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We present a computational framework designed to improve learning from examples by
supporting self-explanation — the process of clarifying and making more complete to onesdf the
solution of an example. The framework is innovative in two ways. First, it represents the first
attempt to provide omputer support to example studying insteal of problem solving. Seand, it
explictly coaches a domain-general, meta-cognitive skill that many studies in cognitive science
have shown to greatly improve learning.

The framework indudes solutions to three main problems: (1) to design an interface that
effedively monitors and supports sif-explanation; (2) to devise astudent model that alows the
asessment of example understanding from reading and sdf-explanation actions; (3) to
effedively dicit further self-explanation that improves gudent’s example understanding. In this
paper, we describe how these solutions have been implemented in a computer tutor that coaces
sdf-explanation within Andes, a tutoring system for Newtonian physics. We aso present the
results of a formal study to evaluate the usability and effediveness of the system. Findly, we
discuss ®me hypotheses to explain the obtained results, based on the anaysis of the data
colleded during the study.

INTRODUCTION

Research on Intelligent Tutoring Systems (ITS) has been increasingly affeding education.
While for many years ITS remained confined to research labs, today they have started moving
into the dassroom, showing their effediveness for learning and influencing the structure of
traditiona curricula (Koedinger, Anderson, H., & Mark, 1995). However, existing ITS still
target only a limited part of the learning process They generally focus on teaching problem
solving and domain specific cognitive skills.

The long-term goa of our research is to explore innovative ways in which computers can
enhance education by covering other learning phases and by helping students acquire meta
cognitive, domain independent learning skill s. In this paper, we describe our first step in this
diredion: a computational framework designed to support learning from examples and the meta:
cognitive skill known as sdf-explanation — generating explanations to oreself to clarify an
example sworked aut solution.

Effectively learning from examples is important becuse students heavily rely on examples
when learning a new skill (Anderson & a. 1981, Piralli & Anderson 1985, LeFevre & Dixon
1986, VanLehn 1986). However, the benefits of learning from examples grongly depends on
how students dudy them. Several studies in cognitive science show that students who
spontaneowsly sdf-explain when they study examples learn more (Chi, Bask, Lewis,
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Reimann, & Glaser, 1989; Ferguson-Hesder & Jong, 1990; Pirolli & Recker, 1994; Renkl,
1997; Renkl, Stark, Gruber, & Mand, 1998). Furthermore, sdf-explanations are usually more
eff edive than explanations provided by others, becuse (Chi, in presg
« they trigger more @nstructive learning processss, by requiring students to bring to bear
and actively daborate their existing knowledge, and

« studentsinitiate self-explanations to addresstheir spedfic problems in urderstanding
the example, while often external explanations are not tail ored to a student’ s individual
needs.

The sdf-explanation studies also show that most students do nat spontaneously sdf-explain.
However, students dart sdf-explaining more when they are guided (Bidacxzyc, Pirdlli, &
Brown, 1995; Ryan, 1996) or even just prompted to do so (Chi, Leeuw, Chiu, & LaVancher,
1994). These results suggest that it can be greatly beneficial to integrate computer-based support
to problem solving with individualized gudance to learning from examples through sdlf-
explanation.

To provide this guidance a computer tutor must be able to monitor students as they study
examples and to dicit further sdf-explanation that can improve the students' understanding.
Two tasks apparently simple, but that entail additional challenges for the traditiona ITS
problems: user interface design, student modelli ng and providing adequate hd p.

e User interface design. In previous dudies, example studying and sdf-explanation
consisted of reading and spesking. How can we devise an interface that monitors
students’ attention and alows them to constructively generate their sdf-explanations,
given that eyetracking technology and nretura language processng are still not
powerful and reliable enough to be realily usable in non-laboratory setting?

¢ Student moddling. To modd a student during example studying requires assessng how
well the student understands the example and learns from it. How can we perform this
asessment by relying an actions like reading and sdf-explaining, that are largely
ambiguous and have lessdired correspondence to example understanding than problem
solving actions have to problem sol utions?

« Providing adeguate help. One of the benefits of sdf-explanation comes from the fad
that spontaneous sf-explainers sedively generate sdf-explanations to target their
spedfic learning needs. How can a computer tutor dedde what further self-explanations
can be more beneficial for those students that do not spontaneously sdlf-explain? When
and how should the tutor dicit these sdf-explanations from those students that are
natural ly reluctant to sdf-explain?

Our framework to support sdf-explanation, know as the SE (Sdf-Explanation)-Coach,
includes lutions to these problems. The solutions are grounded in existing hypotheses of what
are the salient features that make self-explanation effedive for learning and are the result of a
thorough process of iterative design. The framework has been implemented and tested within
Andes, a tutoring system for Newtonian physics that supports sudents during both example
studying and problem solving (VanLehn, 1996). During example studying, the SE-Coach makes
sure that students thoroughly sdf-explain the available examples, espedaly those parts of the
solutions that may be dallenging and novd to them. Figure 1 shows one of the SE-Coach
examples, which refl ects the structure of most examples presented in physics textbooks.

The paper is dructured as follows. After discussing related work, we describe the @gnitive
science findings that provide the theoretical justification for the SE-Coach’s design. Then, we
illustrate the SE-Coach's architedure and the knowledge representation underlying the system's
expertise on sdf-explanation. Next, we describe the menu-based interface that monitors
students’ attention and provides dructured prompting and scaffolding for sdf-explanation. We
then give an brief overview of the SE-Coach’s gudent mode, based an the probabilistic
reasoning framework of Bayesian network (Pearl, 1988) and we ill ustrate how the SE-Coach
uses the mode to elicit further self-explanations that improve example understanding. Finaly,
we discuss the results of a formal study that we performed to evauate the SE-Coach usability
and effectivenessfor learning.
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EXAMPLE 1: Boy rescued by SOLUTION
a helicopter Becausze we want to find a force, we apply
Jake, an S0Hg undergrad, Mewvton's 2nd law to solve this problem.
PI_ bl iz rescued from a burning building W chonse Jake a3 the body to
oblem by a helicopter. wehich to apply Mewton's 2nd lawe.
He hang= at the end of arope " | N
Sta‘temen‘t 1 ! The helicopter's rope exerts s tension
dangllng.hanaath the helicopter torce T on Jake .
ff the helicopter ac:c:eln.araies, The tension force T iz directed uprwards. Worked 011’[
?;ﬁgr;r‘éz\;?ward it respect The other force scting on Jake iz kiz weight VW
with an acceleration a = Amis"2, The weight v is directed dowrweards Solut[ O
FIND: To apply Mewton's 2nd law to Jake, we
L chooae & coordinate system with the v axiz
Thetension T exerted by the rope. directed downard
The v component of Jake's yweight ¥V iz
Wy =
S]_ma‘tl on The ¥ componen?rof theTtensiDn T on Jake is
_y=-T.
Dlagraﬂ’l 2 The net force sching on Jake along the v sxis is
& = 2miE"2 Met-force_yw =WN_y + T_y.
lL m = 80Ky Therefore, substituting
Wy =WWoand Ty =-T
FREE 0D DIAGRAR: intorthie net for ce egustion, swe obtain
l Met-foree v =W - T.
- If e apply Meswiton's 2nd Lavy to Jake|
3 = 2miz2
™ along the v axis, we oltain:
Free BOdy Met-farce_y = mha_y
. The % component of Jake's accelerstion & i
Diagram ¥ ay=a
Therefore, if we substitute a_y and
Jake (m o= 80K Met_force_y =wW-T
into
W Met_force-y = mra_y
wre ohtain:
oy W - T = mta = (50*2) Newtons.
Losis 1, 4y o tice fowr T eai

Figure 1: A sample phisics example and its components

RELATED WORK

Using explanations to enhance leaning hes been a prominent research topic in the ITS
community. Most of the work on this sibjed has focused onhow to enable a computer tutor to
generate eplanations that can fadlitate the students' leaning (Clancey, 1990; Moare, 1996;
Moore, Lemaire, & Rosenblum, 1996; Vivet, 1987; Woltz, McKeown, & Kaiser, 1990). More
recatly, researchers have started investigating computer tods that support learning by
facili tating the exchange of explanations among pees (Baker, 1999; Ploetzner & Fehse, 1998).
Although this research, like ours, aims to trigger learning by bringing the students to generate
active eplanations on the target instructional material, it focuses on a different instructiona
setting: learning through collaboration with pees. In contrast, the work presented in this paper
focuses on how to help students generate and learn from explanations when there are no pees
to stimulate and validate the process Supporting sdf-explanation is important not only because
learning with pees is not always feasible, but aso beause sdf-explanation has two man
pedagogical differences from generating explanations for others. First, when sdf-explaining,
learners can target spedfic problems in their understanding rather then having to concentrate on
what is undear to someone dse. Seand, when sdf-explaining, learners do not need to worry
about phrasing the eplanations propely, and can therefore mncentrate on the eplanation
content. These differences do rot imply that sef-explanation is better than explaining to ahers.
They simply contribute to make self-explanation a different meta-cognitive skill, that can be
useful at different learning stages and that improve astudent’s general | earning ability.

