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Abstract

This paper introduces concepts and algorithms of feature selection, surveys existing feature

selection algorithms for classification and clustering, groups and compares different algorithms

with a categorizing framework based on search strategies, evaluation criteria, and data mining

tasks, reveals unattempted combinations, and provides guidelines in selection of feature se-

lection algorithms. With the categorizing framework, we continue our efforts toward building

an integrated system for intelligent feature selection. A unifying platform is proposed as an

intermediate step. An illustrative example is presented to show how existing feature selection

algorithms can be integrated into a meta algorithm that can take advantage of individual algo-

rithms. An added advantage of doing so is to help a user employ a suitable algorithm without

knowing details of each algorithm. Some real-world applications are included to demonstrate

the use of feature selection in data mining. We conclude this work by identifying trends and

challenges of feature selection research and development.

Keywords: Feature Selection, Classification, Clustering, Categorizing Framework, Unifying

Platform, Real-World Applications
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1 Introduction

As computer and database technologies advance rapidly, data accumulates in a speed unmatchable

by human’s capacity of data processing. Data mining [1, 29, 35, 36], as a multidisciplinary joint

effort from databases, machine learning, and statistics, is championing in turning mountains of data

into nuggets. Researchers and practitioners realize that in order to use data mining tools effectively,

data preprocessing is essential to successful data mining [53, 74]. Feature selection is one of the

important and frequently used techniques in data preprocessing for data mining [6, 52]. It reduces

the number of features, removes irrelevant, redundant, or noisy data, and brings the immediate

effects for applications: speeding up a data mining algorithm, improving mining performance such

as predictive accuracy and result comprehensibility. Feature selection has been a fertile field of

research and development since 1970’s in statistical pattern recognition [5, 40, 63, 81, 90], machine

learning [6, 41, 43, 44], and data mining [17, 18, 42], and widely applied to many fields such as

text categorization [50, 70, 94], image retrieval [77, 86], customer relationship management [69],

intrusion detection [49], and genomic analysis [91].

Feature selection is a process that selects a subset of original features. The optimality of a

feature subset is measured by an evaluation criterion. As the dimensionality of a domain expands,

the number of features N increases. Finding an optimal feature subset is usually intractable [44]

and many problems related to feature selection have been shown to be NP-hard [7]. A typical

feature selection process consists of four basic steps (shown in Figure 1), namely, subset genera-

tion, subset evaluation, stopping criterion, and result validation [18]. Subset generation is a search

procedure [48, 53] that produces candidate feature subsets for evaluation based on a certain search

strategy. Each candidate subset is evaluated and compared with the previous best one according

to a certain evaluation criterion. If the new subset turns out to be better, it replaces the previous

best subset. The process of subset generation and evaluation is repeated until a given stopping cri-

terion is satisfied. Then the selected best subset usually needs to be validated by prior knowledge

or different tests via synthetic and/or real-world data sets. Feature selection can be found in many

areas of data mining such as classification, clustering, association rules, regression. For example,
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Figure 1: Four key steps of feature selection

feature selection is called subset or variable selection in Statistics [62]. A number of approaches to

variable selection and coefficient shrinkage for regression are summarized in [37]. In this survey,

we focus on feature selection algorithms for classification and clustering. Early research efforts

mainly focus on feature selection for classification with labeled data [18, 25, 81] (supervised fea-

ture selection) where class information is available. Latest developments, however, show that the

above general procedure can be well adopted to feature selection for clustering with unlabeled

data [19, 22, 27, 87] (or unsupervised feature selection) where data is unlabeled.

Feature selection algorithms designed with different evaluation criteria broadly fall into three

categories: the filter model [17, 34, 59, 95], the wrapper model [13, 27, 42, 44], and the hybrid

model [15, 68, 91]. The filter model relies on general characteristics of the data to evaluate and

select feature subsets without involving any mining algorithm. The wrapper model requires one

predetermined mining algorithm and uses its performance as the evaluation criterion. It searches

for features better suited to the mining algorithm aiming to improve mining performance, but it

also tends to be more computationally expensive than the filter model [44, 48]. The hybrid model

attempts to take advantage of the two models by exploiting their different evaluation criteria in

different search stages.

This survey attempts to review the field of feature selection based on earlier works by Doak [25],

Dash and Liu [18], and Blum and Langley [6]. The fast development of the field has produced

many new feature selection methods. Novel research problems and applications emerge, and new

demands for feature selection appear. In order to review the field and attempt for the next genera-
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tion of feature selection methods, we aim to achieve the following objectives in this survey:

• introduce the basic notions, concepts, and procedures of feature selection,

• describe the state-of-the-art feature selection techniques,

• identify existing problems of feature selection and propose ways of solving them,

• demonstrate feature selection in real-world applications, and

• point out current trends and future directions.

This survey presents a collection of existing feature selection algorithms, and proposes a cate-

gorizing framework that systematically groups algorithms into categories and compares the com-

monalities and differences between the categories. It further addresses a problem springing from

the very core of the success of this field - a dilemma faced by most data mining practitioners: the

more feature selection algorithms available, the more difficult it is to select a suitable one for a data

mining task. This survey, therefore, proposes a unifying platform that covers major factors in the

selection of a suitable algorithm for an application, and paves the way for building an integrated

system for intelligent feature selection.

