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We present a computational framework designed to improve learning from examples by 

supporting self-explanation – the process of clarifying and making more complete to oneself the 
solution of an example. The framework is innovative in two ways. First, it represents the first 
attempt to provide computer support to example studying instead of problem solving. Second, it 
explicitly coaches a domain-general, meta-cognitive skill that many studies in cognitive science 
have shown to greatly improve learning.   

The framework includes solutions to three main problems: (1) to design an interface that 
effectively monitors and supports self-explanation; (2) to devise a student model that allows the 
assessment of example understanding from reading and self-explanation actions; (3) to 
effectively elicit further self-explanation that improves student’s example understanding.  In this 
paper, we describe how these solutions have been implemented in a computer tutor that coaches 
self-explanation within Andes, a tutoring system for  Newtonian physics. We also present the 
results of a formal study to evaluate the usability and effectiveness of the system. Finally, we 
discuss some hypotheses to explain the obtained results, based on the analysis of the data 
collected during the study. 

INTRODUCTION 

Research on Intell igent Tutoring Systems (ITS) has been increasingly affecting education. 
While for many years ITS remained confined to research labs, today they have started moving 
into the classroom, showing their effectiveness for learning and influencing the structure of 
traditional curricula (Koedinger, Anderson, H., & Mark, 1995). However, existing ITS stil l 
target only a l imited part of the learning process. They  generally focus on teaching problem 
solving and domain specific cognitive skil ls. 

The long-term goal of our research is to explore innovative ways in which computers  can 
enhance education by covering other learning phases and by helping students acquire meta-
cognitive, domain independent learning skill s. In this paper, we describe our first step in this 
direction: a computational framework designed to support learning from examples and the meta-
cognitive skil l known as self-explanation – generating explanations to oneself to clarify an 
example’s worked out solution.  

Effectively learning from examples is important because students heavily rely on examples 
when learning a new skil l (Anderson et al. 1981, Pirolli & Anderson 1985, LeFevre & Dixon 
1986, VanLehn 1986). However, the benefits of learning from examples  strongly depends on 
how students study them. Several studies in cognitive science show that students who 
spontaneously self-explain when they study examples learn more (Chi, Bassok, Lewis, 



390 

Reimann, & Glaser, 1989; Ferguson-Hessler & Jong, 1990; Piroll i & Recker, 1994; Renkl, 
1997; Renkl, Stark, Gruber, & Mandl, 1998). Furthermore, self-explanations are usually more 
effective than explanations provided by others, because (Chi, in press) 

• they trigger more constructive learning processes, by requiring students to bring to bear 
and actively elaborate their existing knowledge, and 

• students initiate self-explanations to address their specific problems  in  understanding 
the example, while often external explanations are not tailored to a student’ s individual 
needs. 

The self-explanation studies also show that most students do not spontaneously self-explain. 
However, students start self-explaining more when they are guided (Bielaczyc, Pirolli , & 
Brown, 1995; Ryan, 1996) or even just prompted to do so (Chi, Leeuw, Chiu, & LaVancher, 
1994). These results suggest that it can be greatly beneficial to integrate computer-based support 
to problem solving with individualized guidance to learning from examples through self-
explanation.  

To provide this guidance, a computer tutor must be able to monitor students as they study 
examples and to elicit further self-explanation that can improve the students’ understanding. 
Two tasks apparently simple, but that entail additional challenges for the traditional ITS 
problems: user interface design, student modelli ng and providing adequate help. 

• User interface design. In previous studies, example studying and self-explanation 
consisted of reading and speaking. How  can we devise  an interface that monitors 
students’ attention and allows them to constructively generate their self-explanations, 
given that eye-tracking technology and natural language processing are still not 
powerful and reliable enough to be readily usable in non-laboratory setting?  

• Student modell ing. To model a student during example studying requires assessing how 
well the student understands the example and learns from it. How can we perform this 
assessment by relying on actions like reading and self-explaining, that are largely 
ambiguous and have less direct correspondence to example understanding than problem 
solving actions have to problem solutions?  

• Providing adequate help. One of the benefits of self-explanation comes from the fact 
that spontaneous self-explainers selectively generate self-explanations to target their 
specific learning needs. How can a computer tutor decide what further self-explanations 
can be more beneficial for those students that do not spontaneously self-explain? When 
and how should the tutor elicit these self-explanations from those students that are 
naturally reluctant to self-explain? 

Our framework to support self-explanation, know as the SE (Self-Explanation)-Coach, 
includes solutions to these problems. The solutions are grounded in existing hypotheses of what 
are the salient features that make self-explanation effective for learning and are the result of a 
thorough process of iterative design.  The framework has been implemented and tested within 
Andes, a tutoring system for  Newtonian physics that supports students  during both example 
studying and problem solving (VanLehn, 1996). During example studying, the SE-Coach makes 
sure that students thoroughly self-explain the available examples, especially those parts of the 
solutions that may be challenging and novel to them. Figure 1 shows one of the SE-Coach 
examples, which reflects the structure of most examples presented in physics textbooks. 

The paper is structured as follows. After discussing related work, we describe the cognitive 
science findings that provide the theoretical justification for the SE-Coach’s design. Then, we 
il lustrate the SE-Coach’s architecture and the knowledge representation underlying the system’s    
expertise on self-explanation. Next, we describe the menu-based interface that monitors 
students’ attention and provides structured prompting and scaffolding for self-explanation. We 
then give an brief overview of the SE-Coach’s student model, based on the probabil istic 
reasoning framework of Bayesian network (Pearl, 1988) and we ill ustrate how the SE-Coach 
uses the model to elicit further self-explanations that improve example understanding. Finally, 
we discuss the results of a formal study that we performed to evaluate the SE-Coach usabil ity 
and effectiveness for learning.    
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Figure 1: A sample phisics example and its components  

RELATED WORK 

Using explanations to enhance learning has been a prominent research topic in the ITS 
community. Most of the work on this subject has focused on how to enable a computer tutor to 
generate explanations that can facilitate the students’ learning (Clancey, 1990; Moore, 1996; 
Moore, Lemaire, & Rosenblum, 1996; Vivet, 1987; Woltz, McKeown, & Kaiser, 1990). More 
recently, researchers  have started investigating computer tools that support learning by 
facili tating the exchange of explanations among peers (Baker, 1999; Ploetzner & Fehse, 1998). 
Although this research, li ke ours, aims to trigger learning by bringing the students to generate 
active explanations on the target instructional material, it focuses on a different instructional 
setting: learning through collaboration with peers. In contrast, the work presented in this paper 
focuses on how to help students generate  and learn from explanations when there are no peers 
to stimulate and validate the process. Supporting self-explanation is important not only because 
learning with peers is not always feasible, but also because self-explanation has two main 
pedagogical differences from generating explanations for others. First, when self-explaining, 
learners can target specific problems in their understanding rather then having to concentrate on 
what is unclear to someone else. Second, when self-explaining, learners do not need to  worry 
about phrasing the explanations properly, and can therefore concentrate on the explanation 
content. These differences do not imply that self-explanation is better than explaining to others. 
They simply contribute to make self-explanation a different meta-cognitive skill , that can be 
useful at different learning stages and that improve a student’s general learning abilit y.  
Like the SE-Coach, other tutoring systems rely on examples as instructional means. However, 
most of these systems  use examples to support students as they solve problems, not as a 
specific learning phase prior and complementary to problem solving. ELM-PE (Burrow & 
Weber, 1996 ) and ELM-ART (Weber & Specht, 1997), allow the student to access relevant 
examples while solving LISP programming problems and provide explanations on how each 
example is relevant for the problem solution. SHERLOCK (Gott, Lesgold, & Kane, 1996), 
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provides expert solutions to troubleshooting problems, and helps students compare these 
solutions with their own solutions at the end of each problem solving task. CATO (Aleven & 
Ashley, 1997) helps students building legal arguments by generating relevant example cases and 
by reifying the connection between the content of the cases and their use in the arguments. 
Besides using examples in a different instructional situation, none of these systems tries to 
encourage students to view the examples, nor do they monitor how students study and 
understand them. Moreover, the systems themselves, rather than the students, generate 
elaborations on the presented examples.  