Like the SE-Coach, other tutoring systems rdy on examples as instructiond means. However,
most of these systems use examples to support students as they solve problems, nat as a
spedfic learning phase prior and complementary to problem solving. ELM-PE (Burrow &
Weber, 1996 ) and ELM-ART (Weber & Specht, 1997), alow the student to access relevant
examples while solving LISP programming problems and provide explanations on hav each
example is rdevant for the problem solution. SHERLOCK (Gott, Lesgdd, & Kane, 1996),
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provides expert solutions to troubleshooting problems, and helps dudents compare these
solutions with their own solutions at the end of each problem solving task. CATO (Aleven &
Ashley, 1997) helps dudents building legal arguments by generating rd evant example @ases and
by reifying the @nnection between the @ntent of the caes and their use in the aguments.
Besides using examples in a different instructional situation, nore of these systems tries to
encourage students to view the eamples, nor do they monitor how students study and
understand them. Moreover, the systems themsdves, rather than the students, generate
elaborations on the presented examples.

The Geometry Tutor (Aleven, Koedinger, & Cross, 1999) moves a step closer to the SE-
Coach. It explicitly encourages gudents to explain, in term of geometry axioms, the problem
solving steps they have used to build a geometry proof. However, there are three main
differences with the SE-Coach. First, the explanations are generated duing problem solving.
Semnd, an explanation with the Geometry Tutor consists smply of a sdection from a list of
geometry axioms. The student does not have to explain the axiom any further. Third, the tutor
makes the students explain each solution step. It does not take into account the students
knowledge or previous interactions with the system to evaluate if some eplanations may be
more beneficial than athers for the students.

PRINCIPLES UNDERLYING THE SE-COACH’'SDESIGN

Incremental support to self-explanation

Our framework for sdf-explanation is designed to provide incremental support to sdf-
explanation through dfferent levels of prompting and scaffolding, embedded in the interface
design and in the SE-Coach tutoria interventions. These different levels aim to help students
with dfferent self-explanation capabilities sf-explain more, while maintaining as much as
possgble the spontaneous, constructive nature of this learning activity.

On the one hand, there are arguments for giving students the initiative during sdf-
explanation. Sdlf-explanation enables gudents to question and repair their understanding (Chi,
in press, in ways that can be different across students and learning situations (Renkl, 1997).
Moreover, students with good self-explanation and self-monitoring skill s often can repair what
they do not understand better than teachers can, becuse teachers generaly cannot diagnose as
precisdy the students' comprehension problems. (Webb, 1989). These arguments cal for an
interfacethat leaves much o theiniti ative to the student.

On the other hand, there are arguments for giving the initiative to the Coach. Sdf-
explanation studies show that many students do rot self-explain, for avariety of reasons.

1. Many students are nat good at self-monitoring when they study (Chi, in press; Chi et al.,
1989). They tend to overestimate their understanding o examples (Renkl, 1997) and
therefore do nd initiate self-explanations to improve it.

2. Sometimes gudents are unable to use their domain or common-sense knowledge to generate
meaningful self-explanations. This mainly happens when the examples are mmplex enough
that most students are aware of having comprehension gaps, but still cannot generate self-
explanations that repair these gaps (Renkl, 1997).

3. Even students that spontaneously engage in sdf-explanation do not always generate the
kinds of explanations that are most useful for learning. For instance, explanations that relate
steps in the example solution to goals in the underlying solution plan generaly help lean
highly transferable knowledge (Catrambone, 1995; Pirolli & Redker, 1991; Renkl, 1997;
Renkl et a., 1998). However, even spontanecus sf-explainers tend to generate few goal-
oriented sdf-explanations (Renkl, 1997).

The different levels of prompting and scdfolding in the SE-Coach are designed to
accommodate the varied propensity and capability to sdf-explain that different students have, so
as to provide each student with the minimum intervention sufficient to trigger constructive and
effedive sdf-explanations.
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Focus on correct self-explanation

Our sdf-explanation framework includes the @pability of providing feedbadk for correctnesson
the students’ sdf-explanations. The issue of whether such feedback should be provided is
controversial. In al the eperiments on sdf-explanation, any statement that went beyond the
information presented in the worked ou solution was classfied as €l f-explanation, be it correct
or nat. In the periments in which human tutors guided sdf-explanation, the eperimenters
elicited additional darificaions from the students when their self-explanations were incomplete
or incoherent, but did not give feadback on their correctness (Bidaxzyc € a., 1995; Chi ¢ d.,
1994). In dl these experiments, students’ problem solving improved, leading some researches to
argue that is the sdf-explanation process per se, and not the corredness of its outcome, that
eicits learning (Chi, in press Ryan, 1996). In particular, Chi (Chi, in pres9 argues that
incorrect self-explanations are beneficial exactly beause they crede flaws in the student’s
knowledge These flaws may be later contradicted by other elements of the example, triggering
sdf-explanations to fix the flaws and thus generating better learning.

However, this argument applies only to students that can monitor their understanding and we
know that these students are a minority. The other students may sddom deted the
inconsistencies generated by ther incorrect self-explanations. Immediate feedback on sdf-
explanation corredness protects these students from learning wrong knowledge from incorrect
sdf-explanation, and simply makes the other students deted the cnflict sooner than they would
on their own. Thus, athough we believe that even incorred and incomplete sdf-explanations
can improve learning, we ayree with (Renkl et al., 1998) that hdping students generate more
correct self-explanation can extend these benefits.

Focuson domain-based self- explanation

In oder to provide feedback for correctness the SE-Coach reels to have an internal
representation of the rdevant, corred sdf-explanations that can be generated for each avail able
example. It would be unfeasible to encode these explanations by hand, especially becaise we
ultimately want to alow instructors to easily extend the set of avail able examples on their own.
Thus, we identified in the literature two types of sdf-explanations that can be automatically
formalised in a computational modd, given a rule based representation o the underlying
domain knowledge. Thesetypes are

a) Justifyingasolution step in terms of the domain theory, and

b) Reating solution stepsto goals in the abstract plan underlying the example solution.

These sdf-explanations have been shown to highly corrdate with leaning and were
common aaoss the different instructional domains investigated in the sef-explanation
experiments (physics, satistics, programming, physiology of the human circulatory systems).
We label these sdf-explanations “domain-based” becuse they involve relating example steps to
the target domain knowledge, as opposed to sdf-explanations that involve ommon sense
knowledge. Common-sense based sdf-explanations also seem to play an important role in
learning from examples (Chi & VanLehn, 1991; Chi et d., 1994; Bidaczyc d al., 1995; Ryan,
1996). Currently, the SE-Coach cannot support these sdf-explanations, becuse doing so would
require a natural language interface and much more @mplex domain and student modds.
However, even if the SE-Coach cannot explicitly gude common-sense based explanations,
hopefully it does nat prevent the students from generating them spontaneously.

Principled design of interface tools to support sdf-explanation

After identifying the kinds of sdf-explanations that the SE-Coach could support, we had to
understand which interface @uld help students generate them. Since using natural language
input was unfeasible, we needed menu-based tods that could still allow the students to generate
their sdf-explanations as naturally and constructively as possible. (Chi et d., 1989) and ysed the
form of students' spontaneous & f-explanations and identified two forms that were highly used:
(1) expanding a refining the premnditions of a solution step and (2) explicating and inferring
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additional consequences of a step. Hence we have designed menu-based tod's that scaffold sdlf-
explanations with these forms. The SE-Coach’'s menu-based tools allow students to justify a
solution step by describing the domain rule from which the step derives, in terms of (i) the
preconditions that must be verified to apply the rule (ii) the results that the rule application
generates. This description in terms of preconditions and consequences refleds the SE-Coach's
rule-based damain representation, and dlows the system to provide feedback for corredness
based on this representation.

A student modd to guide the SE-Coach interventions

The sdf-explanation interface is a scaffolding tod meat to encourage students to
spontaneously sdlf-explain. However, a framework to support sef-explanation must be able to
provide stronger interventions to hep those students who are not receptive to the interface
scaffolding.

One way to provide this gronger scaffolding could be to make the students use the interface
tods to sdf-explain every example part. This drategy may possbly work with students that
never sdf-explain, but would end up suggesting redundant self-explanations to the others. This
could have negative influence on the students motivation and trust in the system’s
effediveness reducing the likelihood that students would follow the SE-Coach’s suggestions.
Therefore, it is particularly important that the SE-Coach generates tutoria interventions that the
student can percelve as rdevant and useful for leaning.

The SE-Coach’'s student modd is designed to assess when students are spontaneously sdlf-
explaining without using the interface tods, in order to avoid burdening students with requests
of sdf-explanations that they have drealy generated. It also asssss «f-explanations
generated through the interface tools and uses its assessment to deted gaps in the student’s
example understanding. The SE-Coach focuses its interventions on diciting further sdf-
explanation that fills these gaps, as sudents that are natural self-explainers do.