The remainder of this paper is organized into five sections. Section 2 describes each step of

the general feature selection process. Section 3 groups and compares different feature selection

algorithms based on a three-dimensional categorizing framework. Section 4 introduces the de-

velopment of a unifying platform and illustrates the idea of developing an integrated system for

intelligent feature selection through a preliminary system. Section 5 demonstrates some real-world

applications of feature selection in data mining. Section 6 concludes the survey with discussions

on current trends and future directions.

2 General Procedure of Feature Selection

In this section, we explain in detail the four key steps as shown in Figure 1 of Section 1.
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2.1 Subset generation

Subset generation is essentially a process of heuristic search, with each state in the search space

specifying a candidate subset for evaluation. The nature of this process is determined by two basic

issues. First, one must decide the search starting point (or points) which in turn influences the

search direction. Search may start with an empty set and successively add features (i.e., forward),

or start with a full set and successively remove features (i.e., backward), or start with both ends

and add and remove features simultaneously (i.e., bi-directional). Search may also start with a

randomly selected subset in order to avoid being trapped into local optima [25]. Second, one must

decide a search strategy. For a data set with N features, there exist 2N candidate subsets. This

search space is exponentially prohibitive for exhaustive search with even a moderate N . Therefore,

different strategies have been explored: complete, sequential, and random search.

Complete search

It guarantees to find the optimal result according to the evaluation criterion used. Exhaustive

search is complete (i.e., no optimal subset is missed). However, search is complete does not nec-

essarily means that it must be exhaustive. Different heuristic functions can be used to reduce the

search space without jeopardizing the chances of finding the optimal result. Hence, although the

order of the search space is O(2N), a smaller number of subsets are evaluated. Some examples are

branch and bound [67], and beam search [25].

Sequential search

It gives up completeness and thus risks losing optimal subsets. There are many variations

to the greedy hill-climbing approach, such as sequential forward selection, sequential backward

elimination, and bi-directional selection [53]. All these approaches add or remove features one

at a time. Another alternative is to add (or remove) p features in one step and remove (or add) q

features in the next step (p > q) [25]. Algorithms with sequential search are simple to implement

and fast in producing results as the order of the search space is usually O(N2) or less.

Random search

It starts with a randomly selected subset and proceeds in two different ways. One is to follow
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sequential search, which injects randomness into the above classical sequential approaches. Ex-

amples are random-start hill-climbing and simulated annealing [25]. The other is to generate the

next subset in a completely random manner (i.e., a current subset does not grow or shrink from any

previous subset following a deterministic rule), also known as the Las Vegas algorithm [10]. For

all these approaches, the use of randomness helps to escape local optima in the search space, and

optimality of the selected subset depends on the resources available.

2.2 Subset evaluation

As we mentioned earlier, each newly generated subset needs to be evaluated by an evaluation cri-

terion. The goodness of a subset is always determined by a certain criterion (i.e., an optimal subset

selected using one criterion may not be optimal according to another criterion). Evaluation criteria

can be broadly categorized into two groups based on their dependency on mining algorithms that

will finally be applied on the selected feature subset. We discuss the two groups of evaluation

criteria below.

2.2.1 Independent criteria

Typically, an independent criterion is used in algorithms of the filter model. It tries to evaluate the

goodness of a feature or feature subset by exploiting the intrinsic characteristics of the training data

without involving any mining algorithm. Some popular independent criteria are distance measures,

information measures, dependency measures, and consistency measures [3, 5, 34, 53].

Distance measures are also known as separability, divergence, or discrimination measures. For

a two-class problem, a feature X is preferred to another feature Y if X induces a greater difference

between the two-class conditional probabilities than Y, because we try to find the feature that can

separate the two classes as far as possible. X and Y are indistinguishable if the difference is zero.

Information measures typically determine the information gain from a feature. The informa-

tion gain from a feature X is defined as the difference between the prior uncertainty and expected

posterior uncertainty using X. Feature X is preferred to feature Y if the information gain from X is
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greater than that from Y.

Dependency measures are also known as correlation measures or similarity measures. They

measure the ability to predict the value of one variable from the value of another. In feature

selection for classification, we look for how strongly a feature is associated with the class. A

feature X is preferred to another feature Y if the association between feature X and class C is

higher than the association between Y and C. In feature selection for clustering, the association

between two random features measures the similarity between the two.

Consistency measures are characteristically different from the above measures because of

their heavy reliance on the class information and the use of the Min-Features bias [3] in selecting

a subset of features. These measures attempt to find a minimum number of features that separate

classes as consistently as the full set of features can. An inconsistency is defined as two instances

having the same feature values but different class labels.