The Geometry Tutor (Aleven, Koedinger, & Cross, 1999) moves a step closer to the SE-
Coach. It explicitly encourages students to explain, in term of geometry axioms, the problem 
solving steps they have used to build a geometry proof. However, there are three main 
differences with the SE-Coach. First, the explanations are generated during problem solving. 
Second, an explanation with the Geometry Tutor consists simply of a selection from a l ist of 
geometry axioms. The student does not have to explain the axiom any further. Third, the tutor 
makes the students explain each solution step. It does not take into account the students’ 
knowledge or previous interactions with the system to evaluate if some explanations may be 
more beneficial than others for the students. 

PRINCIPLES UNDERLYING THE SE-COACH’S DESIGN  

Incremental suppor t to self-explanation 

Our framework for self-explanation is designed to provide incremental support to self-
explanation through different levels of prompting and scaffolding, embedded in the interface 
design and in the SE-Coach tutorial interventions. These different levels aim to help students 
with different self-explanation capabilit ies self-explain more, while maintaining as much as 
possible the spontaneous, constructive nature of this learning activity.  

On the one hand, there are arguments for giving students the initiative during self-
explanation. Self-explanation enables students to question and repair their understanding (Chi, 
in press), in ways that can be different across students and learning situations (Renkl, 1997). 
Moreover, students with good self-explanation and self-monitoring skill s often  can repair what 
they do not understand better  than teachers can, because teachers generally cannot diagnose as 
precisely the students’ comprehension problems. (Webb, 1989). These arguments call for an 
interface that leaves  much of the initiative to the student. 

On the other hand, there are arguments for giving the initiative to the Coach. Self-
explanation studies show that many students do not self-explain, for a variety of reasons.  
1. Many students are not good at self-monitoring when they study (Chi, in press; Chi et al., 

1989). They tend to overestimate their understanding of examples (Renkl, 1997) and 
therefore do not initiate self-explanations to improve it.  

2. Sometimes students are unable to use their domain or common-sense knowledge to generate 
meaningful self-explanations. This mainly happens when the examples are complex enough 
that most students are aware of having comprehension gaps, but still cannot generate self-
explanations that repair these gaps (Renkl, 1997). 

3. Even students that spontaneously engage in self-explanation do not always generate the 
kinds of explanations that are most useful for learning. For instance, explanations that relate 
steps in the example solution to goals in the underlying solution  plan generally help learn 
highly transferable knowledge (Catrambone, 1995; Pirolli & Recker, 1991; Renkl, 1997; 
Renkl et al., 1998). However, even spontaneous self-explainers tend to generate few goal-
oriented self-explanations (Renkl, 1997). 

The different levels of prompting and scaffolding in the SE-Coach are designed to 
accommodate the varied propensity and capabil ity to self-explain that different students have, so 
as to provide each student with the minimum intervention sufficient to trigger constructive and 
effective self-explanations. 
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Focus on correct self-explanation 

Our self-explanation framework includes the capabili ty of providing feedback for correctness on 
the students’ self-explanations. The issue of whether such feedback should be provided is 
controversial. In all the experiments on self-explanation, any statement that went beyond the 
information presented in the worked out solution was classified as self-explanation, be it correct 
or not. In the experiments in which human tutors guided self-explanation, the experimenters 
elicited additional clarifications from the students when their self-explanations were incomplete 
or incoherent, but did not give feedback on their correctness (Bielaczyc et al., 1995; Chi et al., 
1994). In all these experiments, students’ problem solving improved, leading some researches to 
argue that is the self-explanation process per se, and not the correctness of its outcome, that 
elicits learning (Chi, in press; Ryan, 1996). In particular, Chi (Chi, in press) argues that 
incorrect self-explanations are beneficial exactly because they create flaws in the student’s 
knowledge. These flaws may be later contradicted by other elements of the example, triggering 
self-explanations to fix the flaws and thus generating better learning.  

However, this argument applies only to students that can monitor their understanding and we 
know that these students are a minority. The other students may seldom detect the 
inconsistencies generated by their incorrect self-explanations. Immediate feedback on self-
explanation correctness protects these students from learning wrong knowledge from incorrect  
self-explanation, and simply makes the other students detect the conflict sooner than they would 
on their own. Thus, although we believe that even incorrect and incomplete self-explanations 
can improve learning, we agree with (Renkl et al., 1998) that helping students generate more 
correct self-explanation can extend these benefits.  

Focus on  domain-based self- explanation 

In order to provide feedback for correctness, the SE-Coach needs to have an internal 
representation of the relevant, correct self-explanations that can be generated for each available 
example. It would be unfeasible to encode these explanations by hand, especially because we 
ultimately want to allow instructors to easily extend the set of available examples on their own. 
Thus, we identified in the literature two types of self-explanations that can be automatically 
formalised in a computational model, given a rule based representation of the underlying 
domain knowledge.  These types   are: 
a) Justifying a solution step in terms of the domain theory, and 

b) Relating solution steps to goals in the abstract plan underlying the example  solution.  

These self-explanations have been shown to highly correlate with learning and were 
common across the different instructional domains investigated in the self-explanation 
experiments (physics, statistics, programming, physiology of the human circulatory systems). 
We label these self-explanations “domain-based” because they involve relating example steps to 
the target domain knowledge, as opposed to self-explanations that involve common sense 
knowledge. Common-sense based self-explanations also seem to play an important role in 
learning from examples (Chi & VanLehn, 1991; Chi et al., 1994; Bielaczyc et al., 1995; Ryan, 
1996). Currently, the SE-Coach cannot support these self-explanations, because doing so would 
require a natural language interface and much more complex domain and student models. 
However, even if the SE-Coach cannot explicitly guide common-sense based explanations, 
hopefully it does not prevent the students from generating them spontaneously. 

Pr incipled design of inter face tools to support self-explanation 

After identifying the kinds of self-explanations that the SE-Coach could support, we had to 
understand which interface could help students generate them. Since using natural language 
input was unfeasible, we needed menu-based tools that could stil l allow the students to generate 
their self-explanations as naturally and constructively as possible. (Chi et al., 1989) analysed the 
form of students’ spontaneous self-explanations and identified two forms that were highly used: 
(1) expanding or refining the preconditions of a solution step and (2) explicating and inferring 
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additional consequences of a step. Hence, we have designed menu-based tools that scaffold self-
explanations with these forms. The SE-Coach’s menu-based tools allow students to justify a 
solution step by describing the domain rule from which the step derives, in terms of (i) the 
preconditions that must be verified to apply the rule; (ii ) the results that the rule application 
generates. This description in terms of preconditions and consequences reflects the SE-Coach’s 
rule-based domain representation, and allows the system to provide feedback for correctness 
based on this representation.  

A student model to guide the SE-Coach interventions  

The self-explanation interface is a scaffolding tool meant to encourage students to 
spontaneously self-explain. However, a framework to support self-explanation must be able to 
provide stronger interventions to help those students who are not receptive to the interface 
scaffolding.  

One way to provide this stronger scaffolding could be to make the students use the interface 
tools to self-explain every example part. This strategy may possibly work with students that 
never self-explain, but would end up suggesting redundant self-explanations to the others. This 
could have negative influence on the students’ motivation and trust in the system’s 
effectiveness, reducing the likelihood that students would follow the SE-Coach’s suggestions. 
Therefore, it is particularly important that the SE-Coach generates tutorial interventions that the 
student can perceive as relevant and useful for learning.  

The SE-Coach’s student model is designed to assess when students are spontaneously self-
explaining without using the interface tools, in order to avoid burdening students with requests 
of self-explanations that they have already generated. It also assesses self-explanations 
generated through the interface tools and uses its assessment to detect gaps in the student’s 
example understanding. The SE-Coach focuses its interventions on eliciting further self-
explanation that fil ls these gaps, as students that are natural self-explainers do.  

