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ABSTRACT 
This paper presents a new methodology for generating compression-only vaulted surfaces and 
networks. The method finds possible funicular solutions under gravitational loading within a 
defined envelope. Using projective geometry, duality theory and linear optimisation, it 
provides a graphical and intuitive method, adopting the same advantages of techniques like 
graphic statics, but offering a viable extension to fully three-dimensional problems. The 
proposed method is applicable for the analysis of vaulted historical structures, specifically in 
unreinforced masonry, as well as the design of new vaulted structures. This paper introduces 
the method and shows examples of applications in both fields. 
 
1. INTRODUCTION 
Medieval vault builders created complex forms carefully balanced in compression. The 
structural properties of these sophisticated forms are still poorly understood because of a lack 
of appropriate analysis methods, i.e. methods relating stability and form. Understanding the 
mechanics of these vaulted structures leads to new insights for both analysis and design.  
 
Thrust Line Analysis is a powerful graphical method for calculating the range of lower-bound 
equilibrium solutions of compression-only systems, such as unreinforced masonry structures. 
It visualises the stability of these structures and suggests possible collapse mechanisms [1]. 
Unfortunately, thrust line analysis is primarily suitable for 2-D cases and this limitation has 
prevented it from being used for the assessment of complex 3-D structures. While numerical 
methods based on elastic solutions give one possible answer, they no longer suggest better 
form as was inherent to the more holistic graphical methods.  
 
There is a real need for tools to better understand and visualise the stability of compression-
only structures, such as historic unreinforced masonry structures, as well as design tools that 
suggest better form. Both problems are related to finding axial force structures in equilibrium 
acting only in compression or tension. Currently, graphic statics provides a holistic analysis 
and design tool for two-dimensional structures. With today’s availability of powerful virtual 
3-D and parametric environments, the following question arises: can a fully three-dimensional 
version of thrust-line analysis provide the same freedom to explore the infinite equilibrium 
solutions for a certain loading condition? 
 
2. METHODOLOGY 
The Thrust-Network Method presented in this paper is inspired by O’Dwyer’s work on 
funicular analysis of vaulted masonry structures [2]. It is extended by adding the concept of 
duality between geometry and the in-plane internal forces of networks [3].  



 
2.1. Reciprocal figures 
The duality between the geometry of a network and its internal forces is an old concept, first 
explained by Maxwell [4]. He called this relationship reciprocal and defined it as follows: 
“Two plane figures are reciprocal when they consist of an equal number of lines, so that 
corresponding lines in the two figures are parallel, and corresponding lines which converge 
to a point in one figure form a closed polygon in the other.” This means that the equilibrium 
of a node in the first diagram is represented by a closed polygon in the second diagram and 
vice versa (Fig. 1). Graphic statics is based on this principle [5]. 
 
2.2. Assumptions 
The proposed method produces funicular (compression-only) solutions for loading conditions 
where all loads are applied in the same direction, as is the case for gravitational loading. Since 
the solutions are compression-only this also means that the vaults can never curl back onto 
themselves, which would demand some elements to go into tension. The resulting three-
dimensional networks can represent load paths throughout a structure. There is no constraint 
on the length of the branches or the planarity of the facets of the solution.  
 
2.3. Thrust Network Method  
Key elements in the proposed process are (1) force networks, representing possible forces in 
equilibrium in the structure; (2) interactive reciprocal diagrams, visualising the proportional 
relationship of the horizontal forces in the network and providing a high level of control for 
the user to manipulate the force distributions in the system; (3) the use of envelopes defining 
the solution space; and (4) linear optimisation, resulting in fast computation of results.   
 
2.3.1. Overview of main steps 
Thrust Network Analysis has been implemented using Matlab [6] and RhinoScripting in 
Rhinoceros [7]. The set-up of the program is explained in more detail below: 

 
Fig. 1. Relationship between compression shell (G), its planar projection (primal grid Γ) and the reciprocal 

diagram (dual grid Γ*) to determine equilibrium. 
 

(a) Defining a solution envelope:  
The solutions must lie within given boundaries defined by an intrados and an extrados (Fig. 
3b). These put height constraints on the nodes of the solution. These limits can be the design 
envelope or the actual vault geometry for the analysis of existing masonry vaults.  



(b) Constructing the primal grid Γ:  
In plan, a possible force pattern topology is constructed. This is the primal grid Γ in Fig. 1. 
The branches represent possible load paths throughout the structure. These force patterns can 
be drawn by the user or generated automatically. The primal grid Γ is the horizontal 
projection of the final solution G.  

(c) Attributing weights:  
The weights attributed to each node come from lumping the dead load of the 3-D tributary 
area around that node. In addition to self weight, loads such as asymmetric live loads can be 
applied.  

(d) Generating the dual grid Γ*:  
The dual grid Γ* is produced from the primal grid Γ according to Maxwell’s definition of 
reciprocal figures: corresponding branches stay parallel and nodal equilibrium in the primal 
grid is guaranteed by closed polygons in the dual grid. The applied loads do not appear in the 
dual grid because they disappear in the horizontal projection.  Therefore, the dual grid has an 
unknown scale ζ since the relation between the primal and dual grid is true regardless of their 
relative scales.  

(e) Updating the dual grid:  
In the case of an indeterminate primal grid, i.e. a grid with nodes with a higher valency than 3, 
the user can manually change the force distribution by manipulating the dual grid (Fig. 2). 
 

 
 

Fig. 2. For a determinate (i.e. 3-valent) primal grid, there is a unique relationship between primal and dual (a). 
For an indeterminate primal grid, multiple dual grids, which all satisfy Maxwell’s definition, are possible (b). 