2.2.2 Dependency criteria

A dependency criterion used in the wrapper model requires a predetermined mining algorithm in

feature selection and uses the performance of the mining algorithm applied on the selected subset

to determine which features are selected. It usually gives superior performance as it finds features

better suited to the predetermined mining algorithm, but it also tends to be more computationally

expensive, and may not be suitable for other mining algorithms [6]. For example, in a task of

classification, predictive accuracy is widely used as the primary measure. It can be used as a

dependent criterion for feature selection. As features are selected by the classifier that later on uses

these selected features in predicting the class labels of unseen instances, accuracy is normally high,

but it is computationally rather costly to estimate accuracy for every feature subset [41].

In a task of clustering, the wrapper model of feature selection tries to evaluate the goodness of

a feature subset by the quality of the clusters resulted from applying the clustering algorithm on the

selected subset. There exist a number of heuristic criteria for estimating the quality of clustering

results, such as cluster compactness, scatter separability, and maximum likelihood. Recent work
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on developing dependent criteria in feature selection for clustering can been found in [20, 27, 42].

2.3 Stopping criteria

A stopping criterion determines when the feature selection process should stop. Some frequently

used stopping criteria are: (a) the search completes; (b) some given bound is reached, where a

bound can be a specified number (minimum number of features or maximum number of iterations);

(c) subsequent addition (or deletion) of any feature does not produce a better subset; and (d) a

sufficiently good subset is selected (e.g., a subset may be sufficiently good if its classification error

rate is less than the allowable error rate for a given task).

2.4 Result validation

A straightforward way for result validation is to directly measure the result using prior knowledge

about the data. If we know the relevant features beforehand as in the case of synthetic data, we

can compare this known set of features with the selected features. Knowledge on the irrelevant or

redundant features can also help. We do not expect them to be selected. In real-world applications,

however, we usually do not have such prior knowledge. Hence, we have to rely on some indirect

methods by monitoring the change of mining performance with the change of features. For exam-

ple, if we use classification error rate as a performance indicator for a mining task, for a selected

feature subset, we can simply conduct the “before-and-after” experiment to compare the error rate

of the classifier learned on the full set of features and that learned on the selected subset [53, 89].

3 A Categorizing Framework for Feature Selection Algorithms

Given the key steps of feature selection, we now introduce a categorizing framework that groups

many existing feature selection algorithms into distinct categories, and summarize individual algo-

rithms based on this framework.
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Table 1: Categorization of feature selection algorithms in a three-dimensional framework

Search Strategies
Complete Sequential Random

B&B [67] Relief [43]
BFF [92] ReliefF [47]

Distance ReliefS [57]
SFS [73]

Segen’s [79]
MDLM [80] DTM [12] Dash’s [17]

Koller’s [46] SBUD [22]
Information

SFG [53]
FCBF [95]

F
il

te
r

Bobrowski’s [8] CFS [34] Mitra’s[63]
RRESET [64]

Dependency
POE+ACC [66]

DVMM [83]
Focus [2] Set Cover [16] LVI [53]
ABB [56] QBB [53]

Consistency
MIFES1 [71] LVF [59]

E
va

lu
at

io
n

C
ri

te
ri

a

Schlimmer’s [77]
BS [25] SBS-SLASH [13] AICC [23] SA [25]

AMB&B [31] WSFG [24] FSSEM [27] RGSS [25]
Predictive Accuracy FSLC [38] WSBG [24] ELSA [42] LVW [58]

or FSBC [39] BDS [25] RMHC-PF [82]
Cluster Goodness PQSS [25] GA [88] [93]

W
ra

pp
er

RC [26] RVE [85]
SS [65]

Queiros’ [75]
BBHFS [15] Dash-Liu’s [20]

Filter+Wrapper Xing’s [91]

H
yb

ri
d

Classification Clustering Classification Clustering Classification Clustering
Data Mining Tasks

3.1 A categorizing framework

There exists a vast body of available feature selection algorithms. In order to better understand

the inner instrument of each algorithm and the commonalities and differences among them, we

develop a three-dimensional categorizing framework (shown in Table 1) based on the previous dis-

cussions. We understand that search strategies and evaluation criteria are two dominating factors in

designing a feature selection algorithm, so they are chosen as two dimensions in the framework. In

Table 1, under Search Strategies, algorithms are categorized into Complete, Sequential, and Ran-

dom. Under Evaluation Criteria, algorithms are categorized into Filter, Wrapper, and Hybrid.

We consider Data Mining Tasks as a third dimension because the availability of class information

in Classification or Clustering tasks affects evaluation criteria used in feature selection algorithms
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(as discussed in Section 2.2). In addition to these three basic dimensions, algorithms within the

Filter category are further distinguished by specific evaluation criteria including Distance, Infor-

mation, Dependency, and Consistency. Within the Wrapper category, Predictive Accuracy is used

for Classification, and Cluster Goodness for Clustering.