THE SE-COACH’'SARCHITECTURE

ANDES
Authoring Environment SE-Coach
- Interface
T [ ]
L] kL
Prysicsand
planring

Rules

o Prdblem | Model of :
| Saver cored SE
(S
Saens

Figure 2: SE-Coach’s architedure

As we mentioned in the introduction, the SE-Coach hes been implemented within the Andes
tutoring system for physics (VanLehn, 1996). Figure 2 shows the SE-Coach’s architedure. Prior
to run time (left side of Figure 2), an author creaes both the graphical description o the
example and the @rresponding coded definition d the example statement. A Problem Solver
uses this definition and the set of physics and planning rules representing Andes domain
knowledge to automatically generate a modd of corred sdf-explanation for the example
solution. The modd is a dependency network that encodes explanations in terms of how
intermediate goas and facts in the example solution are derived from physics and planning
rules.

394



At runtime, students use the SE-Coach’'s interface to interactively study examples and
generate sdlf-explanations. The interface sends the student’s explanations to the Help module,
which tries to match them with e ements of the sdf-explanation modd and provides immediate
feedback as to whether the eplanations are @rred or incorred. The student’s interface ations
are also sent to the Assssr module, that uses them to update the SE-Coach’'s gudent modd.
The student model is a Bayesian network (Pearl, 1988) that integrates information on (i) the
student’s adions, (i) the modd of corred sdf-explanation and (iii) the student's domain
knowledge (encoded in Andes' long term student modd) to assess the student’s understanding
of the example. The SE-Coach’s help refers to the student model to make dedsions about what
further self-explanations to dlicit from the student.

THE MODEL OF CORRECT SELF-EXPLANATION

The mode of corred sdf-explanation (SE modd from now on) is the @re structure of the SE-
Coach's expertise. This modd encodes the knowledge to provide feedback on student’s sif-
explanations, it is used in the student modd to asesshow the students sdf-explanations refled
example understanding and it guides the SE-Coach’s tutorid interventions.

A Problem Solver automatically generates an SE modd for each new example added to the
SE-Coach’'s s, starting from Andes rules and from a coded definition of the example problem
statement (seeFigure 2).

R-body-by-force

If thereisagaal to select abody for Newton's 2nd law
andthe problem goal isto find aforce on an objea

then select as body the object to which the force is applied

R-try-Newton-2law

If the problem gaal isto find aforce
then set the goal to try Newton second
Law to solve the problem

R-goal-choose-body

If thereis agaal totry Newton's scond law
then set the gaal to seled a body to which
to apply the law

Figure 3: samplerulesinthe Andes’ knowledge base.

Andes' rules are based on the representation used by Cascade (VanLehn, Jones, & Chi,
1992), a cognitive model of learning through self-explanation of Newtonian physics examples.
Andes' rules have been developed in collaboration with three physics professors at the U.S.
Nava Academy, the domain experts for the Andes projed. The rules represent qualitative and
quantitative physics knowledge sufficient to solve Newtonian physics problems (see Figure 3,
top box, for a sample physics rule). They also represent planning knowledge encoding the
abstrad planning steps that an expert might use to solve these problems (see Figure 3, center
and bottom box, for sample planning rules). Thus, the Problem Solver produces a hierarchical
dependency network that encodes how an example solution’s qualitative results and equations
derive from physics rules, alongwith the abstract plan underlying the solution.

To generate the SE modd, the Problem Solver starts with (i) a s of facts describing the
example initial situation; (ii) one or more goal statements that identify the example sought
quantities. From the initial set of facts and gad's, the Problem Solver begins applying rules in
the knowledge base, generating new sub-goals and facts until it finds all the unknown quantiti es
necessary to compute the example sought quantities. For instance, consider the segment of SE
model shown in Figure 4, which relates to the example in Figure 1. The Problem Solver starts
with the top-level goa of finding the value of the force on Jake (node G-force-on-Jake in
Figure 4). From this, it applies the rule R-try-newton-2law (defined in Figure 3) and forms the
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sub-goa of using Newton's ssmnd law to find the desired force (node G-try-newton-2law in
Figure 4).

Next, it applies the two rules R-goal-choose-body (shown Figure 3) and R-find-forces to
generate the two sub-goals G-goal-choose-body and G-find-forces, corresponding to two first
level goals in the plan to apply Newton's ond law. When the problem solving terminates, the
outcome is a partially ordered network of goals and intermediate results (or facts) leading from
the top-level goal to a set of equations that are sufficient to solve for the sought quantity, the
magnitude of the force on Jake. Figure 4 shows the sedion d the SE modd up to the
application of the rule R-body-by-force, that sdeds JBke as the body to which apply Newton's
law (node F-Jake-is-the-body) and of the rule R-tension exsts, that identifies the ecistance of a
tension force on Jake (node F-tension-on-Jake).

g R -try-Newton-2law G-force-on-Jake
l > | RA-try-Newton-2law| | E-hangs-from-rope

3 ZmistE
JL = AN

Find the force exerted R-goal- chocse-body| | G-try-Newton-2law
on Jake by the rope.
To solve this problem, we R-find-for ces
choose Jake & the body. S
Theheli copter’ srope exterts RA-find-for ces
atension force T on Jake. R- body-by-force 4
| G-goal-choose-body| | G-find-for ces|
R-tension-exists
R
—— Rule RA-body-by-for ce RA-tension-exists
Fact/Goal = Propastion V v
RA | RuleApplication [ Evakeisthe body | E-tension-on-Jake |

Figure 4: segment of SE mode for the partial example solution a the | eft

Every dement of the example statement, worked-out solution and graphics corresponds to a
fact or goal (proposition) node in the SE modd (proposition nodes are labelled with a “E-* or
“G-* prefix in Figure 4). However, the SE modd can contain proposition nodes that do not
correspond to any eement in the example text, if the example leaves out some details of the
solution derivation. For instance only the shaded proposition nodes in Figure 4 (G-force-on-
Jake F-hangs-fromrope, F-Jakeisthe-body and F-tension-on-Jake) correspond to steps
explicitly expressed in the exampl e solution shown ontheleft of the figure

Links in the dependency network encode how each proposition nade derives from physics
and planning rules (nodes labelled with the “R-* prefix in Figure 4) and from the proposition
nodes that match the rules' preanditions. Derivations of proposition nodes from rules and other
propositions are explicitly encoded in the network by rule-application nodes (labelled with the
“RA-" prefix in Figure 4). These derivations correspond exactly to the explanations that the SE-
Coach targets:

* How solution steps can bejustified in term of physics principles.

¢ What goal each solution step accompli shes in the plan underlying the example solution.

Hence, the dependency network provides a modd of corred sef-explanation that the SE-Coach
can use to evauae the student’s explanations and to dedde what further explanations can
improve the student’s understanding. The modd is smilar in nature to the rule-based domain
(or expert) modds that other inteligent tutoring systems use to support students during
problem solving (Anderson, Corbett, Koedinger, & Pdletier, 1995; Clancey, 1990; Gertner,
Conati, & VanLehn, 1998). However, becuse the modd explicitly distinguishes between rules
encoding domain knowledge and rules encoding planning knowledge, and becaise it explicitly
represents the application of these rules as nodes in the dependency network , the modd is
espedally suitable to represent and monitor the generation o the sdf-explanations that the SE-
Coach targets, aswe will seein the next sedionrs.
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THE SE-COACH’'SINTERFACE

As we discused earlier, the SE-Coach provides incremental support to sdf-explanation
through dfferent levels of scaffolding. Three of these levds are eanbedded in the interface
design, described in this sdion. A fouth levd is provided by the SE-Coach's tutorid
interventions, as we ill ustrate in the next sedion.

Attention monitoring and control

The first level of scaffolding in the SE-Coach's interface is provided by a masking
mecdanism that presents different parts of the eample covered by grey boxes, ead
corresponding to a “unit” of information (see Figure 5). When the student moves the mouse
over a box, it disappeas, revedling the text or graphics under it. While reading a line in the
textua part of the example solution, the student can refer back to the situation dagram or to the
free body diagram by dicking on the left or right mouse button respedively. Figure 5 shows
how the example in Figure 1 looks in the masking interface, when the student moves the mouse
over the second solution line and clicks to uncover the freebody diagram.