THE SE-COACH’S ARCHITECTURE 
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Figure 2: SE-Coach’s architecture  

As we mentioned in the introduction, the SE-Coach has been implemented within the Andes 
tutoring system for physics (VanLehn, 1996). Figure 2 shows the SE-Coach’s architecture. Prior 
to run time (left side of Figure 2), an author creates both the graphical description of the 
example and the corresponding coded definition of the example statement. A Problem Solver 
uses this definition and the set of physics and planning rules representing Andes’ domain 
knowledge to automatically generate a model of correct self-explanation for the example 
solution. The model is a dependency network that encodes explanations in terms of how 
intermediate goals and facts in the example solution are derived from physics and planning 
rules.  
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    At run-time, students use the SE-Coach’s interface to interactively study examples and 
generate self-explanations. The interface sends the student’s explanations to the Help module, 
which tries to match them with elements of the self-explanation  model and provides immediate 
feedback as to whether the explanations are correct or incorrect.  The student’s interface actions 
are also sent to the Assessor module,  that uses them to update the SE-Coach’s student model. 
The student model is a Bayesian network (Pearl, 1988) that integrates information on (i) the 
student’s actions, (ii ) the model of correct self-explanation and (i ii ) the student’s domain 
knowledge (encoded in Andes’ long term student model) to assess the student’s understanding 
of the example. The SE-Coach’s help refers to the student model to make decisions about what 
further self-explanations to elicit from the student. 

THE M ODEL OF CORRECT SELF-EXPL ANATION 

The model of correct self-explanation (SE model from now on) is the core structure of the SE-
Coach’s expertise. This model encodes the knowledge to provide feedback on student’s self-
explanations, it is used in the student model to assess how the students’ self-explanations reflect 
example understanding and it guides  the SE-Coach’s tutorial interventions. 

A Problem Solver automatically generates an SE model  for each new example added to the 
SE-Coach’s set, starting from Andes rules and from a coded definition of the example problem 
statement (see Figure 2).  

 R-body-by-force 
If  there is a goal to select a body for Newton’s 2nd law 
and  the problem goal is to find a force on an object 
then  select as body the object to which the force is applied 

R-goal-choose-body 
If  there is a goal to try Newton’ s second law 
then  set the goal to select a body to which 
to apply the law 

R-try-Newton-2law 
If  the problem goal is to find a force 
then  set the goal to try Newton second 
Law to solve the problem 

 

Figure 3:  sample rules in the Andes’ knowledge base. 

Andes' rules are based on the representation used by Cascade (VanLehn, Jones, & Chi, 
1992), a cognitive model of learning through self-explanation of Newtonian physics examples. 
Andes’ rules have been developed in collaboration with three physics professors at the U.S. 
Naval Academy, the domain experts for the Andes project. The rules represent qualitative and 
quantitative physics knowledge sufficient to solve Newtonian physics problems (see Figure 3, 
top box, for a sample physics rule). They also represent planning knowledge encoding the 
abstract planning steps that an expert might use to solve these problems (see Figure 3, center 
and bottom box, for sample planning rules). Thus, the Problem Solver produces a hierarchical 
dependency network that encodes how an example solution’s quali tative results and equations 
derive from physics rules, along with the abstract plan underlying the solution. 

To generate the SE model, the Problem Solver starts with (i) a set of facts describing the 
example initial situation; (ii) one or more goal statements that identify the example sought 
quantities.  From the initial set of facts and goals, the Problem Solver begins applying rules in 
the knowledge base, generating new sub-goals and facts unti l it finds all the unknown quantities 
necessary to compute the example sought quantities. For instance, consider the segment of SE 
model shown in Figure 4, which relates to the example in Figure 1. The Problem Solver starts 
with the top-level goal of finding the value of  the force on Jake (node G-force-on-Jake in 
Figure 4).  From this, it applies the rule R-try-newton-2law (defined in Figure 3) and forms the 
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sub-goal of using Newton's second law to find the desired force (node G-try-newton-2law in 
Figure 4). 

Next, it applies the two rules R-goal-choose-body (shown Figure 3) and  R-find-forces to 
generate the two sub-goals G-goal-choose-body and G-find-forces, corresponding to two first 
level goals in the plan to apply Newton's second law. When the problem solving terminates, the 
outcome is a partially ordered network of goals and intermediate results (or facts) leading from 
the top-level goal to a set of equations that are sufficient to solve for the sought quantity, the 
magnitude of the force on Jake. Figure 4 shows the section of the SE model up to the 
application of the rule R-body-by-force, that selects Jake as the body to which apply Newton’s 
law (node F-Jake-is-the-body) and of the rule R-tension exists, that identifies the existance of a 
tension force on Jake (node F-tension-on-Jake). 

 

Rule R 

Fact/Goal = Proposition F / G 

Rule Application RA 

The heli copter’s rope exterts 
a tension force T on Jake. 

R  -try-Newton-2law 

F- Jake-is-the- body 

R -goal- choose-body 

R - body-by-force 

RA -goal-choose-body 

RA -body-by-force 

G -goal-choose-body 

G -force-on-Jake 

G -try-Newton-2law 

RA -try-Newton-2law F- hangs-from-rope 

G -find-forces 

F- tension-on-Jake 

RA -find-forces 

RA -tension-exists 

R -tension-exists 

R -find-forces 

Find the force exerted 
on Jake by the rope. 

To solve this problem, we 
choose Jake as the body. 

 
Figure 4: segment of SE model for the partial example solution on the left 

Every element of the example statement, worked-out solution and graphics corresponds to a 
fact  or goal (proposition) node in the SE model (proposition nodes are labelled with a “F-“ or 
“G-“ prefix in Figure 4). However,  the SE model can contain proposition nodes that do not 
correspond to any element  in the example text, if the example leaves out some details of the 
solution derivation. For instance, only the shaded proposition nodes in Figure 4 (G-force-on-
Jake, F-hangs-from-rope, F-Jake-is-the-body and F-tension-on-Jake) correspond to steps 
explicitly expressed in the example solution shown on the left of the figure.  

Links in the dependency network encode how each proposition node derives from physics 
and planning rules (nodes labelled with the “R-“ prefix in Figure 4) and from the proposition 
nodes that match the rules’ preconditions. Derivations of proposition nodes from rules and other 
propositions are explicitly encoded in the network by rule-application nodes (labelled with the 
“RA-“ prefix in Figure 4). These derivations correspond exactly to the explanations that the SE-
Coach targets: 

• How solution steps can be justified in term of physics principles. 

• What goal each solution step accomplishes in the plan underlying the example solution.  

Hence, the dependency network provides a model of correct self-explanation that the SE-Coach 
can use to evaluate the student’s explanations and to decide what further explanations can 
improve the student’s understanding. The model is  similar in nature to the rule-based domain 
(or expert) models that  other intelligent tutoring systems use to support students during 
problem solving (Anderson, Corbett, Koedinger, & Pelletier, 1995; Clancey, 1990; Gertner, 
Conati, & VanLehn, 1998). However, because the model explicitly distinguishes between rules 
encoding domain knowledge and rules encoding planning knowledge, and because it explicitly 
represents the application of these rules as nodes in the dependency network , the model is 
especially suitable to represent and monitor the generation of the self-explanations that the SE-
Coach targets, as we will see in the next sections. 
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THE SE-COACH’S INTERFACE  

As we discussed earlier, the SE-Coach provides incremental support to self-explanation 
through different levels of scaffolding. Three of these levels are embedded in the interface 
design, described in this section. A fourth level is provided by the SE-Coach’s tutorial 
interventions, as we ill ustrate in the next section. 

Attention monitor ing and control 

The first level of scaffolding in the SE-Coach’s interface is provided by a masking 
mechanism that presents different parts of the example covered by grey boxes, each 
corresponding to a “unit” of information (see Figure 5). When the student moves the mouse 
over a box, it disappears, revealing the text or graphics under it. While reading a line in the 
textual part of the example solution, the student can refer back to the situation diagram or to the 
free body diagram by clicking on the left or right mouse button respectively. Figure 5 shows 
how the example in Figure 1 looks in the masking interface, when the student moves the mouse 
over the second solution line and clicks to uncover the free body diagram. 

 

 

Figure 5: example in Figure 1 presented with the masking interface 

The masking interface allows the SE-Coach to track what the student is looking at, and for 
how long. When a new example is added to the SE-Coach, each item in the masking interface is 
linked to the corresponding proposition node in the SE model. These links allow the SE-Coach 
to attach information on student attention directly onto components of the SE model. This 
information is one of the parameters the SE Coach uses to assess whether and what the student 
is self-explaining, as we will see in the next session. The mapping between interface items and 
SE model nodes can be many-to-one, because different items can encode the same fact or goal 
(like, for instance, the Free Body Diagram  object labelled as “Jake” and the uncovered l ine “we 
choose Jake as the body…” in Figure 5). The many-to-one mapping allows the SE-Coach to 
recognise example parts that call for the same explanation and to avoid eliciting redundant 
explanations from the students.  