Many feature selection algorithms collected in Table 1 can be grouped into distinct categories

according to these characteristics. The categorizing framework serves three roles. First, it reveals

relationships among different algorithms: algorithms in the same block (category) are most sim-

ilar to each other (i.e., designed with similar search strategies and evaluation criteria, and for the

same type of data mining tasks). Second, it enables us to focus our selection of feature selection

algorithms for a given task on a relatively small number of algorithms out the whole body. For

example, knowing that feature selection is performed for classification, predicative accuracy of a

classifier is suitable to be the evaluation criterion, and complete search is not suitable for the lim-

ited time allowed, we can conveniently limit our choices to two groups of algorithms in Table 1:

one is defined by Classification, Wrapper, and Sequential; the other is by Classification, Wrapper,

and Random. Both groups have more than one algorithm available 1. Third, the framework also

reveals what are missing in the current collection of feature selection algorithms. As we can see,

there are many empty blocks in Table 1, indicating that no feature selection algorithm exists for

these combinations which might be suitable for potential future work. In particular, for example,

current feature selection algorithms for clustering are only limited to sequential search.

With a large number of existing algorithms seen in the framework, we summarize all the algo-

rithms into three generalized algorithms corresponding to the filter model, the wrapper model, and

the hybrid model, respectively.

1Some other perspectives are necessary to further differentiate algorithms in each category. In-depth discussions

on choosing a most suitable feature selection algorithm for a data mining problem is provided in Section 4.
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3.2 Filter Algorithm

Algorithms within the filter model are illustrated through a generalized filter algorithm (shown

in Table 2). For a given data set D, the algorithm starts the search from a given subset S0 (an

empty set, a full set, or any randomly selected subset) and searches through the feature space by

a particular search strategy. Each generated subset S is evaluated by an independent measure M

and compared with the previous best one. If it is found to be better, it is regarded as the current

best subset. The search iterates until a predefined stopping criterion δ (as described in Section 2.3)

is reached. The algorithm outputs the last current best subset Sbest as the final result. By varying

the search strategies and evaluation measures used in steps 5 and 6 in the algorithm, we can design

different individual algorithms within the filter model. Since the filter model applies independent

evaluation criteria without involving any mining algorithm, it does not inherit any bias of a mining

algorithm and it is also computationally efficient.

Table 2: A generalized filter algorithm

Filter Algorithm
input: D(F0, F1, ..., Fn−1) // a training data set with N features

S0 // a subset from which to start the search
δ // a stopping criterion

output: Sbest // an optimal subset
01 begin
02 initialize: Sbest = S0;
03 γbest = eval(S0, D, M); // evaluate S0 by an independent measure M
04 do begin
05 S = generate(D); // generate a subset for evaluation
06 γ = eval(S, D, M); // evaluate the current subset S by M
07 if (γ is better than γbest)
08 γbest = γ;
09 Sbest = S;
10 end until (δ is reached);
11 return Sbest;
12 end;
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3.3 Wrapper Algorithm

A generalized wrapper algorithm (shown in Table 3) is very similar to the generalized filter algo-

rithm except that it utilizes a predefined mining algorithm A instead of an independent measure

M for subset evaluation. For each generated subset S, it evaluates its goodness by applying the

mining algorithm to the data with feature subset S and evaluating the quality of mined results.

Therefore, different mining algorithms will produce different feature selection results. Varying the

search strategies via the function generate(D) and mining algorithms (A) can result in different

wrapper algorithms. Since mining algorithms are used to control the selection of feature subsets,

the wrapper model tends to give superior performance as feature subsets found are better suited

to the predetermined mining algorithm. Consequently, it is also more computationally expensive

than the filter model.

Table 3: A generalized wrapper algorithm

Wrapper Algorithm
input: D(F0, F1, ..., Fn−1) // a training data set with N features

S0 // a subset from which to start the search
δ // a stopping criterion

output: Sbest // an optimal subset
01 begin
02 initialize: Sbest = S0;
03 γbest = eval(S0, D, A); // evaluate S0 by a mining algorithm A
04 do begin
05 S = generate(D); // generate a subset for evaluation
06 γ = eval(S, D, A); // evaluate the current subset S by A
07 if (γ is better than γbest)
08 γbest = γ;
09 Sbest = S;
10 end until (δ is reached);
11 return Sbest;
12 end;

3.4 Hybrid Algorithm

To take advantage of the above two models and avoid the pre-specification of a stopping criterion,

the hybrid model is recently proposed to handle large data sets [15, 91]. A typical hybrid algorithm
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Table 4: A generalized hybrid algorithm

Hybrid Algorithm
input: D(F0, F1, ..., Fn−1) // a training data set with N features

S0 // a subset from which to start the search
output: Sbest // an optimal subset
01 begin
02 initialize: Sbest = S0;
03 c0 = card(S0); // calculate the cardinality of S0

04 γbest = eval(S0, D, M); // evaluate S0 by an independent measure M
05 θbest = eval(S0, D, A); // evaluate S0 by a mining algorithm A
06 for c = c0 + 1 to N begin
07 for i = 0 to N − c begin
08 S = Sbest ∪ {Fj}; // generate a subset with cardinality c for evaluation
09 γ = eval(S, D, M); // evaluate the current subset S by M
10 if (γ is better than γbest)
11 γbest = γ;
12 S′

best = S;
13 end;
14 θ = eval(S′

best, D, A); // evaluate S′
best by A

15 if (θ is better than θbest);
16 Sbest = S′

best;
17 θbest = θ;
18 else;
19 break and return Sbest;
20 end;
21 return Sbest;
22 end;