"JANDES Physics Workbench - [Se1.apx] [_[5]x]
& Fle View Help =17l x|

EXAMPLE 1: Boy rescusd by SOLUTION -~
& helicopter | ‘

Wie choose Jake as the body 1o [Self-Exglain

which to apply Newton's 2nd law

ExplEming el chtiisetem imite sl

FREE BODY DIAGRAM:
la = amis2 il |:|

+

UL [HiEE

Jake (m = B0Kg) ik amttie [ o exaend & step
W [ouble eliekion e stepta sl

ot | | =l [ 2l

Figure 5: examplein Figure 1 presented with the masking interface

The masking interface alows the SE-Coach to track what the student is looking at, and for
how long. When a new example is added to the SE-Coach, each item in the masking interfaceis
linked to the @rresponding proposition nade in the SE model. These links alow the SE-Coach
to attach information on student attention dredly onto components of the SE modd. This
information is one of the parameters the SE Coach uses to assess whether and what the student
is "Hf-explaining, as we will seein the next sesgon. The mapping between interface items and
SE modd nodes can be many-to-one, becuse different items can encode the same fact or goa
(like, for instance the FreeBody Diagram object labdled as “Jake’ and the uncovered line “we
choose Jke as the body...” in Figure 5). The many-to-one mapping alows the SE-Coach to
remgnise example parts that cdl for the same explanation and to avoid diciting redundant
explanations from the students.

The masking interfaceis a rdatively simple way to obtain information on students' attention,
without using complex eye tracking devices. However, we were afraid that this unusual way of
presenting examples could interfere with reading and understanding them. Thus, we performed
a pilot evaluation d the masking interface at an early stage of the system design. Besides
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verifying the usability of the masking interface the evaluation aimed to compare it with an
dternative designin which the example parts were faded instead of masked

Ten first year coll ege students studied one example with the masking interface and a second
example with the faded interface We adternated what interface we showed first, to avoid
presentation bias. Then, we asked the students to choaose between the two interfaces to study a
third example. Six students chose the faded interfaceand four the masked interface but amost
al students found the two interfaces fairly equivalent. Furthermore, not only were none of the
students annayed by the fact the example parts had to be explicitly uncovered. Mogt students
said that both intefaces hdped them study the eamples more arefully, becuse they
encouraged them to focus on a single item at a time. Thus, in addition to tracking students’
attention, the masking interface provides a first levd of scaffolding to increase students sdlf-
explanation.

Since the students did nat seem to strongly prefer one interface over the other, we kept the
masking one, becuse it is quite difficult to adjust the faded interface so that a student can
identify the different parts of an example without reading their content. Furthermore, the right
contrast changes in monitors with dfferent resolution, making it impossble to find a setting that
works in al situations. We ntinued to probe the students' attitude toward the masking
interface throughout the successve evauations of the system, which confirmed the students
positive reaction to the interface. The only criticism that some students had concened na being
able to see more than one line a a time when realing long algebraic derivations. To fix this
problem, we modified the interface so that students can uncover up to threelines at a time, by
pressing the wntrol key as they move the mouse over the lines that they want to seeat once

Promptsto self-explain

The second level of scaffolding is provided by the SE-Coach’s interface through specific
prompts to sdf-explain. Whenever the student unmasks a pieceof the example, if it contains an
idea worthy of explanation the interface will append a button labeled “sdf-explain”. Pressng
the button produces smple prompts to initiate sef-explanations in terms of domain principles
(e.g., “this choice is corred because...”) and abstract solution plan (e.g., “the role of this
choicein the solution planisto...”).

SOLUTION

e choose Jake as the body to EIETT
wehich to apply Mewton's 2nd law.

ExplEinihg rale afthiis step i

L@

SOLUTION

The helicopter's rope exerts a tension i
force T on Jake. - -
This fact iz true becausze... (B)

|| The role of thiz fact in the solution plan is ...
T TT T

Figure 6: SE-Coach prompts to self-explain

Figure 6 shows the different prompts associated with the second and third line of the
example solution in Figure 5. These prompts are designed to dicit sdf-explanation by
stimulating sdf-questioning (Webb, 1989). Sdf-questioning seems to be an effedive gproach
to counterad the students' tendency to overestimate their example understanding, because it
leads the students to (@) ask themselves questions that target important but possbly problematic
knowledge about the example; (b) initiate sdf-explanation actions if they cannot answer these
questions (Chi, in press Webb, 1989). In particular, by having prompts that trigger plan-related
questions, the SE-Coach should stimulate students to generate a type of sdf-explanation that, as
we discussed earlier, is espeddly unnatural to them but extremely useful for learning.
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I nterface tools to generate sdf-explanations

The third level of scaffolding in the SE-Coach interface consists of menu-based tools that
provide wnstructive but controll able ways to generate the desired self-explanations. These tools
am to help thaose students that would atherwise be unable to sdf-explain effedivey, even if
they redlize their nead to do so (Renkl, 1997).

If a student sdects the first choice in the prompting menus sown in Figure 6, a Rule
Browser is displayed in the right column of the window (seeFigure 7). If the student seleds the
seaond choice in the prompting menus, then a Plan Browser is displayed (see Figure 10). The
next subsedions describe how the interaction proceads in the two ceses.

The Rule Browser

The Rule Browser (see Figure 7) contains al the system’s physics rules, organized in a tree
structure similar to the Windows fil e system, so that clicking an the + and — buttons reveal's and
hides abtrees of the hierarchy. Using this famili ar interface, the student finds and seleds arule
that she thinks justifies the arrently uncovered exampleitem.

If the student then presses the “submit” button at the bottom of the Browser, the SE-Coach
will provide feadback to indicae whether the sdeded rule is the one that explains the
uncovered urit of information.

Help System
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[ | boyf USING-FORCE s
[ US\NG_VELOCITYT\‘\
] [ ICING ACCELERATION S~ao
- COMPOURD_BODY_WITH_SURFACE T~ <
L COMPOURD_BODY_TIED_TOGETHE!
=- Compound Body Properties
| | L MASS_OF_COMPOURD_BODY
| | L FORCE_ON_COMPOUND_EQDY
- Describing Forces
| E-Newton's Laws
- Newton's Second Law
- Action Reaction Law
=- Choosing Axes
L HOW TO_CHOOSE_AXKES
‘ ‘ - Finding Vector Components

- Kinematics =
Pl | | »
‘ Templalel

G-force-on-Jake

| G-goal-choose-body |

R-body-by-force

RA-body-by-force

!

| F-Jake-isthe-body |

Click on the [+] to expand a Rule Category
Double Click on a Rule to submit it

Figure 7: The Rule Browser

Consider the situation in Figure 7, in which the student activates the Rule Browser to sdlf-
explain the seand solution line and sdeds the @rred rule (marked with a deckmark) after
sdleding an incorred one (marked with a crosg. To provide feaedback on the student’s seledion,
the SE-Coach:

1) retrieves in the SE modd for the current example the proposition node corresponding to the
uncovered example part (in this case, the shaded proposition rodein Figure 7).

2) Finds the dosest rule node among the ancestors of the proposition node (the node R-body-
by-forcein Figure 7) and checksif it corresponds to the rule that the student seleded.

A green chedkmark will appear beside the Rule Browser sdlection if therule is corred, a red
cross will appea otherwise (see Figure 7).
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The SE-Coach does nat provide additiona help besides red/green feadback. This avoids
interfering with what is considered the key fador that mekes =f-explanation effedive for
learning: that to generate their sdf-explanations the students eaborate the avail able materia
and knowledge by themsdves (Chi, in presg. Thus, when awrong rule is sleded, the only way
for the student to corred the mistake is to kegp browsing the hierarchy until the crred rule is
found. For this reason, the organization d rule names in the Browser is crucial to make the
search for the corred rule a thought provoking activity, instead of a frustrating ore that may
result in the student cli cking exhaustively on dl the entries.

The current organization of the rule hierarchy is the result of successve evaluations with
pilot subjeds, which helped reduce the amount of floundering observed in the first versions of
the Browser. A quite interesting behavior that surfaced during these evaluations is that most
students did nd try to click on rule names randomly when they got stuck. Rather, when they
could not find plausible @ndidates in the category that they had expanded they would stop,
without even trying to browse other parts of the hierarchy. We repeaedly changed the
categories’ names and arrangement to maximize the dance that students immediately enter the
right part of the hierarchy. We dso provided cross-references for rules that could plausibly
bdong to different categaries, such as the rule encoding the definition d Net Force, which
rightfully beongs to the category Newton's Second Law, but that students often tried to find in
the @tegory Describing Forces (seeFigure 7).

Feealback from the pilot evaluations suggested another important modification to the original
interface design: the possbility to go badk and browse through the example while using the
Rule Browser (or any other tod for sdf-explanation). In the origina design, this was nat
alowed, and many pilot subjects complained that they needed to review the example solutionin
order to complete their sdf-explanations with an interface tod. In the current interface, while
any of the interface tools is open, the student can still  uncover other parts of the example,
beside the one for which sdf-explanation was initiated. The part that is currently explained turns
pink, to remind the student of what is the arrent focus of self-explanation.