The masking interface is a relatively simple way to obtain information on students’ attention, 
without using complex eye tracking devices. However, we were afraid that this unusual way of 
presenting examples could interfere with reading and understanding them. Thus,  we performed 
a pilot evaluation of the masking interface at an early stage of the system design. Besides 
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verifying the usability of the masking interface, the evaluation aimed to compare it with an 
alternative design in which the example parts were faded instead of masked  

Ten first year college students studied one example with the masking interface and a second 
example with the faded interface. We alternated what interface we showed first, to avoid 
presentation bias.  Then, we asked the students to choose between the two interfaces to study a 
third example. Six students chose the faded interface and four the masked interface, but almost 
all students found the two interfaces fairly equivalent. Furthermore, not only were none of the 
students annoyed by the fact the example parts had to be explicitly uncovered. Most students 
said that both interfaces helped them study the examples more carefully, because they 
encouraged them to focus on a single item at a time. Thus, in addition to tracking students’ 
attention, the masking interface provides a first level of scaffolding to increase students’ self-
explanation. 

Since the students did not seem to strongly prefer one interface over the other, we kept the 
masking one, because it is quite diff icult to adjust the faded interface so that a student can 
identify the different parts of an example without reading their content. Furthermore, the right 
contrast changes in monitors with different resolution, making it impossible to find a setting that 
works in all situations. We continued to probe the students’ attitude toward the masking 
interface throughout the successive evaluations of the system, which confirmed the students’ 
positive reaction to the interface. The only criticism that some students had concerned not being 
able to see more than one line at a time when reading long algebraic derivations. To fix this 
problem, we modified the interface so that students can uncover up to three lines at a time, by 
pressing the control key as they move the mouse over the lines that they want to see at once. 

Prompts to self-explain 

The second level of scaffolding is provided by  the SE-Coach’s interface through specific 
prompts to self-explain. Whenever the student unmasks a piece of the example, if i t contains an 
idea worthy of explanation the interface will append a button labelled “self-explain” .  Pressing 
the button produces simple prompts to initiate self-explanations in terms of domain principles 
(e.g., “ this choice is correct because…” ) and abstract solution plan (e.g., “ the role of this 
choice in the solution plan is to…” ).  
 

(A )

(B)

 

Figure 6: SE-Coach prompts to self-explain 

Figure 6 shows the different prompts associated with the second and third line of the 
example solution in Figure 5. These prompts are designed to elicit self-explanation by 
stimulating self-questioning (Webb, 1989). Self-questioning seems to be an effective approach 
to counteract the students’ tendency to overestimate their example understanding, because it 
leads the students to (a) ask themselves questions that target important but possibly problematic 
knowledge about the example; (b) initiate self-explanation actions if they cannot answer these 
questions (Chi, in press; Webb, 1989). In particular, by having prompts that trigger plan-related 
questions, the SE-Coach should stimulate students to generate a type of self-explanation that, as 
we discussed earlier, is especially unnatural to them but extremely useful for learning.  
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Interface tools to generate self-explanations 

The third level of scaffolding in the SE-Coach interface consists of menu-based tools that 
provide constructive but controllable ways to generate the desired self-explanations. These tools 
aim  to help those students that would otherwise be unable to self-explain effectively, even if 
they realize their need to do so (Renkl, 1997).  

If a student selects the first choice in the prompting menus shown in Figure 6, a Rule 
Browser is displayed in the right column of the window (see Figure 7). If the student selects the 
second choice in the prompting menus, then a Plan Browser is displayed (see Figure 10). The 
next subsections describe how the interaction proceeds in the two cases. 

The Rule Browser 

The Rule Browser (see Figure 7) contains all the system’s physics rules, organized in a tree 
structure similar to the Windows file system, so that clicking on the + and − buttons reveals and 
hides subtrees of the hierarchy.  Using this famili ar interface, the student finds and selects a rule 
that she thinks justifies the currently uncovered example item. 

If the student then presses the “submit” button at the bottom of the Browser, the SE-Coach 
wil l provide feedback to indicate whether the selected rule is the one that explains the 
uncovered unit of information.  

Help System

SE Model

G-force-on-Jake

F-Jake-is-the-body

RA-body-by-force

R-body-by-force

G-goal-choose-body

 

Figure 7: The Rule Browser  

Consider the situation in Figure 7, in which the student activates the Rule Browser to self-
explain the second solution line and selects the correct rule (marked with a checkmark) after 
selecting an incorrect one (marked with a cross). To provide feedback on the student’s selection, 
the SE-Coach: 
1) retrieves in the SE model for the current example the proposition node corresponding to the 

uncovered example part (in this case, the shaded proposition node in  Figure 7). 

2) Finds the closest rule node among the ancestors of the proposition node (the node R-body-
by-force in Figure 7) and  checks if it corresponds to the rule that the student selected. 

A green checkmark wil l appear beside the Rule Browser selection if the rule is correct, a red 
cross wil l appear otherwise (see Figure 7).  
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The SE-Coach does not provide additional help besides red/green feedback. This avoids 
interfering with what is considered the key factor that makes self-explanation  effective for 
learning: that to generate their self-explanations  the students elaborate the available material 
and knowledge by themselves (Chi, in press). Thus, when a wrong rule is selected, the only way 
for the student to correct the mistake is to keep browsing the hierarchy until the correct rule is 
found. For this reason, the organization of rule names in the Browser is crucial to make the 
search for the correct rule a thought provoking activity, instead of a frustrating one that may 
result in the student clicking exhaustively  on all the entries. 

The current organization of the rule hierarchy is the result of successive evaluations with 
pilot subjects, which helped reduce the amount of floundering observed in the first versions of 
the Browser. A quite interesting behavior that surfaced during these evaluations is that most 
students did not try to click on rule names randomly when they got stuck. Rather, when they 
could not find plausible candidates in the category that they had expanded they would stop, 
without even trying to browse other parts of the hierarchy. We repeatedly changed the 
categories’ names and arrangement to maximize the chance that students immediately enter the 
right part of the hierarchy. We also provided cross-references for rules that could plausibly 
belong to different categories, such as the rule encoding the definition of Net Force, which 
rightfully belongs to the category Newton’s Second Law, but that students often tried to find in 
the category Describing Forces (see Figure 7). 

Feedback from the pilot evaluations suggested another important modification to the original 
interface design: the possibil i ty to go back and browse through the example while using the 
Rule Browser (or any other tool for self-explanation). In the original design, this was not 
allowed, and many pilot subjects complained that they needed to review the example solution in 
order to complete their self-explanations with an interface tool. In the current interface, while 
any of  the interface tools is open, the student can sti ll  uncover other parts of the example, 
beside the one for which self-explanation was initiated. The part that is currently explained turns 
pink, to remind the student of what is the current focus of self-explanation. 

The Rule Templates 

 

 

Figure 8: Rule Templates 

The Rule Browser lists only rule names, and most students wil l need to know more about a rule 
before they can be sure that it is the explanation they want. To explain more about a rule, the 
student can click on the “Template” button at the bottom of the Rule Browser (Figure 7). 

A dialog box comes up, with a partial definition of the rule that has blanks for the student to 
fil l in (see Figure 8). The definition is in terms of the preconditions that need to be verified for 
the rule to be applied and of the consequences that the application of the rule generates. The 
Templates design reflects how rules are represented in the Andes knowledge base. As we 
discussed previously, this design aims to scaffold self-explanations of the forms that are most 
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frequent in students’ spontaneous self-explanations: (i) refine and expand the preconditions of  
an action  and (i i) explicate and infer additional consequences of an action. 

Clicking on a blank in a Template brings up a menu of possible fi llers (See right template in 
Figure 8).  After completing a Template, the student can select “submit” to get immediate 
feedback. The SE-Coach retrieves the definition of the corresponding rule from the Andes’ 
knowledge base and uses it to verify the correctness of the student’s selections, by matching the 
rule preconditions and consequences with the fill ers that the student chose (see Figure 9).  

Each template in the interface reflects the content of a physics rule in the knowledge base, 
and it is associated to that rule, not to a specific example line. Therefore, adding a new example 
to the SE-Coach’s set does not require defining new Templates, as long as the example solution 
involves only knowledge already encoded in Andes’ rules. 