(shown in Table 4) makes use of both an independent measure and a mining algorithm to evaluate

feature subsets: it uses the independent measure to decide the best subsets for a given cardinality

and uses the mining algorithm to select the final best subset among the best subsets across dif-

ferent cardinalities. Basically, it starts the search from a given subset S0 (usually an empty set in

sequential forward selection) and iterates to find the best subsets at each increasing cardinality. In

each round for a best subset with cardinality c, it searches through all possible subsets of cardi-

nality c + 1 by adding one feature from the remaining features. Each newly generated subset S

with cardinality c + 1 is evaluated by an independent measure M and compared with the previous

best one. If S is better, it becomes the current best subset S ′
best at level c + 1. At the end of each

iteration, a mining algorithm A is applied on S ′
best at level c + 1 and the quality of the mined result

θ is compared with that from the best subset at level c. If S ′
best is better, the algorithm continues
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to find the best subset at the next level; otherwise, it stops and outputs the current best subset as

the final best subset. The quality of results from a mining algorithm provides a natural stopping

criterion in the hybrid model.

4 Toward an Integrated System for Intelligent Feature

Selection

Research on feature selection has been active for decades with attempts to improve well-known

algorithms or to develop new ones. The proliferation of feature selection algorithms, however,

has not brought about a general methodology that allows for intelligent selection from existing

algorithms. In order to make a “right” choice, a user not only needs to know the domain well

(this is usually not a problem for the user), but also is expected to understand technical details of

available algorithms (discussed in previous sections). Therefore, the more algorithms available,

the more challenging it is to choose a suitable one for an application. Consequently, a big num-

ber of algorithms are not even attempted in practice and only a couple of algorithms are always

used. Therefore, there is a pressing need for intelligent feature selection that can automatically

recommend the most suitable algorithm among many for a given application. In this section, we

present an integrated approach to intelligent feature selection. First, we introduce a unifying plat-

form which serves an intermediate step toward building an integrated system for intelligent feature

selection. Second, we illustrate the idea through a preliminary system based on our research.

4.1 A unifying platform

In Section 3.1, we develop a categorizing framework based on three dimensions (search strategies,

evaluation criteria, and data mining tasks) from an algorithm designer’s perspective. However, it

would be impractical to require a domain expert or a user to keep abreast of such technical details

about feature selection algorithms. Moreover, in most cases, it is not sufficient to decide the most
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Figure 2: A unifying platform

suitable algorithm based merely on this framework. Recall the two groups of algorithms identified

by the three dimensions in Section 3.1, each group still contains quite a few candidate algorithms.

Assuming that we only have three wrapper algorithms: WSFG and WSBG in one group and LVW

in the other group, additional information is required to decide the most suitable one for the given

task. We propose a unifying platform (shown in Figure 2) that expands the categorizing framework

by introducing more dimensions from a user’s perspective.

At the top, knowledge and data about feature selection are two key determining factors. Cur-

rently the knowledge factor covers Purpose of feature selection, Time concern, expected Output

Type, and M/N Ratio - the ratio between the expected number of selected features M and the total

number of original features N . The data factor covers Class Information, Feature Type, Quality of

data, and N/I Ratio - the ratio between the number of features N and the number of instances I .

Each dimension is discussed below.

The purpose of feature selection can be broadly categorized into visualization, data under-

standing, data cleaning, redundancy and/or irrelevancy removal, and performance (e.g., predictive

accuracy and comprehensibility) enhancement. Recall that feature selection algorithms are cate-

gorized into the filter model, the wrapper model, and the hybrid model. Accordingly, we can also

summarize different purposes of feature selection into these three categories to form a generic task
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hierarchy, as different purposes imply different evaluation criteria and thus guide the selection of

feature selection algorithms differently. For general purpose of redundancy and/or irrelevancy re-

moval, algorithms in the filter model are good choices as they are unbiased and fast. To enhance

the mining performance, algorithms in the wrapper model should be preferred than those in the

filter model as they are better suited to the mining algorithms[44, 48]. Sometimes, algorithms in

the hybrid model are needed to serve more complicated purposes.

The time concern is about whether the feature selection process is time critical or not. Different

time constraints affect the selection of algorithms with different search strategies. When time is

not a critical issue, algorithms with complete search are recommended to achieve higher optimality

of results; otherwise, algorithms with sequential search or random search should be selected for

fast results. Time constraints can also affect the choice of feature selection models as different

models have different computational complexities. The filter model is preferred in applications

where applying mining algorithms are too costly, or unnecessary.

The output type of feature selection can sometimes be known a priori. This aspect divides

feature selection algorithms into two groups: ranked list and minimum subset. The real difference

between the two is about the order among the selected features. There is no order among the

features in a selected subset. One cannot easily remove any more feature from the subset, but one

can do so for a ranked list by removing the least important one. Back to the previous example,

among WSFG, WSBG and LVW, if we expect to get a ranked list as the result, LVW returning a

minimum subset will be eliminated from the final choice.