The Rule Templates

SOLUTION il CllE EROWEER) |:| et e = A e e A =
: Choosing a Body
| Exal e hif whiytiie cHeice s carre ct The helicopter's rope exerts a tension B Compound Body Properties

We choose Jake a3 the body to force T on Jake:

which o &pply Newtor's 2ndl law. Seareh fone wiethe Ustizsiiie choike

escribing Forces

EChoosing a Body
I ] i+ USINGFORCE | f TENSION_EXISTS
— . i1 - TENSION_FORCE_DIRECTION
Template for: USING-FORCE - p[
= IO o o TENSION TS
IF we wantto find I j C H
Ii IF an objectis I j
AND the st
THEM we can choose that BBl I j
ohject as the body
—— THEM there iz atension
force on the object
|: EXERTEDBY =
an object outside the compound body
Back Subrmit Cancel the second ohject
the earth
the strin
! T |: Back i 2 | Cancel |
T T

Figure 8: Rule Templates

The Rule Browser lists only rule names, and most students will need to know more about a rule
before they can be sure that it is the explanation they want. To explain more about a rule, the
student can click on the “Template’ button a the bottom of the Rule Browser (Figure 7).

A didog box comes up, with a partial definition o the rule that has blanks for the student to
fill in (seeFigure 8). The definition is in terms of the preconditions that neel to be verified for
the rule to be applied and do the consequences that the application of the rule generates. The
Templates design refleds how rules are represented in the Andes knowledge base. As we
discussd previously, this design aims to scafold sdf-explanations of the forms that are most
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frequent in students’ spontaneous s f-explanations: (i) refine and expand the prenditions of
an action and (ii) explicae and infer additional consequences of an adion.

Clicking on a blank in a Template brings up a menu o possble fillers (Seeright template in
Figure 8). After completing a Template, the student can sdect “submit” to gat immediate
feedback. The SE-Coach retrieves the definition of the crresponding rule from the Andes
knowledge base and wses it to verify the @rredness of the student’s sledions, by matching the
rule premnditi ons and consequences with the fill ers that the student chose (see Figure 9).

Each template in the interface refleds the @ntent of a physics rule in the knowledge base,
and it is asciated to that rule, nat to a spedfic example line. Therefore, adding a new example
to the SE-Coach’'s st does not require defining new Templates, as long as the example solution
involves only knowledge drealy encoded in Andes’ rules.

As with the Rule Browser, pilot evaluations were fundamental to improve the usability of
Templates. For instance we discovered that students tended to ignore template fill ers that were
too verbose, even when they were the obviously correct chaices. Also, when the list of posdble
fillers is too long, students sldom read the items at the bottom, espedally if they find a
plausible filler earlier in the list. The pilot eva uations aso showed that if students are given the
choice of accessng a Template or not, they tend not to do it. In the first version of the system
(Conati, Larkin, & VanLehn, 1997), once acorred rule was sleded the student could click on a
Done button and quit without filling a template. When this option was available, most students
never accassd Templates. When asked why, they said that they did not remember what a
Template was, athough the eperimenter had extensively explained the interface at the
beginning of the evaluation sesson. The simple cange of giving orly the Template choice after
rule sdedion (see Figure 7), increased the percentage of students that filled Templates, despite
the fact that students could still close a Template without filling it, by clicking on the Cancd
button at the bottom of the dialogue box (seeFigure 8).

Template for: USING-FORCE [ %]
IF we wantto find Ithe force on an ohject j
R-body-by-force
THEM we can choose that If thereisagoal to seled abody to goply Newton's 2ndlaw

object as the body

¥

b and the problem god isto find|the force on an object

then select asbody the objed to which the force isapplied

Template for: TEMSION_EXISTS

IF &n ohjectis It\ed ta a string e j I tension-exists
AND the string |i5taut \l\ If thereis agod tofind all forces onabody
\-» and thebody is
THEM there is atension . and thestring
force on the ohject then thereisatension force onthe objed,
- exerted by | thestring

EXERTED BY [the striny <4— |

Figure 9: verifying Template orrednessby using Andes rules

The Plan Browser

If the student seleds the seand item in the prompting menus, (e.g., “The role of this choice in
the solution plan is....” in Figure 6a), then the interfacedisplays a Plan Browser instead of a
Rule Browser. The Plan Browser is smilar to the Rule Browser, but it displays a hierarchicd
treerepresenting the solution plan for a particular example, instead of SE-Coach’s physics rules.
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For instance Figure 10 shows the Plan Browser for the ‘boy-hanging-from-an-hdlicopter’
examples, which displays the plan to apply Newton's Second Law (Reif, 1995). To explain the
role of the uncovered fad in the solution plan, the student navigates through the god hierarchy
and seleds a sub-goal that most closdy motivates the fact. Pressng a “submit” button causes
the SE-Coach to give immediate feedbadk. To provide this feedbad, the SE-Coach retrieves
the proposition node @rresponding to the uncovered line If the propaosition node encodes a
godl, the feedback agorithm works like the one for the Rule Browser. If the proposition node
encodes a fact, as the shaded nade in Figure 10 does, the feedback algorithm

1. retrieves the goal node that is the most immediate ancestor of that fact (node G-find-forces

in Figure 10).

2. retrievestherule node that generates that goal node (node R-find-forces in Figure 10).

This rule node, which represents a planning rule, is then used to verify the @rredness of the
student’s selection.

There are no Templates asociated with the Plan Browser, because they would simply spell
out information onthe plan structure dready encoded in the Browser hierarchy (e.g., If the goal
isto apply Newton’s law and we have selected a body, then the next subgoal isto describe the
properties of this body.

‘ | Explaining the rale of this fact in the solution plan

|:| Flan for Newion's 2nd Law

The helicopter's rope exents & tension
force T on Jake E-Apply Newton's Second Law

i~ Choose body
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|

| G-find-forces |
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-----

EI Write component equations

] -¥ Choose coordinate axes

Find vector components
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‘ EI -ind quantities algebraically
- Find rermaining unknowns

R-tension-exists
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Done
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IF-tension-on-jake I
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Figure 10: sdlections in the Plan Browser

SE-COACH’SADVICE

As we have seen in the previous sedion, the SE-Coach’s interface provides three different
levels of scaffolding for sdf-explanation, implicit in its design. A forth, more eplicit leve of
scaffolding is provided by the SE-Coach’s advice

Initially, sef-explanation is voluntary. The student is free to dedde what self-explanations
to initiate with the interface tods, and the SE-Coach limits its intervention to providing
feadback. However, the SE-Coach keegps track of the students’ progress through the example,
including how much time they looked at a solution item and what they chose to sdf-explain via
the interface tools. This information is colleded in the SE-Coach's dudent model, which
assesses what parts of the example may bendfit from further salf-explanation. When the student
tries to close the example the SE-Coach generates tutorial interventions to make the student
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sdf-explain these parts. In this sdion, we briefly describe how the student modd generate its
assessment and then we ill ustrate the tutorial interaction that this assessment supports. More
detailed information a the structure and functioning of the student modd can be found in
(Coreti & VanLehn, To appear).

The SE-Coach’s sudent model

Modelling a student during example studying involves a great deal of uncetainty, becuse the
reading and self-explanation actions the modd has access to provide only indirect evidence on
what the student adually reads and leans. To handle this uncertainty in a principled way, the
SE-Coach student modd rdies on the Bayesian network framework for probabilistic reasoning
(Pearl, 1988).

The student model Bayesian network is built automatically when the student opens a
new example. Figure 11 summarizes this process. The structure of the Bayesian network derives
diredly from the structure of the SE-Modd. The network parameters derive from probabili ties
describing the student’s physics knowledge and studying style, maintained in the Andes' long
term student modd. These probabilities provide priors for rule nodes and parameters that
automatically define the conditional probabilities in the network. (Conati & VanLehn, To

appear).

Andes’ long term student model
Prior probabilitiesfor all rules J

I Mode of correa self-explanation ]

and studying style
F 'y
Asssr
— [ Student interface actions ]
Initial BNet
Asssr
Updated BNet

Probabilities assessang
exampleunderstanding |wpLow = SE-Coach

& probabilities  hints
knowledge hanges

Figure 11: Automatic construction o the student modd Bayesian Network.

As gudents peform reading and sdf-explanation actions, the initial Bayesian network is
updated with nades and conditional probabilities representing how these actions influence the
probability that the student is €f-explaining different example mwmponents. Nodes representing
reading actions diredly influence the probability that the student is slf-explaining derivations
(rule-application nodes) in the SE modd. Nodes representing sef-explanation actions
performed through the interface tools influence the probability that the student knows the
corresponding physics and planning rules. Thus, at any time during the student’s interaction
with the SE-Coach, the probabilities in the Bayesian network assss how the student’s
knowledge and example understanding change as a consegquence of the student’s adions. In
particular, the probabilities associated with rule-application rodes represent the probabil ity that
the student has correctly sdf-explained the rresponding derivations. Rule-application nodes
with probability bel ow a given threshold become the target of the SE-Coach interventions.