As with the Rule Browser, pilot evaluations were fundamental to improve the usabil ity of 
Templates. For instance, we discovered that students tended to ignore template fi llers that were 
too verbose, even when they were the obviously correct choices. Also, when the list of possible 
fil lers is too long, students seldom  read the items at the bottom, especially if they find a 
plausible fi ller earlier in the list. The pilot evaluations also showed that if students are given the 
choice of accessing a Template or not, they tend not to do it. In the first version of the system 
(Conati, Larkin, & VanLehn, 1997), once a correct rule was selected the student could click on a  
Done button and quit without fil l ing a template. When this option was available, most students 
never accessed Templates. When asked why, they said that they did not remember what a 
Template was, although the experimenter had extensively explained the interface at the 
beginning of the evaluation session. The simple change of giving only the Template choice after 
rule selection (see Figure 7), increased the percentage of students that fil led Templates, despite 
the fact that students could still close a Template without fil ling it, by clicking on the Cancel 
button at the bottom of the dialogue box  (see Figure 8). 
 
 

R-body-by-force 
If  there is a goal to select a body to  apply Newton’s 2nd law 
and   the problem goal is to find  the force on an object 
then  select as body the object to which the force is applied 

r -tension-exists 
If  there is a goal to find all forces on a body 
and   the body is    t ied to a string 
and   the string   is taut 
then  there is a tension force on the object, 
         exerted by    the string 

 
Figure 9: verifying Template correctness by using Andes rules 

The Plan Browser 

If the student selects the second item in the prompting menus, (e.g., “The role of this choice in 
the solution plan is....”  in Figure 6a),  then the interface displays a Plan Browser instead of a 
Rule Browser.  The Plan Browser is similar to the Rule Browser, but it displays a hierarchical 
tree representing the solution plan for a particular example, instead of SE-Coach’s physics rules. 
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For instance, Figure 10 shows the Plan Browser for the ‘boy-hanging-from-an-helicopter’ 
examples, which displays the plan to apply Newton’s Second Law (Reif, 1995). To explain the 
role of the uncovered fact in the solution plan, the student navigates through the goal hierarchy 
and selects a sub-goal that most closely motivates the fact. Pressing a “submit” button causes 
the SE-Coach to give immediate feedback. To provide this feedback,  the SE-Coach retrieves 
the proposition node corresponding to the uncovered l ine. If the proposition node encodes a 
goal, the feedback algorithm works l ike the one for the Rule Browser. If the proposition node 
encodes a fact, as the shaded node in Figure 10 does, the feedback algorithm  
1. retrieves the goal node that is the most immediate ancestor of that fact (node G-find-forces 

in Figure 10).  

2. retrieves the rule node that generates that goal node (node R-find-forces in Figure 10).  

This rule node, which represents a planning rule, is then used to verify the correctness of the 
student’s selection. 

There are no Templates associated with the Plan Browser, because they would simply spell 
out information on the plan structure already encoded in the Browser hierarchy (e.g., If the goal 
is to apply Newton’s law and we have selected a body, then the next subgoal is to describe the 
properties of this body. 

 

hangs-from-r ope 

G -try-Newton-2law 

F- 

G -find-for ces 

F-tension-on-jake 

RA -find-for ces 

RA  -tension-exists 

R -tension-exists 

R -find-for ces 

Help System 

Figure 10: selections in the Plan Browser 

SE-COACH’S ADVICE 

As we have seen in the previous section, the SE-Coach’s interface provides three different 
levels of scaffolding for self-explanation, implicit in its design. A forth, more explicit level of 
scaffolding is provided by the SE-Coach’s advice.  
     Initially, self-explanation is voluntary.  The student is free to decide what self-explanations 
to initiate with the interface tools, and the SE-Coach limits its intervention to providing 
feedback. However, the SE-Coach keeps track of the students’ progress through the example, 
including how much time they looked at a solution item and what they chose to self-explain via 
the interface tools. This information is collected in the SE-Coach’s student model, which 
assesses what parts of the example may benefit from further self-explanation. When the student 
tries to close the example, the SE-Coach generates tutorial interventions to make the student 
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self-explain these parts. In this section, we briefly describe how the student model generate its 
assessment and then we ill ustrate the tutorial interaction that this assessment supports. More 
detailed information on the structure and functioning of the student model can be found in 
(Conati & VanLehn, To appear). 

The SE-Coach’s student model 

Modelli ng a student during example studying involves a great deal of uncertainty, because the 
reading and self-explanation actions the model has access to provide only indirect evidence on 
what the student actually reads and learns.  To handle this uncertainty in a principled way, the 
SE-Coach student model relies on the Bayesian network framework for probabilistic reasoning 
(Pearl, 1988). 

The student model Bayesian network is buil t automatically when the student opens a 
new example. Figure 11 summarizes this process. The structure of the Bayesian network derives 
directly from the structure of the SE-Model. The network parameters derive from probabili ties 
describing the student’ s physics knowledge and studying style, maintained in the Andes’ long 
term student model. These probabili ties provide priors for rule nodes and parameters that 
automatically define the conditional probabilit ies in the network. (Conati & VanLehn, To 
appear).  

 
   

Initial BNet   

Prior probabili ties for all rules   
and studying style   

Andes’ long term student model   :   

Assessor 
  

     Model of correct  self - explanation   

Student interface actions   

Updated BNet   
Probabilities assessing   
example understanding   

&   
knowledge changes   

Assessor 

SE - Coach   
hints   

Low 

  
  

probabil ities   

 

Figure 11: Automatic construction of the student model Bayesian Network. 

     As students perform reading and self-explanation actions, the initial Bayesian network is 
updated with nodes and conditional probabiliti es  representing how these actions influence the 
probabil ity that the student is self-explaining different example components. Nodes representing 
reading actions directly influence the probabil ity that the student is self-explaining derivations 
(rule-application nodes) in the SE model. Nodes representing self-explanation actions 
performed through the interface tools influence the probabili ty that the student knows the 
corresponding physics and planning rules. Thus, at any time during the student’s interaction 
with the SE-Coach, the probabil ities in the Bayesian network assess how the student’ s 
knowledge and example understanding change as a consequence of the student’s actions. In 
particular, the probabil ities associated with rule-application nodes represent the probabil ity that 
the student has correctly self-explained the corresponding derivations. Rule-application nodes 
with probabil ity below a given threshold become the target of the SE-Coach interventions.  

A key feature of the SE-Coach student model is that students do not have to use the interface 
tools to have their self-explanations acknowledged. If a student spends enough time viewing a 
solution item and if, according to the model, the student has sufficient knowledge to self-explain 
that item, the model will predict that the student very l ikely self-explained the item correctly 
(Conati & VanLehn, To appear). Asking students to always use the interface tools to make their 
explanations explicit would allow more accurate assessment, but may also burden the students 
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who are natural self-explainers with unnecessary work, possibly compromising their motivation 
to use the system. 

When a student closes an example, the new probabil ities that rule nodes reached during the 
student  interaction with the systems are used to update Andes’ long term student model. These 
probabil ities wil l affect all the subsequent example studying and problem solving interactions of 
this student with Andes.  

The SE-Coach’s interventions 

As we mentioned at the beginning of this section, while a student studies an example self-
explanation is voluntary. However, if a student tries to close the example when the student 
model indicates that there are stil l some lines left to self-explain, then the SE-Coach wil l tell the 
student: 

“You may learn more by self-explaining further items. These items are indicated by pink 
covers” . 
and colors some of the boxes pink (dark grey in Figure 12) instead of grey. It also attaches to 
each item a more specific prompt such as “Self-explain with the Rule Browser” , “ Self-explain 
with both the Rule and the Plan Browser” or “Read more carefully” , depending on what self-
explanation the student model predicts to be missing for that item. The more specific prompt 
appears in place of the simple self-explain button when the item is uncovered (see Figure 12). 
The color of the boxes and the related messages change dynamically as the student performs 
more reading and self-explanation actions that change the probabili ties of the corresponding 
nodes in the student model. If the student tries to close the example when there are still some 
pink covers left, the SE-Coach generates a warning such as “There are stil l some items that you 
could self-explain. Are you sure you want to exit?” , but it lets the student quit if the student 
wants to. 