The M/N ratio is also very useful in determining a proper search strategy. If the number of

relevant features (M ) is expected to be small, a forward complete search strategy can be afforded;

if the number of irrelevant features (N − M ) is small, a backward complete search strategy can

be adopted even in time critical situations. If we have the prior knowledge that the number of

irrelevant features is significantly larger than the number of relevant ones, WSFG using sequential

forward search is considered a better choice than WSBG using sequential backward search.

Within the data factor, the class information is about whether the data contains class informa-
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tion or not. With class information, feature selection algorithms for classification are needed, while

without class information, feature selection algorithms for clustering are needed. This dimension

is essentially the same as the dimension of data mining tasks in the categorizing framework, but it

reflects a user’s knowledge about the data.

Different feature types require different data processing mechanisms. Some types of features

inherit order in their values such as continuous and discrete features; some do not inherit order

such as nominal features. When different feature types occur in one data set, things become more

complicated: how to consider each feature’s influence. Mixed data types imply that the range of

values for each feature can vary significantly. It is important to recognize and allow this complexity

for real-world applications in the selection of feature selection algorithms.

The quality of data is about whether data contains missing values or noisy data. Different fea-

ture selection algorithms require different levels of data quality to perform well. Some applications

require more preprocessing such as value discretization [28, 51] and missing value treatment, while

others are less stringent in this regard.

The N/I ratio recently becomes an interesting problem when feature selection is applied to

text mining [50, 70] and genomic analysis [91]. Usually, the number of total instances I is greatly

larger than the number of total features N . Sometimes, however, N could be very huge, but I

small as in text mining and gene expression microarray analysis. In such cases, we should focus

on algorithms that intensively work along the I dimensions (More is discussed in Section 5).

In addition to the eight dimensions in the unifying platform, domain knowledge, when avail-

able, should also be used to aid feature selection. For example, a medical doctor may know that

for a certain type of patient data, some features are more indicative than others, and some may be

irrelevant. The flexibility of using domain knowledge is not always required or possible, especially

in data mining applications where we usually wish to let data tell us hidden patterns. When domain

knowledge is available, using it will certainly speed up the feature selection process.
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Figure 3: A preliminary integrated system

4.2 Toward an integrated system

The unifying platform serves two purposes: (1) to group existing algorithms with similar charac-

teristics and investigate their strengths and weaknesses on the same platform, and (2) to provide a

guideline in building an integrated system for intelligent feature selection. We introduce a prelim-

inary integrated system (shown in Figure 3) by employing the information on the M/N ratio.

We focus on feature selection algorithms using the consistency evaluation criterion. The four

representative algorithms employ different search strategies: Focus - forward exhaustive search,

ABB - backward complete search, QBB - random search plus ABB, and SetCover - sequential

search. Both theoretical analysis and experimental results suggest that each algorithm has its own

strengthes and weaknesses concerning speed and optimality of results [21]. To guide the selection

of a suitable algorithm among the four, the number of relevant features M is estimated as M ′ or

M ′′ (shown in Figure 3), where M ′ is an estimate of M by SetCover, and M ′′ an estimate of M

by QBB. With this system, Focus or ABB is recommended when either M ′ or N − M ′ is small,
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because they guarantee the optimal selected subset. However, the two could take impractically

long time to converge when the two conditions are not true. Therefore, either SetCover or QBB

will be used based on the comparison of M ′ and M ′′. The two algorithms do not guarantee optimal

subsets, but they are efficient in generating near optimal subsets.

The example in Figure 3 verifies the idea of automatically choosing a suitable feature selection

algorithm within a limited scope based on the unifying platform. All four algorithms share the

following characteristics: using an independent evaluation criterion (i.e., the filter model), search-

ing for a minimum feature subset, time critical, and dealing with labelled data. The preliminary

integrated system uses the M/N ratio to guide the selection of feature selection algorithms. How

to substantially extend this preliminary work to a fully integrated system that incorporates all the

factors specified in the unifying platform remains a challenging problem.

After presenting the concepts and state-of-the-art algorithms with a categorizing framework

and a unifying platform, we now examine the use of feature selection in real-world data mining

applications. Feature selection has found many successes in real-world applications.

5 Real-World Applications of Feature Selection

The essence of these successful applications lies at the recognition of a need for effective data

preprocessing: data mining can be effectively accomplished with the aid of feature selection. Data

is often collected for many reasons other than data mining (e.g., required by law, easy to collect,

or simply for the purpose of book-keeping). In real-world applications, one often encounters prob-

lems such as too many features, individual features unable to independently capture significant

characteristics of data, high dependency among the individual features, and emergent behaviors

of combined features. Humans are ineffective at formulating and understanding hypotheses when

data sets have large numbers of variables (possibly thousands in cases involving demographics

and hundreds of thousands in cases involving Web browsing, microarray data analysis, or text

document analysis), and people would find it easy to understand aspects of the problem in lower-
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dimensional subspaces [30, 72]. Feature selection can reduce the dimensionality to enable many

data mining algorithms to work effectively on data with large dimensionality. Some illustrative

applications of feature selection are showcased here.