A key fedure of the SE-Coach student modd is that students do not have to use the interface
tods to have their sdf-explanations acknowledged. If a student spends enough time viewing a
solution item and if, according to the modd, the student has sufficient knowledge to self-explain
that item, the mode will predict that the student very likdy self-explained the item correctly
(Coreti & VanLehn, To appear). Asking students to always use the interface tod's to make their
explanations explicit would alow more accrate assessment, but may also burden the students
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who are natura sdf-explainers with unnecessary work, possbly compromising their motivation
to use the system.

When a student doses an example, the new probabilities that rule nodes reached during the
student interaction with the systems are used to ypdate Andes’ long term student moddl. These
probabilities will affed all the subsequent example studying and problem solving interactions of
this gudent with Andes.

The SE-Coach’sinterventions

As we mentioned a the beginning of this sdion, while a student studies an example sdf-
explanation is voluntary. However, if a student tries to close the example when the student
model indicates that there are still some lines left to sdf-explain, then the SE-Coach will tdl the
student:

“You may learn more by self-explaining further items. These items are indicated by pink
covers”,
and colors ome of the boxes pink (dark grey in Figure 12) instead of grey. It aso attaches to
each item a more spedfic prompt such as “Sdf-explain with the Rule Browser”, “ Self-explain
with both the Rule and the Plan Browser” or “Read more carefully”, depending onwhat sdf-
explanation the student model predicts to be missing for that item. The more specific prompt
appears in place of the simple self-explain button when the item is uncovered (see Figure 12).
The color of the boxes and the reated messages change dynamically as the student performs
more reading and sdf-explanation actions that change the probabilities of the rresponding
nodes in the student modd. If the student tries to close the example when there are sill some
pink covers left, the SE-Coach generates a warning such as “There are still some items that you
could self-explain. Are you sure you want to ext?”, but it lets the student quit if the student
wants to.
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Wie chonse Jake as the bodyto 'St Explain with the Plan | I far
which ta apply Mewton's 2nd lawe . | agndowme |
The helicopter's rope exerts a tension | Seif-Explain with the Rule
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—
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Figure 12: SE-Coach interventions to dicit further self-explanation

As we discused ealier, one of the dilenges of designing the SE-Coach tutorial
interventions is that they must motivate to sdf-explain students that have low propensity to do
so. Pilot evaluations were fundamental to find an effedive modality of intervention for the SE-
Coach. In the origina version of the system (Conti et al., 1997), the SE-Coach would point out
lines that required self-explanations one a a time, instead of indicating them al a once by
changing their color. When the student tried to close the example, the SE-Coach would generate
afirst, generic warning such as “There are still some items that you could self-explain. Do you
want to try?” The student could either (a) rged the advice (b) acospt it and go back to study
the example without any further indication of what to sdf-explain, (¢) ask for more spedfic
hints. If the student chose the latter, the SE-Coach would say, for instance “Why don’t you try
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to use the Rule Browser to explain this line?”, and it would uncover the line. At this point, the
student would go back to the example, and possbly explain the line as indicated, but the only
way for the student to get additional suggestions from the Coach would be to try and close the
example again.

The rationale behind this design was to stimulate @& much spontaneous sif-explanation as
possble. We thought that direding the student to a particular line in the example @uld be
enough to also trigger explanations on other lines. This did not happen. Either students were
natural sdlf-explainers and explained most of the example the first time through, or they strictly
followed individual SE-Coach hints but rardy initiated any additional sdf-explanation. For
non-spontaneous Elf-explainers, the interaction with the Coach would quickly bemme quite
uninspiring. After doing what the Coach hed suggested (e.g., finding a rule name in the Rule
Browser), they would immediatdly try to close the example. They would then get another hint
(“thereis something elsethat you could self-explain, do you want meto show you?"), suggesting
further explanation either on the arrrent line via Template/Plan Browser or on a different line. A
student would have to repeat this cycle to accass eat new pieceof advice and most students
lost interest and chose to close the example after the first couple of hints.

The arrent design, based an the @loring of example lines, all ows the students to seeat once
al the parts that they should further sdf-explain and what interface tools they should use to do
it. It also gives dudents better feedbadk on the progresss that they are making, becuse line
color and the attached hints change dynamicdly as gudents generate more sdl f-explanations.

EMPIRICAL EVALUATION OF THE SE-COACH

After iterativdy improving the system design through pilot evaluations, we performed a study
to test both the system’ s usability and its eff ediveness for learning.

Experiment design

The study was conducted with 56 college students who were taking introductory physics classes

a the University of Pittsburgh (20), Carnegie Mélon University (14), Allegheny County

Comrmnlty College (5) and U.S.Nava Academy (17). The design hed two conditions:
Sdf-Explanation (SE): 29 students gudied examples with the cmmplete SE-Coach.

e Control: 27 students gudied examples with the masking interfaceand Plan Browser
only. They had o access to the Rule Browser and Templates, nor they recéved
feedback or coaching.

The evaluation consisted of one session about threehour long, in which students: 1) took a
paper and pencil pretest, consisting of four problems on Newton's Sewmnd Law; 2) studied
examples on Newton's Seamnd Law with the system; 3) took a paper and pencil post-test with
problems equivaent but not identical to the ones in the pre-test; 4) filled out a questionnaire
designed to assessthe students impressons on the system.

Beause SE-Coach does not provide any introductory physics instruction, to evaluate the
system adequately we neeaded subjects who aready had the appropriate level of domain
knowledge for using it. Students generally benefit more from examples when they are studying
a new topic, wheress as the students' knowledge improves, problem solving becmmes more
effedive for learning (Nguyen-Xuan, Bastide, & Nicaud, 1999). Hence we nealed subjeds
with enough knowledge to understand the topic of the examples, but not so much knowledge to
find the examples not worthy of attention. However, because we had to coordinate the study
sessons to acoommodate students from four different coll eges, the best we could do in terms of
getting subjeds with adequate knowledge was to make sure we run the subjects after their first
classon Newton's Seand Law and before they took a dasstest on the topic.

In order to roughly equate time on task, students in the cntrol condition studied 6 examples
and students in the eperimental condition studied 3 examples. Despite this, there is a
statisticdly significant difference between the average time on task of the experimental group

405



(52 and the control group (42’ 32") . However, we found no significant correlation o time on
task with post-test scores.

Usability of the SE-Coach

During the study, we recrded log files of the students’ interaction with the SE-Coach. We then
analysed the log data to understand how the subjeds used the interface sdf-explanation tods
(Rule Browser, Plan Browser and Templates) and how they reacted to the SE-Coach
interventions.

Usage of the SE-Coach’s slf-explanation tools

For each interfacetool, we omputed the following data summaries, shown in

Table 1. Initiated: percentage of the explanations that students initiated out of al the
explanations that could be generated with that tool for the available examples. Correct:
percentage of the initiated explanations that were generated corredly. Attempts before crred:
average number of attempts the students needed to achieve a corred sdf-explanation. An
attempt is the submisdgon of an incorred sdf-explanation. Max # attempt: average maximum
number of attempts neaded to achieve a corred sdf-explanation. Abandoned: percentage of
initiated sdf-explanations that were abandoned. Attempts before abandon: average number of
attempts before dandoning a sdf-explanation. Time on abandoned: average anount on time
spent on self-explanations that were eventually abandoned.

Table 1: Statistics on SE tools usage

Rule Browser | Templates | PlanBrowser
initiated 62% 55.5% 41.6%
corred 87% 97% 85%
attempts before corred 1.27 0.5 1
max # attempts 9.2 2.5 3.8
abandoned 13% 3% 15%
attempts before abandon 4.4 1.9 14
time on abandoned 241 sec. 59 sec. 29 sec.

Rule Browser usage. As Table 1 shows, on average students accessed the Rule Browser
quite frequently, initiating 62% of the possble Rule Browser explanations. They usually
completed the Rule Browser explanations corredly, successully sdeding the wrred rule 87%
of the times. Also, they usudly found the crred rule without floundering too much, requiring
on average only 1.27 attempts to find the crred sdedion. However, for most students at least
one rule sdedion required a large number of attempts (average maximum of 9.2 attempts per
student). Rule Browser accesses in which the student failed to find the @rrect rule required an
average of 4.4 attempts. However, these attempts resulted in an average of only 4 minutes that
students ent on failed Rule Browser explorations, a minar fraction d the average total time on
task (52 minutes).

These data indicate that the Rule Browser was generally successul at stimulating the
students to initiate saf-explanations and was easy to use. However, there were a few situations
in which wsing the Rule Browser may have caused distraction and frustration, becuse the
student floundered substantially before finding the corred rule, or could nat find it at al. Thus,
the SE-Coach may bendfit from an additional form of hdp that supports gudents in searching
the Rule Browser. This was, in fact, the suggestion that appeaed most frequently in the
students’ questionnaire. Otherwise, the mgjority judged the Rule Browser to be very useful and
easy to use.