 

 

 

Figure 12: SE-Coach interventions to elicit further self-explanation   

As we discussed earlier, one of the challenges of designing the SE-Coach tutorial 
interventions is that they must motivate to self-explain students that have low propensity to do 
so. Pilot evaluations were fundamental to find an effective modality of intervention for the SE-
Coach. In the original version of the system (Conati et al., 1997), the SE-Coach would point out 
lines that required self-explanations one at a time, instead of indicating them all at once by 
changing their color. When the student tried to close the example, the SE-Coach would generate 
a first, generic warning  such as “There are sti ll some items that you could self-explain. Do you 
want to try?” The student could either (a) reject the advice, (b) accept it and go back to study 
the example without any further indication of what to self-explain, (c) ask for more specific 
hints. If the student chose the latter, the SE-Coach would say, for instance, “Why don’ t you try 
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to use the Rule Browser to explain this l ine?” , and it would uncover the l ine. At this point, the 
student would go back to the example, and possibly explain the  line as indicated, but the only 
way for the student to get additional suggestions from the Coach would be to try and close the 
example again.  

The rationale behind this design was to stimulate as much spontaneous self-explanation as 
possible. We thought that directing the student to a particular line in the example could be 
enough to  also trigger explanations on  other lines. This did not happen. Either  students were 
natural self-explainers and explained most of the example the first time through, or they strictly 
followed individual SE-Coach hints but rarely  initiated any  additional self-explanation. For 
non-spontaneous self-explainers, the interaction with the Coach would quickly become quite 
uninspiring. After doing what the Coach had suggested (e.g., finding a rule name in the Rule 
Browser), they would immediately try to close the example. They would then get another hint 
(“ there is something else that you could self-explain, do you want me to show you?”), suggesting 
further explanation either on the current l ine via Template/Plan Browser or on a different line. A 
student would have to repeat this cycle to access each new piece of advice, and most students 
lost interest and chose to close the example after the first couple of hints. 

The current design, based on the coloring of example l ines, allows the students to see at once 
all the parts that they should further self-explain and what interface tools they should use to do 
it. It also gives students better feedback on the progresses that they are making, because line 
color and the attached hints change dynamically as students generate more self-explanations. 

EM PIRICAL EVALUATION OF THE SE-COACH 

After iteratively improving the system design through pilot evaluations, we performed a study 
to test both the system’s usabil ity and its effectiveness for learning. 

Experiment design 

The study was conducted with 56 college students who were taking introductory physics classes 
at the University of Pittsburgh (20), Carnegie Mellon University (14), Allegheny County 
Community College (5) and U.S.Naval Academy (17).  The design had two conditions: 

• Self-Explanation (SE): 29 students studied examples with the complete SE-Coach. 

• Control: 27 students studied examples with the masking interface and Plan Browser 
only.  They had no access to the Rule Browser and Templates, nor they received 
feedback or coaching. 

The evaluation consisted of one session about three-hour long, in which students: 1) took a 
paper and pencil pre-test, consisting of four problems on Newton’s Second Law; 2) studied 
examples on Newton’s Second Law with the system; 3) took a paper and pencil post-test with 
problems equivalent but not identical to the ones in the pre-test; 4) fil led out a questionnaire 
designed to assess the students impressions on the system.  

Because SE-Coach does not provide any introductory physics instruction, to evaluate the 
system adequately we needed subjects who already had the appropriate level of domain 
knowledge for using it. Students generally benefit more from examples when they are studying 
a new topic, whereas as the students’ knowledge improves, problem solving becomes more 
effective for learning (Nguyen-Xuan, Bastide, & Nicaud, 1999). Hence, we needed subjects 
with enough knowledge to understand the topic of the examples, but not so much knowledge to 
find the examples not worthy of attention.  However, because we had to coordinate the study 
sessions to accommodate students from four different colleges, the best we could do in terms of 
getting subjects with adequate knowledge was to make sure we run the subjects after their first 
class on Newton’s Second Law and before they took a class test on the topic. 

In order to roughly equate time on task, students in the control condition studied 6 examples 
and students in the experimental condition studied 3 examples. Despite this, there is a 
statistically significant difference between the average time on task of the experimental group 
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(52’) and the control group (42’  32’’) . However, we found no significant correlation of time on 
task with post-test scores. 

Usabil ity of the SE-Coach 

During the study, we recorded log fi les of the students’ interaction with the SE-Coach. We then 
analysed the log data to understand how the subjects used the interface self-explanation tools 
(Rule Browser, Plan Browser and Templates) and how they reacted to the SE-Coach 
interventions. 

Usage of the SE-Coach’s self-explanation tools 

     For each interface tool, we computed the following data summaries, shown in  
Table 1. Initiated: percentage of the explanations that students initiated out of all the 
explanations that could be generated with that tool for the available examples. Correct: 
percentage of the initiated explanations that were generated correctly. Attempts before correct: 
average number of attempts the students needed to achieve a correct self-explanation. An 
attempt is the submission of an incorrect self-explanation. Max #  attempt: average maximum 
number of attempts needed to achieve a  correct self-explanation. Abandoned: percentage of 
initiated self-explanations that were abandoned. Attempts before abandon: average number of 
attempts before abandoning a self-explanation. Time on abandoned: average amount on time 
spent on self-explanations that were eventually abandoned. 

Table 1: Statistics on SE tools usage 
        Rule Br owser      Templates      PlanBr owser 

initiated 62%      55.5%     41.6% 

cor rect  87%                      97%                   85% 

at tempts before cor rect  1.27       0.5                      1 

max # attempts 9.2       2.5                      3.8 

abandoned 13%       3%                      15% 

at tempts before abandon 4.4       1.9                      1.4 

t ime on abandoned 241 sec.       59 sec.                 29 sec. 

 

Rule Browser usage. As Table 1 shows, on average students accessed the Rule Browser 
quite frequently, initiating 62% of the possible Rule Browser explanations. They usually 
completed the Rule Browser explanations correctly, successfully selecting  the correct rule 87% 
of the times. Also, they usually found the correct rule without floundering too much, requiring  
on average  only 1.27 attempts to find  the correct selection. However, for most students at least 
one rule selection required a large number of attempts (average maximum of 9.2 attempts per 
student). Rule Browser accesses in which the student failed to find the correct rule required an 
average of 4.4 attempts. However, these attempts resulted in an average of only 4 minutes that 
students spent on failed Rule Browser explorations, a minor fraction of the average total time on 
task (52 minutes).  

These data indicate that the Rule Browser was generally successful at stimulating the 
students to initiate self-explanations and was easy to use. However, there were a few situations 
in which using the Rule Browser may have caused distraction and frustration, because the 
student floundered substantially before finding the correct rule, or could not find it at all . Thus, 
the SE-Coach may benefit from an additional form of help that supports students in searching 
the Rule Browser. This was, in fact, the suggestion that appeared most frequently in the 
students’ questionnaire. Otherwise, the majority judged the Rule Browser to be very useful and 
easy to use. 

Template usage. Students accessed 55.5% of the template material in the SE-Coach. Since 
Template access is mandatory after a correct selection in the Rule Browser, these data are not 
indicative of how effectively Templates stimulate self-explanation. More indicative is the fact 
that students completed almost all (97%) of the presented Templates correctly, although it is not 
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mandatory to fil l a Template after opening it. Students needed on average only 0.5  attempts  to 
fil l a Template correctly, with an average maximum of 2.5 attempts. Students spent only 59 
seconds trying to fi ll Templates for which they could not find the correct answer.  

These data indicate that our repeated efforts to improve Template usage through pilot 
evaluations were successful, in terms of both making them easy to use and providing a tool that 
encourages self-explanation. The results are backed up by the students’ questionnaire 
comments, that judged the Templates to be very easy to use and helpful to better understand the 
examples. 

Plan Browser usage. Students accessed 41.6% of the possible Plan Browser explanations. 
Students did not have many problems using the Plan Browser. Most of the initiated explanations 
(85%) resulted in the selection of the correct plan step, and required only 1 attempt, on average, 
to find the step. Students spent on average only 29 seconds on Plan Browser accesses that did 
not lead to a correct explanation. However, the fact that an average maximum of 3.8 attempts 
were needed to find the right selection, indicates that the Plan Browser does produce some 
degree of floundering. Hence, the Plan Browser could also benefit from a browsing help 
analogous to the one suggested for the Rule Browser.  