Text categorization

Text categorization [50, 70] is the problem of automatically assigning predefined categories to

free text documents. This problem is of great practical importance given the massive volume of

online text available through the World Wide Web, Emails, and digital libraries. A major char-

acteristic, or difficulty of text categorization problems is the high dimensionality of the feature

space. The original feature space consists of many unique terms (words or phrases) that occur in

documents, and the number of terms can be hundreds of thousands for even a moderate-sized text

collection. This is prohibitively high for many mining algorithms. Therefore, it is highly desirable

to reduce the original feature space without sacrificing categorization accuracy. In [94], different

feature selection methods are evaluated and compared in the reduction of a high dimensional fea-

ture space in text categorization problems. It is reported that the methods under evaluation can

effectively remove 50% - 90% of the terms while maintaining the categorization accuracy.

Image retrieval

Feature selection is applied in [86] to content-based image retrieval. Recent years have seen a

rapid increase of the size and amount of image collections from both civilian and military equip-

ments. However, we cannot access to or make use of the information unless it is organized so as to

allow efficient browsing, searching and retrieving. Content-based image retrieval [77] is proposed

to effectively handle the large scale of image collections. Instead of being manually annotated by

text-based keywords, images would be indexed by their own visual contents (features), such as

color, texture, shape, etc. One of the biggest problems to make content-based image retrieval truly

scalable to large size image collections is still the “curse of dimensionality” [37]. As suggested

in [77], the dimensionality of the feature space is normally of the order of 102. Dimensionality re-

duction is a promising approach to solve this problem. The image retrieval system proposed in [86]

uses the theories of optimal projection to achieve optimal feature selection. Relevant features are
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then used to index images for efficient retrieval.

Customer relationship management

A case of feature selection is presented in [69] for customer relationship management. In the

context that each customer means a big revenue and the loss of one will likely trigger a significant

segment to defect, it is imperative to have a team of highly experienced experts monitor each

customer’s intention and movement based on massively collected data. A set of key indicators

are used by the team and proven useful in predicting potential defectors. The problem is that it is

difficult to find new indicators describing the dynamically changing business environment among

many possible indicators (features). The machine recorded data is simply too enormous for any

human expert to browse and obtain any insight from it. Feature selection is employed to search

for new potential indicators in a dynamically changing environment. They are later presented to

experts for scrutiny and adoption. This approach considerably improves the team’s efficiency in

finding new changing indicators.

Intrusion detection

As network-based computer systems play increasingly vital roles in modern society, they have

become the targets of our enemies and criminals. The security of a computer system is com-

promised when an intrusion takes place. Intrusion detection is often used as one way to protect

computer systems. In [49], Lee, Stolfo, and Mok proposed a systematic data mining framework for

analyzing audit data and constructing intrusion detection models. Under this framework, a large

amount of audit data is first analyzed using data mining algorithms in order to obtain the frequent

activity patterns. These patterns are then used to guide the selection of system features as well

as the construction of additional temporal and statistical features for another phase of automated

learning. Classifiers based on these selected features are then inductively learned using the appro-

priately formatted audit data. These classifiers can be used as intrusion detection models since they

can classify whether an observed system activity is “legitimate” or “intrusive”. Feature selection

plays an important role in building classification models for intrusion detection.

Genomic analysis
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Structural and functional data from analysis of the human genome has increased many folds in

recent years, presenting enormous opportunities and challenges for data mining [91, 96]. In par-

ticular, gene expression microarray is a rapidly maturing technology that provides the opportunity

to assay the expression levels of thousands or tens of thousands of genes in a single experiment.

These assays provide the input to a wide variety of data mining tasks, including classification

and clustering. However, the number of instances in these experiments is often severely limited.

In [91], for example, a case involving only 38 training data points in a 7130 dimensional space

is used to exemplify the above situation that are becoming increasingly common in application of

data mining to molecular biology. In this extreme of very few observations on a large number of

features, Xing, Jordan, and Karp investigated the possible use of feature selection on a microarray

classification problem. All the classifiers tested in the experiments performed significantly better

in the reduced feature space than in the full feature space.

6 Concluding Remarks and Future Directions

This survey provides a comprehensive overview of various aspects of feature selection. We intro-

duce two architectures - a categorizing framework and a unifying platform. They categorize the

large body of feature selection algorithms, reveal future directions for developing new algorithms,

and guide the selection of algorithms for intelligent feature selection. The categorizing framework

is developed from an algorithm designer’s viewpoint that focuses on the technical details about the

general procedures of feature selection process. A new feature selection algorithm can be incor-

porated into the framework according to the three dimensions. The unifying platform is developed

from a user’s viewpoint that covers the user’s knowledge about the domain and data for feature

selection. The unifying platform is one necessary step toward building an integrated system for

intelligent feature selection. The ultimate goal for intelligent feature selection is to create an inte-

grated system that will automatically recommend the most suitable algorithm(s) to the user while

hiding all technical details irrelevant to an application.
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As data mining develops and expands to new application areas, feature selection also faces new

challenges. We represent here some challenges in research and development of feature selection.

Feature selection with large dimensionality

Classically, the dimensionality N is considered large if it is in the range of hundreds. How-

ever, in some recent applications of feature selection, the dimensionality can be tens or hundreds

of thousands. Such high dimensionality causes two major problems for feature selection. One is

the so-called “curse of dimensionality” [37]. As most existing feature selection algorithms have

quadratic or higher time complexity about N , it is difficult to scale up with high dimensionality.