 
(f)  Solving for the result G:  

Using the geometry of both primal (Γ) and dual (Γ*) grid, the weights applied at the nodes and 
the boundary conditions, this problem can be solved using a one-step linear optimisation. We 
solve simultaneously for the nodal heights of G and the scale of the dual grid ζ∗. The 
horizontal components of the forces in the solution G can easily be found by measuring the 
lengths of the branches in the dual grid and multiplying them by the actual scale ζ∗.  
 

 
2.3.2. Linear optimisation formulation 

The first set of constraints comes from enforcing static equilibrium at all nodes (Fig. 3a). The 
vertical equilibrium of a typical internal node i gives 
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We describe (1) as a function of the horizontal components of the forces 
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Fig. 3. The constraints come from (a) static equilibrium in every node under the applied loading and (b) the 
given boundaries, resulting in nodal height constraints. 

 
The lengths of branch ij in the primal and dual grids are defined respectively as Hi,j and Hi,j

 *. 
The horizontal components of the forces in the branches, H

jiF , can be expressed as a function 
of the dual branch lengths Hi,j

 *, measured from the dual grid Γ* and multiplied by the as-yet 
unknown scale factor ζ .  
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Rearranging equation (2) and writing it as a function of the branch lengths in both grids using 
equations (3) gives 
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where r is the inverse of the unknown scale of the dual grid, ζ . The equilibrium constraints of 
the nodes can be written as a linear combination of zi, the unknown nodal heights, and r. This 
emphasises the importance of using the information provided by the dual grid (3). Thanks to 
this insight, the nonlinear constraints (2) can be made linear by treating r as a variable. The 
constants of the linear function (4) are in function of the primal and dual branch lengths. Note 
that, because lengths (absolute values) are used, this formulation guarantees that all solutions 
G will be compression-only.   
 
A second set of constraints comes from the limits put on the nodal heights (Fig.3.b). We want 
the solutions to lie within the given boundaries defined by an intrados and an extrados.  
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Since we are interested in the range of possible solutions that fit within the given envelope, 
we want to minimise or maximise r (= 1/ζ), resulting in respectively the shallowest or deepest 
solution still contained within the limits, for a chosen combination of primal and dual grid. 
This then becomes the objective function of the linear optimisation problem.  
 
3. APPLICATIONS FOR THE ANALYSIS OF VAULTED MASONRY STRUCTURES  
Using the proposed methodology for the assessment of unreinforced masonry structures fits 
within the realm of lower-bound analysis. Put simply, if a compression-only network can be 
found that fits within the boundaries of a vault, then the vault will stand in compression. This 
is a powerful concept for understanding the stability and proximity to collapse of such 
structures. Additional reading on this topic can be found in Heyman [8], O’Dwyer [2], 
Boothby [9] and Block et al. [1]. 
 

 (a)       (b) 



The method is particularly appropriate for historic masonry structures because their self-
weight is the dominant load. The range of possible equilibrium states, bounded by a minimum 
and maximum thrust, can be produced (Fig. 4a). Figure 4b shows a solution with three-
dimensional web action. The distribution of the horizontal components in the network is 
represented in its dual grid (Fig. 4c). Such a 3-D equilibrium analysis is valuable because it 
informs us very clearly about the stability of a vault. A forthcoming publication will show 
more detailed applications of this methodology to masonry vaults [10].  
 

 
 

Fig. 4. (a) Possible thrust values for this groin vault range from 45% to 70% of its total weight. (b) 3-D web and 
rib action with the forces mainly spanning between the ribs as represented in the dual grid (c).  

 
4. APPLICATIONS FOR THE DESIGN OF COMPRESSION-ONLY STRUCTURES  
Figure 5 gives a series of compression-only solutions for a uniformly applied loading, starting 
from a regular rectangular grid. It shows the relationship between the dual grid and the 
corresponding solution. From the dual grids, the internal distribution of all horizontal forces in 
the networks can be understood in a glimpse, and since all dual grids are drawn at the same 
scale, the overall magnitude of the forces in the different solutions can immediately be 
compared. Some special features are that force lines do not have to go through loaded nodes 
(e-i) or that the edges can be freed, arching in space (h-i). 

 

 
 

Fig. 5. A series of examples, starting from a regular rectangular grid, showing the relationship between the 
primal and dual grid and the corresponding solution. 

 
The examples in figure 5 show the potential of the method for design through a series of 
examples, which were possible because of the flexibility and intuitiveness of the method: 
forces can be redistributed internally within the network by ‘tweaking’ the dual grids (e.g. 5a 
versus 5b); more force can be attracted in primary force lines (e.g. 5e or 5f); and different 
boundary conditions can be explored (e.g. 5h).  

(a)                (b)    (c) 

   (a)               (b)             (c) 

 

   (d)               (e)             (f) 

   (g)               (h)             (i) 



5. DISCUSSION AND CONCLUSIONS 
This paper has proposed the Thrust Network Analysis method. It provides  
- a viable three-dimensional extension for thrust-line analysis;  
- a flexible, intuitive and interactive design tool for finding three-dimensional equilibrium 

of compression-only surfaces and systems; and 
- an improved lower-bound method for the assessment of the stability of masonry vaults 

with complex geometries. 
 
Key features are 
- clear graphical representation of forces in the system (through the use of force diagrams, 

i.e. the dual grids); 
- a high level of control, allowing the exploration of different possible equilibrium 

solutions; and 
- fast solving times because of the formulation as a simple linear optimisation problem. 
 
Currently, the number of elements in the network is limited by the implementation in Matlab 
and the user has to switch between programs. Future work includes going towards true 
interactivity and bi-directionality between both grids, implemented in a fully parametric 
environment, and the automatic generation of possible network topologies according to e.g. 
curvature, openings, support conditions or architectural preferences. We believe that this 
methodology has great potential for the use in both design and analysis of compression-only 
vaulted structures. 
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