Although the above results indicate that the Plan Browser is easy to use, students did not use 
it quite as much as the Rule Browser and many students wrote in the questionnaire that they did 
not understand its util i ty. This outcome is not surprising. As we have already mentioned, goal-
related explanations are largely unfamili ar to students. The Plan Browser is designed to 
complement instruction that initiates students to the notion of solution planning, but our subjects 
had not received such instruction in the classroom. In the short time available for instructions 
during the study, the experimenter did not have time to make the students understand the 
concept and importance of solution planning.  This situation l ikely accounts for  the lower usage 
of this tool.  

Response to the SE-Coach interventions to elicit further self-explanations  

To verify how students reacted to the SE-Coach explicit prompts to further self-explain (by 
using the Rule Browser, the Plan Browser or by reading more carefully), we computed from log 
data how often students followed these prompts. The results are summarized in Table 2. For 
each type of prompt, the table reports: (i) the maximum number of prompts the SE-Coach could 
generate for the three examples in the study. These are the prompts the system would generate if 
there was no student model to guide it; (ii) the number of prompts the SE-Coach actually 
generated by relying on the student model; (ii i) how many of these prompts the students 
followed.  
     The numbers in Table 2 show that the current design for the SE-Coach intervention, based on 
dynamically changing the color of example lines and the attached prompts, works considerably 
better than the original design described in the sub-section on the SE-Coach intervention. While 
with the original design students rarely followed more than a couple of  the SE-Coach 
suggestions, with the current design students followed an average of 38.6% of the Rule Browser 
prompts, 42% of the Plan Browser prompts and 34% of the prompts suggesting to read more 
carefully. However, the numbers also show that there is stil l room from improvement, because 
students ignored more than half of the SE-Coach’s suggestions. This could have happened for 
two reasons. 
 
 

 

Table 2: Statistics on SE-Coach interventions 
 

Rule Browser prompts (max. 43) 22.6  
Followed 38.6%  

Plan Browser prompts (max. 34) 22.4  
Followed 42%  

Reading prompts (max. 43) 7 

Followed 34%  
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The first is that students did not follow the SE-Coach’s suggestions because they had 
spontaneously self-explained the related example parts. The student model assessment of 
spontaneous self-explanation strongly depends on estimates of student’s initial physics 
knowledge (Conati & VanLehn, To appear). At the time of the evaluation, we did not have 
accurate estimates and we assigned  to every rule a probabili ty of 0.5. Thus, it may be that 
students explained more than the model estimated, and were rightly ignoring those prompts 
asking them for redundant explanations.  

The second reason is that students did not follow the SE-Coach’s suggestions because they 
were overestimating their understanding and thus dismissed the SE-Coach’s prompts as 
irrelevant, even when they were well justified. To deal with these students, it might be 
necessary to make the SE-Coach suggestions mandatory. This option may work better when 
more accurate priors on the students’ physics knowledge are available, for instance from the 
results of the student’s pre-test. However, it would be interesting to try it even with less accurate 
priors. The benefits of having the students generate more explanations may still be worth the 
annoyance that redundant prompts may cause to some students. 

Effectiveness of  the SE-Coach  

To evaluate the effectiveness of the SE-Coach for learning, we first compared how the students 
in the SE condition learned in comparison to the students in the control condition. The pre-test 
scores of the two conditions held no significant differences, indicating that subjects had been 
successfully randomised over their physics knowledge. 

The gain scores measuring the difference between post-test and pre-test scores were higher 
for the SE condition, but the difference between gain scores of SE and control conditions was 
not statistically significant.  

We then restricted the analysis to the subgroups of subjects coming from different colleges: 
Carnegie Mellon University (CMU), Community College of Allegheny County (CCAC), 
University of Pittsburgh (PITT) and U.S. Naval Academy (USNA). We found that the 
experimental condition of CMU and CCAC students performed significantly better than the 
control condition. In contrast, in both the Pitt and USNA subgroups, students in the control 
condition performed slightly better than students in the SE condition. The commonali ty of 
behaviour between CMU and CCAC is quite surprising, because the two schools are supposed 
to be, respectively, the best and the worst of the four colleges in the study, and this ranking is 
confirmed by the pre-test scores. However, there is one characteristic that CMU and CCAC 
have in common and that distinguishes them from Pitt and USNA students. They start the 
semester at least a week later than Pitt and USNA. Therefore, although all the students 
participated in the experiment after they had their lectures on Newton’s laws and before they 
took a class test on the topic, Pitt and USNA students were ahead in the course schedule and had 
likely spent more time on Newton’s laws than CMU and CCAC students when they participated 
in the study. This could have generated differences in the background knowledge and/or in the 
way the two subgroups used the system, affecting how the students benefited from it. 

To test this hypothesis, we continued our analysis by comparing the subgroup consisting of 
CMU and CCAC students with the subgroup including Pitt and USNA students. Within the 

CMU-CCAC group, the 12 students in the SE condition 
(mean gain score = 7.5, st.dev. = 5.2) performed 
significantly better (p = 0.021) than the 13 students in the 
control condition (mean = 3.2, st.dev.= 3). The 14 Pitt-
USNA students in the control condition performed slightly 
better (mean = 6.7, st.dev. = 4.8) than the 17 in the SE 
condition (mean = 5.0, st.dev. = 3.7) but the difference is 
not statistically significant (p > 0.2). 
      To verify if these results were due to differences in 
initial physics and background knowledge, we ran an 
ANCOVA with post-test as dependent variable, subgroup 
and condition as main factors, and pre-test and SAT scores 

as covariate. The ANCOVA (see Table 3) still gives a  significant interaction between subgroup 

 Source F-ratio Prob 

Const 2541  < 0.0001 
pretest 54.544  < 0.0001 
SAT_math 1.3207 0.2575 
SAT_verbal 0.63487 0.4304 
subgroup 0.37289 0.545 
condition 0.15014 0.7005 
subgroup*cond. 7.6089 0.0088 

Table 3:  ANCOVA for post-
test scores  
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and condition (p < 0.01), indicating that prior physics and background knowledge do not 
account for the different behavior of the two subgroups.  

To verify if students in the two subgroups used the system differently, we compared their 
performance and study behavior within each condition.  As Figure 14 shows, in the SE 
condition CMU-CCAC students performed better than Pitt-USNA students, although the 
difference is not statistically significant (p > 0.1). In the Control condition, Pitt-USNA students 
performed significantly better than CMU-CCAC students (p < 0.03). As a matter of fact they 
performed almost as well as CMU-CCAC students in the SE Condition. These results could be 
due to two reasons: 

• In the SE condition, CMU-CCAC students used the SE-Coach self-explanation tools 
more extensively and effectively than the Pitt-USNA students did. 

• In the Control condition, Pitt-USNA students spontaneously self-explained considerably 
more that CMU-CCAC students did. 

 

 
Figure 14: Gain scores for CMU-CCAC and Pitt-USNA students within the two conditions  

Studying the behavior of the two subgroups in the SE condition 

To verify whether CMU-CCAC students in the SE condition used the SE-Coach self-
explanation tools better than the Pitt-USNA students in the same condition, we compared the 
two subgroups with respect of time on task and the system usage statistics described in the 
previous subsection. We found a statistically significant difference only in the average number 
of attempts tried before giving up on a Template explanation (Conati & VanLehn, 2000). This 
difference suggests that CMU-CCAC students had a higher level of motivation to learn from the 
SE-Coach, because they started learning Newton’s second laws later than Pitt-USNA students 
and thus perceived studying example on this topic to be more useful, consistently with the 
findings described in (Nguyen-Xuan et al., 1999). 

Browser selections and template fill ing are recall tasks not as constructive as generating 
explanations verbally, unless students actively reflect on the result of their actions. We argue 
that, because CMU-CCAC students were more motivated to study the SE-Coach examples, they 
reasoned more on what they were doing with the SE-Coach interface. Thus, they learned more, 
although they did not use the SE tools more frequently or more easily than Pitt-USNA students 
did. We can corroborate this argument by computing the correlation between: (i) the number of 
rules in the student model that have reached high probabil ity to be known through correct SE 
actions; (ii ) post-test scores. The correlation is very low (r < 0.1) for Pitt-USNA and it is higher 
(r = 0.33) for CMU-CCAC, indicating that correct SE actions reflect knowledge more 
accurately for CMU-CCAC students than they do for the Pitt-USNA ones. 
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Studying the behavior of the two subgroups in the Control condition 

 Verifying whether Pitt-USNA students in the control condition spontaneously self-explained 
more that CMU-CCAC students is not easy, because students could not communicate their 
explanations to the control version of the SE-Coach. The only measures that can indicate self-
explanation in the log files include: (i) mean and standard deviation of multiple accesses to 
example lines1; (ii) mean and standard deviation of the time spent on each example line; (ii i) 
mean number of accesses and selections in  the Plan Browser.  