Template usage. Students accessed 55.5% of the template material in the SE-Coach. Since
Template accesis mandatory after a corred sdection in the Rule Browser, these data ae not
indicaive of how effedively Templates stimulate self-explanation. More indicative is the fact
that students completed almost all (97%) of the presented Templates corredly, athoughit is not
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mandatory to fill a Template after opening it. Students needed on average only 0.5 attempts to
fill a Template @rredly, with an average maximum of 2.5 attempts. Students pent only 59
seands trying to fill Templates for which they could nat find the rred answer.

These data indicate that our repeated efforts to improve Template usage through pil ot
eval uations were successul, in terms of both making them easy to use and providing a tool that
encourages Ef-explanation. The results are backed uw by the students questionnaire
comments, that judged the Templates to be very easy to use and helpful to better understand the
examples.

Plan Browser usage. Students accessed 41.6% of the possible Plan Browser explanations.
Students did nat have many problems using the Plan Browser. Most of the initiated explanations
(85%) resulted in the sdection o the @rred plan step, and required anly 1 attempt, on average,
to find the step. Students spent on average only 29 seconds on Plan Browser accesses that did
not lea to a wrred explanation. However, the fact that an average maximum of 3.8 attempts
were neaded to find the right sdection, indicaes that the Plan Browser does produce some
degree of floundering. Hence the Plan Browser could aso benefit from a browsing hep
anal ogous to the one suggested for the Rule Browser.

Although the above results indicate that the Plan Browser is easy to use, students did not use
it quite as much as the Rule Browser and many students wrote in the questionnaire that they did
not understand its utility. This outcome is not surprising. As we have aready mentioned, goa-
rdated explanations are largdy unfamiliar to students. The Plan Browser is designed to
complement instruction that initiates students to the notion of solution planning, but our subjeds
had not recaved such instruction in the dasgoom. In the short time available for instructions
during the study, the eperimenter did not have time to make the students understand the
concept and importance of solution planning. This stuation likdy acwounts for the lower usage
of thistool.

Response to the SE-Coach interventions to dicit further self-explanations

To verify how students reacted to the SE-Coach explicit prompts to further sdf-explain (by
using the Rule Browser, the Plan Browser or by reading more arefully), we momputed from log
data how often students followed these prompts. The results are summarized in Table 2. For
each type of prompt, the table reports: (i) the maximum number of prompts the SE-Coach could
generate for the three &amples in the study. These are the prompts the system would generate if
there was no student modd to guide it; (ii) the number of prompts the SE-Coach actually
generated by relying an the student modd; (iii) how many of these prompts the students
foll owed.

The numbers in Table 2 show that the arrent design for the SE-Coach intervention, based on
dynamically changing the @lor of example lines and the dtached prompts, works considerably
better than the origina design described in the sub-sedion an the SE-Coach intervention. While
with the original design students rarely followed more than a couple of the SE-Coach
suggestions, with the arrrent design students foll owed an average of 38.6% of the Rule Browser
prompts, 42% of the Plan Browser prompts and 34% of the prompts suggesting to read more
carefully. However, the numbers aso show that there is gill room from improvement, because
students ignored more than half of the SE-Coach’s suggestions. This could have happened for
two reasons.

Table 2: Statistics on SE-Coach interventions

Rule Browser prompts (max. 43) 22.6
Followed 38.6%
Plan Browser prompts (max. 34) 224
Followed 42%
Reading prompts (max. 43) 7
Followed 34%
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The first is that students did not follow the SE-Coach's suggestions because they had
spontaneously sdf-explained the related example parts. The student moded assessment of
spontaneous  self-explanation strondy depends on estimates of student’s initiad physics
knowledge (Conati & VanLehn, To appear). At the time of the evaluation, we did not have
acaurate etimates and we asdgned to every rule a probability of 0.5. Thus, it may be that
students explained more than the mode estimated, and were rightly ignoring those prompts
asking them for redundant explanations.

The second reason is that students did not follow the SE-Coach’s suggestions because they
were overestimating their understanding and thus dismissed the SE-Coach’'s prompts as
irrdlevant, even when they were well justified. To ded with these students, it might be
necessary to make the SE-Coach suggestions mandatory. This option may work better when
more accurate priors on the students' physics knowledge are available, for instance from the
results of the student’s pre-test. However, it would be interesting to try it even with lessacaurate
priors. The benefits of having the students generate more explanations may still be worth the
annayancethat redundant prompts may cause to some students.

Effedivenessof the SE-Coach

To evauate the dfediveness of the SE-Coach for learning, we first compared how the students
in the SE condition learned in comparison to the students in the @ntrol condition. The pre-test
scores of the two conditions held no significant differences, indicating that subjeds had been
succesgully randomised over their physics knowledge.

The gain scores measuring the difference between post-test and pre-test scores were higher
for the SE condition, but the difference between gain scores of SE and control conditions was
not statistically significant.

We then restricted the anaysis to the subgroups of subjects coming from different coll eges:
Carnegie Mdlon University (CMU), Community College of Allegheny County (CCAC),
University of Pittsburgh (PITT) and U.S. Naval Academy (USNA). We found that the
experimental condition d CMU and CCAC students performed significantly better than the
control condition. In contrast, in both the Pitt and USNA subgroups, students in the cntrol
condition performed slightly better than students in the SE condition. The commonality of
behaviour between CMU and CCAC is quite surprising, becuse the two schods are supposed
to be, respedivdy, the best and the worst of the four colleges in the study, and this ranking is
confirmed by the pre-test scores. However, there is one characteristic that CMU and CCAC
have in common and that distinguishes them from Pitt and USNA students. They start the
semester at least a week later than Pitt and USNA. Therefore, although all the students
participated in the experiment after they had their ledures on Newton's laws and before they
took a classtest on the topic, Pitt and USNA students were ahead in the course schedule and had
likely spent more time on Newton's laws than CMU and CCAC students when they partici pated
in the study. This could have generated differences in the background knowledge and/or in the
way the two subgroups used the system, affecting how the students benefited fromiit.

To test this hypothesis, we continued our analysis by comparing the subgroup consisting of
CMU and CCAC students with the subgroup induding Pitt and USNA students. Within the

CMU-CCAC group, the 12 students in the SE condition
Table3: ANCOVA forpost-  (mean gain score = 7.5, stdev. = 5.2) performed

test scores significantly better (p = 0.021) than the 13 students in the
Source F-ratio Prob control condition (mean = 3.2, st.dev.= 3). The 14 Pitt-
Const 2541 <0.0001  USNA students in the mntrol condition performed slightly
pretest 54.544 <0.0001 better (mean = 6.7, st.dev. = 4.8) than the 17 in the SE
SAT_math 1.3207  0.2575 condition (mean = 5.0, st.dev. = 3.7) but the difference is
f:‘;;rvjursa' 063487 04308 not statistically significant (p > 0.2).
condition 015014  0.7005 To veify if these results were due to dfferences in

subgroup*cond. 76089 0.00ss initid physics and background knowledge, we ran an
ANCOVA with post-test as dependent variable, subgroup
and condition as main factors, and pre-test and SAT scores
as covariate. The ANCOVA (seeTable 3) still gives a significant interaction between subgroup
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and condtion (p < 0.01), indicaing that prior physics and background krowledge do ot
acoount for the different behavior of the two subgroups.

To veify if students in the two subgroups used the system differently, we compared their
performance and study behavior within each condtion. As Figure 14 shows, in the SE
condition CMU-CCAC students performed better than Pitt-USNA students, although the
difference is not statistically significant (p > 0.1). In the Control condition, Pitt-USNA students
performed significantly better than CMU-CCAC students (p < 0.03). As a matter of fact they
performed almost as well as CMU-CCAC students in the SE Condition. These results coud be
due to two reasons:

¢ Inthe SE condition, CMU-CCAC students used the SE-Coach sef-explanation tools

more extensively and effedivey than the Pitt-USNA students did.

¢ Inthe Control condition, Pitt-USNA students gpontaneously self-explained considerably
more that CMU-CCAC students did.

Bl cmu-ccac

E pitt-usna

- N [ £ th o =l [+-]
L L

[=]
L

control SE
Figure 14: Gain scores for CMU-CCAC and Pitt-USNA students within the two conditions

Studying the behavior of the two subgroupsin the SE condition

To verify whether CMU-CCAC students in the SE condition used the SE-Coach sdf-
explanation tods better than the Pitt-USNA students in the same condition, we cmpared the
two subgroups with resped of time on task and the system usage statistics described in the
previous subsection. We found a statisticdly significant difference only in the average number
of attempts tried before giving up on a Template explanation (Conati & VanL ehn, 2000). This
difference suggests that CMU-CCAC students had a higher level of motivation to learn from the
SE-Coach, becaise they started learning Newton's smnd laws later than Pitt-USNA students
and thus percaved studying example on this topic to be more useful, consistently with the
findings described in (Nguyen-Xuan et al., 1999).