Since algorithms in the filter model use evaluation criteria that are less computationally expensive

than those of the wrapper model, the filter model is often preferred to the wrapper model in deal-

ing with large dimensionality. Recently, algorithms of the hybrid model [15, 91] are considered to

handle data sets with high dimensionality. These algorithms focus on combining filter and wrapper

algorithms to achieve best possible performance with a particular mining algorithm with similar

time complexity of filter algorithms. Therefore, more efficient search strategies and evaluation

criteria are needed for feature selection with large dimensionality. An efficient correlation-based

filter algorithm is introduced in [95] to effectively handle large-dimensional data with class in-

formation. Another difficulty faced by feature selection with data of large dimensionality is the

relative shortage of instances. That is, the dimensionality N can sometimes greatly exceed the

number of instances I . In such cases, we should consider algorithms that intensively work along

the I dimension as seen in [91].

Feature selection with active instance selection

Traditional feature selection algorithms perform dimensionality reduction using whatever train-

ing data is given to them. When the training data set is very large, random sampling [14, 33] is

commonly used to sample a subset of instances. However, random sampling is blind without ex-

ploiting any data characteristic. The concept of active feature selection is first introduced and

studied in [57]. Active feature selection promotes the idea to actively select instances for feature

selection. It avoids pure random sampling and is realized by selective sampling [57, 60] that takes
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advantage of data characteristics when selecting instances. The key idea of selective sampling is

to select only those instances with high probabilities to be informative in determining feature rel-

evance. Selective sampling aims to achieve better or equally good feature selection results with a

significantly smaller number of instances than that of random sampling. Although some selective

sampling methods based on data variance or class information have proven to be effective on rep-

resentative algorithms [57, 60], more research efforts are needed to investigate the effectiveness of

selective sampling over the vast body of feature selection algorithms.

Feature selection with new data types

The field of feature selection develops fast as data mining is an application-driven field where

research questions tend to be motivated by real-world data sets. A broad spectrum of formalisms

and techniques has been proposed in a large number of applications. For example, the work of

feature selection mainly focused on labelled data until 1997. Since 1998, we have observed the

increasing use of feature selection for unlabelled data. The best-known data type in traditional

data analysis, data mining, and feature selection is N -dimensional vectors of measurements on I

instances (or objects, individuals). Such data is often referred to as multivariate data and can be

thought of as an N×I data matrix [84]. Since data mining emerged, a common form of data in data

mining in many business contexts is records of individuals conducting transactions in applications

like market basket analysis, insurance, direct-mail marketing, and health care. This type of data,

if it is considered as an N × I matrix, has a very large number of possible attributes but is a very

sparse matrix. For example, a typical market basket (an instance) can have tens of items purchased

out of hundreds of thousands of available items. The significant and rapid growth of computer and

Internet/Web techniques makes some other types of data more commonly available - text-based

data (e.g., emails, on-line news, newsgroups) and semi-structure data (e.g., HTML, XML). The

wide deployment of various sensors, surveillance cameras, and Internet/Web monitoring lately

poses a challenge to deal with another type of data - data streams. It pertains to data arriving over

time, in a nearly continuous fashion, and is often available only once or in a limited amount of

time [84]. As we have witnessed a growing number of work of feature selection on unlabelled

24



data, we are certain to anticipate more research and development on new types of data for feature

selection. It does not seem reasonable to suggest that the existing algorithms can be easily modified

for these new data types.

Related challenges for feature selection

Shown in Section 5 are some exemplary cases of applying feature selection as a preprocessing

step in very large databases collected from Internet, business, scientific, and government applica-

tions. Novel feature selection applications will be found where creative data reduction has to be

conducted when our ability to capture and store data has far outpaced our ability to process and

utilize it [30]. Feature selection can help focus on relevant parts of data and improve our ability

to process data. New data mining applications [4, 45] arise as techniques evolve. Scaling data

mining algorithms to large databases is a pressing issue. As feature selection is one step in data

preprocessing, changes need to be made for classic algorithms that require multiple database scans

and/or random access to data. Research is required to overcome limitations imposed when it is

costly to visit large data sets multiple times or access instances at random as in data streams [9].

It is noticed recently that in the context of clustering, many clusters may reside in different

subspaces of very small dimensionality [32], either with their sets of dimensions overlapped or

non-overlapped. Many subspace clustering algorithms are developed [72]. Searching for subspaces

is not exactly a feature selection problem as it tries to find many subspaces while feature selection

only tries to find one subspace. Feature selection can also be extended to instance selection [55]

in scaling down data which is a sister issue of scaling up algorithms. In addition to sampling

methods [33], a suite of methods have been developed to search for representative instances so that

data mining is performed in a focused and direct way [11, 61, 76]. Feature selection is a dynamic

field closely connected to data mining and other data processing techniques. This paper attempts to

survey this fast developing field, show some effective applications, and point out interesting trends

and challenges. It is hoped that further and speedy development of feature selection can work with

other related techniques to help evolve data mining into solutions for insights.
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