Within the Pitt-USNA control group, we found a marginally significant correlation of post-
test scores with mean (p < 0.09) and standard deviation (p < 0.06) of line accesses (see                                 
Table 4). 

                               Table 4  
This correlation is not significant for the 
CMU-CCAC control group. The 
hypothesis that Pitt-USNA students self-
explained more in the control condition is 
consistent with the fact that Pitt-USNA 
students had started studying Newton’s 
Laws earlier and had probably gained more 

knowledge on the topic.  This knowledge was not strong enough to make Pitt-USNA students 
perform better in the pre-test. However, it was sufficient to enable Pitt-USNA control subjects 
to generate effective self-explanations under the minimal scaffolding provided by the masking 
interface. We argue that it is indeed the minimali ty of the scaffolding that allowed Pitt-CMU 
control students to bring to bear their knowledge at best. Because of their more advanced 
learning stage, spontaneous self-explanation triggered by the masking interface l ikely came 
quite effortlessly to Pitt-USNA control students. Thus, their tendency to self-explain was not 
suffocated by the lower level of motivation that prevented Pitt-USNA students in the SE 
condition to learn effectively from the SE-Coach self-explanation tools. 

Summary  

The results that we have presented suggest the following conclusions on the effectiveness of 
the SE-Coach and, in general, on the effectiveness of support for self-explanation during 
example studying. 

• Rich scaffolding for self-explanation, li ke the one provided by the complete SE-Coach 
in the experimental condition, can improve students’ performance at an early learning 
stage.  At this stage, students are stil l unfamili ar with the subject matter. Hence, they 
benefit more from structured help in using domain knowledge to generate effective self-
explanations and are more motivated to put substantial effort in exploiting this help at 
best. 

• As students become more proficient in the subject matter, even minimal prompting, li ke 
that provided by the masking interface in the control condition, can help improve their 
self-explanations. At this stage, more elaborate scaffolding can actually be less 
effective, if it requires students to put too much effort in studying examples, because 
they may lack the motivation to do so. 

Of course, more data are necessary to confirm these conclusions. The data should be 
gathered in the context of classroom instruction, where it is easier to control at what learning 
stage students use the system. These data would provide valuable insights on the issue of how 
much prompting and scaffolding is necessary to elicit self-explanation. Although different 
studies have shown that both simple prompting and more elaborate scaffolding improve self-
explanation (Bielaczyc et al., 1995; Chi et al., 1994), no study has yet addressed the explicit 
comparison of  different kinds of intervention. 

                                                   
1 

A high standard deviation indicates that students were selectively reviewing only some of the example lines to 
generate their self-explanations. 

 Analysis of Variance For posttest 
cases selected according to Pitt-USNA 

Source F-ratio  Prob  
Const 786.68  <0.0001 
mean-line-accesses 3.6978 0.0834 
pretest 16.488 0.0023 
st-dev-line-acecsses 4.6118 0.0573 
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The study described in this paper did not provide specific results on the effectiveness of the 
Plan Browser. Limits on the length of the study sessions prevented us from inserting in the pre-
test and post-tests  items specifically tapping the planning knowledge the Plan Browser is 
designed to improve. Furthermore, students did not use the Plan Browser as much as they used 
the other interface tools because they did not understand its function (as most students wrote in 
the study questionnaire). This was to be expected. The Plan Browser is designed to stimulate 
reasoning about solution plans from students that already have a basic understanding of the 
topic. Our subjects most likely did not have such understanding, because they had not received 
any classroom instruction on solution planning. Thus, many subjects ended up either ignoring 
the Plan Browser or  using it without really understanding the underlying planning knowledge. 
However, we found a significant correlation (after controlli ng for pre-test scores) between post-
test results and percentage of SE-Coach hints to self-explain with the Plan Browser that the 
students followed (Conati & VanLehn, To appear). This correlation gives an initial indication 
that Plan Browser might in fact improve learning, but only a new evaluation with more 
appropriate subjects and more informative pre/post-test can provide reliable data on this issue. 

CONCLUSIONS AND FUTURE WORK   

The research presented in this paper represents a step toward exploring innovative ways in 
which computers can enhance education and learning. Most existing ITS support students 
during problem solving and teach domain specific skil ls. We have devised a computational 
framework that supports learning from examples and that coaches the general learning skil l 
known as self-explanation - generating explanations and justifications to oneself when studying 
an example. Our framework, known as the SE-Coach, aims to provide the individualized 
monitoring and guidance to self-explanation that has been proven so beneficial when 
administered by human tutors. The framework has been implemented and tested within Andes, a 
tutoring system that helps students learn Newtonian physics through both example studying and 
problem solving.  

We believe that a combination of theoretical foundations and empirical studies is 
fundamental for the development of effective instructional systems. This is especially true for 
systems that, li ke the SE-Coach, focus on a learning process whose underlying mechanisms are 
stil l unclear and under investigation. In this paper, we described how the system’s design is 
grounded in Cognitive Science findings about the features that make self-explanation effective 
and how the design evolved through a careful process of iterative design. In particular, we 
described two fundamental elements of the system: (a) the SE-Coach interface, that provides 
specific tools to stimulate and scaffold self-explanation and (b) the SE-Coach’s advice, which 
uses the assessment of a probabilistic student model to elicit self-explanations that can improve 
the students’ example understanding. We conclude by discussing the results of a formal study to 
test the usabilit y and effectiveness of the system.  

Log data from the study indicate that the SE-Coach’s interface is easy to use, and that both 
the interface and the SE-Coach’s advice are generally successful in stimulating self-explanation. 
The analysis of data on students’ learning provide interesting initial insights on the educational 
effectiveness of the SE-Coach and on support for self-explanation. The results suggest that 
structured scaffolding of self-explanation can be more beneficial at early learning stages, while 
as students become more proficient in the subject matter, even simpler forms of prompting  can 
successfully trigger self-explanation. Further studies to confirm these findings should be  
performed in a classroom setting, where it is easier to control when students use the system. 
These studies would contribute to understanding how much prompting and scaffolding is 
necessary to effectively elicit self-explanation. This issue is sti ll  under investigation in 
Cognitive Science and is highly relevant to understand what level of sophistication is worth the 
effort when developing a tutoring system that supports self-explanation. 

In principle, the framework underlying the SE-Coach is general enough to support self-
explanation in any domain in which problem solving can be formalized as a rule-based 
cognitive model of the solution process (e.g., math, statistics, geometry, programming, medical 
diagnosis, troubleshooting). In practice, generating the cognitive model for a new domain can 



412 

be very labour intensive, as very labour intensive can be to calibrate the parameters for the 
probabil istic student model. Do the flexibili ty and adaptabili ty that these components provide 
justify their cost? The results that we have presented provide an initial indication that they do, at 
least in certain learning stages. We plan to seek further evidence by:  
• comparing versions of the SE-Coach with and without feedback for correctness, to 

understand what are the benefits of this feedback for learning.  
• comparing versions of the SE-Coach with and without the student model, to evaluate the 

benefits of targeting the SE-Coach interventions to the students’ needs versus making the 
students generate all the self-explanations relevant to an example. 

Another issue that we plan to explore is the role of the masking interface in the self-
explanation process. As we discussed in the paper, most of our pilot subjects reported that the 
masking interface not only did not bother them, but helped them study the examples more 
carefully. But, of course, these subjective opinions do not provide formal evidence that the 
masking interface does not interfere with learning. As a matter of fact, we believe that the 
masking interface does interfere with learning for some students.  Therefore, we are exploring 
the possibilit y of using  eye-tracking to monitor students’ attention,  given that this technology 
is becoming increasingly accurate and non-invasive. We plan to perform studies to understand 
what types of learners benefit more from the interface that uses eye-tracking and what learners 
benefit more from the additional scaffolding provided by the masking interface, to dynamically 
adapt the interaction mode to the learner type. 
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