Browser sdections and template filling are reall tasks not as constructive as generating
explanations verbaly, unless students adively refled on the result of their actions. We argue
that, because CMU-CCAC students were more motivated to study the SE-Coach examples, they
reasoned more on what they were daing with the SE-Coach interface Thus, they learned more,
although they did not use the SE tools more frequently or more easily than Pitt-USNA students
did. We @n corroborate this argument by computing the crrdation between: (i) the number of
rules in the student modd that have reached high probability to be known through corred SE
actions; (ii) post-test scores. The rrdationis very low (r < 0.1) for Pitt-USNA and it is higher
(r = 0.33) for CMU-CCAC, indicaing that corred SE actions refled knowledge more
acaurately for CMU-CCAC students than they do for the Pitt-USNA ones.
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Studying the behavior of the two subgroupsin the Control condition

Veifying whether Pitt-USNA students in the ntrol condition spontaneously self-explained
more that CMU-CCAC students is not easy, becuse students could not communicae ther
explanations to the control version d the SE-Coach. The only measures that can indicate sdlf-
explanation in the log files include: (i) mean and standard deviation of multiple accesss to
example lines'; (ii) mean and standard deviation d the time spent on each example line; (iii)
mean number of accesses and sdlectionsin the Plan Browser.

Within the Pitt-USNA control group, we found a marginally significant correlation of post-
test scores with mean (p < 0.09) and standard ceviation (p < 0.06) of line accesses (see
Table 4).

Table4

Analysis of Variance For posttest This correation is nat significant for the
cases selected according to Pitt-USNA CMU-CCAC control group. The
Source F-ratio  Prob hypothesis that Pitt-USNA students sdlf-
Const 786.68  <0.0001 explained more in the @ntrol condtion is
mean-line-accesses 3.6978  0.0834 consistent with the fact that Pitt-USNA
pretest 16.488  0.0023 i '

St-dev-line-acecsses 46118 00n7a students had started studying Newton's

Laws earlier and had probably gained more
knowledge on the topic. This knowledge was not strong enough to make Pitt-USNA students
perform better in the pre-test. However, it was aufficient to enable Pitt-USNA cortrol subjeds
to generate efective sdf-explanations under the minimal scaffolding provided by the masking
interface We argue that it is indeed the minimality of the scaffolding that alowed Pitt-CMU
control students to bring to bear their knowledge at best. Becaise of their more alvanced
learning stage, spontaneous s f-explanation triggered by the masking interface likdy came
quite dfortlessly to Pitt-USNA control students. Thus, their tendency to sdf-explain was nat
suffocated by the lower levd of motivation that prevented Pitt-USNA students in the SE
condition to learn effectively from the SE-Coach sdlf-explanation tools.

Summary

The results that we have presented suggest the following conclusions on the dfediveness of
the SE-Coach and, in general, on the dfectiveness of support for sdf-explanation during
example studying.

¢ Rich scdfolding for sdf-explanation, like the one provided by the mmplete SE-Coach
in the experimental condition, can improve students' performance d an ealy learning
stage At this stage, students are still unfamiliar with the subjed matter. Hence they
benefit more from structured help in using domain knowledge to generate dfective sdf-
explanations and are more motivated to put substantial effort in exploiting this help a
best.

¢ As gudents beaome more proficient in the subject matter, even minimal prompting, like
that provided by the masking interface in the @ntrol condition, can help improve thar
sdf-explanations. At this dage, more daborate scaffolding can actualy be less
effedive, if it requires dudents to put too much effort in studying examples, because
they may lack the motivation to doso.

Of course, more data ae necessary to confirm these conclusions. The data should be
gathered in the ontext of classoom instruction, where it is easier to control at what learning
stage students use the system. These data would provide vauable insights on the isaue of how
much prompting and scaffolding is necessary to dicit sdf-explanation. Although dfferent
studies have shown that both simple prompting and more daborate scaffolding improve sdlf-
explanation (Bidaczyc ¢ al., 1995; Chi et al., 1994), no study has yet addressed the explicit
comparison o different kinds of intervention.

A high standard deviation indicaes that students were seledively reviewing only some of the example linesto
generate their self-explanations.
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The study described in this paper did not provide spedfic results on the dfediveness of the
Plan Browser. Limits on the length of the study sessions prevented us from inserting in the pre-
test and podt-tests items edficaly tapping the planning knowledge the Plan Browser is
designed to improve. Furthermore, students did not use the Plan Browser as much as they used
the other interfacetods becuse they did not understand its function (as most students wrote in
the study questionnaire). This was to be expected. The Plan Browser is designed to stimulate
reasoning about solution plans from students that aready have a basic understanding of the
topic. Our subjeds most likely did nat have such understanding, because they had not received
any clasgoom instruction on solution planning. Thus, many subjeds ended up ether ignoring
the Plan Browser or using it without really understanding the underlying planning knowledge.
However, we found a significant corrdation (after controlling for pre-test scores) between post-
test results and percentage of SE-Coach hints to sdf-explain with the Plan Browser that the
students followed (Conati & VanLehn, To gppear). This correlation gives an initia indicaion
that Plan Browser might in fact improve learning, but only a new evaluation with more
appropriae subjeds and more informative pre/post-test can provide reliable dataon thisisae.

CONCLUSIONS AND FUTURE WORK

The research presented in this paper represents a step toward exploring innovative ways in
which computers can enhance alucation and learning. Most existing ITS support students
during problem solving and teach domain spedfic skills. We have devised a @wmputational
framework that supports learning from examples and that coades the genera leaning skill
known as sdf-explanation - generating explanations and justifications to onesdf when studying
an example. Our framework, known as the SE-Coach, aims to provide the individualized
monitoring and guidance to sdf-explanation that has been proven so beneficid when
administered by human tutors. The framework has been implemented and tested within Andes, a
tutoring system that helps students learn Newtonian physics through both example studying and
problem solving.

We bdieve that a combination of theoretical founddtions and empirical studies is
fundamental for the development of effedive instructional systems. This is espedally true for
systems that, like the SE-Coach, focus on a learning process whase underlying medhanisms are
still unclear and urder investigation. In this paper, we described how the system’s design is
grounced in Cognitive Science findings about the features that make saf-explanation effedive
and how the design evolved through a careful process of iteraive design. In particular, we
described two fundamental dements of the system: (@) the SE-Coach interface that provides
spedfic tools to stimulate and sceffold self-explanation and (b) the SE-Coach’s advice which
uses the assesament of a probabilistic student modd to dicit sdf-explanations that can improve
the students’ example understanding. We conclude by discusdng the results of a forma study to
test the usabilit y and effedivenessof the system.

Log data from the study indicate that the SE-Coach’s interface is easy to use, and that both
the interface and the SE-Coach’s advice are generaly succesdul in stimulating self-explanation.
The analysis of data on students' learning provide interesting initial insights on the educationdl
effediveness of the SE-Coach and on support for sdf-explanation. The results suggest that
structured scaffolding of self-explanation can be more beneficid at ealy leaning stages, while
as gudents become more proficient in the subjed matter, even simpler forms of prompting can
succesdully trigger sdf-explanation. Further studies to confirm these findings should be
performed in a classoom setting, where it is easier to control when students use the system.
These studies would cortribute to understanding how much prompting and scdfolding is
necessry to effedively dicit sdf-explanation. This issue is gill  under investigation in
Cognitive Science and is highly rdevant to understand what level of sophistication is worth the
eff ort when devel oping a tutoring system that supports self-explanation.

In principle, the framework underlying the SE-Coach is general enough to support self-
explanation in any domain in which problem solving can be formaized as a rule-based
cognitive modd of the solution process (e.g., math, statistics, geometry, programming, medical
diagnosis, troubleshooting). In practice generating the cognitive model for a new domain can
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be very labour intensive, as very labour intensive @n be to calibrate the parameters for the

probabilistic student model. Do the flexibility and adaptability that these mmponents provide

justify their cost? The results that we have presented provide an initial indication that they do, at

least in catain leaning stages. We plan to seek further evidenceby:

e comparing versions of the SE-Coach with and without feedbadk for correctness to
understand what are the benefits of this feedback for learning.

* comparing versions of the SE-Coach with and without the student model, to evaluate the
benefits of targeting the SE-Coach interventions to the students' needs versus making the
students generate all the self-explanations relevant to an example.

Another issue that we plan to explore is the role of the masking interface in the sdf-
explanation process. As we discussed in the paper, most of our pilot subjeds reported that the
masking interface not only did not bother them, but helped them study the ecamples more
carefully. But, of course, these subjedive opinions do nd provide formal evidence that the
masking interface does not interfere with learning. As a matter of fact, we bdieve that the
masking interface does interfere with learning for some students. Therefore, we ae exploring
the posgbility of using eye-tracking to monitor students’ attention, given that this technology
is becoming increasingly acaurate and non-invasive. We plan to perform studies to understand
what types of learners benefit more from the interface that uses eye-tracking and what learners
benefit more from the alditiond scaffolding provided by the masking interface to dynamically
adapt the interaction mode to the learner type.
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