 12a has 949 edges and 462 nodes. The problem could
be reduced to 183 variables, which was obtained with the matrix analysis developed for the
first, algebraic solving algorithm discussed in Section 3.1, showing that this is a statically
highly indeterminate problem. The resulting best-fit thrust network in Figure 12c was found
in only 4 seconds with the second solving strategy discussed in Section 3.1, showing that
intricate network topologies, and complex vault geometries, can be solved efficiently and
that the solving algorithms are robust, even for large problems. This result is not a virtue
by itself, but shows that the solvers are fast, even for such large networks, demonstrating
that many different assumptions can be checked easily, which, for example, with thrust line
analysis is absolutely not possible, as it demands very tedious constructions and a lot of
intuition and experience to assume how the different two-dimensional force lines would
interact in three dimensions.
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330 P. BLOCK AND L. LACHAUER

Figure 10. Photographs and diagrams of different rose windows with complex mullion geometries, showing from
left to right an outside picture, the equilibrated and piped form diagram, and the reciprocal force diagram: (a) Notre
Dame de Mantes, France; (b) Notre Dame de Chartres, France (Photo by Holly Hayes); (c) Durham Cathedral,
England (Photo by Carcharoth on Wikipedia); (d) Notre Dame de Paris, France (Photo by Ellen Brown); (e)
Bisshop’s Eye of Lincoln Cathedral, England (Photo from Cornell University Library); (f) Sainte-Chapelle Paris,
France.
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3D EQUILIBRIUM ANALYSIS 331

Figure 11. Photograph (by Lawrence Lew) and simplified 3D model of the geometry of the Nave Vaults of the
Sherborne Abby, Dorset, England.

(c)

(a) (b)

Figure 12. Illustrations of (a) the form diagram, directly using the rib layout of the vaults, (b) the resulting best-fit
reciprocal force diagram, and (c) the target surface and piped best-fit solution for Sherborne Abbey’s nave vaults.

Because the purpose of this example was to show the potential of the implementation,
the calculation of the weight has been simplified by taking a vault of uniform thickness.
In reality though, the vaults have varying thicknesses due to the different extrados geometry
than the intrados’, as can be assumed from the drawings of the extrados of the choir vaults of
the same church by Acland (1972). Also, the haunch fill has not been included. Regardless
of these strong assumptions, the thrust network still fits the mid surface remarkably well.
The main vertical deviations occur at mid span and where the fill is located, with an amount
of 2.8% and 3.1% of the span respectively. Expecting a thickened section at mid span in
reality (Acland, 1972) and significant haunch fill, these results could thus be improved
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332 P. BLOCK AND L. LACHAUER

significantly by using the correct weights as input. These results again demonstrate the
absolutely sensational expertise and knowledge of the Gothic master builders, who built
these beautiful masterpieces well before any structural theory was in place.

5. DISCUSSION AND FUTURE WORK

As shown through a series of example applications, 3D thrust network analysis can
be used to improve the understanding of masonry vaults with complex geometry. Especially
the speed of finding different equilibrium solutions for very sophisticated vaults makes the
approach appropriate and useful for practical applications, where time and budget con-
straints often do not permit the time-intensive modeling and analyzing of nonlinear finite
element or discrete element models. The input is furthermore very straightforward, and
allows the analyst to easily incorporate singularities in loading (point loads), boundary
conditions (non-properly supported edges), and equilibrium solution (cracks and hinges).
The visual and intuitive control and feedback of the presented method furthermore make
its results easy to interpret. All these aspects are key advantages for practical applications.

Compared with simplified equilibrium analysis, such as global equilibrium checks,
combined thrust line analysis to do a pseudo-3D analysis, or shell aprroximations, this
flexible approach allows to redistribute thrusts in an optimization problem such that fully
3D solutions can reduce the critical thrust values. The approach is readily usable for new
masonry vaulting with perfect, non-cracked geometry and controlled supports, but further
research and development is needed though to be able to address all challenges needed to
be able to assess real, non-perfect historical construction in masonry.

The examples in Sections 4.1 illustrated that the outcome of the method strongly
depends on the layout (topology and geometry) of the form diagram. Even though results
can be generated fast, a general strategy for generating appropriate form diagrams would
be very useful. These typically depend on the intuition of the structural analyst, and as
discussed, curvature analysis does not suffice. A solution for this has been provided by
Panozzo et al. (2013) though. Less ideal layouts result in bad approximations of the geom-
etry, sometimes cause instabilities in the nonlinear solver, or are just infeasible, i.e. it is
impossible to find a compression-only equilibrium solution for the provided pattern. Some
of these issues can be solved with the more robust relaxation strategies presented, but these
come at the cost of control. A general strategy for the generation of form diagrams would
take into account the global vault geometry (for example, force lines are needed were
creases occur in the geometry), the loading case, as well as properties of the measured
construction geometry, including the vault’s stereotomy or observed structural pathologies,
such as cracks, hinge lines or holes.

In order to make meaningful statements on the stability and load capacity of vaulted
masonry structures, it will be important to build upon this research to include other opti-
mization objectives such as finding the minimum and maximum thrust states and the
collapse load and geometric safety factors, but also for example a global tilt test, which
is a parallel loading case and can thus be done with the thrust network analysis framework,
to obtain an upper bound on the stability of a structure under horizontal forces, such as
from a seismic event (Block et al. 2006b).

Future research will also address the integration of bounds on solutions, e.g. to limit
the thrusts to the lateral stability capacity of abutments (see Section 4.1); the imposing
of hard constraints, e.g. to constrain equilibrium solutions to pass through observed hinge
lines; the addition of the thrust zone concept (Smith et al. 1990), which again could be
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achieved effectively by putting constraints on the nodal heights in combination to the thrust
values, known from the reciprocal force diagram; and the extension to non-parallel loads.

Lastly, an important aim for future research is to examine if, as in two-dimensional
arch analysis (Heyman 1995; Ochsendorf 2002), these thrust networks can provide infor-
mation about possible collapse mechanisms for fully 3D problems. An exhaustive analysis
should thus run through all the possible variations in force patterns and internal force dis-
tributions to identify the critical equilibrium states. This asks for an additional optimization
procedure, which combines the algorithms demonstrated in this paper with a search over
all force pattern topologies, but also the implementation of the minimum versus maximum
thrust or collapse load objectives.

6. CONCLUSION

This study showed through examples that the new robust and efficient solving algo-
rithms developed to extend the Thrust Network Analysis framework allow to find best-fit
thrust networks for masonry vaults with complex geometries. These solutions give good
lower bounds on the geometric safety factors of these structures. The presented implemen-
tations can be seen as a sketch for a practical, fully 3D implementation for equilibrium
analysis of vaulted masonry.

The prototype implementation allowed discussing the force flow in cross vaults with
perfect geometry using objective metrics; giving new insights into the thrust equilibrium
of the flat-vault action of several rose windows with interesting mullion geometries; and
showing the careful distribution of thrusts that results in a thrust network, equilibrated in
compression, that traces intricate rib geometries.
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